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A Supplemental results

A.1 Qualitative and quantitative results on the prediction
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Figure 9: Prediction errors on smallNORB. During the training phase, the models were trained to
predict the observations only at tp = 1. The prediction errors at tp > 1 indicate the extrapolation
performance.
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(b) Sequential MNIST-bg

Figure 10: The results of linearly regressing the true transition parameters from M∗. For the per-
formance evaluation, we used 1 − R2 scores (The value of 0 indicates the perfect prediction and 1
indicates the performance is chance level. 1 − R2 > 1 can happen when the model significantly
overfits to the training set). For the color rotation and the shape rotation, (cos(v), sin(v)) was used
as the target value where v is the angle velocity. For this experiment, we trained the models on a set
of sequences generated from digit 4 class only, and trained/evaluated the linear regression perfor-
mance on the trained models’ features on a set of sequences created from all digit classes in MNIST.
Because SimCLR, CPC and Neural transition do not directly compute M∗, the linear regression was
computed from the concatenation of the two consecutive latent representations that were used in our
method for the computation of M∗.
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Figure 11: The results of digit classification evaluation on the sequential MNIST and MNIST-bg
datasets. For this experiment, we trained the models on a set of sequences generated from only digit
4 class. We trained and evaluated the softmax classifier on the feature Φ(s1) where s1s are generated
from all digit classes in MNIST.
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A.2 Equivariance performance

Figure 12 shows (M∗(s) −M∗(s′))2 for the pairs of sequences that transition with same g (e.g.
s = s(s1, g), s

′ = s′(s′1, g)). We see that M∗s computed from the representation learned by our
method do not differ across s and s′. This can also be confirmed visually in the generated sequences
as well (Figure 13).

Figure 12: Visualization of (M∗(s)−M∗(s′))2 where s, s′ that transition with the same g.

(a) Sequential MNIST

(b) Sequential MNIST-bg

Figure 13: The result of transferring M∗ computed from one sequence to other sequences. For
both sequential MNIST and sequential MNIST-bg, M∗ was computed from the two consecutive
images placed on the left edge of the figure. In each pair of rows shown on the right, the top row
corresponds to the generated sequence and the bottom row corresponds to the ground truth sequence
that transitions with the same g that was used to create the two consecutive images on the left. We
see that each M∗ computed from our representation acts on different sequences in the same way.
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(a) 3DShapes

(b) SmallNORB

Figure 14: The result of transferring M∗ on 3DShapes and SmallNORB. The visualization follows
the same protocol as in Figure 13.
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(d) 3DShapes
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(e) SmallNORB
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Figure 15: Comparison of the prediction errrors and equivariance errors at Tp ≥ 1.

Seq. MNIST Seq. MNIST-bg (w/ digit 4)

Method Lp Lp
equiv Lp Lp

equiv

Rec. Model 48.91±4.47 64.22±5.69 91.02±2.22 88.93±2.89
NeuralM∗ 4.99±0.87 64.25±2.59 30.32±0.36 85.46±2.66
MSP (Ours) 6.42±0.21 15.91±0.49 52.67±0.86 59.87±1.37

(a) Equivariance performance on sequential MNIST and MNIST-bg w/ digit 4

Seq. MNIST-bg (w/ all digits) 3DShapes

Method Lp Lp
equiv Lp Lp

equiv

Rec. Model 87.05±3.32 95.66±7.71 153.39±24.1 258.20±25.8
NeuralM∗ 20.60±0.25 83.18±2.50 2.09±0.12 217.73±46.7
MSP (Ours) 27.38±0.14 36.42±0.08 2.75±0.25 2.87±0.30

(b) Equivariance performance on sequential MNIST-bg w/ all digits and 3DShapes

SmallNORB Accelerated Seq. MNIST

Method Lp Lp
equiv Lp Lp

equiv

Rec. Model 57.01±2.69 78.14±4.42
NeuralM∗ 28.98±1.25 53.24±0.64
MSP (Ours) 31.14±0.52 44.77±0.38 1.27± 0.02 1.34 ± 0.03

(c) Equivariance performance on SmallNORB and accelerated sequential MNIST

Figure 16: More detailed version of Fig 15 with standard deviation values. The statistics in this
figure were calculated over three models initialized with different random seeds. For the definition
of Lp and Lp

equiv, see (2) and (6).
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A.3 More results on simultaneous block-diagonalization

Before SBD After SBD

(a) Sequential MNIST

Before SBD After SBD

(b) Sequential MNIST-bg w/ digit 4

Before SBD After SBD

(c) Sequential MNIST-bg w/ all digits

Before SBD After SBD

(d) SmallNORB

Figure 17: The visualization of simultaneously block-diagonalized (SBD) matrices for Sequential
MNIST/MNIST-bg and SmallNORB datasets. As in Figure 7a, our visualizations correspond to
abs(M∗− I) and abs(V ∗− I) instead of the raw matrices (V ∗ is the block-diagonalized version of
M∗. See Section 3.3 and Section E).

Figure 17 is the visualization of the block structures revealed by the simultaneous block-
diagonalization on Sequential MNIST/MNIST-bg and SmallNORB. The detail of the block-
diagonalization method is provided in Section 3.3 and Section E.

To investigate what type of transformations these blocks correspond to, we studied the effect of
using just one particular set of blocks in the block diagonalized transition matrix (Figure 18). To
create the transformation of one particular set of blocks, we modified the block-diagonalized M∗

by setting all block positions other than the target blocks to identity. We can visually confirm that
disentanglement is achieved by the partition of block positions. See the figure captions for more
details.
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(a) Sequential MNIST (b) Sequential MNIST-bg w/ digit 4

(c) Sequential MNIST-bg w/ all digits (d) SmallNORB

Figure 18: Generation of disentangled sequences. The bottom sequence in each frame of this figure
is the ground truth. We generated each one of (1), (2) (and (3)) by applying the transformation
corresponding to only one particular set of the blocks. To create each sequence, we first computed
M∗ from the first two time-steps(t = 1, t = 2) in the ground truth, and block-diagonalized M∗ to
obtain M̂∗. We then created the transformation corresponding to only one particular set of blocks
by setting all the block positions of M̂∗ other than the target blocks to identity. We then applied the
powers of the one-block-set transformation to the image at t = 2 to generate the disentangled future
sequence. The assignment of block positions to disentangled factors was found manually by looking
at the activated blocks when we altered one factor in the ground truth sequences. See Table 1 for
the correspondence between block positions and disentangled factors. We can visually confirm that
disentanglement is achieved through block partitions.

dataset The factor-block position correspondence

Sequential MNIST (1) {0, 1, 2, 3}, (2) {4, 5, 6, 7}, (2) {8, 9, 10, 11}
Sequential MNIST-bg w/ digit 4 (1) {0, 1}, (2) {2, 3}, (3) {4, 5, 6, 7, 8}

Sequential MNIST-bg w/ all digits (1) {0, 1, 2, 3}, (2) {4, 5}, (3) {6, 7, 8},
3DShapes (1) {0, 1}, (2) {2, 3, 4, 5}, (3) {6, 7},

(4) {8, 9, 10, 11}, (5) {12, 13, 14, 15}
SmallNORB (1) {0, 1, 2, 3, 4, 5}, (2) {6, 7, 8, 9, 10, 11, 12, 13}

Table 1: The correspondence between block positions and disentangled factors in simultaneous
block-diagonalization. For each i, " (i){a1, a2, ...am}" means that the i-th disentangled factor has
coordinates {a1, a2, ...am}. For example, the block that is positioned at coordinates {4, 5} changes
the second disentangled factor (shape rotation) in Sequential MNIST.
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A.4 Orthgonality of M∗ during training
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Figure 19: The transition of ∥I − M∗M∗T∥2F during the training. We can observe that, for our
method, the learned representation evolves in such a way that the estimated transition M∗ tends to
become orthogonal.

B Generated examples

Figures 20-26 show the seqeuences generated by our method and its variants for each dataset. The
visualization follows the same protocol as in Figure 4.
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Figure 20: Sequential MNIST Figure 21: Seq. MNIST-bg (w/only digit 4)

Figure 22: Seq. MNIST-bg (w/all digits) Figure 23: 3DShapes
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Figure 24: SmallNORB

Figure 25: Accelerated Sequential MNIST. Both mod-
els were trained with Tc = 5 and Tp = 5. For the
training procedure on this experiment, please see Sec-
tion 4.4.

Figure 26: Sequential ShapeNet generated by the proposed method. The model was trained with
Tc = 5 and Tp = 5. Our method cannot make good predictions on this dataset. Note that, unlike
other datasets we studied on this paper, the transition in Sequential ShapeNet is not necessarily
invertible, because some parts of a 3D object are often not visible in the 2D rendering.
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Figure 27: Extrapolation results for longer future horizon (tp = 1,...,38). The visualization follows
the same protocol as in Figure 4a.

C Algorithm

We provide the algorithmic description of our method. Definitions of all symbols in the table are the
same as in the main sections.

Algorithm 1 Calculate the loss over Φ and Ψ.
Input: Given an encoder Φ, a decoder Ψ and a sequence of observations s =
[s1, . . . , sTc , sTc+1, . . . , sT ].
1. Encode the observations into latent variables Ht = Φ(st) for s1, ..., sTc .
2. Estimate the transition matrix by solving linear problem: M∗ = H+1H

†
+0 where H+0 and H+1

are the horizontal concatenation [H1;H2; ..., ;HTc−1] and [H2;H3; , ..., ;HTc
], respectively.

3. Predict the future sequence by : s̃t = Ψ((M∗)t−TcHTc
) for t = Tc + 1, ..., T .

4. Calculate the loss for the sequence s:
∑T

t=Tc+1 ∥s̃t − st∥22

D Experimental settings

D.1 Ablation studies

As ablations, we tested several variants of our method: fixed 2x2 blocks, NeuralM∗, Reconstruc-
tion model (abbreviated as Rec. Model), and Neural transition. We describe each one of them
below.

• Fixed 2x2 blocks: For this model, we separated the latent tensor Φ(s) ∈ R16×256 into 8 sub-
tensors {Φ(k)(s) ∈ R2×256}8k=1 and calculated the pseudo inverse for each k to compute the
transition in each R2×m dimensional space. Essentially, this variant of our proposed method
computes M∗ as a direct sum of eight 2×2 matrices. In the pioneer work of [10] that endeavors
to learn the symmetry in a linear system using the representation theory of commutative algebra,
the authors hard-code the irreducible representations/block matrices in their model. Our study
is distinctive from many applications of representation theory and symmetry learning in that we
uncover the symmetry underlying the dataset not by introducing any explicit structure, but by
simply seeking to improve the prediction performance. We therefore wanted to experiment how
the introduction of the hard-coded symmetry like the one in [10] would affect the prediction
performance.

• NeuralM∗: Our method is “meta” in that we distinguish the internal training of M∗ for each
sequence from the external training of the encoder Φ. Put in another way, the internal optimiza-
tion process of M∗ itself is the function of the encoder. To measure how important it is to train
the encoder with such a meta approach, we evaluated the performance of NeuralM∗ approach.
To reiterate, NeuralM∗ uses a neural network M∗

θ that directly outputs M∗ on the conditional
sequence, and train the encoder and the decoder via

Tc+Tp∑
t=Tc+1

∥Ψ(M∗
θ (sc)

t−TcΦ(sTc
))− st∥22,
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thereby testing the training framework that is similar to our method “minus” the “meta” compo-
nent.

• Reconstruction model (Rec. model): In our default algorithm, we train our encoder and de-
coder with the prediction lossLp in eq.(2) over the future horizon of length Tp−Tc. We therefore
wanted to verify what would happen to the learned representation when we train the model with
the reconstruction loss Lr in eq.(3) in which the model predicts the observations contained in
the conditional sequence. Specifically, we trained Φ and Ψ based on Lr in (3) with T = Tc = 3.

• Neural Transition: One important inductive bias that we introduce in our model is that we
assume the latent transition to be linear. We therefore wanted to test what happens to the results
of our experiment if we drop this inductive bias. For Neural transition, we trained a network
with 1x1 1D-convolutions that inputs Φ(s) in the past to produce the latent tensor in the next
time step; for instance, H̃t+1 = 1DCNN(Φ(st),Φ(st−1)) when Tc = 2. This model can be
seen as a simplified version of [60]. The 1DCNN was applied along the multiplicity dimension
(m).

In testing all of these variants, we used the same pair of encoder and decoder architecture as the
proposed method.

D.2 Training details

(a) Transformations (b) An example sequence

Figure 28: Sequential MNIST dataset. The transition in each sequence was produced by combining
three families of actions: shape rotation, color rotation and translation.

For the model optimization in every experiment, we used ADAM [37]. The number of iterations
for the parameter updates were 50, 000 on Sequential MNIST, 3Dshapes, and SmallNORB. The
number of iterations was 100, 000 on Sequential MNIST-bg (with only digit 4 class) and accelerated
Sequential MNIST. For MNIST-bg (with all digits) and Sequential ShapeNet, the number of itera-
tions was 200, 000. We set the initial learning rate of ADAM optimizer to 0.0003 and decayed it to
0.0001 after a certain number of iterations. For Sequential MNIST, 3Dshapes, and SmallNORB, we
began the decay at 40, 000-th iteration. For Sequential MNIST-bg (with digit 4 only) and accelerated
Sequential MNIST, we began the decay at 80, 000-th iteration. For Sequential MNIST-bg (with all
digits) and Sequential ShapeNet, we began the decay at 160, 000-th iteration.

The batchsize was set to 32 for all experiments. We conducted all experiments on NVIDIA A100
GPUs. Training our proposed model takes approximately one hour per 50, 000 iterations on a single
A100 GPU. Total amount of time to reproduce the full results in our experiments is approximately
12 days on a single A100 GPU.

We found that the choice of the latent dimension (a ×m) does not make significant difference on
the results as long as they are not too small (For example, if G is a torus group consisting of n
commuting axis, a must be no less than 2n when all the observations are real-valued; otherwise the
model will underfit the datasets. Also, we chose m to be larger than a so that Φ(x) becomes full
rank almost surely. This allows us to solve M∗ from M∗Φ(s1) = Φ(s2) (We can compute M∗ with
Tc = 2.) Choosing m > a also plays a role in the theory (Section F).

As for the NeuralM∗ and Neural transition models, we also optimized the invertibility loss:∑Tc

t=1 ∥Ψ(Φ(st)) − st∥22 in addition to Lp. Adding this loss to the original objective yielded better
results for these models in terms of prediction error and equivariance error for all experiments.

SimCLR and CPC settings in the downstream task experiments in Figure 10 and 11 To eval-
uate our method as a representation learning method, we compared our method against SimCLR [8]
and CPC [61, 27]. For SimCLR, we treated any pair of observations in the same sequence as a
positive pair, and any pair of observations in different sequences as a negative pair. We used the
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same encoder architecture as in our baseline experiment for both SimCLR and CPC. For the pro-
jection head of SimCLR, however, we used the same architecture as in the original paper. For the
auto regressive network of latent representation in CPC, we used the same architecture as in Neural
transition (see Section 4). The latent dimension was set to 512 for both models. We experimented
with larger and smaller dimensions as well, but however large the difference, altering the dimen-
sions did not result in significant improvements in terms of the representation quality evaluated in
the experimental sections. The temperature parameters for the logit output were searched in the
range of [1e-3, 1e-2, 1e-1, 1.0, 10.0]. Because SimCLR is not built for the sequential dataset, it is
not expected to perform too well in terms of regression performance. We however evaluated these
models as minimum performance baselines.

D.3 Additional details of datasets

Our training-test split was the same as the split in the original dataset. Therefore the train-test split
of Sequential MNIST/MNIST-bg was the same as that of MNIST, and the split of the SmallNORB
dataset we used was the same as that of the original SmallNORB. Meanwhile, the 3DShapes dataset
does not have train-test split, so we conducted the training and the test evaluation on the same dataset
for the sequential 3DShapes experiment. We also used only cubic shape examples on the 3DShapes
experiments. For Sequential ShapeNet, 90% of objects in the original ShapeNetCore assets were
used for the training and the rest were used for the evaluation. The input size of each example in
a given sequence was 3 × 32 × 32 for Sequential MNIST/MNIST-bg, 3 × 64 × 64 for 3DShapes,
1× 96× 96 for SmallNORB, and 3× 128× 128 for Sequential ShapeNet.

To generate Sequential ShapeNet, we used Kubric [21] to render the objects in ShapeNet [7] datasets.
For each sequence, we sampled one object from ShapeNetCore assets, and used 3D rotation to define
the transition. The angle of 3D rotation in each axis(xyz) was sampled from the uniform distribution
over the interval [0, π/4).

D.4 Network architecture

We used ResNet-based encoder and decoder[26]. We used ReLU function [53, 20, 52] for each
activation function and group normalization [68] for the normalization layer. We used weight stan-
darization [55] for all of filters in each convolutional network. Also, we used trainable positional
embedding in each block of the decoder, which was initialized to the 2D version of sinusoidal posi-
tional embeddings [66]. We provide the details of the architecture in Table 2 and Figure 29.

For the NeuralM∗ method, we used the same model in the table 2a except the input channel of the
network was set to 6 (and 2 for SmallNORB) because this method uses a pair of images (s1, s2) as
an input.

For the Neural transition model, we used a network with 1x1 1D convolutions to map
[Ht, . . . , Ht+t′ ] to Ht+t′+1. The network architecture is the 1x1 1D convolutional version of the
table 2a without downsampling. The number of ResBlocks was set to two. We also replaced all of
the group normalization layers with layer normalization [2].
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#channels Resampling Spatial
or #dims Resolution

3x3 2DConv 32*k - H×W
ResBlock 64*k Down (H/2)×(W/2)
ResBlock 128*k Down (H/4)×(W/4)
ResBlock 256*k Down (H/8)×(W/8)

GroupNorm 256*k - (H/8)×(W/8)
ReLU 256*k - (H/8)×(W/8)
Flatten 256*k*(H/8)*(W/8) - -
Linear 16*256 - -

(a) Encoder architecture

#channels Resampling Spatial
or #dims Resolution

Linear 256*k*(H/8)*(W/8) - -
Reshape 256*k - (H/8)×(W/8)

ResBlock 128*k Up (H/4)×(W/2)
ResBlock 64*k Up (H/2)×(W/4)
ResBlock 32*k Up H×W

GroupNorm 32*k - H×W
ReLU 32*k - H×W

3x3 2DConv 3 (1 for SmallNORB) - H×W

(b) Decoder architecture

Table 2: The detail of the encoder and decoder architecture used in our experiments. The columns
of ‘#channels or #dims’ and ‘Spatial resolution’ respectively represent the channels/dimensions and
the spatial resolution at the end of each corresponding module. ‘Resampling’ column represents
whether the corresponding layer performs upsampling (Up), downsampling (Down) or none of
them (-). Please see Figure 29 for the detail of the ResBlock architecture. The value k in the
table was set to 1 for 3DShapes, SmallNORB and Sequential ShapeNet. The value k was set to 2 for
Sequential MNIST and accelerated Sequential MNIST, and 4 for Sequential MNIST-bg. For Small-
NORB, we added one more downsampling ResBlock after the third ResBlock in the encoder and
one more upsampling ResBlock before the first ResBlock in the decoder. For Sequential ShapeNet,
we added two more downsampling ResBlock in the encoder and two more upsampling Resblock in
the decoder.

ReLU

GroupNorm

3x3 2DConv  

ReLU

GroupNorm

3x3 2DConv 

PosEmb

1x1
2DConv  

Figure 29: ResBlock architecture in the encoder and decoder. ‘PosEmb’ stands for the positional
embedding layer which concatenates the learned positional embedding to its input. The embedding
dimension was set to 32×H ×W . The PosEmb layer was used only in decoder’s resblock. For the
encoder, we performed downsampling (mean average pooling) after the second convolution layer.
For the decoder, we performed upsampling before the first convolution. Also, we added a downsam-
pling layer (mean avegrage pooling) after the 1x1 convolution. For upsampling, we added a layer
of nearest-neighbor upsampling before the 1x1 convolution. The number of groups for the group
normalization layer was set to 32.
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E Simultaneous Block-diagonalization

To find U that simultaneously block-diagonalizes all M∗(s|Φ), we optimized U based on the ob-
jective function that measures the block-ness of V ∗(s) := UM∗(s|Φ)U−1. Our objective function
is based on the fact that, if we are given an adjacency matrix A of a graph, then the number of
connected components in the graph can be identified by looking at the rank of graph Laplacian:

dim(Ker(∆A)) = #of blocks in A (8)

where ∆ is the graph Laplacian operator on A. To relate our V ∗ := UM∗U−1 to a graph, we see it
as a bipartite graph and calculate the adjacency matrix by:

A(V ∗(s)) := abs(V ∗(s))abs(V ∗(s))T (9)
where abs(V ∗(s)) represents the element-wise absolute value of V ∗: abs(M∗(s))ij = |M∗

ij |. To
optimize Eq.(8) with respect to the change of basis U by continuous optimization, we used the lasso
version of Eq.(8):

Lbd (V
∗(s)) := ∥∆(A (V ∗(s)))∥trace =

a∑
d=1

σd (A (V ∗(s))) (10)

where σi(∆A) is i-th singular value of ∆A. We used the symmetrically normalized version of
the graph Laplacian: ∆A = I − D−1/2AD−1/2 where D is the degree matrix of A. Summing
this over all s(i) in the dataset, we obtain: L̄bd := 1

N

∑N
i=1 Lbd

(
V ∗(s(i))

)
. We search for U that

simultaneously block-diagonalizes all V ∗(s(i)) by minimizing L̄bd w.r.t. U .

F Formal statements and the proofs of the theory section

We begin by summarizing the notations to be used in our formal statements. We use X to denote
the space of all observations at a single time step, and Φ : X → H to denote the encoder from X to
the latent spaceH. If s = [st ∈ X ; t = 1, ..., T ] is one instance of video-sequence to be used in our
training, we assume that, for each s, there is an operator g : X → X such that gst = st+1 for each
t. As such, each s is characterized by a pair of initial state s1 ∈ X and g ∈ G, where G is the set of
all operators considered. Thus, we would use s(s1, g) to denote a specific sequence.

Now, given a fixed encoder Φ : X → Ra×m, our training process computes the transition matrix M
independently for each instance of s(s1, g) = [st]

T
t=1 = [gt−1s1]

T
t=1. In particular, we compute

M∗(g, s1|Φ) = arg min
M

1

T

T−1∑
t=1

∥Φ(st+1)−MΦ(st)∥2F . (11)

In the theory developed here, we investigate the property of the optimal Φ when T = ∞ so that
M∗(g, s1|Φ) achieves

∥Φ(st+1)−M∗(g, s1|Φ)Φ(st)∥2 = 0

or equivalently,
M∗(g, s1|Φ)Φ(gt−1 ◦ s1) = Φ(gt ◦ s1)

for all t ∈ N, g ∈ G, and s1 ∈ X . We would like to know whether M∗(g, x|Φ) has no dependency
on x so that Mg = M∗(g|Φ) defines an equivariance relation and hence a group representation .

We begin tackling this problem by first investigating M∗(g, x|Φ) within an orbit G ◦ x := {h ◦ x ∈
X | h ∈ G}. That is, we check if we can say M∗(g, x|Φ) = M∗(g, h ◦ x|Φ) for any g, h ∈ G and
x ∈ X . We call this property intra-orbital homogeneity.

We assume that G is a compact commutative Lie group in the following result.
Proposition F.1 (Intra-orbital homogeneity). Suppose that G is a compact commutative Lie group,
Φ(x) ∈ Ra×m has rank a, and M(g, x) ∈ Ra×a satisfies

M(g, x)Φ(gk ◦ x) = Φ(gk+1 ◦ x) (12)
for all k ∈ N ∪ {0}, x ∈ X and g ∈ G. If M(g, x) is continuous with respect to g and is uniformly
continuous with respect to x, then

M(g, x) = M(g, h ◦ x)
for all h ∈ G.
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Before going into the proof of this proposition, we show the following lemma about the basic prop-
erties of M(g, x) that satisfies (12).

Lemma F.2. Assume that Φ(x) ∈ Ra×m has rank a, and that a × a-matrix M(g, x) satisfies (12)
for all k ∈ N ∪ {0}, x ∈ X and g ∈ G. Then,

(i) M(gh, x) = M(g, h ◦ x)M(h, x) for any g, h ∈ G and x ∈ X .
(ii) M(gℓ, x) = M(g, x)ℓ for any ℓ ∈ Z, g ∈ G, and x ∈ X .

(iii) M(g, gℓ ◦ x) = M(g, x) for any ℓ ∈ Z, g ∈ G, and x ∈ X .

Proof. First note that, from (12) with k = 0, we have

M(g, x)Φ(x) = Φ(g ◦ x) (13)

for any g ∈ G and x ∈ X .

Using (13) repeatedly, we have

M(gh, x)Φ(x) = Φ(gh ◦x) = Φ(g ◦ (h ◦x)) = M(g, h ◦x)Φ(h ◦x) = M(g, h ◦x)M(h, x)Φ(x).

The rank assumption of Φ proves (i).

Also, (13) implies M(e, x) = id for the unit e ∈ G. We will first prove (ii) and (iii) with ℓ > 0.

For (ii), note that the repeated use of (12) necessiates

Φ(gℓ ◦ x) = M(g, x)Φ(gℓ−1 ◦ x) = · · · = M(g, x)ℓΦ(x).

On the other hand, Φ(gℓ ◦ x) = M(gℓ, x)Φ(x). Equating these two expression of Φ(gℓ ◦ x) proves
(ii) with ℓ > 0.

Meanwhile, from (12) we have Φ(gℓ+1 ◦ x) = M(g, x)Φ(gℓ ◦ x), while

Φ(gℓ+1 ◦ x) = Φ(g ◦ (gℓ ◦ x)) = M(g, gℓ ◦ x)Φ(gℓ ◦ x).

This proves the assertion (iii) for ℓ > 0.

Now, substituting x ← g−1 ◦ x for (iii) with ℓ = 1, we obtain M(g, x) = M(g, g−1 ◦ x). On the
other hand, substituting h← g−1 for (i), we get M(g, g−1 ◦ x)M(g−1, x) = M(e, x) = id. Thus,

M(g−1, x) = M(g, x)−1.

Replacing g with g−1 in (ii) thus leads to M(g−ℓ, x) = M(g−1, x)ℓ = M(g, x)−ℓ for any ℓ ∈ N.
This shows that (ii) holds for the negative integers as well. Also, substituting g ← g−1 in (iii) yields
M(g−1, g−ℓ ◦ x) = M(g−1, x). Taking the inverse of the both sides proves the assertion (iii) for
the negative integers.

Proof of Proposition F.1. Let h, g ∈ G be given. Since G is a connected commutative Lie group, the
exponential map exp : g → G is surjective, where g is the Lie algebra of G [19]. Therefore, there
exists some η ∈ g such that exp(η) = h. Then, for any n ∈ N, we can define h

1
n := exp(η/n) and

h
1
n → e as n→∞.

By the uniform continuity assumption on M(·, x), for any ϵ > 0, we can choose n large enough so
that

∥M(gh
1
n , g−n ◦ x)−M(g, g−n ◦ x)∥F < ϵ, (14)

and
∥M(gh

1
n , h ◦ x)−M(g, h ◦ x)∥F < ϵ. (15)

From Lemma F.2 (iii), we have

M(gh
1
n , g−n ◦ x) = M(gh

1
n , (gh

1
n )ng−n ◦ x),

and thus it follows from the commutativity assumption that

M(gh
1
n , g−n ◦ x) = M(gh

1
n , h ◦ x). (16)

30



At the same time, Lemma F.2 (iii) implies M(g, g−n◦x) = M(g, x) so that (14) and (16) necessiates

∥M(gh
1
n , h ◦ x)−M(g, x)∥F < ϵ. (17)

Finally, the combination of (15) and (17) guarantees

∥M(g, h ◦ x)−M(g, x)∥F
≤ ∥M(g, h ◦ x)−M(gh

1
n , h ◦ x)∥F + ∥M(gh

1
n , h ◦ x)−M(g, x)∥F < 2ϵ.

Because ϵ > 0 is arbitrarily small, ∥M(g, h ◦ x)−M(g, x)∥F = 0 necessarily holds, and the claim
follows.

Proposition F.3. Suppose that, for a compact connected Lie group G and connected X , M : G ×
X → Ra×a in (12) satisfies the intra-orbital homogeneity, and that Φ(x) ∈ Ra×m has rank a for
all x. If M(g, x) is continuous with respect to x, then M(g, x) is similar to M(g, x′) for all x, x′;
that is, there is some P ∈ GL(a,R) such that PM(g, x)P−1 = M(g, x′) for all g ∈ G.

Proof. From Lemma F.2, we have

M(gh, x) = M(g, h ◦ x)M(h, x).

Combining this with intra-homogeneity M(g, h ◦ x) = M(g, x) provides

M(gh, x) = M(g, x)M(h, x),

which means that, for each fixed x,

Mx : G → GL(a;R)

defined by M(g, x) = Mx(g) is a representation of the Lie group G [19]. Now, if G is compact
and connected as assumed in the statement, Mx(g) is completely reducible, and Mx is similar to a
direct sum of irreducible representations. We then use the fact from character theory [19] that the
multiplicity of any irreducible representation D in Mx can be computed by

⟨Mx|D⟩ =
∫
G
tr(M(g, x))tr(D(g))µ(dg), (18)

where µ is a Haar measure of G with volume 1, and tr(D(g)) is the complex conjugate of tr(D(g)).
Because ⟨Mx|D⟩ is a multiplicity, it takes an integer value. At the same time, by its definition and
the continuity of M(·, x), this value is continuous with respect to x. Thus, ⟨Mx|D⟩must be constant
on X by the connectedness of X . That is,

⟨Mx|D⟩ = ⟨Mx′ |D⟩

for all x, x′ ∈ X . This means that, irrespective of x, M(g, x) is similar to the direct sum of the same
set of irreducible representations, and the claim follows.
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