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Abstract

In this study, we present meta-sequential prediction (MSP), an unsupervised
framework to learn the symmetry from the time sequence of length at least three.
Our method leverages the stationary property (e.g. constant velocity, constant ac-
celeration) of the time sequence to learn the underlying equivariant structure of
the dataset by simply training the encoder-decoder model to be able to predict the
future observations. We will demonstrate that, with our framework, the hidden
disentangled structure of the dataset naturally emerges as a by-product by apply-
ing simultaneous block-diagonalization to the transition operators in the latent
space, the procedure which is commonly used in representation theory to decom-
pose the feature-space based on the type of response to group actions. We will
showcase our method from both empirical and theoretical perspectives. Our re-
sult suggests that finding a simple structured relation and learning a model with
extrapolation capability are two sides of the same coin. The code is available at
https://github.com/takerum/meta_sequential_prediction.
.

1 Introduction

The recent evolution and successes of neural networks in machine learning fields have shown the
importance of symmetry-aware neural network models [18, 45, 38, 63]. In particular, symmetries in
the form of geometric/algebraic constraints have been proven useful in various applications involv-
ing high-dimensional, highly-structured observations. For example, recent literature of robotics and
reinforcement learning has succeeded in exploiting the knowledge of geometrical symmetries to im-
prove the sample efficiency [62, 65] or to train a model that generalizes to unseen observations [58].

However, building an inductive bias that matches the given dataset of interest is challenging, and re-
cent studies have been exploring the ways to learn symmetries itself from observational sequences.
Many of these approaches consider settings with relatively restrictive assumptions or weak supervi-
sion. For example, [56] allows the trainer to use the knowledge of the identities of the actions used
in making the transition. Meanwhile, [4, 35, 34] essentially assume that the transition velocity of all
sequences in the datasets are the same.

These studies indicate that there is still much room left for the question of “what is required for
dataset/model to enable the unsupervised learning of the equivariance relation corresponding to the
underlying symmetry”. This paper advances this investigation by showing that if the sequential
dataset consists of time series with a certain stationary property (constant velocity, constant accel-
eration), we can learn the underlying symmetries by simply training the model to be able to predict
the future with linear transition in the latent space. Our theory in Section 3 shows that this strat-
egy can learn a model that is almost equivariant. Moreover, we will experimentally show that, by
training an encoder-decoder model in a framework of meta-learning which we call meta-sequential
prediction (MSP), we can actually learn an equivariant model. In particular, we show that we can
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learn a hidden equivariance structure in the dataset by splitting (1) the internal training step to com-
pute the prediction loss of linear transition in the latent space from (2) the external training step to
update the encoder and decoder. We will also empirically show that, in alignment with group rep-
resentation theory [42], the learned linear latent transitions in our framework can be simultaneously
block-diagonalized, and that each block corresponds to a disentangled factor of variation.

2 Related works

Recently, numerous studies have explored the ways to learn symmetry in a data-driven manner.
There is rich literature in unsupervised/weakly supervised approaches that use sequential datasets
to exploit the structure that is shared across time, and they all differ by the types of inductive bias.
For example, the object-centric approach introduces inductive bias in the form of architecture, and
equips the model with pre-defined slots to be allocated to objects [39, 33, 40]. Meanwhile, [22, 1]
assumes that the symmetry to be found takes the form of the energy conservation law, and learns
each variable in the law as a function of observations. While this approach assumes that some energy
is preserved in each observation, we assume that the transition parameters like velocity and accel-
eration are preserved within each observation. Other more indirect forms of inductive bias include
those relevant to distributional sparseness and symmetry defined through algebraic constraints. [31]
for instance assumed that every stationary component of a given time series is generated by a finite
and independent latent time series. [41] proposed to sparsely model the transition with a distribu-
tion of large kurtosis. Our work belongs to a family of unsupervised learning that seeks to find the
underlying symmetry of the dataset based on an algebraic inductive bias that the transitions can be
represented linearly in some latent space. In this sense, our inductive bias also has a connection to
Koopman operator [43, 25, 3]. We are different from these studies in that we are aiming to learn a
common encoding function (i.e. lifting function) under which the set of sequences following differ-
ent dynamics can be described linearly. Also [70] applied Koopman operator on pedestrian walking
sequences, and [23] used Koopman operator to separate the foreground from the background. How-
ever, [70] does not set out their model to solve the extrapolation, and neither [70] nor [23] discusses
the natural algebraic decomposition of the latent space that results solely from the objective to pre-
dict the unseen future.

Unsupervised learning with algebraic/geometrical constraints Many studies impose algebraic
constraints that reflect some form of geometrical assumptions. [16] uses a known coordinate map
parametrization of a Lie group family to construct a posterior distribution on the manifold. [54]
assumes that the observations are dense enough on the data-manifold to describe its tangent space,
and exploits a property of random walks on the product manifold to decompose the data space. In
the analysis of sequential datasets, [13, 59, 10, 56, 12] make some Lie group type assumptions about
the transition. [56] also assumes that the identity of the actions in the sequences is known. As for the
approaches with less explicitly geometrical touch, [35] uses capsule structure in their probabilistic
framework to model a finitely cyclic structure while retaining the computability of posterior distri-
bution. By design, [35] assumes that all sequences in the dataset transition with the same cyclic
velocity. [69] enforces the underlying transition action to be commutative. Some of these studies
learn the representation so that the linear transition in the latent space can be explicitly computed
[56, 12, 4]. In particular, [4] presents a theory that suggests that a representation without this feature
would have topological defects, such as discontinuity. Our approach shares a similar philosophy with
these works except that, instead of imposing a strong assumption about the underlying symmetry,
we only make a relatively weak stationarity assumption about the dataset; although we assume each
sequence to be transitioning with constant velocity/acceleration, we allow the velocity/acceleration
to vary across different sequences.

Disentangled Representation Learning Disentangled structure [29, 30] is a form of symmetry
that has also been actively studied. It is known that, under the i.i.d assumption of examples, unsu-
pervised learning of disentanglement representation is not achievable without some inductive biases
encoded in models and datasets [49]. In response to this work, subsequent works have explored
different frameworks such as weakly-/semi-supervised settings [51, 50] and learning on sequential
examples [41] to learn disentangled representations. For example, PhyDNet [24] disentangles the
known physical dynamics from the unknown factors by preparing an explicit module called PhyCell.
ICA [32] and recent works [71, 64] also discuss the identifiability property of learned representa-
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tions. Classical methods like [28, 6, 36] take an approach of incorporating the inductive bias in the
form of a probabilistic model.

We are different from many previous methods in that we do not equip our model with an explicit
disentanglement framework. Our method achieves disentanglement as a by-product of training a
model that can predict the future linearly in the latent space. The set of latent linear transformations
estimated by our method for different time sequences can be simultaneously block-diagonalized,
and the latent space of each block corresponds to a disentangled feature. Our data assumption about
constant velocity/acceleration might be similar in taste to the setting used by [32], in which the
observed time series can be split into the finite number of stationary components.

3 Learning of equivariant structure from stationary time sequences

Our goal is to learn the underlying symmetry structure of a dataset in an unsupervised way that
helps us predict the future. What do us humans require for the dataset when we are tasked to, for
example, predict where a thrown ball would be in the next second? We hypothesize that we solve
such a prediction task by analyzing a short, past time-frame with a certain stationary property (e.g.,
constant velocity/acceleration). Indeed, people with good dynamic visual acuity can chase a fast-
moving object, because they can identify such a short stationary time-frame and use it to predict the
near future linearly in their latent space. Based on this intuition, we propose to provide the trainer
with a dataset consisting of constant velocity/acceleration sequences. We formalize this idea below.

Dataset structure Our dataset S consists of sequences in some ambient space X , so that each
member s ∈ S takes the form s = [st ∈ X ; t = 1, ..., T ] ∈ S . Because we want s to be describing
a sequence that transitions with constant velocity, we assume that all st in a given instance of s ∈ S
are related by a fixed transition operation g ∈ G so that st+1 = g ◦ st for all t, where G is the set of
transition operators on X and each g ∈ G acts on x ∈ X by sending x to g ◦ x. We assume that X is
closed under G; that is, g ◦x ∈ X for all x ∈ X , g ∈ G. We allow G to be continuous as well, so that
g might not have a finite order (For instance, if g is a rotation with speed 2πr with irrational r, any
finite repetition of g would not agree with identity mapping). This way, our setting is different from
those used in [35] that explores a cyclic structure using the capsules of same size. We emphasize that
the transition action g is generally assumed to differ across the different members of S. For example,
if G is a set of rotations and X a set of images, then the rotational speed, direction and the initial
image may all be different for any two distinct sequences, s and s′. Because each instance of S is
characterized by s1 and g, we may write s(s1, g) to denote a sequence that begins with initial frame
s1 and transitions with g. Summarizing, S is a subset of {[gt ◦ s1; t = 0, ..., T −1]; s1 ∈ X , g ∈ G}.

Prediction framework through equivariance Our strategy is to exploit the stationary property
of each s ∈ S to seek an invertible continuous function Φ : X → Ra×m such that there exists some
M : G → Ra×a satisfying

MgΦ(x) = Φ(g ◦ x) for all x ∈ X and g ∈ G. (1)

This relation is known as equivariance [11], and this type of tensorial latent space has also been
used in [44] as well for the unsupervised learning of the structure underlying the dataset. In other
words, we seek a model in whichX and Ra×m are invertibly related by an equivariance relation with
respect to G, where g ∈ G acts on Φ(x) ∈ Ra×m via the map Φ(x) 7→ MgΦ(x) with Mg ∈ Ra×a.
We assume m > 1 in our study1. In this framework, we predict the sequence s(s1, g) with the
relation Φ−1(MgΦ(st−1)) = s̃t. When G is a group, (1) would imply MghΦ(x) = Φ(gh ◦ x) =
MgΦ(h◦x) = MgMhΦ(x) for all x, and the map g 7→Mg is called a representation of G [9, 67, 10].

Because we are aiming to establish the framework in which the representation of each action g
can be explicitly computed, our philosophy has much in common with the proposition of [4]. This
approach is in contrast to [35], which encodes a predefined cyclic structure in the model.

1 We note that, when m > 1, the action of Mg on Ra×m can be realized by applying the same Mg to
m-copies of Ra. In other words, our prediction framework assumes that there are m number of subspaces
that react to g in the same way. This m > 1 assumption is also considered in [4]. The case in which there
are no copies of subspaces that act in the same way is called multiplicity-free in the literature of representation
theory [9, 19], and is known to be a special case that happens only under a restrictive condition on the dimension
of the observations space [46]. A similar idea has been used in model architecture as well [15].
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Figure 1: Visualization of intra-orbital homogeneity vs full equivariance. During the training, the
model was trained to satisfy M(g, s1) = M(g, g ◦ s1) for all g and s1. When intra-orbital homo-
geneity holds, M(g, x) = M(g, h ◦ x) for all h, g ∈ G and x. When the full equivariance holds,
M(g, x) is invariant across different orbits.

3.1 Learning equivariance relation from stationary sequential dataset

However, training the model satisfying (1) with just the constant velocity assumption is not a triv-
ial task, because this model assumption only assures that, for each sequence s(s1, g), there is a
sequence-specific operator M(g, s1) that is guaranteed only to be able to predict the sequence that
transitions with g and begins from s1 in the way of M(g, s1)Φ(st) = Φ(st+1) = Φ(g ◦ st)
(the left most panel in Figure 1). In order to satisfy the full equivariance ((1) or the right most
panel Figure 1), M(g, s1) shall not depend on s1 (i.e. homogeneous with respect to s1). At the
same time, because the constant velocity assumption applies to each sequence over all time inter-
vals, it at least assures that the latent transition M is well defined within each sequence; that is,
M(g, x) = M(g, g ◦ s1) = M(g, g2 ◦ s1) · · · and so on. It turns out that, with some regularity as-
sumptions on the model and the choice of G, we can extend this observation to say that M satisfies
intra-orbital homogeneity (the middle panel in Figure 1) ; that is, M(g, x) is constant on the orbit
G ◦ x = {g ◦ x; g ∈ G} for each x.

Proposition 3.1. Suppose that Φ(st) = M(g, s1)Φ(st−1) for all s and t. If m > a and if G is a
compact commutative Lie group, then M satisfies intra-orbital homogeneity.

Also, if M satisfies intra-orbital homogeneity, M(g, x) and M(g, x′) for any pair (x, x′) in different
orbits G ◦ x ̸= G ◦ x′ can be shown to be at least similar.

Proposition 3.2. Suppose that M(g, x) satisfies intra-orbital homogeneity, and suppose that G is a
compact connected group. If M(g, x) is continuous with respect x, then for all (x, x′), there exists
some P such that PM(g, x)P−1 = M(g, x′).

Thus, much of the equivariance property can be satisfied automatically by training the representation
on the set of stationary sequences. Interestingly, as we experimentally demonstrate later, our training
method in the next section successfully learns a fully equivariant Φ without explicitly enforcing the
change of basis P to be I .

3.2 Learning Φ via solving a meta-sequential prediction task

We propose a meta-learning way to learn a homeomorphic function Φ : X → Ra×m with equivari-
ance property by seeking an injective Φ such that M(g, s1)Φ(st) = Φ(st+1) for all g ∈ G, s1 ∈ X .
We learn such Φ by casting this problem as a meta-learning problem in which M(g, s1) is to be
internally estimated for each s. In other words, we seek a pair of an encoder Φ and a decoder Ψ such
that L(Φ,Ψ|s) = minM

∑
st,st+1∈s ∥Ψ(MΦ(st))− st+1∥22 is optimized for each s.

We conduct this optimization by splitting each s = {s1, ..., sT } into conditional time sequence
sc = {s1, ..., sTc} and validation time sequence sp = {sTc+1, ..., sT }, while using the former for
the internal optimization of M to force the linear algebraic relation in the latent space and using the
latter for the prediction loss. More precisely, we solve the following optimization problem about Φ
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and Ψ:

Lp(Φ,Ψ) :=
∑

s

∑T
t=Tc+1

∥∥Ψ(M∗(sc|Φ)t−TcΦ(sTc))− st
∥∥2
2

where M∗(sc|Φ) = arg minM

∑Tc−1
t=1 ∥MΦ(st)− Φ(st+1)∥2F .

(2)

Since M∗ is obtained from the latent sequence in the internal optimization, we call this learning
framework the meta-sequential prediction (MSP). It might appear as if we can also set s = sc and
optimize the following reconstruction version of Eq.(2):

Lr(Φ,Ψ) :=
∑

s

∑Tc

t=2∥Ψ(M∗(s|Φ)t−1Φ(s1))− st∥22. (3)

However, as we will see in the experiment section, the use of the validation sequence sp makes a
substantial difference in the learned representation. This is most likely because the minimization of
the validation error of M∗ on sp would encourage Φ to exclude the sc-specific information from the
transition M∗. We will illustrate this effect in the experiment section. We shall note that we can
also parameterize M as M := exp(A), where A ∈ Ra×a is a Lie algebra element to be internally
optimized. This type of approach was used in [14] for building Lie group convolutional network and
in [59, 12] for predicting a sequence that is not necessarily stationary. In order to train their model,
[59] used additional parameters to diagonalize each algebra element as well as hyperparameters to
stabilize the training. We also experimented with a Lie-algebra style representation of M∗ and used
SGD to internally optimize the exponent parameters, but we needed to carefully tune the hyper-
parameter for the norm regularization term to stabilize the training and never really succeeded to
train the model without collapsing. Our internal optimization procedure is free of such a parameter
tuning.

Figure 2: The overview of meta-sequential predic-
tion (MSP) when Tc = 2 and Tp = t. After the en-
coder encodes the observations into tensor representa-
tions Φ(s1),Φ(s2), the method solves the least square
problem: M∗ = arg minM∥MΦ(s1) − Φ(s2)∥2F .
The model then predicts the future observations by
s̃t+2 = Ψ((M∗)tΦ(s2)). These processes (including
the linear problem) are all differentiable.

Internal Optimization of M∗ Because
the internal optimization in Eq.(2) is a lin-
ear problem, it can be solved analytically
as

M∗(sc|Φ) = H+1H
†
+0, (4)

where H+0 = [Φ(s1); ...; Φ(sTc−1)] ∈
Ra×(Tc−1)m and H+1 =
[Φ(s2); ...; Φ(sTc)] ∈ Ra×(Tc−1)m

are the horizontal concatenations of the
encoded frames and H†

+0 is the Moore-
Penrose pseudo inverse of H+0. Because
M∗(sc|Φ) is a closed form with respect to
Φ, the loss (2) can be directly optimized
by differentiating it with respect to the
parameters of both Φ and Ψ. Thus, the
training is done in an end-to-end manner.
Figure 2 summarizes the overall procedure
to make prediction on a given sequence
when Tc = 2, Tp = t. We note that,
although we have assumed the dataset to consist of constant-velocity sequences, we can readily
extend our method to the dataset consisting of the time series with higher-order stationarity, such as
constant acceleration. See Section 4.4 for the detailed explanation of the model extension and the
experimental results.

3.3 Irreducible decomposition of M∗s

Representation theory guarantees that, if G is a compact connected group, any representation D :
G → Ra×a can be simultaneously block-diagonalized; that is, there is a common change of basis
U such that V := UDgU

T =
⊕

j V
(j)
g , where V

(j)
g is called irreducible representation that cannot

be block-diagonalized any further [42, 10, 67]. The equivariance of our Φ which we show in the
experimental section suggests that M∗(s|Φ) may be simultaneously block-diagonalizable as well.
This block-diagonalization sometimes reveals disentanglement structure because any irreducible
representation of G1 × G2 is of form V (1) ⊗ V (2), where V (k) is an irreducible representation of
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Figure 3: Simutaneous block diagonalization (SBD) applied to the set of M∗s obtained from
3DShapes sequences. SBD finds the common change of basis under which all matrices V ∗ =
UM∗U−1 simultaneously take the form of block diagonal matrices with the same block positions.
For clarity, we provide in this figure the visualizations of M∗ := M∗− I and V ∗ := V ∗− I instead
of M∗ and V ∗.

Gk. In particular, if M∗’s irreducible representations have the form V (1) ⊗ 1 or 1⊗ V (2), then each
block would either corresponds to the action of G1 or of G2.2

To find U that simultaneously block-diagonalizes all M∗(s|Φ), we optimized U based on the fol-
lowing objective function that measures the block-ness of V ∗(s) := UM∗(s|Φ)U−1 based on the
normalized graph Laplacian operator ∆:

Lbd(V
∗(s)) := ∥∆(A(V ∗(s)))∥trace =

∑a
d=1σd(A(V ∗(s))) (5)

where A(V ∗(s)) = abs(V ∗(s))abs(V ∗(s))T with abs(V ∗(s)) representing the matrix such
that abs(V ∗(s))ij = |V ∗

ij |. Our objective function is based on the fact that, if we are given an adja-
cency matrix A of a graph, then the number of connected components in the graph can be identified
by looking at the rank of the graph Laplacian. For the derivation, please see Appendix E. Through
this decomposition, we are able to uncover the hidden block structure of M∗s. See Figure 3 for
the actual block-decompositions of M∗s through our simultaneous block diagonalization. We show
in Section 4.3 that each block component of V ∗ with optimized U corresponds to the disentangled
factor of variations in dataset.

4 Experiments

We conducted several experiments to investigate the efficacy of our framework. In this section,
we briefly explain the experimental settings. For more details, please see Appendix D. We tested
our framework on Sequential MNIST, 3DShapes [5], and SmallNORB [48]. Sequential MNIST
is created from MNIST dataset [47]. For all experiments, we used a ResNet [26]-based encoder-
decoder architecture and we set a = 16 and m = 256 so that the latent space lives in R16×256.

For Sequential MNIST, we chose our G to be the set of all combinations of three types of trans-
formations: shape rotation, hue rotation, and translation, and randomly sampled a single instance
of g ∈ G for each sequence(See Appendix D for the examples of sequences). To create each se-
quence, we first resized the MNIST image to 24×24, applied repetitions of a randomly sampled,
fixed member of g ∈ G and embedded the results to 32 × 32 images. For shape and hue rotations,
we randomly sampled the velocity of angles from uniform distribution on the interval [−π/2, π/2)
for each sequence. For translation, we randomly sampled the start point and end point in the range
of [-10, 10], and then moved the digit images on a straight line between the sampled points. We
also experimented on sequential MNIST with background (Sequential MNIST-bg). For Sequan-
tial MNIST-bg, we used the same generation rule as Sequential MNIST but we added background
images behind the moving digits. For the background, we used a randomly sampled images from
ImageNet [57], which were all resized to 32×32. Also, we only used the images of digit 4 for most
of the experiments on Sequential MNIST/MNIST-bg. Unless otherwise noted, all evaluations in this
paper for the Sequential MNIST are based on training with only digit 4.

3DShapes and SmallNORB are datasets with multiple factors of variation. We created a set
of constant-velocity sequences from these datasets by varying a fixed combination of factors for
each sequence. That is, on these datasets, we chose our G to be the set of variations of factors, and
sampled each g as

∏
i g

ℓi
i , where gi represents the increase of i-th factor by one unit and ℓi ∈ Z.

Thus, the value of ℓi represents the velocity in the direction of the i-th factor on the grid. For
3DShapes, we chose wall hue, floor hue, object hue, scale, and orientation as the factors to vary.
We varied elevation and azimuth for SmallNORB. For the split of each sequence into (sc, sp) , we
set Tc = 2 and Tp = 1 on all of the constant velocity experiments.

2V : G → {1} is a valid irreducible representation for any G.
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(a) Generated examples with our proposed method on Sequential MNIST and MNIST-bg

(b) Comparison of variant methods

Figure 4: (a): Predictions made by meta-sequential prediction on Sequential MNIST and MNIST-bg.
The ground truth sequence is placed below the predictions, with the first two images representing
sc. (b): Typical failure examples generated by the comparative methods. (1)(2)(3) and (4) are
NeuralM∗, Neural transition, Rec. model and Ours w/ fixed block, respectively. See Appendix B
for more examples.
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(c) 3DShapes

Figure 5: Prediction errors Lp with Tc = 2 and Tp = 1, . . . , 18. During the training phase, models
are trained to predict the observations only at Tp = 1. The prediction errors at Tp > 1 indicate the
extrapolation performance. The results on SmallNORB can be found in Appnedix A.

We also conducted experiments for the sequences with constant acceleration on Sequential MNIST.
To create a sequence with constant acceleration, we chose a pair ga, gv ∈ G for each sequence, and
generated s by setting st+1 = gtagvst. We elaborate on the detail of this extension in 4.4.

As ablations, we tested several variants of our method: fixed 2x2 blocks (abbreviated as fixed
blocks), NeuralM∗, Reconstruction model (abbreviated as Rec. Model), and Neural transition.
For the method of fixed 2x2 blocks, we separated the latent tensor Φ(s) ∈ R16×256 into 8 subtensors
{Φ(k)(s) ∈ R2×256}8k=1 and calculated pseudo inverse for each k to compute the transition in each
R2×256 dimensional space. This variant yields M∗ as a direct sum of eight 2×2 matrices. We tested
this variant to see the effect of introducing a predetermined representation theoretic structure as in
[10]. For Rec. model, we trained Φ and Ψ based on Lr in Eq. 3 with Tc = 3. We tested this variant
to see the effect of our use of Tp. For NeuralM∗, we trained an additional network Mθ that maps
sc to a transition matrix, replaced M∗ with Mθ in (4), and optimized θ and (Φ,Ψ) simultaneously.
We may see NeuralM∗ as a variant in which the meta part of the internal and external training is
removed from our method. For Neural transition, we trained 1x1 1D-convolutional networks to
be applied to latent sequences in the past to produce the latent tensor in the next time step; for
instance, s̃t+1 = Ψ(1DCNN(Φ(st),Φ(st−1))) when Tc = 2 3. The 1DCNN was applied along the
multiplicity dimension m. In this variant, the relation between Φ(st) and Φ(st+1) is not necessarily
linear. Section D.1 in Appendix describes each of the comparison methods more in detail. In testing
all of these variants, we used the same pair of encoder and decoder architecture as the proposed
method.

4.1 Qualitative and quantitative results on the prediction

Figure 4 shows the example sequences generated by the proposed model and comparative models.
Figure 5 presents the prediction performance at Tc + Tp when Tc = 2. To produce this result, we

3This model can be seen as a simplified version of [60]
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(a) Dependency of M∗ on sequence. The 2x3 tiled images in the leftmost panel represents two sequences
s(1), s(2) with the same transition action g. We consider the effects of M∗(1) and M∗(2) inferred respectively
from s(1) and s(2). NeuralM∗ fails in prediction when M∗(2) is used to predict s(1). Our method does not fail
by this swap, indicating M∗(2) ∼= M∗(1).

MNIST MNIST-bg 3DShapes SmallNORB

Method Lp Lp
equiv Lp Lp

equiv Lp Lp
equiv Lp Lp

equiv

Rec. Model 48.91 64.22 87.05 95.66 153.39 258.20 57.01 78.13
NeuralM∗ 4.99 64.25 20.60 83.18 2.09 217.73 28.98 53.24
MSP (Ours) 6.42 15.91 27.38 36.41 2.74 2.87 31.14 44.77

(b) Equivariance performance based on Lp(Eq.(2)) and Lp
equiv(Eq.(6)) with Tc = 2 and Tp = 1. To evaluate

equivariance errors on more difficult settings, we used all of digits in Sequential MNIST-bg for both training
and test sets.

Figure 6: Quantitative and qualitative evaluation of learned equivariance.

back-propagated the prediction error at Tp = 1 to the encoder during the training, and the prediction
at Tp > 1 was used to evaluate the extrapolation performance. Our method successfully predicts the
images for Tp ≥ 1. Neural transition and NeuralM∗ had almost the same prediction performance at
Tp = 1, but they both failed in extrapolation. Our fixed 2×2 blocks variant failed in extrapolation as
well. This might be because the over-regularized structure of 2x2 block hindered with the training
of the SGD optimization [17].

To evaluate how our learned representation relates to the structural features in the dataset, we also
regressed the factors of transition from M∗ and regressed the class of the digits from Φ(s1) (Fig-
ures 10 and 11 in Appendix A). SimCLR [8] and contrastive predictive coding (CPC) [61, 27] are
tested as baselines. Please see Appendix D for the detailed experimental settings for SimCLR and
CPC. Our method yields the representation with better prediction performance than the comparative
methods on the test datasets.

4.2 Equivariance performance

As we have described through Section 3.1 and 3.2, the equivariance is achieved when
M∗(s(s1, g)|Φ) in (2) does not depend on s1, where we recall that s(s1, g) represents the sequence
that begins with s1 and transitions with g. To see how much the trained model is equivariant to the
transformations in the sequential dataset, we therefore calculated the equivariance error, which is
the prediction error from applying M∗(s|Φ) to Φ(s′Tc

) for a pair s ̸= s′ that transitions with the
same g. In other words, when Tc = 2, we compute the following;

Lp
equiv := EgEs,s′∈S(g)[∥Ψ(M∗(s|Φ) Φ(s′2))− s′3∥22] (6)

where S(g) represents the set of all sequences that transition with g. For each pair of s ̸= s′ we
set Tc = 2 and Tp = 1 as done in the experiments in the previous sections. Table 6b compares
the NeuralM∗ method against our method in terms of the equivariance error. Figure 6a shows the
result of applying M∗(s|Φ) on Φ(s′2) and applying M∗(s′|Φ) on Φ(s2). We see that when we swap
M∗ this way, NeuralM∗ also swaps the digits; this implies that M∗ learned by NeuralM∗ encodes
the sequence specific information together with the transition. On the other hand, swapping of M∗

does not affect the prediction for our method, suggesting that our method is succeeding to learn
an equivariant model. This is somewhat surprising, because our model does not have the explicit
mechanism to enforce the full equivariance (P = I in Section 3.1).
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Figure 7: (a) Simultaneous block-diagonalization (SBD) of M∗. The top right matrix is the visual-
ization of abs(V ∗ − I) averaged over all of the training sequences. Each of the five matrices below
is the visualization of abs(V ∗ − I) averaged over the set of sequences on which only a single factor
was varied. Coordinates are permuted for better visibility. (b) Sequences generated by applying
the transformation of just one block. To produce the disentangled sequences in each row from the
leftmost two images in the bottom row, we performed the internal optimization of M∗ while setting
all but the block positions corresponding to each factor of variation to be identity. We elaborate this
result and the results for Sequential MNIST, MNIST-bg and SmallNORB in Appendix A.

4.3 Structures found by simultaneous block-diagonalization of M∗s

We have seen in the previous section that the trained Φ is fully equivariant to transformations G,
which implies each M∗ is a representation of the corresponding transformation of g ∈ G. As we
describe in Section 3.3, we apply simultaneous block-diaognalization to uncover the symmetry struc-
ture captured by M∗s. Figure 7a shows the structure revealed by simultaneous block-diagonalization
through the change of basis U trained by minimizing the average of Lbd in eq.(5) over all s. Fig-
ure 7b shows the results of applying transformation of only one block. We can see that each block
only alters one factor of variation. Our results suggest that the learned M∗ captures the hidden
disentangled structure of the group actions behind the datasets.

4.4 Extension to the sequences with constant acceleration

We have seen that meta-sequential prediction successfully learns an equivariant structure from the
set of constant-velocity sequences. In this section, we show that we can extend our concept to the
set of sequences sharing the stationarity of higher order (constant acceleration). By definition, the
pair of Φ(st) and Φ(st−1) encodes the information about the velocity at t. When the multiplicity
m is sufficiently large4, the velocity can be estimated by: 1Mt = Φ(st)Φ(st−1)

†. Because this
would yield a sequence of velocities, we can simply apply our method again to estimate the constant
acceleration by 2M∗ = 1M+1

1M†
+0 where 1M+0 = [1M2; ...;

1MTc−1] ∈ Ra×(Tc−2)a 1M+1 =

[1M3; ...;
1MTc ] ∈ Ra×(Tc−2)a. We can then predict the future representation s̃t for t = Tc +

1, ..., Tp by

s̃t = Ψ
((∏t

t′=Tc+1
1M̃t′

)
Φ(sTc)

)
where 1M̃t′ =

2M∗(t′−Tc) 1MTc . (7)

where
∏

represents multiplications from left. We train Φ and Ψ by minimizing the mean squared
error between s̃t and st for t = Tc + 1, ..., T as in Eq.(2). To create a sequence of constant acceler-
ation from MNIST dataset, we only used shape and color rotations. We chose the initial velocity for
these rotations randomly on the interval [−π/5, π/5) for each sequence, and chose the acceleration
on the interval [−π/40, π/40). The results are shown in Figure 8. The Neural transition and the
constant-velocity version of our method failed to predict the accelerated sequence, while the 2nd or-
der model succeeded in predicting the sequence even after Tp > 5. Also, Figure 15f and Table 16c

4If m is less than a, we cannot obtain the pseudo inverse because of the rank deficient in Φ(st−1)Φ(st−1)
T.

Thus m should be at least larger than a.
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(a) Generated images on accelerated Sequential MNIST.
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(b) Prediction error.

Figure 8: Results on accelerated Sequential MNIST. Every model was trained with Tc = 5, Tp = 5.
Neural transition overfitted and collapsed from Tp = 5 (beyond the training horizon).

in Appendix shows that the accelerated version of our proposed model again achieves learning the
equivariance relation.

5 Discussion & Limitations

How is full equivariance achieved in our method? The theoretical results we provided in section
3.1 only assure that M(g, x) and M(g, x′) are similar when the underlying group is commutative,
compact and connected. However, as we have shown experimentally, our method seems to be learn-
ing Φ for which the estimators of M satisfy M∗(s(g, x)|Φ) ∼= M∗(s(g, x′)|Φ). This can be happen-
ing because our framework and the training method based on the internal optimization in the latent
space is somehow encouraging M∗ to be orthogonal (See the loss curve of orthogonality of M∗ in
Appendix A). Maybe this is forcing the change of matrix P such that PM(g, x)P−1 = M(g, x′) to
be also rotations as well, which commutes with M(g, x) itself. Also, Figure 4b and 5 show that, as
reported in [34], the models trained with reconstruction loss like (3) does not well capture the group
transformation behind the sequences: the encoder representation was found to be significantly worse
than that of the model trained with (2). We hypothesize that (3) fails to remove the sequence-specific
information from M∗, while (3) succeeds to do so by training the model to be able to predict the
unseen images.

Towards learning symmetries from more realistic observations As we are making a connection
between our prediction framework and group equivariance, we are essentially assuming that the
transitions are always invertible, because group is closed under inversion. However, this might not
be always the case in real world applications; for instance, if the image sequences are the sequential
renderings of a rotating 3D object, the transitions are generally not invertible because only a part
of the object is visible at each time step. We experimented Sequential ShapeNet, which is created
from ShapeNet [7] dataset. A series of rendered images is generated by sequentially applying 3D
rotations of different speeds for each axis. Generated results on Sequential ShapeNet (See 26 in
Appendix B show that actually our current method was not able to generate the images on 3D rotated
datasets. If the transitions are not invertible, some measures must be taken in order to resolve the
indeterminacy, such as probabilistic modeling or additional structural inductive bias.

Broader impact Because our study generally contributes to predictions and extrapolation, it has
as much potential to negatively affect the society as most other prediction methods. In particular,
applications of our method to image sequence can be potentially integrated into weapon systems, for
example. At the same time, our unsupervised learning of the symmetrical structure from sequential
datasets may also contribute to new discoveries in the systems of finance, medical science, physics
and other fields of ML such as reinforcement learning.
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