
A Analysis

A.1 Analysis of Layerwise Pruning Strategies

A.1.1 Fixed Pruning Rate

We consider an L-layer neural network and each layer has n1, n2, ..., nL parameters, we retrain m1,

m2, ..., mL parameters after pruning. As such, the total number of combinations ⇧L
i=1

✓
ni

mi

◆
is the

size of search space of the subnetworks. The following theorem shows, the fixed pruning rate strategy
is the strategy which approximates the maximization of the total number of combinations.
Theorem A.1. Consider an L-layer neural network with n1, n2, ..., nL parameters in each layer, we

retain m1, m2, ..., mL parameters after pruning. Given a predefined pruning rate r = 1�
PL

i=0 miPL
i=0 ni

,

the optimal numbers of post-pruning parameters {mi}Li=1 that maximizing the total number of

combinations ⇧L
i=1

✓
ni

mi

◆
satisfy the following inequality:

81 j, k L,

����
mj

nj
� mk

nk

���� <
1

nj
+

1

nk
(5)

We defer the proof to Appendix B.1. Specifically, we let nk in (5) be the largest layer in the network
without the loss of generality, we then have 8i j L, j 6= k,

���mj � mk
nk

nj

��� < nj

nk
+ 1 2. mj is

the number of retained parameters and thus an integer, so Theorem A.1 indicates the pruning rate
of each layer is close to each other when we aim to maximize the total number of combinations.
Therefore, we can consider the fixed pruning rate strategy, i.e., 1� r = m1

n1
= m2

n2
= ... = mL

nL
, as an

approximation to maximize the total number of combinations.

Drawbacks While this strategy may seem intuitive, it does not take the differences in layer size into
account. In practice, the number of parameters in different layers can vary widely. For example,
residual networks [30] have much fewer parameters in the first and last layers than in the middle ones.
Using fixed pruning rate thus yields very few parameters after pruning within such small layers. For
example, when r = 0.99, only 17 parameters are left after pruning for a convolutional layer with 3
input channels, 64 output channels and a kernel size of 3. Such a small number of parameters has
two serious drawbacks: 1) It greatly limits the expression power of the network; 2) it makes the
edge-popup algorithm less stable, because adding or removing a single parameter then has a large
impact on the network’s output. This instability becomes even more pronounced in the presence of
adversarial samples, because the gradients of the model parameters are more scattered than when
training on clean inputs [41].

A.1.2 Fixed Number of Parameters

To overcome drawbacks of the fixed pruning rate strategy, we study an alternative strategy aiming
to maximize the total number of paths from the input to the output in the pruned network. For a
feedforward network, the total number of such paths is upper bounded by ⇧L

i=1mi. The following
theorem demonstrates that the pruning strategy that maximizes this upper bound consists of retaining
the same number of parameters in every layer, except for the layers that initially have too few
parameters, for which all parameters should then be retained. This optimal strategy is the fixed

number of parameters mentioned in Section 3.2.
Theorem A.2. Consider an L-layer feedforward neural network with n1, n2, ..., nL parameters in

its successive layers, from which we retain m1,m2, ...,mL parameters, respectively, after pruning.

Given a predefined sparsity ratio r = 1�
PL

i=1 miPL
i=1 ni

, the numbers of post-pruning parameters {mi}Li=1

that maximize the upper bound of the total number of the input-output paths ⇧L
i=1mi have the

following property: 81 j L, mj satisfies either of the following two conditions: 1) mj = nj; 2)

81 k L,mj � mk � 1.

The two conditions in Theorem A.2 mean we retain the same number of parameters for each layer
except for ones totally unpruned. We defer the proof to Appendix B.2, where we use proof by
contraction.

16

Drawbacks While this fixed number of parameters strategy addresses the problem of obtaining too
small layers arising in the fixed pruning rate one, it suffers from overly emphasizing the influence of
the small layers. That is, the smaller layers end up containing too many parameters. In the extreme
case, some layers are totally unpruned when the pruning rate r is small. This is problematic in our
settings, since the model parameters are random and not updated. The unpruned layers based on
random parameters provide a large amount of noise in the forward process. Furthermore, this strategy
significantly sacrifices the expression power of the big layers.

A.2 Analysis of Acceleration by Binary Initialization

In this section, we analyze the acceleration benefit of binary initialization. Since most of the
forward and backward computational complexity for the models studied in this paper is consumed
by the “Convolutional-BatchNorm-ReLU” block, the acceleration rate on such blocks is a good
approximation of that on the whole network. Therefore, we concentrate on the “Convolution-
BatchNorm-ReLU” block here.

For simplicity, we assume the feature maps and convolutional kernels are all squares. Without the
loss of generality, we consider rin-channel input feature maps of size s, the size of the convolutional
kernel is c and the convolutional layer outputs rout channels. Here, the binary layers represent the
layer whose parameters are either �1 or +1.

Forward Pass For full-precision dense networks, the number of FLOP operations of the convolu-
tional layer is 2c2s2rinrout. By contrast, the complexity can be reduced to c2s2rinrout for binary
dense layers, convolution operation with a binary kernel does not include any multiplication opera-
tions. Correspondingly, for sparse layers whose pruning ratio is r, the complexity of full-precision
sparse networks and of the binary sparse networks can be reduced to 2(1 � r)c2s2rinrout and
(1� r)c2s2rinrout, respectively.

The batch normalization layer will consume 3s2rout FLOP operations during inference and 10s2rout
during training. The additional operations during training are due to the update of running statistics.
Note that, the batch normalization layer in our random initialized network does not contain any
trainable parameters, so there is no scaling parameters after normalization. The ReLU layer will
always consume s2rout FLOP operations.

To sum up, we calculate the complexity ratio of the binary “Convolution-BatchNorm-ReLU” block
over its full-precision counterpart in the forward pass. For dense layers, the ratio is c2rin+11

2c2rin+11 for the

training time and c2rin+4
2c2rin+4 for the inference. For sparse layers, the ratio is (1�r)c2rin+11

2(1�r)c2rin+11 for the

training time and (1�r)c2rin+4
2(1�r)c2rin+4 for the inference.

Backward Pass Compared with the forward pass, the backward pass has some computational
overhead, because we need to calculate the gradient with respect to the score variable s associated
with the convolutional kernels. For both dense and sparse networks, the overhead is 2c2s2rinrout +
c2rinrout for full precision layers and 2c2s2rinrout for binary layers. Note that, the overhead is
independent of the pruning rate r because the pruning function is treated as the identity function in
the backward pass. In addition, the difference here between the full precision layer and binary layer
arises from the multiplication when we backprop the gradient through the weights.

To sum up, we calculate the complexity ratio of the binary “Convolution-BatchNorm-ReLU” block
over its full-precision counterpart in the backward pass. We only back propagate the gradient in the
training time, so the batch normalization layer is always the training mode. For dense layers, the ratio
is 3c2s2rin+4s2

4c2s2rin+4s2+c2rin
. For sparse layers, the ratio is 3(1�r)c2s2rin+4s2

4(1�r)c2s2rin+4s2+c2rin
.

Full Precision Binary
Forward - Training 2(1� r)c2s2rinrout + 11s2rout (1� r)c2s2rinrout + 11s2rout
Forward - Evaluation 2(1� r)c2s2rinrout + 4s2rout (1� r)c2s2rinrout + 4s2rout
Backward - Training 4(1�r)c2s2rinrout+4s2rout+c2rinrout 3(1� r)c2s2rinrout + 4s2rout

Table 6: The complexity in FLOP operations of the sparse “Convolution-BathNorm-ReLU” block in
both full precision and binary case. The pruning rate is r.

17

Discussion We summarize the complexity in FLOP operations of the sparse “Convolution-BatchNorm-
ReLU” block in different scenarios. We can now conclude that compared with the full precision
block, the binary block decrease the overall complexity in two places: 1) we save (1� r)c2s2rinrout
FLOPs for the convolution and transpose convolution operations in the forward and backward pass,
respectively; 2) for the backpropagation, we save c2rinrout FLOPs, because there is no multiplication
when we backprop the gradient through the weights for binary blocks.

We consider the practical settings: r = 0.99, c = 3, rin = rout = 128, s = 16. The complexity ratio
of the binary block over the full precision block in the forward pass is (1�r)c2rin+11

2(1�r)c2rin+11 = 0.6616 for

the training mode and (1�r)c2rin+4
2(1�r)c2rin+4 = 0.5740 for the evaluating mode, respectively. The complexity

ratio in the backward pass is 3(1�r)c2s2rin+4s2

4(1�r)c2s2rin+4s2+c2rin
= 0.7065. That is to say, compared with the

full precision block, the binary block under this setting can save around 34% and 29% time in the
forward and backward passes during training; for inference, it can save 43% time.

A.3 Analysis of the Normalization Layer before Softmax

We consider a L-layer neural network and each layer has l1, l2, ..., lL neurons. Let u 2 RlL�1 ,
W 2 RlL⇥lL�1 , o 2 RlL be the output of the penultimate’s output, the weight matrix of the last
fully-connected layer and the last layer’s output, respectively. In addition, we use c 2 {1, 2, ..., lL}
to denote the label of the data and omit the bias term of the last layer since it is initialized as 0 and
is not updated. For the 1-dimensional batch normalization layer, we use b 2 RlL and v 2 RlL to
represent the running mean and running standard deviation, respectively.

Therefore, the loss objective Lwo and its gradient of the model without the 1-dimensional batch
normalization layer is:

Lwo = �log eoc

PlL
i=1 e

oi

@Lwo

@oj
=

eoj

PlL
i=1 e

oi

� 1(j = c)
(6)

Correspondingly, the loss objective Lwi and its gradient of the model with the 1-dimensional batch
normalization layer is:

Lwi = �log
e(oc�bc)/vc

PlL
i=1 e

(oi�bi)/vi

@Lwi

@oj
=

1

vj

e(oc�bc)/vc

PlL
i=1 e

(oi�bi)/vi

� 1(j = c)

! (7)

Now we consider the case when the model parameter W is multiplied by a factor ↵ > 1: W0 = ↵W
and assume the output of the penultimate layer is unchanged. In practice, ↵ is far more than 1. For
example, if the penultimate layer has 512 neurons, ↵ will be 16 when we change kaiming constant
initialization to binary initialization. Based on this, the new output of the last layer is o0 = ↵o. For
the model with the normalization layer, the new statistics are b0 = ↵b and v0 = ↵v. In this regard,
we can then recalculate the gradient of the loss objective as follows:

@L0
wo

@o0
j

=
eo

0
j

PlL
i=1 e

o0
i

� 1(j = c) =
e↵oj

PlL
i=1 e

↵oi

� 1(j = c)

@L0
wi

@o0
j

=
1

v0
j

e(o

0
c�b0

c)/v
0
c

PlL
i=1 e

(o0
i�b0

i)/v
0
i

� 1(j = c)

!
=

1

↵vj

e(oc�bc)/vc

PlL
i=1 e

(oi�bi)/vi

� 1(j = c)

! (8)

We first study the case without the normalization layer. The first term e↵oj
PlL

i=1 e↵oi
of the gradient @L0

wo
@o0

j

converge to 1(j = argmaxioi) exponentially. For correctly classified inputs, @L0
wo

@o0
j

converge to 0

18

exponentially with ↵. In addition, the gradient @L0
wo

@u = W0T @L0
wo

@o0
j

= ↵WT @L0
wo

@o0
j

also vanish with ↵.
@L0

wo
@u is backward to previous layers, leading to gradient vanishing. For incorrectly classified inputs,

@L0
wo

@o0
j

converge to 1(j = argmaxioi) � 1(j = c), which is a vector with c-th element being �1,
the element corresponding to the output label being +1 and the rest elements being 0. In this case,
the gradient backward @L0

wo
@u = ↵WT @L0

wo
@o0

j
will be approximately multiplied by ↵, causing gradient

exploding.

By contrast, in the case of the model with the normalization layer, @L0
wi

@o0
j

= 1
↵

@Lwi
@oj

. The factor 1
↵ is

cancelled out when we calculate @L0
wi

@u = W0T @L0
wi

@o = WT @Lwi
@o . This means the gradient backward

remains unchanged if we use the 1-dimensional batch normalization layer, which maintains the
stability of training if we scale the model parameters.

To conclude, the 1-dimensional batch normalization layer is crucial to maintain the stability of training
if we use binary initialization. Without this layer, the training will suffer from gradient vanishing for
correctly classified inputs and gradient exploding for incorrectly classified inputs.

A.4 Analysis of the structure of a randomly pruned network

In this section, we provide preliminary analysis of the structure of a randomly pruned network.

As a starting point, we first estimate the probability of k retained parameters in a 3 ⇥ 3 kernel.
Given the pruning rate ri for the layer i with ni weights, the number of the retained parameters is
mi := (1 � ri)ni. We assume mi lies in a proper range: 9 ⌧ mi <

1
9ni. This is true when ni is

large and ri >
8
9 .

For each kernel j, we use Xj to represent its number of retained parameters. It is difficult to calculate
P (Xj = k) directly because {Xj}j are constrained by: 1)

P
j Xj = mi; 2) 8j, 0 Xj 9.

However, in the case of random pruning, we have E[Xj] =
9mi
ni

= 9(1� ri) < 1. In this regard, we
can make the approximation by removing the constraint Xj 9.

Therefore, we can reformulate the problem of calculating P (Xj = k) as: Given mi steps, randomly

select one box out of the total
ni
9 boxes and put one apple in it. P (Xj = k) is then the probability

for the box j to have k apples.

In this approximation, it is straightforward to have P (Xj = k) =
�mi

k

�
P k
i · (1�Pi)mi�k, 0 k 9

where Pi = 9
ni

. Based on the assumption that ni is large, Pi ⇡ 0. Therefore, P (Xj = 0) =

(1� 9
ni
)mi ⇡ e9(1�ri). For k > 1, we apply Stirling approximation n! ⇡

p
2⇡n(ne)

n to the binomial
coefficient, then

P (Xj = k) ⇡ mmi+0.5
ip

2⇡kk+0.5(mi � k)mi�k+0.5
· (9

ni
)k · (1� 9

ni
)mi�k

=

r
mi

2⇡k(mi � k)
· (9(1� ri)

k
)k · (1 + k

mi � k
)mi�k · (1� 9

ni
)mi�k

(9)

The second equality is based on the fact mi = (1� ri)ni. Since mi � 9 > k by the assumption and
ni � mi, we can approximate (1� 9

ni
)mi�k to 1� 9(mi�k)

ni
⇡ 1, then

P (Xj = k) ⇡
r

mi

2⇡k(mi � k)
· (9e(1� ri)

k
)k =

r
mi

2⇡k(mi � k)
· (c

k
)k (10)

where c = 9e(1� ri) is a constant.

As shown in the equation above, P (Xj = k) decreases drastically when k increases. Therefore, in a
randomly pruned layer i with ni = 3⇥3⇥256⇥256 = 589824 and ri = 0.99, it is almost impossible
to see kernels who have at least 4 retained parameters, because according to the above formula, the
estimated number of kernels in that layer having 3 retained parameters is ni

9 ⇥ P (Xj = 3) ⇡ 8.19,
and the number of kernels having 4 retained parameters is ⇡ 0.18.

19

Now we consider the number of retained parameters in a channel. For the layer of rin input channels
and rout output channels, it has rin ⇥ rout ⇥ 3⇥ 3 parameters. We use Yj to represent the number of
the retained parameters for the input channel j. Similarly, for the random pruning, we have

P (Yj = k) ⇡
r

mi

2⇡k(mi � k)
· (c

0

k
)k · (1� 1

rin
)mi�k (11)

where c0 = 9erout(1� ri) is a constant.

By plotting the distribution P (Yj), it is easy to find that the distribution of Yj concentrates around
the neighborhood of k = mi

a , and decreases significantly as Yj deviates from it.

B Proofs of Theoretical Results

B.1 Proof of Theorem A.1

Proof. We pick arbitrary 0 < j, k L and generates two sequences {bmi}Li=1, {emi}Li=1 as follows:

bmj = mj � 1, bmk = mk + 1, bmi = mi8i 6= j, i 6= k.

emj = mj + 1, emk = mk � 1, emi = mi8i 6= j, i 6= k.
(12)

Consider {mi}Li=1 the optimality that maximizes the combination number ⇧L
i=1

✓
ni

mi

◆
. We have the

following inequality:

1 >

⇧L
i=1

✓
ni

bmi

◆

⇧L
i=1

✓
ni

mi

◆ =
mj

nj �mj + 1

nk �mk

mk + 1

1 >

⇧L
i=1

✓
ni

emi

◆

⇧L
i=1

✓
ni

mi

◆ =
nj �mj

mj + 1

mk

nk �mk + 1

(13)

Reorganize the inequalities above, we obtain:

�
✓

1

nk
+

mk �mj + 1

njnk

◆
<

mk

nk
� mj

nj
<

✓
1

nj
+

mj �mk + 1

njnk

◆
(14)

Consider 1 mj nj and 1 mk nk, we have mk�mj+1
njnk

 1
nj

and mj�mk+1
njnk

 1
nk

. As a
result, we have the following inequality:

8j, k,�
✓

1

nj
+

1

nk

◆
<

mk

nk
� mj

nj
<

✓
1

nj
+

1

nk

◆
(15)

This concludes the proof.

B.2 Proof of Theorem A.2

Proof. We proof the theorem by contradictory. We assume the optimal {mi}Li=1 does not satisfy
the property mentioned in Theorem A.2. This means 91 j L such that mj < nj and
91 k L,mj < mk � 1. Based on this, we then construct a new sequence {bmi}Li=1 as follows:

bmj = mj + 1; bmk = mk � 1; 8i 6= j, i 6= k, bmi = mi. (16)

We then calculate the ratio of ⇧L
i=1 bmi and ⇧L

i=1mi:

20

⇧L
i=1 bmi

⇧L
i=1mi

=
(mj + 1)(mk � 1)

mjmk
= 1 +

mk �mj � 1

mjmk
> 1 (17)

The last inequality is based on the assumption mj < mk � 1. (17) indicates ⇧L
i=1 bmi > ⇧L

i=1mi,
which contradicts the optimality of {mi}Li=1.

C Algorithm

We provide the pseudo-code of the edge pop-up algorithm for adversarial robustness as Algorithm 1.
We use PGD to generate adversarial attacks. ⇧S✏ mean projection into the set S✏.

Algorithm 1 Edge pop-up algorithm for adversarial robustness.
Input: training set D, batch size B, PGD step size ↵ and iteration number n, adversarial budget
S✏, pruning rate r, mask function M , the optimizer.
Random initialize the model parameters w and the scores s.
for Sample a mini-batch {xi, yi}Bi=1 ⇠ D do

for i = 1, 2, ..., B do
Sample a random noise � within the adversarial budget S✏.
x(0)
i = xi + �

for j = 1, 2, ..., n do
x(j)
i = x(j�1)

i + ↵O
x(j�1)
i

L(f(w �M(s, r),x(j�1)
i), yi)

x(j)
i = xi +⇧S✏

⇣
x(j)
i � xi

⌘

end for
end for
Calculate the gradient g = 1

B

PB
i=1 OsL(f(w �M(s, r),x(n)

i), yi)
Update the score s using the optimizer.

end for
Output: the pruning mask M(s, r).

We provide the pseudo-code of our algorithm on the ImageNet100 as Algorithm 2. It incorporates
FGSM [57] with ATTA [7]. In addition, due to the high resolution and large size of the ImageNet100
dataset, we need to compress the initial perturbation directory to reduce the overhead of memory
consumption. Here, we choose to downsample the original perturbation to reduce its resolution for
storage, and then upsample it back to the original resolution when using it as the initial perturbation.

D Experiments

D.1 Experimental Settings

General The RN34 architecture we use in this paper is the same as the one in [51, 54], and it has
21265088 trainable parameters. The bias terms of all linear layers are initialized 0, and are thus
disabled. We also disable the learnable affine parameters in batch normalization layers, following the
setup of [51]. Unless specified, the number of training epochs for CIFAR10 and CIFAR100 is 400,
and for ImageNet100 there are 100 training epochs. The adversarial budget in this paper is based on
l1 norm and the perturbation strength ✏ is 8/255 for CIFAR10, 4/255 for CIFAR100 and 2/255 for
ImageNet100. The resolution of CIFAR10 and CIFAR100 is 32⇥ 32; the resolution of ImageNet100
is 224 ⇥ 224. ImageNet100 is a subset of ImageNet which consists of 100 classes. The selection
of these classes follows the settings of a python library called Continuum [20]. The PGD attacks
used in our experiments have 10 iterations and the step size is one-quarter of the ✏, respectively. The
AutoAttack (AA) consists of the following four attacks: 1) the untargeted 100-iteration AutoPGD
based on cross-entropy loss; 2) the targeted 100-iteration AutoPGD based on difference of logits
ratio (DLR) loss; 3) the targeted 100-iteration FAB attack [14]; 4) the black-box 5000-query Square

21

Algorithm 2 Accelerated training for ImageNet100.
Input: training set D, batch size B, FGSM step size ↵, adversarial budget S✏, pruning rate r, mask
function M , the optimizer.
Random initialize the model parameters w and the scores s.
Initialize the instance-to-perturbation dictionary M = {}
for Sample a mini-batch {xi, yi}Bi=1 ⇠ D do

for i = 1, 2, ..., n do
Data augmentation xi A(xi)
if xi in M then

Get the downsampled perturbation: �0i = A(M(xi))
Upsample �0 to the original resolution and get �i.

else
Sample a random noise �i within the adversarial budget S✏

end if
�i �i + ↵O�iL(f(w �M(s, r),xi + �i), yi)
�i ⇧S✏�i
Update the dictionary by the downsampled perturbation �0i: M(xi) = A�1(�0i)

end for
end for
Calculate the gradient g = 1

B

PB
i=1 OsL(f(w �M(s, r),xi + �i), yi)

Update the score s using the optimizer.
Output: the pruning mask M(s, r).

attack [2]. We use the same hyper parameters in all these component attacks as in the original
AutoAttack implementation.6

We train the model using an SGD optimizer, with the momentum factor being 0.9 and the weight
decay factor being 5 ⇥ 10�4. The learning rate is initially 0.1 and decays following the cosine
annealing scheduler. Finally, since adversarial training suffers from severe overfitting [53], we use a
validation set consisting of 2% of the training data to select the best model during training.

Adversarial Training We apply the same settings as above to adversarial training, except the choice
of optimizer and learning rate. For full precision networks, we use an SGD optimizer with an initial
learning rate of 0.1 and decreases by a factor of 10 in the 200th and 300th epoch for CIFAR10 and
CIFAR100 models. For ImageNet100, the learning rate decreases by a factor of 10 in the 50th and
75th epoch. For binary networks, we use Adam optimizer [35] suggested in [10] and have a cosine
annealing learning rate schedule with an initial learning rate of 1⇥ 10�4.

Baselines (FlyingBird(+), BCS, RST, HYDRA, ATMC) Our results on the baselines are based
on their original public implementation except that we use the validation set to pick the best model
during training. FlyingBird(+), BCS, and HYDRA do not inherently support binary networks, so we
plug in the BinaryConnect algorithm [10] with the same settings as the ones in adversarial training.
We also plug in Algorithm 2 for fast training on ImageNet100. We scale down the number of training
epochs of FlyingBird(+), BCS, RST to 100 epochs, and HYDRA to 110 epochs (50 pretrain + 10
prune + 50 finetune). For ATMC, we use 50 epochs for each of the four training phases, adding up to
200 epochs in total. In all baselines except RST, the batch normalization layers in the model have
affine operations and are learnable. This introduces additional trainable parameters and is different
from the network used in our method.

Smaller RN34 Variants Based on the adaptive pruning strategy, we designed several smaller RN34
variants with approximately the same number of parameters as the pruned networks. These variants
have the same topology as RN34 but have fewer channels in each layer. In Table 7, we provide
architecture details based on different values of p when the pruning rate r is 0.99. The Small RN34

model in Table 4 represents the small model with p = 0.1 (Small RN34-p0.1 in Table 7), since it has
better performance than the other small networks.

6AutoAttack: https://github.com/fra31/auto-attack.

22

https://github.com/fra31/auto-attack

layer name Small RN34-p0.1 Small RN34-p1.0
conv1 3⇥ 3, 23 3⇥ 3, 6

Block1

3 ⇥ 3, 23
3 ⇥ 3, 23

�
⇥ 3

3 ⇥ 3, 6
3 ⇥ 3, 6

�
⇥ 3

Block2

3 ⇥ 3, 25
3 ⇥ 3, 25

�
⇥ 4

3 ⇥ 3, 13
3 ⇥ 3, 13

�
⇥ 4

Block3

3 ⇥ 3, 27
3 ⇥ 3, 27

�
⇥ 6

3 ⇥ 3, 26
3 ⇥ 3, 26

�
⇥ 6

Block4

3 ⇥ 3, 29
3 ⇥ 3, 29

�
⇥ 3

3 ⇥ 3, 51
3 ⇥ 3, 51

�
⇥ 3

average pool, 10d-fc, softmax
#params 201078 216360

Table 7: RN34 variants that have similar layer sizes as the pruned RN34 obtained by different p
values. 3⇥ 3⇥ 23 means the kernel size is 3⇥ 3 and there are 23 output channels.

D.2 Additional Experimental Results

D.2.1 Ablation Study in the Non-Adversarial Case

In the non-adversarial case, we train the models using clean inputs and report the clean accuracy
in Table 8. Other hyper-parameters here are the same as in Table 3. Our conclusions from Table 3
also hold true here: the binary initialization can achieves comparable performance as the Signed

Kaiming Constant; the last batch normalization layer helps improve performance for both initialization
schemes.

Prune Scheme Signed KC Binary
no LBN LBN no LBN LBN

p = 0.0 93.25 93.99 93.64 94.05
p = 0.1 92.12 93.98 93.84 93.99
p = 0.2 92.96 94.35 89.27 93.87
p = 0.5 93.44 94.29 90.85 94.00
p = 0.8 90.93 92.57 90.37 92.42
p = 0.9 91.31 92.26 90.51 90.12
p = 1.0 89.27 89.12 87.58 89.03

Table 8: The accuracy (in %) of vanilla trained models on the CIFAR10 test set under various settings,
including Signed Kaiming Constant (Signed KC) and the binary initialization. We include models
both with and without the last batch normalization layer (LBN). The best results are marked in bold.

D.2.2 More results of Baselines

We show in Table 9 the complete set of experiments of baseline algorithms on CIFAR10 and
CIFAR100 as a complementary of Table 4. Specifically, we compare baselines with different
architectures and with different pruning strategies. First, the last batch normalization layer (LBN)
does not improve the baselines that update model parameters in the full-precision setting, because the
magnitude of the output logits can be automatically adjusted in these cases. There is no need to insert
another normalization layer. For FlyingBird(+), BCS and HYDRA, adding LBN to a binary network
will most likely be beneficial to a better performance. This observation is consistent with our claim
in Appendix A.3. As for ATMC, it is actually not pruning a truly binary network since the value of
model parameters are trainable and not necessarily +1 or �1, so adding LBN might not be useful
in this case. For the pruning strategy, adaptive pruning strategy with p = 0.1 always has better
performance than the fixed pruning rate strategy, i.e., p = 1.0. This is because the pruning rate here is
very high r = 0.99, and we need a small value of p based on the analysis in Section 3.2. Furthermore,

23

we provide the performance of TRADES [64], which trades clean accuracy for adversarial accuracy.
Compared with adversarial training (AT), TRADES achieves competitive performance in the full
precision cases, but it performance degrades significantly in the binary cases.

Method Architecture Pruning CIFAR10 CIFAR100
Strategy FP Binary FP Binary

AT RN34 Not Pruned 43.26 40.34 36.63 26.49
AT RN34-LBN Not Pruned 42.39 39.58 35.15 32.98
TRADES RN34 Not Pruned 49.07 30.18 35.28 29.64
TRADES RN34-LBN Not Pruned 48.27 37.91 31.23 31.26
FlyingBird RN34 Dynamic 45.86 34.37 35.91 22.49
FlyingBird+ RN34 Dynamic 44.57 33.33 34.30 22.64
FlyingBird RN34-LBN Dynamic 45.58 37.18 35.06 24.94
FlyingBird+ RN34-LBN Dynamic 44.44 37.48 34.03 24.50
BCS RN34 Dynamic 43.51 22.61 31.85 11.96
BCS RN34-LBN Dynamic 42.02 30.67 31.16 17.97
RST RN34 p = 1.0 34.95 - 21.96 -
RST RN34-LBN p = 1.0 37.23 - 23.14 -
HYDRA RN34 p = 0.1 42.73 29.28 33.00 23.60
HYDRA RN34 p = 1.0 40.51 26.40 31.09 18.24
HYDRA RN34-LBN p = 0.1 40.55 33.99 13.63 25.53
HYDRA RN34-LBN p = 1.0 32.93 26.23 29.96 18.91
ATMC RN34 Global 34.14 25.62 25.10 11.09
ATMC RN34 p = 0.1 34.58 24.65 25.37 11.04
ATMC RN34 p = 1.0 30.50 20.21 22.28 2.53
ATMC RN34-LBN Global 33.55 19.01 23.16 15.73
ATMC RN34-LBN p = 0.1 31.61 22.88 25.16 17.33
ATMC RN34-LBN p = 1.0 27.88 13.22 22.12 9.55
AT Small RN34-p0.1 Not Pruned 42.01 32.54 28.46 16.18
AT Small RN34-p1.0 Not Pruned 38.81 26.03 27.68 15.85
TRADES Small RN34-p0.1 Not Pruned 42.60 29.92 28.44 15.25
TRADES Small RN34-p1.0 Not Pruned 38.53 24.83 27.63 13.16
Ours RN34-LBN p = 0.1 - 45.06 - 34.83
Ours RN34-LBN p = 1.0 - 34.57 - 26.32
Ours (fast) RN34-LBN p = 0.1 - 40.77 - 34.45
Ours (fast) RN34-LBN p = 1.0 - 29.68 - 24.97

Table 9: Robust accuracy (in %) on the CIFAR10 and CIFAR100 test sets for AT, TRADES,
FlyingBird(+), BCS, RST, HYDRA, ATMC and our proposed method. “RN34-LBN” represents
RN34 with the last batch normalization layer. “Small RN34” here refers to Small RN34-p0.1 in
Table 7 of Appendix D.1. Among the compressed models, the best results for full precision (FP)
models are underlined; the best results for binary models are marked in bold.

D.2.3 Clean accuracy of Models in Table 4

Table 10 shows the accuracy on the clean test set of the models in Table 4. In the CIFAR10 dataset,
our pruned networks with both normal and fast pruning achieve the highest vanilla accuracy among
all binary networks. Although the accuracy is lower than full-precision networks by ATMC, our
model performs notably better (> 10%) under AutoAttack. In the CIFAR100 dataset, our model
using FGSM with ATTA has the best vanilla accuracy among both full-precision networks and binary
networks, and also achieves comparable robust accuracy to them, as shown in Table 4. Our model
using PGD also achieves competitive performance, better than all other binary networks. In the
ImageNet100 dataset, our model still outperforms all other pruned binary models, although it is worse
than some full precision models. These results indicate that our models can achieve competitive
robust accuracy without losing too much vanilla accuracy, hence more powerful in real applications
where both robust and vanilla accuracy are important.

D.2.4 Our Method in the Non-adversarial Cases

Vanilla training can be considered as a special case of adversarial training: the case when ✏ = 0.
Therefore, our methods, as well as baselines, are applicable to vanilla training. The results of the cases
when ✏ = 0 are demonstrated in Table 11. Since there are no adversarial attacks in vanilla training,

24

Method Architecture Pruning CIFAR10 CIFAR100 ImageNet100
Strategy FP Binary FP Binary FP Binary

AT RN34 Not Pruned 80.99 74.37 61.48 47.87 78.98 63.76
AT RN34-LBN Not Pruned 80.96 74.17 57.73 60.08 77.66 64.60
AT Small RN34 Not Pruned 74.76 58.69 52.77 28.81 49.64 21.12
FlyingBird RN34 Dynamic 79.29 62.28 62.12 43.66 66.66 19.74
FlyingBird+ RN34 Dynamic 77.01 62.69 59.09 41.69 66.66 19.74
BCS RN34 Dynamic 74.75 - 53.82 - - -
RST RN34 p = 1.0 65.93 - 38.87 - 42.70 -
RST RN34-LBN p = 1.0 67.45 - 42.95 - 46.22 -
HYDRA RN34 p = 0.1 75.31 62.09 55.92 45.96 67.76 33.18
ATMC RN34 Global 81.85 72.97 57.15 36.39 60.68 26.80
ATMC RN34 p = 0.1 81.37 73.34 59.99 32.68 61.88 16.34
Ours RN34-LBN p = 0.1 - 76.59 - 60.16 - 58.94Ours(fast) RN34-LBN p = 0.1 - 81.63 - 63.73

Table 10: The accuracy (in %) on the clean inputs of the methods studied in Section 4.2. “RN34-LBN”
represents RN34 with the last batch normalization layer. Among the pruned models, the best results
in the full precision (FP) cases are underlined and the best results in the binary cases are marked in
bold.

the acceleration used in “Ours (fast)” is not applicable here. The results in Table 11 demonstrate the
consistent observations with Table 4: our proposed methods achieve the best performance among
binary networks.

Method Architecture Pruning CIFAR10 CIFAR100 ImageNet100
Strategy FP Binary FP Binary FP Binary

AT RN34 Not Pruned 94.80 90.11 76.39 70.02 80.26 68.26
AT RN34-LBN Not Pruned 94.79 92.46 76.85 73.49 79.84 73.88
AT Small RN34 Not Pruned 91.99 85.61 65.48 43.46 58.14 29.62
FlyingBird RN34 Dynamic 93.41 88.96 71.77 61.50 74.06 26.06
FlyingBird+ RN34 Dynamic 92.28 86.44 72.03 58.09 74.40 27.52
BCS RN34 Dynamic 90.69 - 67.39 - - -
RST RN34 p = 1.0 88.43 - 56.65 - 50.18 -
RST RN34-LBN p = 1.0 89.14 - 62.93 - 61.52 -
HYDRA RN34 p = 0.1 91.13 88.10 68.84 62.10 76.42 49.40
ATMC RN34 Global 92.01 88.40 67.45 51.96 69.36 35.30
ATMC RN34 p = 0.1 91.32 79.46 68.03 50.94 70.12 33.52
Ours RN34-LBN p = 0.1 - 93.99 - 75.37 - 72.80

Table 11: Clean accuracy (in %) on the CIFAR10, CIFAR100 and ImageNet100 test sets for the
baselines and our proposed method in the non-adversarial case, i.e., ✏ = 0. “RN34-LBN” represents
ResNet34 with the last batch normalization layer. “Small RN34” refers to Small RN34-p0.1 in Table 7
of Appendix D.1. The pruning rate is set to 0.99 except for the not-pruned methods. Among the
pruned models, the best results for the full-precision (FP) models are underlined; the best results for
the binary models are marked in bold.

D.2.5 Mask of the Pruned Network

We have demonstrated that the masks of the pruned network obtained by our method are structured to
some degree in Section 4.3. We have also analyzed the structure of a randomly pruned network in
Appendix A.4.

Figure 5 shows the one of the convolutional layers in our pruned RN34 network. We resize the layer
parameters as grids of shape (rout, rin) for visualization. Each grid represents a 3-by-3 kernel. So the
shape of parameters is (rout ⇥ 3, rin ⇥ 3). The retained parameters in each kernel are marked in blue.
The pruning rate for this layer is r = 0.99. We highlight the input channels that are totally pruned in
orange. We also use a white bar at the top of the figure to indicate these empty input channels.

25

In Section 4.3, we also point out the aligned pruning pattern in the two consecutive layers, layer1 and
layer2, of the same residual block in RN34. Figure 3 shows their pruning masks. The side bars show
which channel is non-empty(colored in blue). For convenience, layer1 is resized in (rout⇥3, rin⇥3),
and layer2 is organized in (rin⇥ 3, rout⇥ 3). It is interesting that the pruned input channels of layer2
are well aligned with the pruned output channels of layer1.

Note that our finding also holds in the vanilla settings, i.e. pruning with clean examples. We think
this observation enables a possible way for regular pruning.

Figure 3: Distribution of weights in two consecutive layers. In layer1 (left), the masks are reshaped
into (rout ⇥ 3, rin ⇥ 3) while masks in layer2 (right) are reshaped into (rin ⇥ 3, rout ⇥ 3). The
output channels totally pruned in layer1 and the input channels totally pruned in layer2 are highlighted
as the white bars in the middle. Due to the large number of parameters in these layers, readers could
zoom in this figure to see more details.

D.2.6 Learning Curves of Adaptive Pruning with Different p Values

We plot the learning curves when we use the adaptive pruning strategy with different values of p
in Figure 4. Here, we use r = 0.99 and r = 0.5 as two examples. Based on the results of Table 1,
our method achieves the best performance under p = 0.1 when r = 0.99 and under p = 1.0 when
r = 0.5. The learning curves in Figure 4 indicate that the training process is quite unstable when
using the inappropriate pruning strategy, leading to suboptimal performance.

26

(a) p = 0.1 (b) p = 0.5 (c) p = 0.8 (d) p = 1.0

(e) p = 0.1 (f) p = 0.5 (g) p = 0.8 (h) p = 1.0

Figure 4: Learning curves of our proposed method under adaptive pruning strategy with different
values of p. The pruning ratio is 0.99 for figure (a) - (d) and is 0.5 for figure (e) - (h).

27

Figure 5: Mask visualization of the weight of a random convolutional layer in our model. The
parameters retained is highlighted as blue dots. The dimension of the convolutional kernel is (rout,
rin, 3, 3). We reshape this kernel in rectangle of shape (rout ⇥ 3, rin ⇥ 3). Channels with no
remaining weight are colored orange. The top bar indicates whether the channel is empty (white) or
not (blue). Due to the large number of parameters in this layer, readers could zoom in this figure to
see more details.

28

	Analysis
	Analysis of Layerwise Pruning Strategies
	Fixed Pruning Rate
	Fixed Number of Parameters

	Analysis of Acceleration by Binary Initialization
	Analysis of the Normalization Layer before Softmax
	Analysis of the structure of a randomly pruned network

	Proofs of Theoretical Results
	Proof of Theorem A.1
	Proof of Theorem A.2

	Algorithm
	Experiments
	Experimental Settings
	Additional Experimental Results
	Ablation Study in the Non-Adversarial Case
	More results of Baselines
	Clean accuracy of Models in Table 4
	Our Method in the Non-adversarial Cases
	Mask of the Pruned Network
	Learning Curves of Adaptive Pruning with Different p Values

