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Abstract

The existence of adversarial examples poses concerns for the robustness of
convolutional neural networks (CNN), for which a popular hypothesis is about
the frequency bias phenomenon: CNNs rely more on high-frequency components
(HFC) for classification than humans, which causes the brittleness of CNNs.
However, most previous works manually select and roughly divide the image
frequency spectrum and conduct qualitative analysis. In this work, we introduce
Shapley value, a metric of cooperative game theory, into the frequency domain
and propose to quantify the positive (negative) impact of every frequency
component of data on CNNs. Based on the Shapley value, we quantify the impact
in a fine-grained way and show intriguing instance disparity. Statistically, we
investigate adversarial training(AT) and the adversarial attack in the frequency
domain. The observations motivate us to perform an in-depth analysis and lead
to multiple novel hypotheses about i) the cause of adversarial robustness of the
AT model; ii) the fairness problem of AT between different classes in the same
dataset; iii) the attack bias on different frequency components. Finally, we propose
a Shapley-value guided data augmentation technique for improving the robustness.
Experimental results on image classification benchmarks show its effectiveness.
The code for this paper is at https://github.com/Ytchen981/CSA

1 Introduction

Though convolutional neural networks (CNNs) have shown their great generalization power in various
vision tasks, the existence of adversarial examples [37, 16, 24] show that CNNs are prone to be
affected by adversarial noises that are imperceptible to humans. As inspecting the impact of frequency
components, i.e. signals of a certain frequency in the frequency domain, one popular hypothesis
about the brittleness of CNNs is that CNNs can exploit high frequency components (HFCs) that are
not perceivable to humans [41, 42, 1, 21]. Based on this hypothesis, a line of works propose to utilize
HFC filtering to improve the attack or defense methods [13, 22, 51]. However, towards the above
frequency bias phenomenon, most works [41, 42, 21] intuitively divide the image frequency spectrum
into two parts as low frequency components (LFCs) and HFCs then evaluate the contribution of
each part based on the performance of models on the dataset, overlooking the possible disparity
in sample-level and frequent component-level. Moreover, current works [17, 32] reveal that some
successful adversarial attacks also depend on LFCs, which reveals the limitation of previous works:
i) overlooking the contribution of each individual frequency component in LFCs and HFCs; ii) only
do qualitative dataset-level analysis.
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Instead of studying the impact of HFCs and LFCs at the overall dataset level, in this paper we resort
to quantify the contribution of each frequency component with the help of Shapley value [31].
Specifically, Shapley value is a metric from cooperative game theory which has been widely used in
explainable machine learning [9, 2, 23, 36]. Since these works measure pixel-level importance for
prediction in the spatial domain, our work is the first to apply Shapley value to the frequency domain.
Shapley value satisfies several desirable properties for quantifying the contribution of each frequency
component, and we justify that applying Shapley value in the frequency domain rather than spatial
domain is a more natural approach on CNNs (c.f. Remark 1).

Based on the Shapley value, we quantify the contribution of each frequency component by measuring
the average expected difference between the model’s output brought by the absence of the frequency
component regarding all possible circumstances where other frequency components are either masked
or not. An illustration of the quantifying method is presented in Fig. 1. Through our quantification,
one is able to inspect the contribution of each frequency components of each sample (instead of
at dataset level). For simplicity, we refer to the frequency components with positive contribution
as positive frequency components (PFC) and frequency components with negative contribution as
negative frequency components (NFC).

Our quantification results provide insights in various perspectives. At the instance level, we present
intriguing disparity between different data samples, e.g. model may rely more on HFCs to inference
on some instances, as shown in the first row of Fig. 2, or rely more on LFCs to inference on the
other instances, as shown in the second row of Fig. 2. Statistically, we inspect and analyze the
adversarial training including the cause of the adversarial robustness achieved by adversarial training
and the fairness problem in adversarial training (AT), which quantitatively proves that HFCs plays
an important role in adversarial training. We further inspect and analyze the adversarial attack. We
present the attack bias on different frequency components and provide a possible explanation for
adversarial attacks focusing on LFCs [17, 32].

Based on our quantification, we propose a simple yet principled data augmentation method named
Class-wise Shapley value-guided Augmentation (CSA) to correct the misalignment of features
between different classes. By augmenting the data sample with features composed by NFCs of other
data samples from the same class, the method boosts the adversarial robustness efficiently. Our major
contributions are as follows:

• Instead of inspecting CNNs based on the manually divided frequency spectrum as done in existing
literature [41], we introduce the Shapley value metric to the frequency domain and directly quantify
the contribution of each individual frequency component on CNNs, with the advantage of desirable
theoretical properties from the Shapely value itself (Section 3). To our knowledge, this is the first
work to apply the Shapley value to the frequency domain on DNNs (specifically CNNs in this paper).

• As inspecting the impact of frequency components on models, we address the possible cause of
adversarial robustness achieved by adversarial training and demonstrate that AT models improve
robustness by sacrificing the utilization of HFCs(Sec. 4.2). We further address the fairness problem
in adversarial training and demonstrate the negative relationship between the impact HFCs have on
the ST model and the robust accuracy of the AT model(Sec. 4.3).

• We inspect the impact of different frequency components on adversarial attacks and demonstrate
that adversarial attacks on PFCs and HFCs are relatively more effective than attacks on NFCs
and LFCs. We further demonstrate that contribution of frequency components is not necessarily
determined by its frequency and provide a possible explanation for successful adversarial attacks
focusing on LFCs [17, 32](Sec. 4.4).

• Motivated by our explanatory results, we assume that NFCs compose features that are not correctly
exploited by the model. Therefore we propose to augment data with NFCs found on data samples
of its class, entitled by Class-wise Shapley value-guided Augmentation (CSA), which successfully
boosts robustness in our empirical studies (Section 5).

2 Notations and Preliminaries

We present our model in the context of image classification, while we think the concept can still be
applied to other backbones e.g. GNNs.
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Figure 1: Illustration of the Shapley value calculated in frequency domain when the frequency
components are devided into 2 × 2 patches. The Shapley value of a frequency component is the
average marginal effect that the frequency component contributes to the output of the model.

Notation: ⟨X,y⟩ denotes a data sample where X ∈ Rd1×d2 is an image and y ∈ {1, . . . , C}
is its label where C is the number of classes. For simplicity, we omit the channel of images.
f(·, θ) : Rd1×d2 → RC denotes a neural network that takes image as input and output a prediction
where θ represent its parameters. We use ℓ(·, ·) to denote loss function and ∥ · ∥p to denote ℓp
norm. F(·) : Rd1×d2 → Cd1×d2 denotes the Discrete Fourier Transfom (DFT). F−1(·) : Cd1×d2 →
Rd1×d2 denotes the inverse Discrete Fourier Transform.

Discrete Fourier Transform (DFT). DFT transforms finite signals into complex-valued functions of
frequency. The 2D-Discrete (for image data considered in this paper) Fourier Transform is given by:

F(X)(u, v) =

d1−1∑
m=0

d2−1∑
n=0

X(m,n)e−i2π(mu
d1

+nv
d2

) (1)

The inversion of DFT is computed as:

X(m,n) =
1

d1d2

d1−1∑
u=0

d2−1∑
v=0

F(X)(u, v)ei2π(
mu
d1

+nv
d2

) (2)

Adversarial Attack. It aims to find a small noise δ bounded in ℓp space to cause failure [37, 16].

δ = argmax
δ

ℓ(f(X+ δ),y), s.t. ∥δ∥p ≤ ϵ (3)

Defense. Adversarial training [24] becomes the most effective defense method [3], which is typically
conducted by minimizing loss directly on adversarial training data.

θ = argmin
θ

E[ max
∥δ∥p≤ϵ

ℓ(f(X+ δ),y)] (4)

Definition of the Shapley Value: Let N = {1, · · · , n} denotes the finite set of players. Each
non-empty subset S ⊆ N is called a coalition. A cooperative game is defined by the pair (N , V ),
where V : 2N → R is a mapping that assigns a real number to each coalition and satisfies V (∅) = 0.
Let π ∈ Π(N ) denotes a permutation of player set N and π(i) is the position of player i ∈ N ,
where Π(N ) is the set of permutations. Then the predecessor set of player i ∈ N in permutation π is
Pπ
i = {j ∈ N|π(j) < π(i)}. The Shapley value ϕV

i of player i is defined as:

ϕN ,V
i =

1

|Π(N )|
∑

π∈Π(N )

[V (Pπ
i ∪ {i})− V (Pπ

i )] (5)
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Figure 2: Shapley value based quantification of two example images in ImageNet. Left to right:
origin image, image reconstructed with positive frequency components (PFC), images reconstructed
with negative frequency components (NFC), the heat map of Shapley value in frequency domain.
Note that the heatmap is shifted, the closer to the center the lower the frequency.

The Shapley value [31] of the player is the average marginal contribution of the player to the value of
predecessor set in every possible permutation.

Properties of Shapley Value: It satisfies many desirable properties including Null player, Efficiency,
Symmetry, Linearity. See Appendix D for more details about the properties of Shapley value.

3 Shapley Value-based Quantification

3.1 Contribution quantification for frequency component

We assume that frequency components in the data sample cooperate with each other and compose the
feature that the model process to infer. To apply the Shapley value to the frequency components, we
firstly construct a cooperative game in this scenario. Considering frequency components as players,
we define the set of players for data sample ⟨X,y⟩ as:

NX = {F(X)(0, 1), · · · ,F(X)(d1 − 1, d2 − 1)} (6)

Note that F(X)(0, 0) determines the mean value of the image, we exclude this frequency component
from the player set and keep the mean value of the image unchanged to fairly calculate the marginal
contribution of the frequency components.

For a model f(·), we define the output of the model on S ⊆ N as:

f(S) = f
(
F−1(σS ⊙F(X))

)
y

(7)

where f(·)y denotes the y-th output of the model and ⊙ denotes Hadamard product. σS ∈ [0, 1]d1×d2

is the mask generated according to S satisfying:

σS(u, v) = I[F(X)(u, v) ∈ S] (8)

where I(·) denotes an indicator that output 1 when the condition is satisfied and 0 otherwise. Specifi-
cally, σS(0, 0) = 1. The corresponding characteristic function of the game is defined as:

V (S) = f(S)− f(∅), S ∈ N (9)

By definition, we calculate the Shapley value ϕNX,f
u,v of frequency component F(X)(u, v) according

to Eq. 5. The Shapley value of a frequency component evaluates the average marginal contribution
of the frequency component to the neural network’s output of the ground-truth class, which takes
desirable properties including Null player, Efficiency, Symmetry and Linearity.
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Figure 3: Average shapley value of frequency componets in clean samples and adversarial samples
over frequency basis of ResNet18 on CIFAR10.

3.2 Justification for frequency based Shapley value on CNNs

When it comes to measuring the contribution of input features in images, the common approach is
decomposing features into pixels in the spatial domain and considering each pixel as a player [9,
2, 23, 36]. Missing players that are not in a coalition S are replaced with a reference value. The
reference value are often chosen intuitively as zero or the mean value of the image. The choice of
reference value may affect the explanatory results on CNNs.

Remark. 1 (Decomposition of convolution) The output of a convolution operation fconv(·) on X
can be decomposed into a linear function of output on frequency components on X. Formally,

fconv(X) =

d1−1∑
u=0

d2−1∑
v=0

[
F(X)(u, v)fconv

[
F−1(Iu,vd1×d2

)
]]

(10)

where Iu,vd1×d2
∈ Rd1×d2 is a Notch pass filter i.e. it contains zeros except the element on the u-th row

and v-th column is one. According to Remark 1, the output of a convolution operation is a linear
function w.r.t. each frequency component. Hence the reference value for frequency components is
naturally zero.

Furthermore, the Shapley value intuitively aligns more with what is important in an additive setting,
as mentioned in previous works [20]. For non-additive models, Shapley value may fail to explain the
importance of players. For example, function f(x) = x1x2x3 with reference value set to be zero.
The Shapley value of each variable is 1

3f(x) while the value of each variable may vary. For frequency
components, the CNN is approximately a linear function. See Appendix D for more details.

4 Rethinking Robustness in Frequency Domain

In this section, we conduct extensive experiments to give a fundamental analysis of the contributions
of different frequency components. In Sec. 4.1, we introduce details and results of instance-level
sampling for Shapley value calculation. In Sec. 4.2, we inspect the contribution of frequency
components of clean (adversarial) data with standard (adversarial) training paradigms respectively,
followed by an in-depth analysis of the way how adversarial attacks work in Sec. 4.4. We demonstrate
the discussion of fairness in Sec. 4.3

4.1 The Shapley Value of Frequency Components and The Instance Disparity

To get the Shapley value of each frequency component, we employ Monte Carlo Permutation
Sampling to approximate the Shapley value [31]. We sample the Shapley value on CIFAR10,
CIFAR100, Tiny ImageNet and ImageNet.

Quantification result We demonstrate our quantification result on ImageNet in Fig 2. Each row
contains the results of a data sample. We show the original image, the reconstructed image from
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(b) Class 1 (Car)
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(c) Class 2 (Bird)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
frequency

0.05

0.00

0.05

0.10

0.15

0.20

av
er

ag
e 

sh
ap

(d) Class 3 (Cat)
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(e) Class 4 (Deer)
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(f) Class 5 (Dog)
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(g) Class 6 (Frog)
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(h) Class 7 (Horse)
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(i) Class 8 (Ship)
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Figure 4: Average Shapley value over frequencies of clean samples on ST model from CIFAR10.

positive frequency components (PFCs), the reconstructed image from negative frequency components
(NFCs), and the heatmap of Shapley value from left to right.

The Shapley value of each frequency component varies between different data samples. As shown
in Fig. 2, the NFCs in the first image are mainly of high frequency or medium frequency while the
PFCs are mostly low frequency. As a result, the NFCs compose the contour of the goldfish and other
textures while PFCs recover the main body of the fish just like how humans perceive it. However, the
“shark” image in the second row shows the opposite direction to “goldfish”: PFCs mainly contains
the contour of the shark, i.e., the HFC information, which means the frequency bias varies at the
instance-level. See Appendix A for more details and more results.

4.2 The Cause of the Adversarial Robustness of AT model

Observations in Sec. 4.1 are based on clean examples. We further inspect the difference between ST
and AT models in the frequency domain based on our Shapley value metric. For CIFAR10, adversarial
examples are generated with PGD-20 with a Linf bound of 8\255 and step size of 2\255. We show
results of ResNet-18 on CIFAR10. Refer to Appendix B for more results of vgg16 on CIFAR10 and
ResNet-18 on CIFAR100 and refer to Appendix A for more details of the model training.

4.2.1 Standard Trained Models Mainly Exploit LFC but Are More Vulnerable on HFC

As shown in Fig. 3(a), first, for clean examples, LFCs have significant positive Shapley value on
average for standard trained (ST) model while the average Shapley value of HFCs are nearly zero,
which means ST model barely exploits HFC; Second, for adversarial examples, the mean Shapley
value of HFC are significantly negative, which shows that ST model is more vulnerable on HFC.

4.2.2 Adversarial Trained Models Improve Robustness by Sacrificing Information in HFCs

As shown in Fig. 3(b), LFCs have high positive Shapley value on both clean and adversarial examples
and the average Shapley value of HFCs are nearly zero on both clean and adversarial examples, which
may be the key to improved robustness of AT. We hypothesize that AT tends to filter out the negative
impact of HFC and the outcome is that AT focuses more on LFC, overlooking information in HFC.
As Fig. 3(a) shows, the HFC of clean images plays a remarkable positive impact. Thus we conjecture
that the trade-off between the clean accuracy and the robust accuracy of AT is possibly the result of
whether the model utilizes the information in HFCs.

4.3 Fairness of AT in Frequency Domain

The class-wise disparity of robustness of AT model is a troublesome phenomenon even on the balanced
dataset such as CIFAR-10 [43, 38] which results in fairness concerns. Though the clean accuracy of
the ST model on each classes is similar, the robust accuracy of the AT model differs between classes.
For CIFAR10, the class 0, 1, 8, 9 that belong to the same coarse class “Transportation” exhibit
relatively high accuracy and robustness while other classes related to “Animals” are less robust except
the class 7 “horse”.

6



0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060
Avg. absolute Shapley value of HFC for ST model

20

30

40

50

60

70

Ad
v 

ac
cu

ra
cy

 o
f A

T 
m

od
el

(%
)

class0
class1
class2
class3
class4
class5
class6
class7
class8
class9

Figure 5: The negative relationship between
the adversarial accuracy of AT model and the
average absolute Shapley value of HFC for
ST model.

To investigate the difference between different
classes, we demonstrate the average Shapley value
of clean data samples from each class for ST model
in Fig. 4. We generally find the trend that the ab-
solute Shapley value of HFC is relatively larger on
non-robust classes (e.g. class 2,3,4 and 5) than robust
classes (e.g. class 1, 7, 8 and 9).

We further calculate the average absolute Shapley
value of HFC (we intuitively take components with
frequency higher than 70% of the largest frequency)
for ST model. As shown in Fig. 5, there is a neg-
ative relationship between the adversarial accuracy
of AT model and the average absolute Shapley value
of HFC for ST model (the Pearson correlation co-
efficient is −0.8765). As shown in Sec. 4.2, HFCs
compose useful but vulnerable information while AT
tends to sacrifice HFCs for robustness. Therefore, we
conjecture that: classes, where HFCs have a larger impact on the ST model, would have relatively
lower adversarial accuracy under AT.

4.4 Inspecting Adversarial Attack in Frequency Domain

4.4.1 Adversarial Attacks on PFCs and HFCs Are More Effective

In this section, we inspect the performance of adversarial attacks over different frequency components.
Specifically, for an adversarial noise δ generated by Eq. 3 on ST model f and data sample ⟨X,y⟩, we
transform the noise δ into frequency domain as F(δ), which is further applied by masks based on
different metrics to determine the impact of adversarial noise on different frequency components.

We first build masks based on the division between PFCs and NFCs of the data sample and the
masked noise is defined as follows, where ⊙ is Hadamard product:

δPFC = F−1(σPFC ⊙F(δ)), σPFC(u, v) = I(ϕX,f
u,v > 0)

δNFC = F−1(σNFC ⊙F(δ)), σNFC(u, v) = I(ϕX,f
u,v < 0)

(11)

Similar to Eq. 11, we define adversarial noises δ on HFCs and LFC as

δLFC = F−1(σLFC ⊙F(δ)), σLFC(u, v) = I[r(u, v) < ϵlow · rmax]

δHFC = F−1(σHFC ⊙F(δ)), σHFC(u, v) = I[r(u, v) > ϵhigh · rmax]
(12)

where r(u, v) is the frequency of the frequency component, rmax is the maximum frequency in
this data sample, ϵlow and ϵhigh is the intuitively determined threshold for low frequency and high
frequency. In our experiment, ϵlow = 0.4, ϵhigh = 0.6.

We test the error rate of ST model as the input data sample is attacked with various noises, as shown
in Fig. 6. The error rate is nearly zero for origin data sample X and nearly one hundred percent for
data samples attacked with the unmasked noises X + δ. For adversarial noise on PFCs and NFCs,
X + δPFC reaches a similar error rate of ST model as X + δ which is significantly larger than the
error rate with X + δNFC . It indicates that the adversarial attack on PFCs is more effective. Similar
for HFCs and LFCs, the adversarial attack on HFCs is more effective than NFCs.

4.4.2 A Possible Explanation for Adversarial Attacks Focusing on LFCs

As demonstrated in Sec. 4.2 and Sec. 4.3, we quantitatively proved that models are more vulnerable
on HFCs than on LFCs. Previous works hypothesize that exploiting HFCs causes the brittleness of
CNNs [41, 40, 45]. However, it conflicts with the success of the adversarial attacks that are limited
on LFCs [17, 32] as addressed in [4, 25] and demands a closer look.

To explain such an intriguing conflict, we calculate the ratio of PFCs and NFCs for each frequency
over the spectrum. As shown in Fig. 7, both PFCs and NFCs that have a significant impact take up a
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fair ratio (at least 0.1) over the whole frequency spectrum. Therefore, we argue that the contribution
of frequency components on the prediction of CNNs are not necessarily related to its frequency.

The fact that PFCs and NFCs actually co-exist on every frequency basis provides a possible explana-
tion for the success of the adversarial attacks that are limited on LFCs [17, 32]. Since the ratio of
PFCs and NFCs are even higher at low frequency, it is possible for adversarial attacks that focus on
LFCs to reduce the impact of PFCs and boost the impact of NFCs.

5 Improving Robustness via Class-wise Shapley Value-guided Augmentation

Motivation. As defined in Sec. 3, frequency components with negative Shapley value make the model
output lean to other classes rather than the ground-truth class, which implies that the distribution of
image features composed by NFC is mistakenly aligned with that of other classes. Intuitively, by
proactively correcting the misalignment of features of the model, we could improve the adversarial
robustness for future attacks. Moreover, our observations in Sec. 4.3 reveal that there exists obvious
disparity at the class level of distribution of NFC. Therefore, we propose to actively augment data with
features composed by NFC of the same class, named Class-wise Shapley value-guided Augmentation
(CSA). To be specific, based on a CNN f , we obtain the CSA pfX of data X by masking its PFC as
follows, with the indicator function I[·]:

pfX(u, v) = I[ϕX,f
u,v < 0] · F(X)(u, v) (13)

Implementation Since it takes a large number of samplings for obtaining a stable Shapley value (c.f.
Eq. 5) for each sample, it is necessary to downgrade the time complexity. Fortunately, we find that for

Table 1: Test accuracy of ResNet-18 trained on CIFAR10 and CIFAR100 with CSA. ‘Final’ denotes
the performance at the last training epoch. ‘Best’ refers to the best snapshot model in training.

Natural Accuracy w/o attack attacked by PGD-20 attacked by AutoAttack
CIFAR10 Best Final Diff Best Final Diff Best Final Diff

PGD-AT [24] baseline 83.83% 84.49% -0.66 49.87% 46.38% 3.49 46.52% 44.06% 2.46
CSA 81.57 % 82.91 % -1.34 51.13% 49.42% 1.71 47.17% 46.56% 0.61

TRADES [49] baseline 81.23% 81.71% -0.48 51.18% 51.08% 0.10 47.94% 47.74% 0.20
CSA 80.84% 81.62% -0.78 52.57% 52.06% 0.51 48.94% 49.16% -0.22

CIFAR100 Best Final Diff Best Final Diff Best Final Diff

PGD-AT [24] baseline 56.55% 57.13% -0.58 24.38% 21.70% 2.68 21.66% 20.10% 1.56
CSA 56.31 % 56.72 % -0.41 26.14% 23.63% 2.51 23.02% 21.64% 1.38

TRADES [49] baseline 53.09% 53.09% 0.00 27.01% 27.01% 0.00 22.76% 22.76% 0.00
CSA 54.88% 54.46% 0.42 27.81% 27.77% 0.04 23.61% 23.73% -0.12
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Table 2: Test accuracy of VGG16 and WRN-28-10 trained on CIFAR10 with CSA. ‘Final’ denotes
the performance at the last training epoch. ‘Best’ refers to the best snapshot model in training.

Natural Accuracy w/o attack attacked by PGD-20 attacked by AutoAttack
WRN-28-10 Best Final Diff Best Final Diff Best Final Diff

PGD-AT [24] baseline 85.90% 85.67% 0.23 50.18% 47.51% 2.67 47.86% 45.69% 2.17
CSA 85.48 % 85.87 % -0.39 53.00% 50.83% 3.50 49.61% 48.75% 0.86

TRADES [49] baseline 84.13% 84.73% -0.60 53.17% 48.72% 4.45 50.21% 46.65% 3.56
CSA 84.41% 84.92% -0.51 54.32% 50.53% 3.79 51.40% 48.65% 2.75

VGG16 Best Final Diff Best Final Diff Best Final Diff

PGD-AT [24] baseline 77.90% 80.06% -2.16 48.03% 46.96% 1.07 43.68% 42.70% 0.98
CSA 75.42 % 75.40 % -0.02 48.22% 48.06% 0.16 43.68% 43.53% 0.15

TRADES [49] baseline 79.86% 79.69% 0.17 46.92% 46.63% 0.29 42.50% 42.67% -0.17
CSA 80.09% 80.23% -0.14 48.58% 48.23% 0.35 44.13% 43.97% 0.16

Table 3: Testing accuracy of ResNet18 trained on CIFAR10 with high frequency suppressing methods.
‘baseline’ denotes the original TRADES method, ‘sup HFC’ denotes combining the suppressing high
frequency method with TRADES and ‘CSA’ denotes combining our CSA with TRADES.

Methods Natural Accuracy w/o attack attacked by PGD-20 attacked by AutoAttack
Best Final Diff Best Final Diff Best Final Diff

TRADES [49]
baseline 81.23% 81.71% -0.48 51.18% 51.08% 0.10 47.94% 47.74% 0.20
sup HFC 78.14% 80.26% -2.12 50.66% 50.42% 0.24 45.47% 45.14% 0.33

CSA 80.84% 81.62% -0.78 52.57% 52.06% 0.51 48.94% 49.16% -0.22

the same class, the feature distribution composed by NFC aligns well between samples, and depending
on only a small ratio of whole data (3% in our experiment) brings out an obvious improvement.
Detailed analyses at a statistical level and experimental level can be found in Appendix B.

For each class c, we randomly take data samples ⟨X1, c⟩, ⟨X2, c⟩, · · · , ⟨Xn, c⟩ and generate a set of
CSAs with a pretrained model f̂ as: P f̂

c = {pf̂X1
, pf̂X2

, · · · , pf̂Xn
} and train our model as follows:

θ = argmin
θ

E
[
max

δ<∥ϵ∥p

ℓ
(
f [F−1(F(X) + α ∗ pf̂ ) + δ], y

)]
, pf̂ ∈ P f̂

y (14)

where the α is a coefficient of the CSA pf̂ .

Results We conduct experiments on CIFAR10 and CIFAR100 [19] to verify the effectiveness of our
CSA. We train ResNet18 [18] on CIFAR10 and CIFAR100 under PGD-AT [24] and TRADES [49].
Attacks are crafted within ℓ∞ bound with ϵ = 8/255. We select PGD-20 attack [24] and AutoAttack
(AA) [12] as the attack baselines. As Table 1 shows, under various attacks, our CSA consistently
achieves better robustness over defense baselines with little cost of natural accuracy. With the Shapley
value calculated with ResNet-18, we further apply our CSA on VGG16 [33] and WideResNet-28-
10 [46] on CIFAR10. As shown in Table 2, our CSA also greatly improves the adversarial robustness
of VGG16 [33] and WRN-28-10 [46]. It indicates that our CSA method is model-agnostic and could
be applied to various model architectures. Note that the CSA set of each class contains the NFC of
the first 150 images without shuffling for CIFAR10 and 30 images for CIFAR100, i.e., 3% of the
training set in CIFAR10 and 6% of the training set in CIFAR100, which shows that obtaining CSA
only takes little overhead and the feasibility of our method in realistic settings. Training details and
ablation study can be found in Appendix C.

Comparison between CSA and high frequency filtering defense method High frequency filtering
methods have been proposed to defend adversarial attacks [13, 22, 51]. Most high frequency filtering
methods are proposed to deal with l2 norm adversarial attack and are compared with other non-
adversarial training defend methods. We take the suppressing high frequency method proposed in
[51] as baseline, which masks the high frequency components and trains the model with TRADES,
and test the robust accuracy of ResNet18 on CIFAR10 with ℓ∞ attack where ϵ = 8/255.

As demonstrated in Tab. 3, for l∞ attack, suppressing high frequency components even slightly
degrade the testing accuracy on CIFAR10.
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6 Related Work

Adversarial Attack Since the seminal works [37, 16] have been proposed that reveal the vulnerability
of DNNs, there is an increasing interest in studying stronger adversarial attacks, such as FGSM [16],
C&W attack [5], PGD attack [24], and AutoAttack [12]. The robustness of CNNs in this work has
been thoroughly evaluated on these above attack baselines.

Adversarial Defense The development between attack and defense is just like an arms race: the
existence of adversarial examples promotes the development of defense methods, among which
adversarial training (AT) has been considered the most effective one [3]. However, AT has its own
limitations: i) the trade-off between accuracy and robustness [34, 39, 48, 44], ii) robust overfitting [30,
10], which brings a large robustness generalization gap. Many works have been proposed to improve
AT by sample-wise importance re-weighting [50], adding more unlabeled data [27, 6] or regularizing
the embedding space [29]. A recent work [28] proposes to augment data with the approximated
confounders from a causal perspective for improved robustness while these confounders are class-
agnostic and lack theoretical guarantee. In this work, we quantify the frequency importance via
the theoretically stable Shapley value and design a class-specific data augmentation strategy, which
achieves great improvement in robustness with better robustness generalization.

Understanding Robustness in Frequency Domain One way to inspect the intriguing nature of
adversarial attack and defense is through the lens of frequency spectrum. Many works explore the
sensitivity of CNNs and frequency properties of the model [40, 45, 1] and study whether convolution
itself has an intrinsic bias in frequency domain [7]. A hypothesis is that CNNs exploit HFCs which
leads to the lack of robustness [41]. Driven by this hypothesis, many pre-processing defend methods
have been proposed [13, 22, 51]. Meanwhile, some works also come up with adversarial attacks
focusing on LFC [17, 32] which leads to assumptions that constituent frequencies of adversarial
examples are dependent on the dataset [4, 25]. Efforts to quantify and inspect the contribution of each
frequency component have been made [42, 21]. We employ Shapley value, a tool that has preferable
properties, to quantify the contribution of each frequency component on the fine-grained level.

Explainability with Shapley Value Shapley Value [31] is proposed to distribute contributions among
players in a game. It has been widely applied for the explainability of deep learning. Some works
propose its approximations [23, 9, 2]. While another line of works focus on the condition to apply
Shapley value [14, 15]. Also, the interaction between input features [36, 35, 47] is recently studied. In
our work, we apply Shapley value in the frequency domain to quantify the contribution of frequency
components. The quantification have many desirable theoretical properties.

7 Conclusion and Outlook

We have made efforts to quantify the contribution of each frequency component on CNNs. We
employ Shapley value, a method with theoretically desirable properties, to quantify the contribution
of a single frequency component on the instance-level. Through our quantification, we explore the
difference between standard trained (ST) model and adversarial trained (AT) model. Our analysis of
the fairness in AT provides insights of the cause of robustness difference over classes. We further
examine the attack effect of adversarial noises on different frequency components. Based on our
findings, we then propose a simple yet effective class-wise data augmentation method CSA which
augments data with the NFC found in this class. Experimental results have shown its effectiveness.

Limitation & future work: Our current results are limited mainly to CNNs while we believe it is
also rewarding to develop new techniques to other backbone e.g. Transformer and GNNs based on
our framework, which we leave for immediate future work. We hope that this work could inspire
future explanations and defense algorithms of adversarial attacks. Due to the nature of this work,
there may not be any potential negative social impact that is easily predictable.
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