A Appendix

A.1 Datasets

fMoW RGB Functional Map of the World (fMoW) [17] is a dataset of high-resolution satellite
image time series across the world, with a task of classification among 62 architecture categories such
as airport, shipyard, and zoo. fMoW provides RGB images as well as metadata including location,
time, sun angles, etc. The license is provided here

Co-located images of different timestamps, or sequences, are provided in fMoW. They are of different
length, and around 60% of the samples have length larger than 2. Readers can refer to the fMoW
paper [17] for statistics on the distribution of sequence lengths. We construct a temporal version
of fMoW by randomly associating every single image with two images of the same location but of
different timestamps if possible. For a given spatial location [oc, we define T}, as the number of
temporally distinct snapshots present in the dataset.

fMoW Sentinel We collect a new dataset based on the fMoW RGB dataset. We crop surface
reflectance images from the Sentinel-2 (ESA) satellite (courtesy of the U.S. Geological Survey),
consisting of 90-day composites of images at the same locations as fMoW images (to reduce the
impacts of cloud coverage). At each fMoW datapoint location, we collect a time series of Sentinel-2
images, using the provided geo-coordinate bounding boxes. For locations where all fMoW images are
before the Sentinel-2 time range, we discard the location. Otherwise, we collect a composite centered
at the same time as each fMoW image within Sentinel-2 time range. Because many fMoW images
occur before Sentinel-2, we augment the time series by adding extra images in 6-month intervals that
do not have an image in the fMoW dataset.

We collect all 13 frequency bands provided by Sentinel-2 (B1-12 and B8A), at some of the same times
as fMoW images plus some extra times, for a total of 712,874 training images, 84,939 validation
images, and 84,966 test images. Out of these 155,446 training images, 22,602 validation images, and
22,824 test images occur at the same time as a corresponding fMoW image. The mean height and
width of each image is about 45 pixels and 60 pixels, respectively.
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Figure 5: Distribution of images and locations across the categories over the fMoW Sentinel training set.

A.2 fMoW Sentinel

We provide information about the fMoW-Sentinel dataset, collected using Sentinel-2

*fMoW license: https://github.com/fMoW/dataset/raw/master/LICENSE
3Sentinel-2 license: https://scihub. copernicus.eu/twiki/pub/SciHubWebPortal/,
TermsConditions/Sentinel_Data_Terms_and_Conditions. pdf
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A.2.1 Geographic Distribution
m
4
Figure 6: Geographic distribution of fMoW Sentinel images by country

A.2.2 fMoW Sentinel Bands
Channel Resolution  Central wavelength Mean Standard deviation
B1: Aerosols 60m 443nm 1370.192 633.152
B2: Blue 10m 490nm 1184.382 650.284
B3: Green 10m 560nm 1120.771 965.231
B4: Red 10m 665nm 1136.260 948.982
B5: Red Edge 1 20m 705nm 1263.739 1108.067
B6: Red Edge 2 20m 740nm 1645.403 1258.364
B7: Red Edge 3 20m 783nm 1846.870 1233.149
B8: NIR 10m 842nm 1762.595 1364.387
B8A: Red Edge 4 20m 865nm 1972.624 3545.66
B9: Water Vapor 60m 940nm 582.726 472.380
B10: Cirrus 60m 1375nm 14.771 14.311
B11: SWIR 1 20m 1610nm 1732.164 1310.370
B12: SWIR 2 20m 2190nm 1247.919 1087.602

Table 10: Mean and standard deviation of pixel values for each channel across the fMoW Sentinel training
dataset. Note that channel B10 does not contain bottom-of-atmosphere information, and is no longer accessible
on Google Earth Engine. Further details can be found here.
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Figure 7: Distribution of pixel counts per band across the fMoW Sentinel training set.
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A.3 Training Details

Here we describe the settings used for pre-training and finetuning our models on fMoW RGB (non-

temporal) (A.3.T), fMoW RGB (temporal) (A.3.2), fMoW Sentinel (A.3.3), NAIP (A.7), EuroSAT
(A.8), BigEarthNet (A.9), and SpaceNet v1 (A.10).

A.3.1 fMoW RGB (non-temporal)

SatMAE Pre-training We use ViT-Large [36]] as the backbone. The model configuration is the
same as in [1]], e.g. the input image size is 224 and the patch size is P = 16. Since the original image
size of fMoW varies greatly, we first resize the image so that the shorter side is 224 pixels and the
aspect ratio is maintained, then randomly crop a 224 x 224 region from the resized image. We also
normalize the image according to the mean and standard deviation calculated on the whole dataset.
We use 8 NVIDIA V100 GPUs on Google Cloud to train the model for 800 epochs with a learning
rate of 2.4 x 1073 and batch size of 4096. The optimizer and learning rate scheduler are kept the
same as in [1]].

SatMAE Finetuning We load the pre-trained weights below the ViT head and finetune the ViT-
Large model in an end-to-end manner. We adopt the same learning rate decay and weight decay
strategy during finetuning as in [[1]]. We apply the same data augmentation during pre-training and
additionally use Mixup and Cutmix augmentation. We use 8 NVIDIA V100 GPUs to train the model
for 50 epochs with a learning rate of 2 x 10~ and batch size of 512. Other paramters including
Mixup coefficients are kept the same as in [1].

A.3.2 fMoW RGB (temporal)

Dataset We iterate over the dataset in the same way as in non-temporal fMoW, except that we
randomly find 2 co-located images with different timestamps (if possible) for every image sample,
so every sample becomes a image sequence of length 3. If there are not enough co-located images
with different timestamps we simply duplicate the original image. The fMoW dataset train/val split
guarantees that co-located images belong to the same split so there is no leakage involved.

SatMAE Pre-training We use the same model as above, though the number of input patches triples.
To incorporate temporal encoding, the positional encoding of a spatial location of a patch shortens to a
320 4 320 = 640 dimensional vector, and the temporal encoding is a 384 dimensional vector, divided
equally among the year, month, and hour. We apply constraints on the mask indices to implement
different mask strategies. For independent masking .1.2), we pick the variant where we keep the
ratio of masked patches fixed to p,, = 0.75 for each image in the sequence. For the consistent
cropping option, we first resize the image sequence to the same size and then apply cropping to all
three images instead of randomly cropping each image separately. We use 8 NVIDIA V100 GPUs to
train the model for 100 epochs with a learning rate of 6 x 10~* and batch size of 1024.

SatMAE Finetuning We use 4 or 8 NVIDIA V100 GPUs to train the model for 50 epochs with a
learning rate of 5 x 10~% and batch size of 128.

Test-time Augmentation Unlike the test-time augmentation used in [34]], we average the prediction
score of 9 random samples of image sequences for every single image as the final prediction score.
To be consistent with previous experiments, we calculate the mean classification accuracy on the
whole validation set instead of evaluating on the subset with unique locations. These two metrics
give very similar numbers.

SeCo [35] Pre-training and Finetuning We use the code from the official repo of SeCo [35]], and
use ResNet 50 as the backbone. For pre-training, we use 8 NVIDIA v100 GPUs and a batch size of
128, and keep other hyper-parameters and data augmentation the same as in [35]]. We pre-train the
model for 50 epochs and observe the loss converged. For finetuning, we use 4 NVIDIA v100 GPUs
and a batch size of 128, and also keep other hyper-parameters and data augmentation the same as in
[35]. We finetune the model for 100 epochs.
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UTAE [48] Training We use the code from the official repo of UTAE [48]], add an averaging
pooling layer to adapt the segmentation network to classification. We use 8 NVIDIA v100 GPUs, a
batch size of 128, learning rate of 5 x 104, and use AdamW optimizer with no weight decay, which
we found to be the best performing hyperparameters. We apply data augmentation the same as in
SatMAE. We train the model for 50 epochs.

A.3.3 fMoW Sentinel

We choose the ViT-Large backbone [36] with D = 1024. The positional encoding of the spatial
location of a patch is a 768 dimensional vector, and the spectral group encoding is a 256 dimensional
vector. Given the relatively smaller size of Sentinel-2 imagery, we resize all images to 96 x 96
pixels and use a patch size P = 8. This results in L = (96/8)% = 144 patches which are passed
to SatMAE+Stack. For SatMAE+Group, since we pick 3 groups of channels, we have 3L = 432
patches. We did experiment with letting each channel be its own group. However, this resulted in a
very large memory footprint with 10L = 1440 patches and unstable training which would frequently
result in NaN loss. We thus decided to group bands in terms of spatial resolution and wavelength
similarity (see[5.4). We train and finetune on the entire training set.

SatMAE Pre-training We use 8 NVIDIA v100 GPUs, an effective batch size of 4096, a base
learning rate of 10~ and the same warmup and half-cyle cosine decay schedule used by [[1]. For each
image, we use standard normalisation (see statistics in[A.2.2), randomly crop 0.2-1.0x of the area of
the image, resize it to 96 x 96 pixels, and randomly flip the image horizontally. We use a masking
ratio of p,,, = 0.75, as was found to be optimal in [[L]. We pre-train each model for 50 epochs.

MoCo Pre-training We use 8 NVIDIA v100 GPUs, and pick the ViT-Base backbone and an
effective batch size of 512 such that the model fits in memory. We pick a base learning rate of
10~* and the same warmup and decay schedule used by [62]. For each image, we use standard
normalisation (see statistics in[A.2.2)), randomly crop 0.2-1.0x of the area of the image, resize it
to 96 x 96 pixels, randomly apply Gaussian blur with o € [0.1, 2], and randomly flip the image
horizontally. We pre-train each model for 50 epochs and use the 50th epoch checkpoint for all
subsequent experiments.

SatMAE Finetuning We use 8 NVIDIA v100 GPUs, an effective batch size of 4096, a base
learning rate of 10~3 and a warmup and decay schedule. We use standard normalisation, and resize
each image to 96 x 96 pixels.

SatMAE Further Improvements We found increased performance of around 2.18% during fine-
tuning (the last row of table [3) using additional data augmentations as in [1]. This configuration is
the same as SatMAE+Group+IM except for an effective batch size of 1024, weight decay of 0.05,
drop path of 0.1, reprob of 0.25, mixup of 0.8 and cutmix of 1.0. For all rows, we finetune for 30
epochs, but report results on the best validation set Top 1 accuracy achieved.

In table [E, we also report results with increased
pre-training. Training SatMAE for 200 epochs, as

Backbone Pre-train epochs Top 1 Acc.

VLB 300 6765 opposed to 50, yields further improvements in the
ViTL 30 61. 3 final top 1 accuracy after finetuning for 30 epochs
ViTL 300 63.8 3 using the configuration described above. We see

that a smaller model, using a ViT-Base backbone,
Table 11: Improvements with longer pre-training. ~ ¢an outperform a model using a ViT-Large back-
bone with longer pre-training. We hypothesize that

longer pre-training can prove to be even more beneficial.

A.4 Impact of masking ratio and patch size on fMoW-RGB-temporal

Here, we investigate the impact of the masking ratio and patch size for a ViT-Large SatMAE
on temporal data (with independent masking and consistent cropping, and without the test time
augmentation).

We vary the masking ratio p,,, to 0.6 and 0.9 from a default of p,,, = 0.75 and the patch size P to 22,
32 from a default of P = 16 (table[12).
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pm P Top 1 Acc. We see a significant drop in performance of 7.19% with a smaller

06 16 7380 masking ratio as expected [[1], since a lower masking ratio makes it
09 16 7478 easier for the model to reconstruct masked patches as it has access
075 32 6931 to more visible patches. A higher masking ratio pf 0.9.may result ?n
075 22 7308 a.d}fﬁcult pretext task, as too few of the. patches in the image remain
075 16 79.69 visible, which may require longer training. Thus, we find that using

Pm = 0.75 is roughly optimal.

Table 12: Ablation on p,,, and P

We also note a drop in performance from using a larger patch size,
on fMoW-RGB-temporal.

as the model has access to less granular spatial information from
the image. This is in line with other MAE works [1}154]. However,
using a larger patch size is also more computationally efficient, so one must consider the tradeoff in
accuracy and computational resources.

A.5 Impact of masking ratio and patch size on fMoW-Sentinel

In this section, we investigate the impact of the masking ratio p,,
pm_ P Top I Acc. and the patch size P (table[I3) for SatMAE on multi-spectral data.
06 8 30.63 We use a ViT-Large backbor}e and t.he SatMAE+Group+IM setting
0.9 3 5078 as this was our best performing design.

0.75 16 55.02 As we expect, a lower masking ratio results in a weak pretext task, as
0.75 8 59.30 the model is able to easily reconstruct the image given more visible
patches, and thus its representations are not as useful. Interestingly,
Table 13: Ablation on pmand P, — (0.9 doesn’t result in a large drop in performance, unlike [1].
on fMoW-Sentinel. This suggests that higher masking ratios may be used for multi-

spectral data with independent masking, as it results in fewer tokens
during the encoding state which could quicken pre-training.

We see that a larger patch size results in worse performance. This is expected, as a larger patch size
provides less granular spatial information to the deeper layers of the model, which may dampen its
expressive power. As mentioned above, the loss in accuracy must be considered compared against
the gain in training speed. A future direction of research could consider the specific gain in speed and
drop in accuracy from granular increases to the patch size for further insight.

A.6 Choosing important multi-spectral bands

As mentioned in[5.4] all 13 bands of the Sentinel-2 data may not be useful. In our experiments,
we drop bands B1, B9, and B10. To correctly identify the utility of each band, one would need to
pre-train a model with all bands except the one in question, and then measure the performance after
finetuning without that band. However, this is prohibitively expensive in terms of computational
resources. Instead, we pre-trained a SatMAE+Stack model with a ViT Base backbone on all 13
Sentinel-2 bands of fMoW Sentinel, and then finetuned the model on the image classification task of
fMoW Sentinel using all 13 bands. Using the finetuned model, we ran an ablation masking out subsets
of bands with the mean value for those bands and measuring the drop in validation set accuracy. Since
the model was trained to rely on information of all 13 bands, a small drop in accuracy from masking
out some bands indicates that these bands might not be very useful for the model to perform well.

Bands Masked Top 1 Acc. Top 5 Acc.

None 57.80 80.07
Bl 45.83 69.46
B2, B3, B4 17.46 35.05
B35, B6, B7 13.25 35.33
B8, BSA 16.03 35.36
B9, B10 55.06 78.15
B11,B12 27.83 54.41

Table 14: An ablation to determine which of the 13 bands are least useful to a SatMAE+Stack model pre-trained
and finetuned on all 13 bands of fMoW Sentinel. During evaluation, for each image, the relevant bands are
masked with their mean value recorded in table[10|and then passed as is to the finetuned SatMAE+Stack model.
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As seen in table|14] we notice the smallest drop in accuracy when masking bands B9 and B10. The
drop in accuracy when masking B1 is larger, but could be due to the model relying on potentially
unimportant signals from B1 during finetuning. We therefore also drop B1 in our experiments in
section[5.4] We note that the RGB and other multi-spectral bands are highly relevant to our model.

A.7 NAIP Land Cover Classification

We use the finetuning setting as in the fMoW RGB (non-temporal) finetuning experiment (A.3.1).

A.8 EuroSAT Land Cover Classification

We use the exact finetuning setting as in the fMoW RGB (non-temporal) finetuning experiment for
RGB-only input (A.3.1). We also use the exact finetuning setting as in the fMoW-Sentinel finetuning
experiment except for training longer (150 epochs) for multi-spectral (13-band) input. It
took the model longer to converge most probably because EuroSAT is comparatively a much smaller
dataset. The licens is provided in the footnote.

A.9 BigEarthNet Land Cover Multi-label Classification

We use the exact finetuning setting as in the fMoW-Sentinel finetuning experiment (A.3.3). Since
the task is multi-label classification instead of single-label classification, we changed the training
objective to multi-label soft margin loss. We use the mean Average Precision metric as provided in
[35].The license P|is provided in the footnote.

A.10 SpaceNet vl Building Segmentation

We use PSANet [65]] for the binary image segmentation and replace the backbone with ViT-Large.
Following [34]], we set the learning rate to 1 x 103 for ViT encoder and to 1 x 10~2 for ViT head
and PSA module. We train the model for 100 epochs with batch size 128 using an SGD optimizer
of momentum 0.9 and weight decay 1 x 10~* and a polynomial learning rate decay scheduler of
power 0.9. Also following [34], we resize and crop the input image to 400 x 400 for fair comparison.
This indicates our model will take more patches per image (625). We use the positional encoding
interpolation algorithm provided by [[1] to adjust the pre-trained weights. The licenseﬂis provided in
the footnote.

*EuroSAT license: https://creativecommons.org/licenses/by/4.0/
SBigEarthNet license: https://bigearth.net/downloads/documents/License . pdf
SSpaceNet v1 license: http://creativecommons.org/licenses/by-sa/4.0/
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B Societal Impact

Measurements of economic, social, and environmental indicators are critical to policy-making across
the world. However, such measurements are constantly lacking, hindering the process of decision
making. Instead of using traditional measurements (e.g. ground survey), our method exploits abun-
dant, globally-available and frequently-updated unlabelled satellite data. Our model is capable of
capturing representations from remote sensing imagery that are beneficial for critical downstream
tasks, including poverty prediction, infrastructure development, and population estimation. Gov-
ernments could make good use of such information in decision making and consequently bring
significant societal benefits.

Although the use of satellite imagery could potentially lead to data abuse and privacy violations from
malicious actors, we contend that applications of our model trained on publicly available satellite
imagery respects privacy and avoids exposing sensitive information. For example, individually
identifiable information cannot easily be retrieved from these images. Thus, we believe that the
imagery we used does not directly constitute a privacy concern. However, we note that representations
learned from SatMAE could potentially suffer from biases if the training data is biased. For instance,
SatMAE trained on geographically imbalanced data could bias the model towards certain regions,
especially those in Northern America and Europe (see[6). Thus, we advise researchers to be aware of
directly applying our SatMAE models to datasets with a geographical distribution different to that
of fMoW RGB and fMoW Sentinel. In our code release, we will also specify allowable uses with
appropriate licenses.

B.1 Carbon Footprint

We include a brief analysis of the carbon footprint of training the model below.

Our experiments were mainly conducted using Google Cloud Platform (GCP) in region us-centrall,
which has a carbon efficiency of 0.57 kg CO2 eq. per kWh. For a model pre-trained and finetuned on
fMoW RGB (temporal) dataset, a cuamulative of 960 hours of computation was required on hardware
of type Tesla V100-SXM2-16GB (TDP of 250W). Total emissions are estimated to be 136.8 kg C'O-
eq. of which 100 percent was directly offset by the cloud provider. Estimations were conducted using
the Machine Learning Impact calculator presented in [66]. For a model pre-trained and finetuned on
fMoW Sentinel dataset, total emissions are estimated to be 109.44 kg C'O4 eq. We list a table for the
rough estimations in table[T3]

Experiment Carbon Footprint
é)etting Dataset GPU hours (ke CO, elc)].)

Pre-training fMoW RGB temporal 768 109.44
Finetuning fMoW RGB temporal 192 27.36
Pre-training fMoW Sentinel 576 82.08
Finetuning fMoW Sentinel 192 27.36
Finetuning NAIP 30 4.27
Finetuning EuroSAT 4 0.57
Finetuning SpaceNet 50 7.12
Finetuning BigEarthNet 16 2.28

Table 15: The estimated carbon footprint of pre-training and finetuning SatMAE on these datasets. The GPU
hours are measured on § NVIDIA v100 GPUs in the us-centrall region on GCP.
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C Visualizations

In this section, we include visualisations in the temporal (C.T) and multi-spectral settings (C.2).

C.1 Temporal SatMAE

No Temporal Original
Encoding + IM Image

No Temporal Original
SatMAE + CM Encoding + IM SatMAE + IM SatMAE + CM

SatMAE +IM

Figure 8: More visualization examples of the reconstruction quality of image sequences from the fMoW temporal
dataset across multiple settings, including using no temporal encoding + IM (Independent Masking), default +
CM, default + IM.

As shown in fig.[8, SatMAE+IM achieved relatively satisfying reconstruction quality. Without the
temporal encoding, the patches across all three images cannot be distinguished, and we observe
a mixture of the three images in the reconstruction outcome of the second column. As explained
earlier, using independent masking can allow SatMAE to reconstruct an image in the time series
using information from other temporal patches. Our experiments show that this helps SatMAE learn
better representations for satellite imagery.

C.2 Spectral SatMAE

We also visualize the in-painting quality for different multi-spectral settings, including Sat-
MAE+Group+IM, SatMAE+Group+CM (@2 #2), and SatMAE+Stack (#.2) in fig. [0]and fig.[I0]

We can see a clear improvement in the quality of reconstruction under SatMAE+Group+IM compared
to SatMAE+Group+CM and SatMAE+Stack. Independent masking results in sharper reconstructions,
whereas the results from consistent masking and stacking the channels are much fuzzier. We also
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Figure 9: Visualizations of SatMAE in-painting under different settings. RGB represents bands B4, B3, B2,
from group B2, B3, B4, BS. NIR represents bands B7, B6, BS, from group B5, B6, B7, BEA. SWIR represents
bands B11 in grayscale, from group B11, B12. For each method, we show the input band group masked and
reconstructed side-by-side. We note that the reconstruction for visible patches is worse than for the masked
patches, since no loss is computed on visible patches. Both halves represent multi-spectral images of airports.

note that the model is able to learn correlations between bands; in the top-half of fig. [9]for the SWIR
band group, even though the bottom right corner of the image is masked, SatMAE+Group+IM is able
to reconstruct the bright spot based on information from the other band groups.

We hypothesize that further improvements in reconstruction quality and learned representations can
be achieved with longer pre-training.
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Figure 10: Further visualizations of SatMAE in-painting. See fig. E|for details on band groups. The top half
represents a multi-spectral image of a recreational facility and the bottom half is of an amusement park.
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