
A Detailed Descriptions for the Evaluation Datasets
A.1 Image Classification
We show the detailed descriptions of image classification as follows. The train/val/test splits and the
classes are shown in Table 1.

Dataset Description #Classes Train size Val size Test size

Fine-Grained Visual Classification (FGVC)

CUB-200-2011 [31] Fine-grained bird species recognition 200 5,394⋆ 600⋆ 5,794
NABirds [29] Fine-grained bird species recognition 55 21,536⋆ 2,393⋆ 24,633
Oxford Flowers [27] Fine-grained flower species recognition 102 1,020 1,020 6,149
Stanford Dogs [20] Fine-grained dog species recognition 120 10,800⋆ 1,200⋆ 8,580
Stanford Cars [8] Fine-grained car classification 196 7,329⋆ 815⋆ 8,041

Visual Task Adaptation Benchmark (VTAB-1k) [34]

CIFAR-100 [21]

Natural

100

800/1,000 200

10,000
Caltech101 [7] 102 6,084
DTD [4] 47 1,880
Flowers102 [27] 102 6,149
Pets [28] 37 3,669
SVHN [26] 10 26,032
Sun397 [32] 397 21,750

Patch Camelyon [30]

Specialized

2

800/1,000 200

32,768
EuroSAT [14] 10 5,400
Resisc45 [3] 45 6,300
Retinopathy [12] 5 42,670

Clevr/count [19]

Structured

8

800/1,000 200

15,000
Clevr/distance [19] 6 15,000
DMLab [1] 6 22,735
KITTI/distance [9] 4 711
dSprites/location [25] 16 73,728
dSprites/orientation [25] 16 73,728
SmallNORB/azimuth [22] 18 12,150
SmallNORB/elevation [22] 9 12,150

General Image Classification Datasets

CIFAR-100 [21] General image classification 100 50,000 - 10,000
ImageNet-1K [6] 1,000 1,281,167 50,000 150,000

Robustness and Out-of-Distribution Dataset

ImageNet-A [17]
Robustness & OOD

200 7,500
ImageNet-R [15] 200 30,000
ImageNet-C [16] 1,000 75 × 50,000

Table 1: The statistics of the various datasets. ⋆: Since there are no public train/val splits in these
datasets, we follow VPT [18] for random train/val split. This table is partially borrowed from VPT
[18].

FGVC. Following VPT [18], we employ five Fine-Grained Visual Classification (FGVC) datasets to
evaluate the effectiveness of our proposed SSF, which consists of CUB-200-2011 [31], NABirds [29],
Oxford Flowers [27], Stanford Dogs [20] and Stanford Cars [8].

VTAB-1k. VTAB-1k benchmark is introduced in [34], which contains 19 tasks from diverse domains:
i) Natural images that are captured by standard cameras; ii) Specialized images that are captured
by non-standard cameras, e.g., remote sensing and medical cameras; iii) Structured images that are
synthesized from simulated environments. This benchmark contains a variety of tasks (e.g., object
counting, depth estimation) from different image domains and each task only contains 1,000 training
samples, thus is extremely challenging.

General Image Classification Datasets. We also validate the effectiveness of SSF on general image
classification tasks. We choose the CIFAR-100 [21] and ImageNet-1K [6] datasets as evaluation
datasets, where CIFAR-100 contains 60,000 images with 100 categories. ImageNet-1K contains
1.28M training images and 50K validation images with 1,000 categories, which are very large datasets
for object recognition.
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A.2 Robustness and OOD
ImageNet-A is introduced in [17], where 200 classes from 1,000 classes of ImageNet-1K are chosen
and the real-world adversarial samples that make the ResNet model mis-classified are collected.

ImageNet-R [15] contains rendition of 200 ImageNet-1K classes and 30,000 images in total.

ImageNet-C [16] consists of the corrupted images, including noise, blur, weather, etc. The perfor-
mance of model on ImageNet-C show the robustness of model.

A.3 Detection and Segmentation
We also conduct experiments on downstream tasks beyond image classification, such as object
detection, instance segmentation and semantic segmentation. We employ the COCO dataset [23] for
evaluation based on mmdetection [2] framework for the object detection and instance segmentation.
COCO contains 118K training images for training and 5K images for validation, which is one of
the most challenging object detection datasets. We use Mask R-CNN [13] with Swin Transformer
backbone to perform our experiments, following the same training strategies as Swin Transformers
[24]. For semantic segmentation, we employ the ADE20K dataset [35] for evaluation based on
mmsegmentation [5] framework. ADE20K contains 20,210 training images and 2,000 validation
images. Following Swin Transformer [24], we use UperNet [33] with Swin Transformer backbone .
All models are initialized with weights pre-trained on ImageNet-1K for detection and segmentation.

COCO with Mask R-CNN ADE20K with UPerNet
Method

Dataset
APb APb

50 APb
75 APm APm

50 APm
75 mIoU MS mIoU

Full fine-tuning 43.7 66.6 47.7 39.8 63.3 42.7 44.5 45.8

Linear probing 31.7 55.7 32.5 31.2 53.0 32.2 35.7 36.8

VPT-Deep [18] 33.8 57.6 35.3 32.5 54.5 33.9 37.0 37.9

SSF (ours) 34.9 58.9 36.1 33.5 55.8 34.7 38.9 39.8
Table 2: Performance of different fine-tuning methods on the COCO val2017 dataset and ADE20K
dataset, where APb and APm are the average precision of object detection and instance segmentation,
respectively. mIoU and MS mIoU show single-scale and multi-scale inference of semantic segmenta-
tion.

B Experiments on Detection and Segmentation
We also conduct experiments on broader downstream tasks, e.g., object detection, instance segmen-
tation, and semantic segmentation. For object detection and instance segmentation, we perform
experiments on the COCO dataset with Mask R-CNN [13], where Swin-T pre-trained on ImageNet-
1K is adopted as the backbone. The specific hyper-parameter setup and data augmentation refer to
Swin Transformer [24] and mmdetection [2]. We perform i) full fine-tuning; ii) linear probing, where
the weights at the backbone layers are frozen and only weights at the neck and head layers are updated;
iii) VPT-Deep; iv) SSF. All models are trained with 1x schedule (12 epochs). The results are shown
in Table 2. We can see that SSF outperforms linear probing and VPT-Deep [18] on the COCO dataset
in terms of object detection and instance segmentation. For semantic segmentation, we perform
experiments on the ADE20K dataset with UperNet [33] and Swin-T pre-trained on ImageNet-1K.
The results in Table 2 show that SSF outperforms linear probing and VPT-Deep [18]. However, for
both datasets, SSF still has a large gap compared to the full fine-tuning, which might be due to the
fact that detection and segmentation tasks are fundamentally different from classification tasks. Only
fine-tuning a few parameters in the backbone will result in inferior performance. How to introduce
trainable parameters for parameter-efficient fine-tuning in object detection and segmentation will be
the future work.

C Visualizations
C.1 Feature Distribution

We also visualize the feature distribution of different fine-tuning methods via t-SNE on the CIFAR-100
dataset. All fine-tuning methods are based on a ViT-B/16 pre-trained on the ImageNet-21K datasets.
The results are shown in Figure 1. Our SSF achieves better feature clustering results compared to
linear probing and VPT-Deep. Besides, since our method and full fine-tuning have similar accuracy
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(93.99% vs. 93.82%), it is difficult to distinguish them in terms of feature distribution, which also
shows the effectiveness of our method.

Linear probing
Acc. = 88.70%

Full fine-tuning
Acc. = 93.82%

SSF (ours)
Acc. = 93.99%

VPT-Deep
Acc. = 93.17%

Figure 1: t-SNE visualization of different fine-tuning methods, including linear probing, VPT-Deep,
our SSF, and full fine-tuning (best viewed in color).

C.2 Attention Map
We also visualize the attention maps of different fine-tuning methods, as shown in Figure 2. All
models are fine-tuned on ImageNet-1K with ViT-B/16 pre-trained on ImageNet-21K. The specific
experimental results refer to the main text. We find that VPT-Deep has more concentrated attention on
the object in some images (e.g., the first two lines), but lacks suitable attention on some other images
(e.g., the last two lines). In contrast, SSF tends to obtain attention similar to the full fine-tuning but
also generates the failure prediction such as the second row.

Image Linear probing SSF (ours)VPT-Deep Full fine-tuning

Figure 2: Visualization of attention maps. From left to right, each column shows the RGB image,
linear probing, VPT-Deep, our SSF and full fine-tuning.
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D Limitations and Societal Impacts

Regarding the limitations of this work, we currently focus on sharing backbone parameters among
different tasks while treating each task independently of the rest of the tasks involved. However, some
recent papers (e.g., [11, 10]) show that by correlating multiple tasks together during the fine-tuning,
the performance for every single task can be further improved. However, recent works treat this
relationship among tasks as a black box that inevitably suffers a huge computational cost. Thus, we
believe an efficient method to find positive task relationships could be a meaningful direction for
further exploration.

This work has the following societal impact. SSF can effectively save parameters compared to the
full fine-tuning so that the approach can quickly transfer large models pre-trained on large datasets to
downstream tasks, which saves computational resources and carbon emissions. Thanks to the linear
transformation and re-parameterization, we do not need to change the deployed backbone architecture
when the model is transferred to the downstream task. Only a set of weights need to be replaced,
which is also more convenient compared to the methods that introduce additional parameters such as
VPT [18]. However, like other fine-tuning methods, SSF is also based on a pre-trained model, which
will probably also cause a violation of the use of fine-tuning methods if this upstream pre-trained
model is trained on some illegal data.
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