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Abstract

An important step towards explaining deep image classifiers lies in the identification
of image regions that contribute to individual class scores in the model’s output.
However, doing this accurately is a difficult task due to the black-box nature of such
networks. Most existing approaches find such attributions either using activations
and gradients or by repeatedly perturbing the input. We instead address this
challenge by training a second deep network, the Explainer, to predict attributions
for a pre-trained black-box classifier, the Explanandum. These attributions are
provided in the form of masks that only show the classifier-relevant parts of an
image, masking out the rest. Our approach produces sharper and more boundary-
precise masks when compared to the saliency maps generated by other methods.
Moreover, unlike most existing approaches, ours is capable of directly generating
very distinct class-specific masks in a single forward pass. This makes the proposed
method very efficient during inference. We show that our attributions are superior
to established methods both visually and quantitatively with respect to the PASCAL
VOC-2007 and Microsoft COCO-2014 datasets.

1 Introduction

Image recognition and classification systems based on deep learning are considered black boxes. It
is often hard, if not impossible, to directly locate the portions of the input image responsible for a
given classification output. Being able to systematically perform such attributions is a crucial step
towards explainable deep learning, which can contribute to its widespread adoption. Attribution
allows understanding the potential errors and biases [13, 17, 21]. It also enables the use of deep
networks as decision support tools, e.g. in medicine [15], and facilitating meeting legal regulations [8].
Note that we refer to attribution as the goal of associating input image regions to model decisions,
which differs from the notion of interpretability that relates to models that can be directly used to
infer causal or general structural relationships that link inputs and outputs [23].

The problem of performing attribution for deep image classifiers has been addressed by several recent
works. These belong to two broad categories. The first relies on visualising the derived model’s
activations and backpropagated signals [31, 24, 3]. Although these methods provide a direct way
to visualize salient areas, they heavily depend on the quality of the trained models’ architectures
and weights. Furthermore, some of these methods turn out to be independent of the labels the
model has been trained on, as well as to some extent the parameters of the models, as shown
through randomization tests [1]. This suggests that many of these methods are strongly influenced
by low-level, class-agnostic features and are therefore inadequate. The second category relies on
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Figure 1: Visual comparison of per-class attributions provided for VOC-2007 by our Explainer,
alongside Grad-CAM (GCam) [24] and Extremal Perturbations (EP) [12] for the VGG-16 architecture
[25]. Our attributions have sharper boundaries and at the same time are more class-accurate than
Grad-CAM or EP. Attributions for only five out of the twenty VOC-2007 classes are shown for
convenience. Colormap ranges from low (blue) to high (red) saliency.

local perturbations of the input images and is often model-agnostic. These models rely on masking
strategies to infer local feature importance, which often results in loss of visual detail, ambiguity and
high computational cost. Nonetheless, results suggest that local perturbations, like masking, are an
effective way to analyze and explain the response of a model [20, 22].

This last line of reasoning posits that attribution can be formulated as an additional task complement-
ing the classification from the Explanandum (i.e. the model to be explained). Therefore, it is natural
to consider learning an Explainer (i.e. the model that explains) that specifically addresses the task
of attribution. We approach attribution as a supervised meta-learning problem through the use of a
complementary convolutional neural network, which learns to produce dense class-specific attribution
masks, balancing preservation and deletion of information from the input image as dictated by the
Explanandum.

The resulting Explainer efficiently masks and precisely locates regions of the input image that are
responsible for the classification result of a pre-trained and frozen Explanandum (see Fig. 1 and Sup.
Mat. Sec. C). We evaluate our methodology on PASCAL Visual Object Classes (VOC-2007) [9]
and Microsoft Common Objects in Context (COCO-2014) [18]. To sum up, we present an efficient
attribution method, which has the following advantages:

• Our Explainer directly provides a precise mask for each class label as in Fig. 1.
• Our Explainer provides attributions for test images with a single very efficient forward pass,

orders of magnitude more efficient as compared to other perturbation-based approaches.
• Our Explainer works with any architecture of the Explanandum.

2 Related Work

Activation and gradient-based methods. The methods in this category attempt to explain a
trained model by leveraging its weights and its activations for a given image to be explained. Zhou
et al. [31] initiated this line of research with Class Activation Mapping (CAM), where the authors
built particular architectures around a notion of global average pooling and illustrated the intrinsic
localization performed by a classification network. Grad-CAM [24] removed the dependency of CAM
on specific architectures by reconstructing the input heatmap through a weighted average of gradients,
rather than directly projecting back activations. Further extensions to this are Grad-CAM++ [3],
which is CAM weighted by averaged second order gradients, Score-CAM [29], which is CAM
weighted by layer-wise class activations, or Ablation-CAM [7], which is CAM weighted by neuron
ablation.

Some methods directly engineer the backpropagation and network architectures in order to retrieve
pixel-level saliency maps. One such example is the deconvolution approach of Zeiler and Fergus
[30], where the authors propose to revert forward propagation (mapping activations to pixels instead
of mapping pixels to activations) to visualize features and functions of intermediate layers. From
this, Springenberg et al. [26] derived guided backpropagation. Although the focus of their work
was on developing an efficient fully convolutional neural network, they show how by combining
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traditional backpropagation and deconvolutions, one can retrieve salient regions of the input for a
specific class. In another line of work, Wagner et al. [28] frame the problem as a defense against
adversarial perturbations and tackle it by constraining and selectively pruning activations.

Local perturbations and local models. The idea behind these methods is that by perturbing the
input to the trained network, one can retrieve an explanation signal by summarizing changes in the
classification scores. RISE introduced a way of retrieving a saliency heatmap based on random
perturbations of the input image [20] and recently, [27] extended a similar reasoning for object
detection systems. The input image is randomly masked several times, changes in the model scores
tracked, and aggregated by a weighted average. LIME proposes a similar setup, but instead uses
random switches on unsupervised segmentation [22].

Fong and Vedaldi [11] extend these ideas by reformulating the attribution problem as a meta-learning
task, where the optimal mask can be found by optimizing a score. Fong et al. [12] extend their previous
work [11] through the definition of extremal perturbations, which are the family of transformations
that maximally affect a classification score. They propose to use Gaussian blur to assess perturbations
over a fixed set of mask areas. Dabkowski and Gal [5] rely on a similar intuition, and the Explainer is
directly optimized based on meta-learning around the Explanandum. In these settings, the Explainer
optimizes a loss which balances preservation of the classification score on the active parts of the
image, while minimizing the score for areas that are not active. These works also make use of
regularization to constrain the mask area and its smoothness. In a similar fashion, Chang et al. [2]
learn a pixel-specific dropout as a Bernoulli distribution, which is used to retrieve a mask and evaluate
extremal perturbations. Unlike Fong et al. [12], Chang et al. [2] return the parameters of the learned
per-pixel Bernoulli distribution as the saliency mask. Recently, Khorram et al. [16] proposed iGOS++,
which frames attribution as optimizing over a mask which optimally balances preservation of useful
information and removal of unnecessary information, regularized by bilateral total variation.

In this paper, we propose a method which learns a dense perturbation, the attribution mask, over input
images. Unlike existing approaches, we optimize to balance low multi-label binary cross entropy
for the unmasked portion of the input image, and high entropy for areas of the image masked out by
the Explainer. Compared to most perturbation-based methods, our Explainer can predict attribution
masks for all classes (and not only the predicted class) in a single forward pass, thereby being orders
of magnitude faster. In addition, we beat state-of-the-art on standard benchmarks.

3 Training the Explainer

In this section, we present our Explainer architecture, which is trained to detect image regions that a
given pre-trained classifier, the Explanandum, relies on to infer semantic object classes. Training
of our model does not require any pixel-wise annotations. It relies on the Explanandum’s training
data (including labels) and model. This makes our technique generalizable to any Explanandum
architecture through which we can back-propagate the classification loss. In this paper though, we
only consider Explanandum models which are trained for image classification and not for object
detection or semantic segmentation.

As illustrated in Fig. 2, the Explainer sees an image and outputs a set of masks S of the same
resolution, containing one segmentation mask sc for each class c ∈ C. The values of the class masks
sc are bounded in the range [0, 1] through a sigmoid function σ(t) = et/(1 + et), where t represents
the predicted pixel-wise logits. Values of 1 or 0 in the mask result in the full preservation or deletion
of the corresponding pixel value, respectively. Note that the sum of the class masks does not need to
be equal to one.

Using the target label(s) for the input image, we split the class segmentation masks into two sets: one
that consists of masks that correspond to any ground truth class appearing in the training image, while
the other contains the remaining ones. We merge each set into a single mask by taking the pixel-wise
maximum value for each pixel position. The target mask m (obtained from the first set) serves to
locate the regions corresponding to (any of) the label(s) contained in a given training image, while
the non-target mask n (obtained from the second set) allows us to gather false positive activations.
Finally, the inverted mask m̃ = 1−m is used to ensure that once the object of interest is removed,
the Explanandum cannot address the task anymore. Note that during inference, the mask aggregation
step is not needed and our Explainer provides one explanation mask for each class.
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Figure 2: Overview of our method. Given a pre-trained Explanandum F , whose weights are frozen,
the Explainer network E learns to produce masks sc for each class. The masks corresponding to
the label(s) associated with the input image (shown in green) are merged by taking the pixel-wise
maximum over masks (shown as ↑’s), to obtain a target mask m and its complement m̃ (i.e. inverted
mask). All the other masks (shown in red), which do not correspond to the labels of the input image
but might still score positively for the given image, are merged separately to obtain the non-target
mask n, which is also used in the loss term. The images obtained by multiplying the target mask and
its complement with the input image (shown by ×’s) are fed to the given pre-trained Explanandum
separately, generating two outputs on which we compute losses. The set of per-class masks S and the
aggregated target mask m serve as the attributions provided by our Explainer.

Note that for the selection of true classes, we chose to utilize the same ground truth labels that the
Explanandum was given during training on unobstructed images. We believe that using ground truth
label helps in handling attributions for false negative predictions of the Explanandum as we optimize
the attributions also for classes which are not predicted with high probability on the unmasked images.
Alternatively, one could directly take the predictions of the Explanandum for the selection of true
classes. This requires a thresholding operation, which is an additional complication. However, relying
on the Explanandum’s predictions might be more suited if we expect the Explanandum to still make
a significant amount of false positive predictions on the training set (which was not the case for
the architectures and datasets we decided to explain). We assume that the Explainer requires an
Explanandum that performs very well on the training set, to minimize the effect of misleading training
signals. Given the results in Sup. Mat. Sec. C, we are able to show that under these assumptions, this
design choice does not hinder the ability of the Explainer to generate attributions that are faithful to
the Explanandum’s predictions.

3.1 Training loss

We formulate the loss as a combination of four terms:

LE(x,Y,S,m,n) = Lc(x,Y,m) + λeLe(x, m̃) + λaLa(m,n,S) + λtvLtv(m,n), (1)

where Lc(x,Y,m) is the binary cross-entropy loss over the masked image, Le(x, m̃) is an entropy
term over the image masked with the complement of m, La(m,n,S) is a regularization term
accounting for the area of the true and false positive masks, and Ltv(m,n) is a regularization term
favouring smooth masks. λe, λa and λtv are hyperparameters balancing the loss terms.

Classification loss: Lc(x,Y,m). A model should be able to make correct decisions exclusively
using the relevant portions of the image, ignoring all the rest. Under this assumption, we define the
classification loss as a sum over binary cross-entropy terms, one for each class contained in the image.

Representing the Explainer as E and the frozen Explanandum as F , we define p = F(x �m) as
the probability vector returned by the model F applied on the masked image, using the aggregated
(element-wise maximum) mask m provided by E . For all classes C in the training data and the set of
target classes Y in the image, we compute:

Lc(x,Y,m) = − 1

C

C∑
c=1

Jc ∈ YK log (p[c]) + Jc 6∈ YK log (1− p[c]) , (2)

where Jc ∈ YK denotes the Iverson bracket, returning 1 if the condition is true (the image contains
class c), 0 otherwise. This allows training a mask when multiple classes are present in the training
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image, as in multi-label classification problems, where multiple masks are active at the same time
and some pixels are free not to belong to any mask (contrarily to using cross-entropy). Therefore, the
model is free to learn dependencies and co-occurrences between different classes. This loss pushes
the Explainer to learn masks approximating F(x�m) ≈ F(x), i.e. masked images are classified as
correctly as possible in the eyes of the (pre-)trained Explanandum.

Negative entropy loss: Le(x, m̃). This part of the loss pushes the Explainer to provide masks
whose complements do not contain any discriminative visual cue, i.e. parts of the image that the
Explanandum could use to infer the correct class. In other words, the classifier scores on the mask
complement should provide class probabilities p̃ = F(x� m̃) as uniform as possible. To this end,
we aim at minimizing the negative entropy of the predictions over the class memberships, as:

Le(x, m̃) =
1

C

C∑
c=1

p̃[c] log p̃[c] (3)

Note that this loss is the negative entropy, as we aim for a high entropy for the background.

Area loss: La(m,n,S). With the terms Lc and Le alone, our Explainer would have no incentive
to produce a target mask that conceals image areas. Clearly, a target mask m with 1 everywhere
would minimize these terms with respect to m. To make sure m conceals background, we add two
terms to the loss that correspond to two crucial desiderata: The mask should be as small as possible,
but if the objective would favour larger areas, a whole range of areas in between a minimal and
maximal percentage should not be penalized further.

The regularization over the area is simply formulated as the mean of the mask values, computed
as A(m) = 1

Z

∑
i,j m[i, j], where Z is the number of pixels. We want this area to be small, but

non-zero. The same is required of the non-target mask n as well.

The term bounding the mask area from both above and below is formulated starting from the constraint
presented by Fong et al. [12]. However, instead of constraining the final image mask to a fixed area,
we extend their technique to determine a valid minimum area a and a maximum area b for those class
segmentation masks that correspond to at least one object in the image.

Given such a class segmentation mask sc, we flatten it to a one-dimensional vector, and then sort its
values in descending order. Let v(sc) be the vectorization operation and r(v(sc)) be the sorting of the
vectorized class mask sc. We then define two vectors qmin and qmax, each starting with a predefined
number of 1’s and padded with 0’s to match the length of v(sc), where the amount of 1 corresponds
to the minimum 0 < a < b or maximum a < b < 1 area, respectively. We also define qmask, which
corresponds to sc, vectorized, and sorted. Concretely:

qmask = r (v (sc)) ∈ [0, 1]Z , qmin = [1bZac . . .0bZ(1−a)c], qmax = [1bZbc . . .0bZ(1−b)c]. (4)

To constrain the minimum and maximum area covered by the class segmentation mask, we then
compute an area bounding measure B given by:

B(s) = 1

Z

Z∑
i

max(qmin[i]− qmask[i], 0) +
1

Z

Z∑
i

max(qmask[i]− qmax[i], 0). (5)

where the first term penalizes the mask only if the largest bZac values are smaller than 1, while the
second term penalizes the smallest Z − bZbc values greater than 0. Our goal is for the mask to cover
at least a certain area independently of its maximum size.

The final area regularization is therefore:

La(m,n,S) = A(m) +A(n) +
∑C

c=1Jc ∈ YKB(sc)∑C
c=1Jc ∈ YK

(6)

where Y is again the subset of the classes that are present in the given input image according to the
given training labels. Note that the last term of (6) used in conjunction with the smoothness loss
presented below favors masks with sharp transitions between 0 and 1.
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Smoothness Loss: Ltv(m,n). As a final requirement, we are interested in generating masks that
appear smooth and free of artifacts. For this purpose, we utilize a total variation (TV) loss on the
masks as used by Fong and Vedaldi [11] and Dabkowski and Gal [5], albeit we use the anisotropic
variant given by:

T V(x) = 1

Z

∑
i,j

|x[i, j]− x[i+ 1, j]|+ |x[i, j]− x[i, j + 1]| . (7)

where x is a two-dimensional array of values. The smoothness term of the loss relates to the target
mask m and non-target mask n as:

Ltv(m,n) = T V(m) + T V(n) (8)

This smoothness term encourages our attributions to appear visually coherent.

4 Experiments

We present three results to establish the advantages of our Explainer over existing approaches.
Although continuous in nature, our masks show a sharp transition from background to foreground,
making it effectively binary. Additionally, our masks adhere tightly to region boundaries. Since
common objective metrics may fail to convey this, we provide a brief visual comparison. The next
result shows how our masks are class-specific, which provides more interpretive power than combined
masks. The third result shows that our combined masks outperform existing methods on standard
metrics for semantic segmentation.

Since we expect our Explainer to learn class-specific semantics and generate class-specific masks
of the same resolution as the input image, we employ DeepLabV3 [4] with a ResNet-50 backbone,
an architecture commonly used for semantic segmentation tasks. We train this model from scratch
to avoid any bias, i.e. an information leakage from the semantic segmentation dataset from which
DeepLabV3 has been pre-trained on.

For the Explanandum, we use VGG-16 [25] and ResNet-50 [14] models, both pretrained on Ima-
geNet [6]. We fine-tune them on the multi-label classification tasks for VOC-2007 and COCO-2014
(i.e. on natural unmasked images), and then freeze the models. To this end, we use the full training
set of VOC-2007 and 90% of the COCO-2014 training set for fine-tuning. To assess generalization,
we use the test set of VOC-2007 and the validation set of COCO-2014, respectively. For choosing
hyperparameters, we use the VOC-2007 validation set and the remaining 10% of the COCO-2014
training set. In this work, we implemented models and experiments using PyTorch [19] and PyTorch
Lightning [10]1.

4.1 Visual Comparison

Visually, our Explainer leads to sharp and meaningful masks. Fig. 3 provides a visual comparison
of how our Explainer attributions perform compared to the saliency maps obtained from Grad-CAM
(GCam) [24], RISE [20], Extremal Perturbations (EP) [12], iGOS++ (iGOS) [16], and Real-Time
Image Saliency (RTIS) [5]. For the RTIS baseline, we could not retrain their model on VOC-2007
and COCO-2014, as it was not possible to employ their architecture on multi-class classifiers. Instead,
we use their loss to train our architecture. Accordingly, we fine-tuned some hyperparameters of our
RTIS implementation, while leaving the remaining ones at the default values as given in their paper.
For all our experiments, we resized input images to 224x224 pixels and normalized them on the mean
and standard deviation of ImageNet.

Our approach provides sharp masks, which contrasts with classical saliency methods such as Grad-
CAM or RISE. EP and iGOS++ provide masks which are better localized, although not as sharp as
the ones produced by RTIS or our Explainer. Our implementation of RTIS provides sharp masks, but
the overall attribution tends to be leaking over object borders. Our area constraints, in combination
with the entropy term over the mask complement m̃, enforce tight masks over object classes of
different sizes. For instance, Fig. 3(2), Fig. 3(5), or Fig. 3(8) show how our masks align much more
clearly with the objects. This not only holds for single-class images, but also when we have multiple

1Code is available at: https://github.com/stevenstalder/NN-Explainer
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ID Input GCam RISE EP iGOS RTIS Ours ID Input GCam RISE EP iGOS RTIS Ours

1 2

3 4
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7 8
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13 14

Figure 3: Visual comparison of our attributions for a VGG-16 network fine-tuned on images from
the VOC-2007 dataset and frozen. Our attributions are much more effective at retaining object class
regions and discarding the rest. Examples 13 and 14 show cases where our Explainer is inaccurate.

instances of the same class (Fig. 3(1), Fig. 3(4), Fig. 3(12)), or different classes (Fig. 3(6), Fig. 3(9),
Fig. 3(10)). Attribution of some animals (e.g. Fig. 3(7), Fig. 3(10), Fig. 3(11)) often tends to be
focusing on heads. Most training images containing animals have unobstructed heads, which can
explain such behaviour. For some classes, all methods agree on the importance of an image region
that is not actually part of the actual object. A good example for that is Fig. 3(3), where the train
tracks are part of the attribution. Since most training images of trains also show train tracks, it seems
obvious that the Explanandum learns to see the train tracks as discriminative semantic co-occurrence.
With the help of an Explainer, such unintended biases can quickly be detected.

Fig. 3(13) and Fig. 3(14) show two examples where our Explainer is less precise. For Fig. 3(13), our
attribution leaks over to the bars below the horse. Even though the classifier might indeed have made
a connection between these bars and the “horse” class, Grad-CAM, RISE, EP, and iGOS++ appear to
agree that the main importance should be attributed to the actual objects in the image. In Fig. 3(14),
it is difficult to interpret our attribution for the class “boat” as some parts of the attribution lie on the
actual object but also a significant area of the surrounding water is activated (underlining potential
discriminative co-occurrence). However, the other methods also provide varying explanations, with
iGOS++ masking mostly the boat, but Grad-CAM attributing all importance to the water. For more
results on COCO-2014 and VOC-2007 please refer to Sup. Mat. Sec. D, E, and F.

4.2 Class-specific masking

Our Explainer provides class-specific masks. In Fig. 1 we have already hinted at how our Explainer
is able to provide more class-specific masks than the other techniques. In this section we evaluate
this numerically. To this end, we have selected five target classes from the VOC-2007 dataset, for
which we evaluate how the class masks interact with the classification confidence of the VGG-16
Explanandum. We have selected the classes “cat” and “dog” as they are two animals that often occur
in similar settings, the most prevalent class “person” that can often be seen together with a variety
of other classes and often inside the fourth class “car”, as well as the “bottle” class, to include a
VOC-2007 class that is very difficult to detect for the Explanandum. For each test image containing
one of the target classes, we first evaluate the classification performance of the Explanandum on the
unmasked image (“none” column) and then on masked images where the image is masked once with
each of the class-specific masks. Specifically, for each of these continuous masks we report the mean
softmax probabilities for the target class, after we threshold each mask over nine uniform values in
[0.1, 0.9] at 0.1 intervals. Note that here we use the softmax instead of the sigmoid function despite
our multi-class setting since we want to evaluate the activation confidence for a single class compared
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Explainer Mask

none bottle car cat dog person

Ta
rg

et
C

la
ss bottle 20.57 15.29 4.91 4.82 4.82 2.72

car 70.52 6.71 62.92 6.67 6.66 7.11
cat 72.78 6.09 6.18 60.55 6.33 5.74
dog 58.00 4.67 4.70 5.93 57.60 4.58
person 69.37 8.90 6.18 5.83 6.57 71.01

Grad-CAM Mask

none bottle car cat dog person

Ta
rg

et
C

la
ss bottle 20.57 16.10 5.24 4.85 4.76 3.61

car 70.52 6.93 50.19 6.65 6.53 8.92
cat 72.78 6.17 6.39 43.74 8.99 5.85
dog 58.00 4.46 4.39 8.23 41.88 4.38
person 69.37 11.81 8.18 5.90 8.75 56.38

RISE Mask

none bottle car cat dog person

Ta
rg

et
C

la
ss bottle 20.57 18.67 10.94 12.05 10.70 9.73

car 70.52 29.75 56.66 30.27 34.43 32.42
cat 72.78 37.89 39.28 49.61 41.89 36.02
dog 58.00 19.64 20.34 23.72 45.12 22.83
person 69.37 56.06 53.39 47.33 54.81 63.52

RTIS Mask

none bottle car cat dog person

Ta
rg

et
C

la
ss bottle 20.57 18.92 11.19 13.37 13.44 17.24

car 70.52 41.25 67.02 40.69 31.87 54.31
cat 72.78 45.84 36.27 72.62 59.21 54.16
dog 58.00 41.37 34.76 57.59 61.22 58.76
person 69.37 64.71 54.41 43.42 61.55 73.59

Table 1: Comparison of class-specific masks generated by our Explainer, Grad-CAM [24], RISE [20],
and adapted RTIS [5]. Images containing the target class specified in the row are masked with the
thresholded class masks specified in the column and given to VGG-16 for classification. In any
given cell we report the mean softmax probabilities over all mask thresholds and for every test image
containing the target class. If the mask class equals the target class, we want high scores, if it is
different, we want low scores. We additionally compute the softmax scores achieved for unmasked
images (“none” column) for reference.

to all other (ideally masked-out) classes. This can of course affect the scores for the completely
unmasked images where multiple object classes may be present.

In Tab. 1, we show the evaluations for our Explainer, Grad-CAM, RISE and RTIS. For EP and
iGOS++, it was not feasible to conduct these experiments since these methods take a very long time
to generate masks compared to the other ones (see Sup. Mat. Sec. A). We can clearly see how the
masks produced by our method allow the Explanandum to retain very good classification confidence
for the target classes when the correct mask is taken but render it completely uncertain when any
other mask is put on the image. This is in stark contrast to RISE and RTIS especially, which produce
overall larger, less precise masks. Even though the Explanandum has high confidence after masking
the images with their corresponding correct masks, the same is still true when any wrong mask is
used. Only Grad-CAM achieves comparable performance to our Explainer but results in considerably
worse scores for the correct masks for 4 out of 5 classes and still shows some increased confidence
when the wrong mask is put on the images of an often co-occurring target class (e.g. “cat” and “dog”,
or “person” and “car”).

4.3 Segmentation accuracy

Our attribution quality approaches object segmentation. While our Explainer architecture pro-
vides excellent attributions visually, we also confirm this quantitatively. Our explanations approximate
object-level segmentation and can thus be evaluated using standard instance and semantic segmen-
tation benchmarks. In Tab. 2 we illustrate the accuracy of the masking strategies, on VOC-2007
and COCO-2014, with VGG-16 and ResNet-50 as Explanandum, respectively. To provide a fair
comparison with our method, we evaluate all methods by aggregating the masks from multiple classes
into a single one, as shown in Fig. 3. We also provide four base measures that serve as sanity check
baselines in Tab. 2), i.e. the columns “0”, “0.5”, “1”, and “G.T.” (ground truth). These measures show
how the assessment metrics range under border conditions: with a completely null mask (composed
of only 0’s), with a mask composed fully of 0.5’s, with a non-mask composed of only 1’s and finally
with a mask which is perfectly equal to the ground truth segmentation.

We employ four different metrics, namely Accuracy (Acc), Mean IoU (IoU), Saliency (Sal) and
Mean Absolute Error (MAE). All metrics are computed on a per-image basis, by using the ground
truth segmentation masks and the aggregated mask of the true classes present in each image, then
averaged over the test set. The Accuracy is computed pixel-wise over the continuous masks without
thresholding. The same holds for the IoU, where we take the pixel-wise minimum of the mask and
the ground truth as the intersection and the maximum as the union, respectively. The Saliency score
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↑ Acc 66.29 50.00 33.71 100 70.53 56.98 63.91 70.17 59.63 74.60
↑ IoU 0 23.42 33.71 100 28.78 28.62 34.95 24.05 39.94 38.04
↓ Sal -0.85 -0.53 0.15 -0.98 -1.41 -0.82 -0.77 -1.88 -0.31 -1.32
↓ MAE 33.71 50.00 66.29 0 29.47 43.02 36.09 29.83 40.37 25.40

R
es

N
et ↑ Acc 66.29 50.00 33.71 100 68.54 57.37 61.43 69.23 50.77 73.56

↑ IoU 0 23.42 33.71 100 30.75 28.42 34.88 24.25 36.46 34.23
↓ Sal -0.67 -0.68 -0.08 -1.13 -1.29 -1.02 -0.77 -1.92 -0.35 -1.33
↓ MAE 33.71 50.00 66.29 0 31.46 42.63 38.57 30.77 49.23 26.44

C
O

C
O

-2
01

4
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G

G

↑ Acc 70.39 50.00 29.61 100 66.31 52.35 57.01 68.70 39.18 69.90
↑ IoU 0 20.87 29.61 100 25.63 25.50 29.23 20.35 31.16 31.59
↓ Sal -0.1 0.03 0.72 -0.38 -0.67 -0.31 -0.13 -1.12 0.65 -0.51
↓ MAE 29.61 49.36 70.39 0 33.20 47.15 42.55 30.89 60.76 29.83

R
es

N
et ↑ Acc 70.39 50.00 29.61 100 67.25 55.05 56.92 69.57 41.40 65.30

↑ IoU 0 20.87 29.61 100 24.84 25.98 29.75 21.63 30.76 27.42
↓ Sal 0.2 -0.25 0.37 -0.88 -0.66 -0.44 -0.24 -1.19 0.17 -0.64
↓ MAE 29.61 49.36 70.39 0 32.36 44.44 42.68 30.02 58.46 34.35

Table 2: Segmentation scores for the attribution models. We have compared the methods against the
pixel-wise segmentation ground truths of all 210 VOC-2007 test images that include such annotations
as well as for a randomly selected subset of 1000 COCO-2014 images out of our entire test set of
over 41K images (due to long compute times of certain methods, see Sup. Mat. Sec. A). Columns
“0”, “0.5”, “1” and “G.T.” (ground truth) represent the sanity check baselines to allow for a relative
understanding of the scores. The upward arrows ↑ (downward arrows ↓) indicate that higher (lower)
values are better.

is adapted from Dabkowski and Gal [5], and computed as:

Sal(m, p) = log (max(A(m), 0.05))− log

(∑
c∈Y

p[c]

)
, (9)

where Y is the set of classes present in the image. This metric balances the size of the mask m with
the Explanandum outputs. Smaller masks minimize the first term but have a tendency to lower the
classification confidence, thus increasing the second term. It is therefore possible to get a lower score
compared to the ground truth mask as a very small mask reduces the first term greatly, while it might
still preserve a lot of the classification confidence. This is to the disadvantage of our method, as
we aim to also attribute regions of lower (but still significant) importance instead of only the most
distinguishing features. Finally, the MAE corresponds to the mean absolute error over the full dataset,
which is computed for each input image as: MAE(m,g) = 1

Z

∑
i,j |m[i, j]− g[i, j]|, where g is the

aggregated ground truth segmentation map for all object classes in the input image. Note that certain
metrics might favor very small masks (e.g. Sal), while others favor very large masks (e.g. IoU).

The assessment in this sub-section assumes that an ideal method should perform attribution over the
whole ground truth segmentation, which is not the case in certain situations, as attributions should
only cover classifier-relevant parts of the object class (e.g. face instead of whole body). We argue
that although attributions do not directly correspond to semantic segmentations, and while different
methods target different goals for attribution, the combined evaluation of these metrics can still be
used for a standardized assessment.

4.4 Limitations

Not all pairs of Explainer and Explanandum interact equally well and allow straightforward training.
We observed that, while the explanation of VGG-16 and ResNet-50 on the VOC-2007 dataset
performs consistently, the explanation for COCO-2014 is harder on ResNet-50 than on VGG-16 (see
Sup. Mat. Sec. E and F), even though the accuracies are comparable (see Sup. Mat. Sec. B, Tab. 4).
Sometimes, masks fail to precisely cover the discriminative objects parts. Some examples are given
in Fig. 3(13) and Fig. 3(14), and further examples are given in the Sup. Mat. Sec. D, E and F.

9



5 Conclusions

We have presented an approach for visually attributing the classification result of a frozen, pre-trained,
black-box classifier (the Explanandum) on specific regions of an input image. This involves training
an Explainer architecture with the training data that was used to train the Explanandum. The resulting
model generates attributions in the form of class-wise attribution masks, as well as an aggregated
foreground mask with a single forward pass for any test image. As compared to the gradient and
activation-based approaches, which often generate blurry saliency maps, our masks locate object
regions more accurately and the delineation of these regions is sharp (Sec. 4.1). As compared
to the approaches that use perturbed inputs, the Explainer is not only more precise, as we prove
quantitatively (Sec. 4.2 and 4.3), but also computationally more efficient (Sup. Mat. Sec. A).

We observe that the Explainer can be learned well if the pre-trained classifier exhibits a good level of
accuracy. Since learning the attribution fully depends on the signals provided by the Explanandum,
this comes as no surprise. If instead of the original image, we use inputs that are masked by our
Explainer, the accuracy may slightly decrease (Sup. Mat. Sec. B). Since our masks are so parsimonious
in retaining the essential parts of the original image, it points to the fact that the drop in accuracy
might come from the Explanandum being deprived of background-dependent biases. Therefore, once
the Explainer is trained to generate masks, one could imagine retraining the Explanandum with the
original as well as Explainer-masked data. This can ensure that classification accuracy can be both
high and free of influences from non-object regions. Finally, while our work focuses on explaining
deep image classifiers, we believe it should be possible to extend such an approach to other black-box
classifiers, other data modalities, and other learning tasks such as regression.
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