
Fast Bayesian Coresets via Subsampling and
Quasi-Newton Refinement

Cian Naik
Department of Statistics

University of Oxford
cian.naik@stats.ox.ac.uk

Judith Rousseau
Department of Statistics

University of Oxford
judith.rousseau@stats.ox.ac.uk

Trevor Campbell
Department of Statistics

University of British Columbia
trevor@stat.ubc.ca

Abstract

Bayesian coresets approximate a posterior distribution by building a small weighted
subset of the data points. Any inference procedure that is too computationally
expensive to be run on the full posterior can instead be run inexpensively on the
coreset, with results that approximate those on the full data. However, current
approaches are limited by either a significant run-time or the need for the user to
specify a low-cost approximation to the full posterior. We propose a Bayesian
coreset construction algorithm that first selects a uniformly random subset of
data, and then optimizes the weights using a novel quasi-Newton method. Our
algorithm is a simple to implement, black-box method, that does not require the
user to specify a low-cost posterior approximation. It is the first to come with a
general high-probability bound on the KL divergence of the output coreset posterior.
Experiments demonstrate that our method provides significant improvements in
coreset quality against alternatives with comparable construction times, with far
less storage cost and user input required.

1 Introduction

Bayesian methods are key tools for parameter estimation and uncertainty quantification, but exact
inference is rarely possible for complex models. Currently, the gold standard method for approximate
inference is Markov chain Monte Carlo (MCMC) [1; 2; 3, Ch. 11,12], which involves simulating a
Markov chain whose stationary distribution is the Bayesian posterior. However, modern applications
are often concerned with very large datasets; in this setting, MCMC methods typically have a Θ(NT)
complexity—for T samples and dataset size N —which quickly becomes intractable as N increases.
Motivated by stochastic methods in variational inference [4, 5], this cost can be reduced by involving
only a random subsample of M ≪ N data points in each Markov chain iteration [6–13]. This reduces
the per-iteration computation time of MCMC, but it can create substantial error in the stationary
distribution of the resulting Markov chain and cause slow mixing [11, 14–17].

Bayesian coresets [18–23] provide an alternative for reducing the cost of MCMC and other inference
methods. The key idea is that in a large-scale data setting, much of the data is often redundant. In
particular, there often exists a fixed small, weighted subset of the data—a coreset—that suffices to
capture the dataset as a whole in some sense [21]. Thus, if one can find such a coreset, it can be
used in place of the full dataset in the MCMC algorithm, providing the simplicity, generality, and
per-iteration speed of data-subsampled MCMC without the statistical drawbacks. Current state-of-

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

the-art Bayesian coreset approaches based on sparse variational inference [21] empirically provide
high-quality coresets, but are limited by their significant run-time and lack of theoretical convergence
guarantees. Methods based on sparse regression [19, 20, 23] are significantly faster and come with
some limited theoretical guarantees, but require a low-cost approximation to the full posterior. This
approximation is often impractical to find and difficult to tune. Moreover, it can fundamentally limit
the quality of the coreset obtained. Aside from [21], these methods also require Θ(N) storage, which
is problematic in the large-data setting. There is a third class of constructions based on importance
sampling [18], but these do not provide reliable posterior approximations in practice.

In this work, we develop a novel coreset construction algorithm that is both faster and easier to tune
than the current state of the art, and has theoretical guarantees on the quality of its output. The key
insight in our work is that we can split the construction of a coreset into two stages: first we select the
data in the coreset via uniform subsampling—an idea developed concurrently by [24, 25]—and then
optimize the weights using a few steps of a novel quasi-Newton method. Selecting points uniformly
randomly avoids the slow inner-outer loop optimization of [21], and guarantees that the optimally-
weighted coreset has a low KL divergence to the posterior (Theorems 4.1 and 4.2). Weighting these
uniformly selected points correctly is crucial, and our quasi-Newton method is guaranteed to converge
to a point close to the optimally-weighted coreset (Theorem 4.3) in significantly fewer iterations
than the method of [21]. Finally, our method is easy to tune and does not require the low-cost
posterior approximation of [19, 20]. Our experiments show that the algorithm exhibits significant
improvements in coreset quality against alternatives with comparable construction times.

2 Bayesian coresets

The problem we study is as follows. Suppose we are given a target probability density π(θ) for
variable θ ∈ Θ that is comprised of N potentials (fn(θ))

N
n=1 and base density π0(θ),

π(θ) :=
1

Z
exp

(
N∑

n=1

fn(θ)

)
π0(θ), (1)

where Z is the normalizing constant. This setup corresponds to a Bayesian statistical model with
prior π0 and i.i.d. data Xn conditioned on θ, where fn(θ) = log p(Xn|θ). Computing expectations
under π exactly is often intractable. MCMC methods can be employed here, but typically have a
computational complexity of Θ(NT) to obtain T samples, since

∑
n fn(θ) needs to be evaluated at

each step. Bayesian coresets [18] offer an alternative, by constructing a small, weighted subset of the
dataset, on which any MCMC algorithm can then be run.

To do this, we find a set of weights w ∈ RN
≥0 corresponding to each data point, with the constraint

that only M ≪ N of these are nonzero, i.e. ∥w∥0 :=
∑N

n=1 1wn>0 ≤ M. The weighted subset of
points corresponding to the strictly positive weights is called a coreset, and we can then create the
coreset posterior approximation,

πw(θ) :=
1

Z(w)
exp

(
N∑

n=1

wnfn(θ)

)
π0(θ), (2)

where Z(w) is the new normalizing constant, and π1 = π corresponds to the full posterior. Running
MCMC on this approximation has complexity Θ(MT), a considerable speedup if M ≪ N .

Constructing a sparse set of weights w so that πw is as close to π as possible is the key challenge
here. Methods based on importance sampling [18] and sparse regression [19, 20, 23] have been
developed, but these provide poor posterior approximations or require first finding a low-cost posterior
approximation. The current state-of-the-art approach resolves both of the aforementioned issues by
formulating the coreset construction problem as variational inference in the family of coresets [21]:

w⋆ = argmin
w∈RN

DKL (πw∥π1) s.t. w ≥ 0, ∥w∥0 ≤M, (3)

where DKL(·∥·) denotes the KL divergence. Noting that coresets are a sparse subset of an exponential
family—the weights form the natural parameter w ∈ RN

≥0, the component potentials (fn(θ))
N
n=1

form the sufficient statistic, logZ(w) is the log partition function, and π0 is the base density,

πw(θ) := exp
(
wT f(θ)− logZ(w)

)
π0(θ), f(θ) := (f1(θ), . . . , fN (θ))T ∈ RN , (4)

2

one can obtain a formula for the gradient

∇wDKL (πw∥π1) =−∇2
w logZ(w)(1− w) = −Covw

[
f, fT (1− w)

]
, (5)

where Covw denotes covariance under πw. Here, and throughout, we take derivatives with respect
to w on the ambient space w ∈ RN . The method of [21] then involves selecting a data point to add
to the coreset, optimizing the coreset weights using stochastic gradient estimates based on Eq. (5),
and then iterating. In practice, this method is infeasibly slow outside of small-data problems. For
every data point selected it requires sampling from πw a number of times equal to the number of
optimization steps (set to 100 in [21]). This can easily lead to tens of thousands of sampling steps in
total, each of which typically necessitates the use of an MCMC algorithm. Conversely, our method
requires tens of sampling steps in total.

3 Construction via subsampling and quasi-Newton refinement

In this section, we provide a new Bayesian coreset construction algorithm (Algorithm 1) to solve the
sparse variational inference problem Eq. (3). This method involves first uniformly subsampling the
data, and then optimizing the weights on the subsample. Here, we give a detailed explanation of how
the algorithm works. We defer to Section 4 the theoretical analysis of the method, which demonstrates
that, with high probability, it finds a near-optimal coreset in a small number of optimization iterations.

3.1 Uniform subsampling

The first key insight to our approach is that we can select the M data points that comprise the coreset
by simple uniform subsampling. From an algorithmic standpoint, the benefit of this approach is
clear: it makes the selection of coreset points fast and easy to implement. It also decouples the
subset selection from the optimizing of the coreset weights, leaving us with a simpler optimization
problem to solve.1 Intuitively, this is reasonable from a coreset quality standpoint because a uniform
subsample of the data will, with high probability, create a highly-expressive “basis” of log-likelihood
functions (fn)

M
n=1 with which to approximate the full data log-likelihood. Of course, we still need to

optimize the coreset weights; but we have not limited the flexibility of the coreset family significantly
by selecting points via uniform subsampling. Theorem 4.2 provides a precise statement of these
ideas, and shows that the optimal weighted coreset posterior built using a uniformly random subset of
data is a good posterior approximation.

Since the coreset data points are chosen uniformly randomly, we will w.l.o.g. re-label the selected
subset to have indices 1, . . . ,M , and the remaining data points to have indices M + 1, . . . , N from
now on. We can specify a new weight constraint setW ⊂ RN of vectors w with 0 entries for every
index beyond M , and a further subsetWN where the weights sum to N ,

W =
{
w ∈ RN : w ≥ 0, n > M =⇒ wn = 0

}
, WN =

{
w ∈ W : 1Tw = N

}
.

It is also useful to denote g(θ) = (f1(θ), . . . , fM (θ))T ∈ RM as the first M components of f(θ).

3.2 Quasi-Newton optimization

Given the choice of M data points to include in the coreset, it is crucial to optimize their weights
correctly. This is the second step of our algorithm. The KL divergence gradient for the M weights is

∇wDKL (πw∥π1) =
(
−∇2

w logZ(w)(1− w)
)
1:M

= −Covw
[
g, fT (1− w)

]
. (6)

To reduce the number of weight optimization iterations —each of which generally involves MCMC
sampling from πw, where w is the current set of weights—we develop a second-order optimization
method. Again using the properties of exponential families, we can derive the Hessian of the KL
divergence with respect to the M weights

∇2
wDKL (πw∥π1) =

(
∇2

w logZ(w)−∇3
w logZ(w)(1−w)

)
1:M,1:M

.

1The benefits of this initial uniformly random selection step are also noted by [24, 25] in concurrent work.

3

This matrix is not guaranteed to be positive (semi-)definite. However, writing out the second term
explicitly as

∇3
w logZ(w)(1− w) = Eπw

[
(f − Eπw(f)) (f − Eπw(f))

T (
(fT (1− w)− Eπw(f

T (1− w))
)]

,

we see that this term will be small near the optimum, where the coreset approximation is ideally
good, i.e., wT f(θ) ≈ 1T f(θ). The first term does not contain this fT (1− w) term, and thus should
dominate the expression.

This motivates the use of

∇2
wDKL (πw∥π1) ≈

(
∇2

w logZ(w)
)
1:M,1:M

= Covw [g, g] (7)

to scale gradient steps in the optimization method rather than the true Hessian, thus creating a
quasi-Newton method [26]. This heuristic motivates our approach, but it is rigorously justified by
Theorem 4.3, which proves that this scaling results in optimization iterations that are guaranteed
to converge exponentially to a coreset which is nearly globally optimal. Note that when M is
larger than the inherent dimension of the space of log-likelihood functions, Covw [g, g] will have
zero eigenvalues and be noninvertible. Therefore we add a regularization τ > 0 prior to inversion.
Theorem 4.3 shows how the regularization influences the optimization, but in general we want τ to
be as small as possible while still ensuring the numerical stability of inverting Covw [g, g].

Our optimization method is as follows. First, we initialize at the uniformly weighted coreset, i.e.,

w0 ∈ W, w0m =
N

M
, m = 1, . . . ,M.

Next, given a step-size tuning sequence γk, k ≥ 0, we update the weights at each iteration k ∈ N∪{0}
using the (τ > 0)-regularized quasi-Newton step

ŵk+1 = wk + γk(G(wk) + τI)−1H(wk)(1− wk) (8)
G(w) = Covw [g, g] , H(w) = Covw [g, f] . (9)

Theorem 4.3 suggests that the step size γk should be constant: γk = γ ∈ (0, 1]; but the analysis
in that section assumes that we can compute G(w) and H(w) exactly, whereas in practice we will
have to estimate them. Hence we allow γk to depend on the iteration number in general. Finally, we
project ŵk+1 back onto the constraint set to obtain next iterate wk+1, i.e. for m = 1, . . . ,M set

wk+1,m = max (ŵk+1,m, 0) . (10)

3.3 Algorithm

The pseudocode for the quasi-Newton coreset construction method is shown in Algorithm 1. There
are a number of practical considerations needed to use this method; we discuss these here.

The first consideration is that we cannot calculate G(w) and H(w) in closed form. Instead, at step
k of the algorithm, we use a Monte Carlo estimate; first taking S samples (θs)

S
s=1

i.i.d.∼ πwk
, and

calculating ĝs := g(θs)− 1
S

∑S
r=1 g(θr), so that we may estimate G(wk) as

Ĝk =
1

S

S∑
s=1

ĝsĝ
T
s ∈ RM×M . (11)

Using a Monte Carlo estimate in this way introduces one source of error. Furthermore, we often
cannot sample exactly from πwk

, and instead use MCMC to do so. This could lead to additional
errors, for example if our samples are from unconverged chains. However, we find that this method
works well in practice, for a reasonable number of samples S.

As H(wk) is an M ×N matrix, estimating it directly will incur a Θ(MN) storage cost. Instead, we
note that we only require H(wk)(1− wk) = Covwk

[
g, fT (1− wk)

]
= Covwk

[g, h], where h :=

fT 1−gTwk = f̄−gTwk. We can estimate h using ĥs =
∑N

n=1

[
fn(θs)− 1

S

∑S
r=1 fn(θr)

]
−ĝTs wk,

which requires O(N) time, but only O(S) space. We can then estimate H(wk)(1− wk) as

Ĥk(1− wk) =
1

S

S∑
s=1

ĝsĥs. (12)

4

Algorithm 1 QNC (QUASI-NEWTON CORESET)

Require: (fn(θ))
N
n=1 π0, S, K, Ktune, γ, τ , M .

1: Uniformly sample M data points, w.l.o.g. these correspond to indices 1, . . . ,M .
2: Set w0m = N

M , m = 1, . . . ,M.
3: for k = 0, . . . ,K − 1 do
4: Sample (θs)

S
s=1

i.i.d.∼ πwk
∝ exp

(
wT

k f(θ)
)
π0(θ)

5: Set ĝs ← g(θs)− 1
S

∑S
r=1 g(θr) and ĥs ←

∑N
n=1

[
fn(θs)− 1

S

∑S
r=1 fn(θr)

]
− ĝTs wk

6: Set Ĥk(1− wk)← 1
S

∑S
s=1 ĝsĥs and Ĝk ← 1

S

∑S
s=1 ĝsĝ

T
s

7: if k ≤ Ktune then
8: Choose γk via line search with starting value γ
9: else

10: Set γk ← γ

11: Take a quasi-Newton step: ŵk+1 ← wk + γk

(
Ĝk + τI

)−1

Ĥk(1− wk)

12: Project: for all m ∈ [M], wk+1,m ← max (ŵk+1,m, 0)
13: return w = wK

Thus, we can find wk+1 from wk by taking the stochastic Newton step

ŵk+1 = wk + γk

(
Ĝk + τI

)−1

Ĥk(1− wk), (13)

and projecting onto the constraint set: wk+1,m = ŵk+1,m1ŵk+1,m≥0. We set the regularization
parameter τ by examining the condition number of Ĝk + τI and keeping it below a reasonable value.
We can tune γk using a line search method. As we do not have access to the objective function (i.e.
the KL-divergence between the coreset and full posteriors), we use the curvature part of the Wolfe
conditions [27] to tune this. In practice, this line search is expensive. Thus, we only tune γk for
k ≤ Ktune, and leave it as a constant thereafter. The intuition here is that we may start with quite
poor coreset weights, and so need to choose the initial steps carefully. In Appendix C, we perform
a sensitivity analysis for the parameters S, Ktune and τ . We see that our results are generally not
sensitive to the choice of these parameters, within reasonable ranges.

Computing Ĝk + τI involves taking S samples, forming the product ĝsĝTs , and then inverting the
resulting matrix. Its time complexity is thus O(SM2+M3). Computing Ĥ(wk)(1−wk) similarly has
complexity O (SM + SN), and computing the product with (Ĝk + τI)−1 has complexity O

(
M2
)
.

For K Newton steps in Algorithm 1, the overall time complexity is thus O(K(M3 + SM2 + SN)),
which is linear in N . The space complexity is O(M2) (to store Ĝk), which is sublinear in N , unlike
in [20, 23].

In theory, we can reduce the time complexity by using a further stochastic estimate of Ĥk(1− wk).
In particular, we can instead calculate ĥs only for indices in I := {1, . . . ,M} ∪ T , where T is a
uniformly selected sample T ⊆ {1, . . . , N}. Calculating Ĥ(wk)(1 − wk) using this subsampled
vector ĥs,I then has complexity O(SM + ST) in the worst case, where T := |T |. The overall time
complexity is then O(K(M3 + SM2 + ST)), which is sublinear in N if T = o(N). This could
give significant improvements in coreset construction time in the large-data regime. However, this
approach requires further study, as we find that it leads to a degradation in the performance of our
algorithm. We do not use it in our experiments.

The final practical consideration in the design of Algorithm 1 is that we cannot actually calculate the
objective function that we are trying to minimize, namely the KL divergence DKL (πw∥π1) between
the coreset and full posteriors. Thus, it may be hard to tell if the optimization is actually making
progress. In practice, we monitor the norm of the gradient of the KL divergence (which we do have
access to, as given by Eq. (6)). We can terminate our algorithm early if we do not see a significant
enough decrease in this measure.

5

4 Theoretical analysis

In this section we provide a theoretical analysis of the proposed method. We demonstrate (in
Theorems 4.1 and 4.2) that the optimal coreset posterior built using a uniformly random subset of data
is, with high probability, an exact or near-exact approximation of the true posterior. Second, we show
(in Theorem 4.3) that the proposed optimization algorithm converges exponentially quickly to a point
near the optimal coreset, thus realizing the guarantee in Theorem 4.2 in practice, and theoretically
justifying our proposed algorithm. The assumptions required for our theory are somewhat technical.
We give some intuition here on settings where they hold, but discuss this further in Appendix A.
Proofs of all results may be found in Appendix B.

4.1 Subset selection via uniform subsampling

Theorem 4.1 and Theorem 4.2 provide a theoretical foundation for selection via uniform subsampling.
Both recommend setting M ≳ d logN , where d is essentially the “dimension” of the span of the
log-likelihood functions. Theorem 4.1 states that if the span of the log-likelihood functions is indeed
finite-dimensional with dimension d—e.g., in a usual exponential family model—then with high
probability, the optimal coreset using a uniformly random selection of M points is exact. Theorem 4.2
extends this to the general setting where Θ ⊆ RD, N is large relative to D, and where we assume the
posterior concentrates as N →∞. In particular, Theorem 4.2 states that with high probability, the
optimal coreset using a uniformly random selection of M data points provides low error.

In what follows, we assume that fn(·) are i.i.d. from some true data-generating distribution p, and
we define f̄(·) = Ep(fn(·)). We also introduce the new notation f(·, ·), where we consider the
potentials f as functions of both x and θ. This enables us to make the data-dependence explicit
when needed, i.e., fn(·) = f(xn, ·); for instance, in the standard context of Bayesian inference
fn(·) = f(xn, ·) = log p(xn|·), with xn

i.i.d.∼ p0 for n ∈ [N].
Theorem 4.1. Let S0 be the vector space of functions on Θ spanned by {f(x, ·);x ∈ X}. Assume
that S0 is finite dimensional, with dimension d. Let µ be any measure on Θ such that S0 ⊂ L2(µ)
and denote r2µ = Eµ

(
Ep([f1 − f̄]2)

)
. For δ > 0 define

J(δ) = inf
a∈S0;∥a∥=1

Pr

(
⟨a,f1−f̄⟩L2(µ)>

2rµ√
Nδ

)
. (14)

Then for δ > 0 such that J(δ) + δ < 1, a universal constant C1, and M ∈ N such that

M ≥ 2d

J(δ)

(
logN + log

(
4δ

J(δ)

)
+ C1

)
,

we have that with probability ≥ 1− δ − e−MJ(δ)/4,

min
w∈WN

KL(πw||π) = 0.

Note that the condition that S0 has finite dimension d < ∞ is satisfied for all d-dimensional
exponential families when fn(θ) = log p(xn|θ). Further, note that Theorem 4.1 still applies in
situations where d increases with N . To understand the behaviour of J(δ), we consider in Appendix A
a full rank exponential family. We can show that, under certain conditions, J(δ) converges to a
strictly positive value as δN →∞. In this case, we can set δ = ω(1/N), such that with probability
≥ 1− ω(1/N), we indeed have that minw∈WN

KL(πw||π) = 0 for M ≳ d logN .

In the interest of obtaining a more general approximation result, we now consider the case where
S0 is infinite dimensional, but where we can find a finite-dimensional space S1 which approximates
fn(θ) − f̄(θ) reasonably well. A typical setup where this is valid is when Θ ⊆ RD, the posterior
concentrates (as N → ∞) at a point θ0 ∈ Θ that maximizes f̄(θ), and each fn(·) is smooth near
θ0 and globally well-behaved in some sense. Theorem 4.2 below states, roughly, that for a model
satisfying these assumptions, minw∈WN

KL(πw||π) will be small with high probability. We give the
exact conditions in Appendix A. Although they are perhaps strong, the result is still indicative of
when a good posterior approximation is obtained by our method.

Intuitively, we require that f(x, θ) be differentiable, strongly concave in θ, and “smooth enough”.
Letting θ0 be the unique value such that f̄(θ) ≤ f̄(θ0) ∀θ ∈ Θ, we also require that we can split

6

f(x; θ) into two parts,

f(x, θ) = f (1)(x, θ) + f (2)(x, θ),

where the span of
{
f (1)(x, ·)− f (1)(x, θ0) : x ∈ X

}
is a finite-dimensional vector space S1. This

split needs to be made such that f (2) is negligible, in the sense that f(x, θ) ≈ f (1)(x, θ) locally
around θ0. A usual case where these conditions hold is when f(x; θ) is C3 in θ. In this case, we can
obtain f (1)(x; θ) by a second-order Taylor expansion,

f (1)(x; θ) = f(x; θ0) + (θ − θ0)
T∇θf(x; θ0) + (θ − θ0)

T∇2f(x; θ0)(θ − θ0)/2,

which has dimension bounded by 1+D+D(D+1)/2. f (2)(x; θ) is then the remainder term, which
is indeed negligible around θ0 in the desired sense. In Appendix A, we provide further discussion on
the conditions of Theorem 4.2. Recalling that a quantity is o(1) as N →∞ if and only if it converges
to 0, we can then state the result as follows.
Theorem 4.2. Suppose the assumptions A1-A4 in Appendix A hold, and we set M ≳ D(logN + 1).
Then as N →∞, with probability at least 1− o(1), we have that

min
w∈WN

KL(πw||π) = o(1).

In the above example, we can examine the proof to obtain a bound on KL(πw||π) of order 1/
√
N

with probability converging to 1, showing that this result does indeed lead to a useful bound.

4.2 Quasi-Newton weight optimization

Theorems 4.1 and 4.2 guarantee the existence of a high-quality coreset, but do not provide any insight
into whether it is possible to find it tractably. Theorem 4.3 addresses this remaining gap. In particular,
intuitively, it asserts that as long as (1) the regularization parameter τ > 0 is nonzero but small
enough that it does not interfere with the optimization (in particular, the minimum eigenvalue of
G(w) over the space), and (2) the optimal coreset is a good approximation to the full dataset (which
is already guaranteed by Theorem 4.2), then the weights wk at iteration k of the approximate Newton
method converge exponentially to a point close to a global optimum. In the result below, let G(w)
and H(w) be defined as in Eq. (9).
Theorem 4.3. Let W ⊆ W be a closed convex set, W ⋆ ⊆ argminw∈W KL(πw||π) be a maximal
closed convex subset, and fix the regularization parameter τ > 0. Define

ξ = inf
w∈W

min

{
λ

λ+ τ
: λ ∈ eigvalsG(w), λ > 0

}
.

Suppose ∃ ϵ ∈ [0, 1) and δ ≥ 0 such that for all w ∈W

∥ (G(w)+τI)
−1

H(w)(1−w⋆)∥ ≤ ϵ∥w−w⋆∥+δ, (15)

where w⋆ = projW⋆(w). Then the kth iterate wk ∈W and its projection w⋆
k = projW⋆(wk) of the

projected Newton method defined in Section 3.2 by Eqs. (8), (9) and (10), initialized at w0 ∈W with
a fixed step size γ ∈ [0, 1] and regularization τ satisfies

∥wk − w⋆
k∥ ≤ ηk ∥w0 − w⋆

0∥+ γδ

(
1− ηk

1− η

)
, η = 1− γ(ξ − ϵ).

For this result to make sense, we require that η ∈ [0, 1]. We have that η ≥ 0, since γ ∈ [0, 1], ϵ ≥ 0
and ξ ≤ 1 by definition. It may be the case that η ≥ 1, in which case our result still holds, but is
vacuous.

In order to use this result, the minimum positive eigenvalue of G(w) for w ∈W ⊆ W needs to be
bounded, as does the error of the optimal coreset weights w⋆ in the sense of Eq. (15). A notable
corollary of Theorem 4.3 occurs when there exists a w⋆ such that

∀θ ∈ Θ,

M∑
m=1

w⋆
mfm(θ) =

∑
n

fn(θ),

7

i.e., the optimal coreset is identical to the true posterior distribution, as is guaranteed by Theorem 4.1.
For any model where the conditions of Theorem 4.1 hold, such as any exponential family model,
Eq. (15) holds with ϵ = δ = 0. We can thus take γ = 1 to find that

∥wk − w⋆
k∥ ≤ (1− ξ)k ∥w0 − w⋆

0∥ .

This provides some intuition on Theorem 4.3; as long as the optimal coreset posterior is a reasonable
approximation to π, and we use a small regularization τ > 0 (such that ξ ≈ 1), then we generally need
only a small number of optimization steps to find the optimal coreset. The conditions of Theorem 4.1
are sufficient, but not necessary, for Eq. (15) to hold. We present further discussion in Appendix A.

We note that if ξ = 0, then there is no convergence, even in the setting where Theorem 4.1 holds.
However, it is important to emphasises that, for any given dataset, we are free to choose τ . We can
(and should) choose τ to be sufficiently small that ξ is roughly 1. In particular, this means setting τ
significantly smaller than the minimum positive eigenvalue of G(w).

5 Experiments

In this section, we compare our proposed quasi-Newton coreset (QNC) construction against existing
constructions—uniform subsampling (UNIF), greedy iterative geodesic ascent (GIGA) [20] and itera-
tive hard thresholding (IHT) [23]—as well as the Laplace approximation (LAP), which represents
what one obtains by assuming posterior normality in the large-data setting. Experiments were per-
formed on a machine with a 2.6GHz 6-Core Intel Core i7 processor, and 16GB memory; code is avail-
able at https://github.com/trevorcampbell/quasi-newton-coresets-experiments.

In each case, we use S = 500 Monte Carlo samples during coreset construction. We compute error
metrics using 1000 samples from each method’s approximate posterior. We also compare to the
baseline of sampling from the full posterior (FULL) to establish a noise floor for the given comparison
sample size of 1000. In the synthetic Gaussian experiment, which is the simplest one we consider, we
see that sparse variational inference (SVI) [21] is prohibitively slow, taking 4.2× 103s to construct a
coreset of size 1 (and scaling at best linearly with coreset size). Thus, we do not compare against it
here. In Appendix C we run a smaller, lower dimensional, synthetic Gaussian experiment. Here, we
compare against SVI, and confirm that it is prohibitively slow for the size of datasets that we consider.

For GIGA and IHT, we need to supply a low-cost approximation π̂ to the posterior. To ensure these
methods apply as generally as QNC and SVI, we use a uniformly sampled coreset approximation of
size M with weights N/M (where M is the same as the desired coreset size we are constructing).
We also use these weights for UNIF. In Appendix C we provide additional results for GIGA and IHT
with a Laplace approximation used for π̂. This does not lead to a significant improvement, and we
provide further discussion there.

Experiments are performed in settings standard in the Bayesian coresets literature, but with larger
dataset sizes than those that could be considered previously. For each experiment we plot the
approximate reverse KL divergence obtained by assuming posterior normality, and the build time.
In Appendix C we provide comparisons on the additional metrics of relative mean and covariance
error, forward KL divergence and per sample time to sample from the respective posteriors. For the
experiments in Sections 5.2 and 5.3 with heavy tailed priors, we also compare using the maximum
mean discrepancy [28] and kernel Stein discrepancy [29, 30], with inverse multi-quadratic (IMQ)
kernel.

Throughout the experiments, we see that QNC outperforms the other subsampling methods for most
coreset sizes we consider. GIGA and IHT in particular are limited by a fixed choice of π̂ and finite
projection dimension defined by our choice of S = 500—we discuss this further in Appendix C.
Furthermore, outside of the synthetic Gaussian experiment, we see that QNC outperforms LAP for
coreset sizes above certain thresholds, which represent a small fraction of the full dataset.

In Appendix C, we also perform a sensitivity analysis for the parameters S, Ktune and τ that we use
in Algorithm 1. We see that our results are generally not sensitive to the choice of these parameters,
within reasonable ranges.

8

https://github.com/trevorcampbell/quasi-newton-coresets-experiments

(a) Gaussian (b) Sparse linear regression

(c) Logistic regression (d) Basis function regression

Figure 1: Reverse KL divergence (left) and build time in seconds (right) for each experiment. We plot
the median and a shaded area between the 25th/75th percentiles over 10 random trials. Our algorithm
(QNC) provides an improvement in coreset quality, with a comparable run-time and less user input.

5.1 Synthetic Gaussian location model

Our first comparison is on a Gaussian location model, with prior θ ∼ N (µ0, σ0I), and likelihood
(Xn)

N
n=1

i.i.d.∼ N (θ, σI) in D dimensions. Here, we take µ0 = 0 and σ0 = 1. Closed form expressions
are available for the subsampled posterior distributions [21, Appendix B], and we can sample from
them without MCMC. We compare the methods on a synthetic dataset with N = 1, 000, 000,
D = 100, where we generate the (Xn)

N
n=1

i.i.d.∼ N (µ, σI) and set (µi)
D
i=1

i.i.d.∼ N (0, 100) and
σ = 100. From Fig. 1a we see that our method outperforms the other subsampling methods for all
coreset sizes. This example is largely illustrative; we expect LAP to provide the exact posterior here
by design, and this is indeed what we find (the reverse KL plots for LAP and FULL overlap).

5.2 Bayesian sparse linear regression

Next, we study a Bayesian sparse linear regression problem, where the data (xn, yn)
N
n=1 consists of a

feature xn ∈ RD and an outcome yn ∈ RN . The posterior distribution is that of θ ∈ RD in the model

yn = xT
nθ + ϵn, n = 1, . . . , N (16)

where ϵn
i.i.d.∼ N (0, σ), n = 1, . . . , N . We place independent Cauchy priors on the coefficients θ:

θi
i.i.d.∼ Cauchy(0, τλi), i = 1, . . . , D,

where the hyperpriors are λi
i.i.d.∼ Half-Cauchy(0, 1), τ ∼ Half-Cauchy(0, σ0), with σ0 = 2, and

σ ∼ Γ(a0, b0) with a0 = 1, b0 = 1. We perform posterior inference on the 2D + 2−dimensional
set of parameters (θ1, . . . , θD, λ1, . . . , λD, σ, τ). Sampling is performed using STAN [31]. The
dataset we study is a flight delays dataset,2 with N = 100, 000 and D = 13 (so that the overall
inference problem is 28−dimensional). The response variable yn is the delay in the departure time of
a flight, and the features are meteorological and flight-specific information. We see in Fig. 1b that our
method outperforms the other subsampling methods for all coreset sizes, and LAP for sizes above
500—representing 0.5% of the data. In Appendix C we see that the target posterior in this case has
heavy tails, which makes the Laplace approximation particularly unsuited to this problem. We can
see the effect this has even more clearly in the additional results presented there.

2This dataset was constructed by merging airport on-time data from the US Bureau of Transportation Statis-
tics https://www.transtats.bts.gov/DL_SelectFields.asp?gnoyr_VQ=FGJ with historical weather
records from https://wunderground.com.

9

https://www.transtats.bts.gov/DL_SelectFields.asp?gnoyr_VQ=FGJ
https://wunderground.com

5.3 Heavy-tailed Bayesian logistic regression

For this comparison, we perform Bayesian logistic regression with parameter θ ∈ RD having a
heavy-tailed Cauchy prior θi

i.i.d.∼ Cauchy(0, σ), i = 1, . . . , D. The data (xn, yn)
N
n=1 consists of a

feature xn ∈ RD and a label yn ∈ {−1, 1}. The relevant posterior distribution is that of θ ∈ RD

which governs the generation of yn given xn via

yn | xn, θ
indep∼ Bern

(
1

1 + e−xT
nθ

)
. (17)

Again, sampling is performed using STAN. As in Section 5.2, we use the flight delays dataset, so
we have that N = 100, 000 and D = 13. The response variables yn are binarized, so that yn = 1 if
a flight was cancelled or delayed by more than an hour, and yn = −1 if it was not. In Fig. 1c we
see that our method outperforms other subsampling methods for all coreset sizes, and LAP for sizes
above 500—representing 0.5% of the data.

5.4 Bayesian radial basis function regression

Our final comparison is on a Bayesian basis function regression example. This is a larger version of
the same experiment performed by [21], with D = 301 as before, but N = 100, 000. Full details
are given in Appendix C. From Fig. 1d we see that our method provides a significant improvement
over LAP for all coreset sizes, which performs particularly poorly in this experiment, despite the
Gaussianity of the target posterior [21, Appendix B]. It also outperforms the other subsampling
methods for coreset sizes of 1000 and above (representing 1% of the data) but this difference is not as
marked as in the other examples. The fact that QNC requires a large coreset to start providing a benefit
beyond UNIF stems from the fact that, in this higher dimensional example, there are sometimes data
points that are very influential for a certain basis, and both UNIF and QNC can miss these. This
indicates the need (in some settings) for a secondary method that can check for and include these,
without the significant cost that e.g. SVI entails. We defer this study to future work. However, we do
note that for this example QNC has the lowest build time, even outperforming LAP. This is because
we only perform a small number of quasi-Newton steps before no further improvement is possible.

6 Conclusion

This paper introduces a novel method for data summarization prior to Bayesian inference. In
particular, the method first selects a small subset of data uniformly randomly, and then optimizes the
weights on those data points using a novel quasi-Newton method. Theoretical results demonstrate
that the method is guaranteed to find a near-optimal coreset, and that the optimal coreset has a low KL
divergence to the posterior with high probability. Future work includes investigating the performance
of the method in more complex models, and studying conditions under which the method can provide
compression in time sublinear in dataset size.

Acknowledgments and Disclosure of Funding

T. Campbell was supported by a National Sciences and Engineering Research Council of Canada
(NSERC) Discovery Grant and Discovery Launch Supplement. C. Naik was supported by the
Engineering and Physical Sciences Research Council and Medical Research Council [award reference
1930478]. J. Rousseau was supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 834175).

10

References
[1] Christian Robert and George Casella. Monte Carlo Statistical Methods. Springer, 2nd edition,

2004.

[2] Christian Robert and George Casella. A short history of Markov Chain Monte Carlo: subjective
recollections from incomplete data. Statistical Science, 26(1):102–115, 2011.

[3] Andrew Gelman, John Carlin, Hal Stern, David Dunson, Aki Vehtari, and Donald Rubin.
Bayesian data analysis. CRC Press, 3rd edition, 2013.

[4] Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley. Stochastic variational
inference. Journal of Machine Learning Research, 14:1303–1347, 2013.

[5] Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference. In Interna-
tional Conference on Artificial Intelligence and Statistics, 2014.

[6] Rémi Bardenet, Arnaud Doucet, and Chris Holmes. On Markov chain Monte Carlo methods for
tall data. The Journal of Machine Learning Research, 18(1):1515–1557, 2017.

[7] Anoop Korattikara, Yutian Chen, and Max Welling. Austerity in MCMC land: cutting the
Metropolis-Hastings budget. In International Conference on Machine Learning, 2014.

[8] Dougal Maclaurin and Ryan Adams. Firefly Monte Carlo: exact MCMC with subsets of data.
In Conference on Uncertainty in Artificial Intelligence, 2014.

[9] Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient Langevin dynamics.
In International Conference on Machine Learning, 2011.

[10] Sungjin Ahn, Anoop Korattikara, and Max Welling. Bayesian posterior sampling via stochastic
gradient Fisher scoring. In International Conference on Machine Learning, 2012.

[11] Matias Quiroz, Robert Kohn, and Khue-Dung Dang. Subsampling MCMC—an introduction
for the survey statistician. Sankhya: The Indian Journal of Statistics, 80-A:S33–S69, 2018.

[12] Joris Bierkens, Paul Fearnhead, and Gareth Roberts. The zig-zag process and super-efficient
sampling for bayesian analysis of big data. The Annals of Statistics, 47(3):1288–1320, 2019.

[13] Murray Pollock, Paul Fearnhead, Adam M Johansen, and Gareth O Roberts. Quasi-stationary
monte carlo and the scale algorithm. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 82(5):1167–1221, 2020.

[14] James Johndrow, Natesh Pillai, and Aaron Smith. No free lunch for approximate MCMC.
arXiv:2010.12514, 2020.

[15] Tigran Nagapetyan, Andrew Duncan, Leonard Hasenclever, Sebastian Vollmer, Lukasz
Szpruch, and Konstantinos Zygalakis. The true cost of stochastic gradient Langevin dynamics.
arXiv:1706.02692, 2017.

[16] Michael Betancourt. The fundamental incompatibility of Hamiltonian Monte Carlo and data
subsampling. In International Conference on Machine Learning, 2015.

[17] Matias Quiroz, Robert Kohn, Mattias Villani, and Minh-Ngoc Tran. Speeding up MCMC by
efficient data subsampling. Journal of the American Statistical Association, 114(526):831–843,
2019.

[18] Jonathan Huggins, Trevor Campbell, and Tamara Broderick. Coresets for scalable Bayesian
logistic regression. In Advances in Neural Information Processing Systems, 2016.

[19] Trevor Campbell and Tamara Broderick. Automated scalable Bayesian inference via Hilbert
coresets. Journal of Machine Learning Research, 20(15), 2019.

[20] Trevor Campbell and Tamara Broderick. Bayesian coreset construction via greedy iterative
geodesic ascent. In International Conference on Machine Learning, 2018.

[21] Trevor Campbell and Boyan Beronov. Sparse variational inference: Bayesian coresets from
scratch. In Advances in Neural Information Processing Systems, 2019.

[22] Dionysis Manousakas, Zuheng Xu, Cecilia Mascolo, and Trevor Campbell. Bayesian pseudo-
coresets. In Advances in Neural Information Processing Systems, 2020.

[23] Jacky Zhang, Rajiv Khanna, Anastasios Kyrillidis, and Oluwasanmi Koyejo. Bayesian coresets:
revisiting the nonconvex optimization perspective. In Artificial Intelligence in Statistics, 2021.

11

[24] Martin Jankowiak and Du Phan. Surrogate likelihoods for variational annealed importance
sampling. arXiv preprint arXiv:2112.12194, 2021.

[25] Naitong Chen, Zuheng Xu, and Trevor Campbell. Bayesian inference via sparse hamiltonian
flows. arXiv preprint arXiv:2203.05723, 2022.

[26] Charles Broyden. Quasi-Newton methods. In W Murray, editor, Numerical Methods for
Unconstrained Optimization, pages 87–106. Academic Press, 1972.

[27] Philip Wolfe. Convergence conditions for ascent methods. SIAM review, 11(2):226–235, 1969.
[28] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander

Smola. A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773,
2012.

[29] Qiang Liu, Jason Lee, and Michael Jordan. A kernelized Stein discrepancy for goodness-of-fit
tests. In International conference on machine learning, pages 276–284. PMLR, 2016.

[30] Anna Korba, Pierre-Cyril Aubin-Frankowski, Szymon Majewski, and Pierre Ablin. Kernel
Stein discrepancy descent. arXiv preprint arXiv:2105.09994, 2021.

[31] Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael
Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic
programming language. Journal of statistical software, 76(1):1–32, 2017.

12

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] The claims made in the abstract are supported by the
theoretical and experimental results in Section 4 and Section 5

(b) Did you describe the limitations of your work? [Yes] Methodological limitations are
discussed in Section 3.3 - mainly the fact that we need to used Monte Carlo estimates
of some quantities of interest. The theoretical results in Section 4 show the setting
in which our method can be expected to work. We give some intuition for what
settings these are in the main text, with further discussion in Appendix A. In our fourth
experiment in Section 5.4 we also discuss some of the limitations of our work in high
dimensions.

(c) Did you discuss any potential negative societal impacts of your work? [No] Our work
provides a generic preprocessing algorithm for sampling from probability distribu-
tions whose log density involves many summed terms. Our method is generic and
foundational in nature: it has many downstream applications, including Bayesian infer-
ence, which may have a societal impact depending on the particular data and model
under consideration. But we do not speculate on the impacts of potential downstream
applications in this work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] The assump-
tions for Theorem 4.1 and Theorem 4.3 are given in the theorem statements. Before
the statement of Theorem 4.2 we give intuitive explanations of its assumptions, but the
full assumptions are explicitly laid out in Appendix A.

(b) Did you include complete proofs of all theoretical results? [Yes] Proofs of all theoretical
results are included in Appendix B.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] Code,
data, and instructions needed to reproduce all experimental results is provided in the
supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Important details are provided in Section 5, and all further details
are included in the code provided as part of the supplemental material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Error bars representing the 25th/75th percentiles over 10
random trials are presented for each plot of the results.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] The details of the machine used to
perform all experiments are given in Section 5.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] Creators of all
existing assets are cited.

(b) Did you mention the license of the assets? [Yes] All the datasets we use are publicly
available, and some do not include a license. Where relevant, the license is mentioned.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We include new code in the supplemental material.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [No] The datasets we use are publicly available, and do not pertain to
identifiable individuals. We obey the license terms of the data where applicable, but do
not discuss whether consent was obtained from the data creators.

13

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No] None of the datasets we use contain personally
identifiable information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

	Introduction
	Bayesian coresets
	Construction via subsampling and quasi-Newton refinement
	Uniform subsampling
	Quasi-Newton optimization
	Algorithm

	Theoretical analysis
	Subset selection via uniform subsampling
	Quasi-Newton weight optimization

	Experiments
	Synthetic Gaussian location model
	Bayesian sparse linear regression
	Heavy-tailed Bayesian logistic regression
	Bayesian radial basis function regression

	Conclusion

