Learning Transferable Adversarial Perturbations

Part of Advances in Neural Information Processing Systems 34 (NeurIPS 2021)

Bibtex Paper Reviews And Public Comment » Supplemental

Authors

Krishna kanth Nakka, Mathieu Salzmann

Abstract

While effective, deep neural networks (DNNs) are vulnerable to adversarial attacks. In particular, recent work has shown that such attacks could be generated by another deep network, leading to significant speedups over optimization-based perturbations. However, the ability of such generative methods to generalize to different test-time situations has not been systematically studied. In this paper, we, therefore, investigate the transferability of generated perturbations when the conditions at inference time differ from the training ones in terms of the target architecture, target data, and target task. Specifically, we identify the mid-level features extracted by the intermediate layers of DNNs as common ground across different architectures, datasets, and tasks. This lets us introduce a loss function based on such mid-level features to learn an effective, transferable perturbation generator. Our experiments demonstrate that our approach outperforms the state-of-the-art universal and transferable attack strategies.