
Error Compensated Distributed SGD
can be Accelerated

Xun Qian∗

xun.qian@kaust.edu.sa
Peter Richtárik†

peter.richtarik@kaust.edu.sa
Tong Zhang‡

tongzhang@ust.hk

Abstract

Gradient compression is a recent and increasingly popular technique for reducing
the communication cost in distributed training of large-scale machine learning
models. In this work we focus on developing efficient distributed methods that can
work for any compressor satisfying a certain contraction property, which includes
both unbiased (after appropriate scaling) and biased compressors such as RandK
and TopK. Applied naively, gradient compression introduces errors that either slow
down convergence or lead to divergence. A popular technique designed to tackle
this issue is error compensation/error feedback. Due to the difficulties associated
with analyzing biased compressors, it is not known whether gradient compression
with error compensation can be combined with acceleration. In this work, we
show for the first time that error compensated gradient compression methods
can be accelerated. In particular, we propose and study the error compensated
loopless Katyusha method, and establish an accelerated linear convergence rate
under standard assumptions. We show through numerical experiments that the
proposed method converges with substantially fewer communication rounds than
previous error compensated algorithms.

1 Introduction

When training very large scale supervised machine learning problems, such as those arising in the
context of federated learning [Konečný et al., 2016b, McMahan et al., 2017, Konečný et al., 2016a]
(see also recent surveys [Li et al., 2019, Kairouz, 2019]), distributed algorithms are indispensable. In
such settings, communication is generally much slower than (local) computation, which makes it the
key bottleneck in the design of efficient distributed systems. There are several ways to tackle this
issue, including reliance on large mini-batches [Goyal et al., 2017, You et al., 2017], asynchronous
learning [Agarwal and Duchi, 2011, Lian et al., 2015, Recht et al., 2011], local updates [Ma et al.,
2017, Stich, 2020, Khaled et al., 2020, Hanzely and Richtárik, 2020, Woodworth et al., 2020] and
communication compression (e.g., quantization and sparsification) [Alistarh et al., 2017, Bernstein
et al., 2018, Mishchenko et al., 2019, Seide et al., 2014, Wen et al., 2017].

Communication compression. In this work, we focus on the last of these techniques: communication
compression. The key idea here is to apply a lossy compression transformation/operator to the
messages before they are communicated so as to save on communication time. While compression
reduces the communicated bits in each communication round, it introduces errors, and this generally
leads to an increase in the number of communication rounds needed to find a solution of any
predefined accuracy. Still, compression has been found useful in practice, as the trade-off often seems
to prefer compression to no compression.

∗King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
†King Abdullah University of Science and Technology, Thuwal, Saudi Arabia; Moscow Institute of Physics

and Technology, Dolgoprudny, Russia
‡Hong Kong University of Science and Technology, Hong Kong

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Contractive and unbiased compressors. There are two large families of such compression operators:
contraction and unbiased compressors [Beznosikov et al., 2020]. A (possibly) randomized map
Q : Rd → Rd is called a contraction compressor if there exists a constant 0 < δ ≤ 1 such that

E
[
∥x−Q(x)∥2

]
≤ (1− δ)∥x∥2, ∀x ∈ Rd. (1)

Further, we say that a randomized map Q̃ : Rd → Rd is an unbiased compressor if there exists a
constant ω ≥ 0 such that

E
[
Q̃(x)

]
= x and E

[
∥Q̃(x)∥2

]
≤ (ω + 1)∥x∥2, ∀x ∈ Rd. (2)

It is well known that (see, e.g., [Beznosikov et al., 2020]) after appropriate scaling, any unbiased
compressor satisfying (2) becomes a contraction compressor. Indeed, it is easy to verify that for any
Q̃ satisfying (2), 1

ω+1 Q̃ is a contraction compressor satisfying (1) with δ = 1/(ω+1). Thus we can
construct corresponding contraction compressor from any unbiased compressor. However, there are
empirically very powerful contractive compressors, such as TopK [Alistarh et al., 2018] (described
below), which do not arise this way, and because of this, the class of contractive compressors is
important in practice. For illustration purposes, we now define two canonical examples of contraction
compressors. Let 1 ≤ K ≤ d. The TopK compressor is defined as

(TopK(x))π(i) =

{
(x)π(i) if i ≤ K,

0 otherwise,

where π is a permutation of {1, 2, ..., d} such that (|x|)π(i) ≥ (|x|)π(i+1) for i = 1, ..., d − 1. The
RandK compressor is defined as

(RandK(x))i =

{
(x)i if i ∈ S,
0 otherwise,

where S is chosen uniformly from the set of all K element subsets of {1, 2, ..., d}. For TopK
and RandK compressors, we have δ ≥ K/d [Stich et al., 2018]. Some frequently used unbiased
compressors include random dithering [Alistarh et al., 2017], random sparsification [Stich et al.,
2018], and natural compression [Horváth et al., 2019b]. For more examples of contraction and
unbiased compressors, we refer the reader to [Beznosikov et al., 2020].

Related Work. If we assume that the accumulated error is bounded, and in the case of unbiased
compressors, the convergence rate of error compensated SGD was shown to be the same as that
of vanilla SGD [Tang et al., 2018]. However, if we only assume bounded second moment of the
stochastic gradients, in order to guarantee the boundedness of the accumulated quantization error,
some decaying factors need to be involved in general, and error compensated SGD is proved to have
some advantage over QSGD [Alistarh et al., 2017] in some perspective for convex quadratic problems
[Wu et al., 2018]. On the other hand, for contraction compressors, error compensated SGD actually
has the same convergence rate as vanilla SGD [Stich et al., 2018, Stich and Karimireddy, 2019, Tang
et al., 2019]. Since SGD only has a sublinear convergence rate, these error compensated methods
could not get linear convergence rate. If f is non-smooth and ψ = 0, error compensated SGD was
studied in [Karimireddy et al., 2019] in the single node case, and the convergence rate is of order
O (1/

√
δk).

For variance-reduced methods, QSVRG [Alistarh et al., 2017] handles the smooth case (ψ ≡ 0), and
VR-DIANA [Horváth et al., 2019a], ADIANA [Li et al., 2020] handle the composite case (general
ψ). However, the compressors of these algorithms need to be unbiased. Error compensation in
VR-DIANA and ADIANA does not need to be used since their method successfully employs variance
reduction (of the variance introduced by the compressor) instead. Recently, an error compensated
method called EC-LSVRG-DIANA which can achieve nonaccelerated linear convergence for the
strongly convex and smooth case was proposed in [Gorbunov et al., 2020], but besides the contraction
compressor, the unbiased compressor is also needed in the algorithm.

Error compensation. While contractive compressors can be more powerful in practice, they are not
unbiased, and this leads to severe difficulties in the algorithm design space, and poses challenges
for theoreticians trying to understand the convergence behavior of distributed algorithms using
contractive compressors. Indeed, while there is no issue with the use of contractive compressors
in the non-distributed setting (which is of course not interesting from a practical point of view) in

2

combination with standard gradient-type methods, serious convergence issues arise in the distributed
setting. Indeed, classical methods such gradient descent can diverge (even exponentially fast) when
the TopK compressor is used to compress uplink gradient information [Beznosikov et al., 2020].
Fortunately, this issue can be resolved using the error compensation (EC)4 mechanism, which can be
traced back to at least Seide et al. [2014]. However, this mechanism remained a heuristic until recently.
To highlight the difficulty of analyzing EC, we remark that the first theoretical breakthroughs applied
to the single node regime only [Stich et al., 2018, Stich and Karimireddy, 2019]. More recently,
theoretical progress was made in the crucially important distributed setting as well [Beznosikov et al.,
2020, Gorbunov et al., 2020]. However, we are still very far in our understanding of optimization
algorithms using contractive compressors.

One of the key open problems in this area—the problem we address in this paper in
the affirmative— is whether it is possible to design provably accelerated gradient-
type methods that work with contractive compressors.

In this paper, we give a confirmed answer by studying error compensation in conjunction with the
acceleration mechanism employed in loopless Katyusha (L-Katyusha) [Kovalev et al., 2020, Qian
et al., 2019], which is a loopless variant of Katyusha [Allen-Zhu, 2017]. The acceleration in Katyusha
or L-Katyusha is an extension of Nesterov’s acceleration [Nesterov, 1983, 2004] in the stochastic
regime. Moreover, Katyusha and L-Katyusha can achieve the optimal iteration complexity among
randomized methods for solving finite-sum strongly convex optimization problems [Lan and Zhou,
2018].

2 Problem Description and Summary of Contributions

We formally describe the distributed optimization problem we solve in Section 2.1, and then summa-
rize our key contributions in Section 2.2.

2.1 Problem Description

We consider the composite finite-sum optimization problem

min
x∈Rd

P (x) :=

{
1
n

n∑
τ=1

f (τ)(x) + ψ(x)

}
, (3)

where f(x) := 1
n

∑
τ f

(τ)(x) is an average of n smooth convex functions, distributed over n
compute nodes, and ψ : Rd → R∪ {+∞} is a proper closed convex function representing a possibly
nonsmooth regularizer. On each node τ , f (τ)(x) is an average of m smooth convex functions, i.e.,

f (τ)(x) = 1
m

m∑
i=1

f
(τ)
i (x), representing the average loss over the training data stored on this node.

We denote the smoothness constants of functions f , f (τ) and f (τ)i using symbols Lf , L̄ and L,
respectively.5 These constants are in general related as follows:

Lf ≤ L̄ ≤ nLf , L̄ ≤ L ≤ mL̄. (4)

While we specifically focus on the case when m = 1, our results are also new in the m = 1 case, and
hence this regime is relevant as well. We assume throughout that problem (3) has at least one optimal
solution x∗.

We will optionally use the following additional assumption for the contraction compressor. The
assumption is not necessary, but when used, it will lead to better complexity.
Assumption 2.1. E[Q(x)] = δx and E[Q1(x)] = δ1x for all x ∈ Rd, where δ and δ1 are compres-
sion parameters of Q and Q1, respectively.

It is easy to verify that RandK compressor satisfies Assumption 2.1 with δ = K/d, and 1
ω+1 Q̃, where

Q̃ is any unbiased compressor, also satisfies Assumption 2.1 with δ = 1/(ω+1).
4Error compensation is also known under the name error feedback.
5Function f : Rd → R is smooth if it is differentiable, and has L-Lipschitz gradient: ∥∇f(x)−∇f(y)∥ ≤

L∥x− y∥ for any x, y ∈ Rd. L is called the smoothness constant of f .

3

2.2 Contributions

We now summarize the main contributions of our work.

Acceleration for error compensation. We develop a new communication efficient algorithm
(Algorithm 1) for solving the distributed optimization problem (3) which we call Error Compensated
Loopless Katyusha (ECLK). ECLK is the first accelerated error compensated method (this is true
even in the non-distributed setting), which we believe is a significant contribution to the field.

Iteration complexity. We obtain the first accelerated linear convergence rate for error compensated
methods using contraction operators. Let p ≤ O(δ1), where p ∈ (0, 1] is a parameter of the method
described later and δ1 is the compression parameter of Q1 in Algorithm 1 (see Assumption 2.1).
Then the iteration complexity of ECLK is

O
((

1
δ +

1
p +

√
Lf

µ +
√

L
µpn + 1

δ

√
(1−δ)L̄
µp +

√
(1−δ)L
µpδ

)
log 1

ϵ

)
. (5)

This is an improvement over the previous best known results for error compensated methods in
[Beznosikov et al., 2020] and [Gorbunov et al., 2020], where nonaccelerated linear rates were
obtained for the smooth case (ψ ≡ 0). Moreover, in oder to obtained a linear rate, Beznosikov et al.
[2020] required the assumption that ∇f (τ)(x∗) = 0 for all τ , and also need full gradients to be
computed by all nodes. The complexity of EC-LSVRG-DIANA in [Gorbunov et al., 2020] is

O
((
ω +m+ L

δµ

)
log 1

ϵ

)
. (6)

When the last term in (6) is dominant and the last two terms in (5) are dominant, the complexity of
ECLK is better than that of EC-LSVRG-DIANA if p ≥ O

(
(1−δ)L̄µ

L2 + (1−δ)δµ
L

)
.

If we invoke additional assumptions (Assumption 2.1) on the contraction compressor, the iteration
complexity of ECLK is improved to

O
((

1
δ +

1
p +

√
Lf

µ +
√

L
µpn + 1

δ

√
(1−δ)Lf

µp +
√

(1−δ)L
µpδn

)
log 1

ϵ

)
.

This is indeed an improvement since Lf ≤ L̄ (see (4)), and because of the extra scaling factor of n in
the last term. If δ = δ1 = 1, i.e., if no compression is used, we recover the iteration complexity of
the accelerated method L-Katyusha [Qian et al., 2019].

3 Error compensated L-Katyusha

3.1 Description of the method

In this section we describe our method: error compensated L-Katyusha (see Algorithm 1). Roughly
speaking, ECLK is a combination of L-Katyusha, error feedback, and a learning scheme in VR-
DIANA [Horváth et al., 2019a].

The search direction in L-Katyusha in the distributed setting (n ≥ 1) at iteration k is

1

n

n∑
τ=1

(
∇f (τ)iτk

(xk)−∇f (τ)iτk
(wk) +∇f (τ)(wk)

)
,

where iτk is sampled uniformly and independently from [m] := {1, 2, ...,m} on the τ -th node for
1 ≤ τ ≤ n, xk is the current iteration, and wk is the current reference point. Whenever ψ is nonzero
in problem (3), ∇f(x∗) is nonzero in general, and so is ∇f (τ)(x∗) (it could be nonzero even if
∇f(x∗) = 0 in the non-regularized case). Thus, compressing the direction

∇f (τ)iτk
(xk)−∇f (τ)iτk

(wk) +∇f (τ)(wk) (7)

directly on each node would cause nonzero noise even if xk and wk converged to the optimal solution
x∗. On the other hand, since f (τ)i is L-smooth, ∇f (τ)iτk

(xk)−∇f (τ)iτk
(wk) could be small if xk and

wk are close enough. For the last term ∇f (τ)(wk), we introduce a vector hkτ to learn it iteratively in

4

a similar way in VR-DIANA. However, we use a contraction compressor rather than an unbiased one.
More precisely, we take the update

hk+1
τ = hkτ +Q1(∇f (τ)(wk)− hkτ), (8)

where Q1 is a contraction compressor. h0τ can be initialized by any vector in Rd. It is possible to
interprete the learning procedure (8) as one step of the compressed gradient descent method applied
to a certain quadratic optimization problem whose unique solution is the vector ∇f (τ)(wk). Now we
would expect ∇f (τ)(wk)− hkτ could converge to zero as k → +∞. We substract hkτ from the search
direction in (7) to get

gkτ = ∇f (τ)iτk
(xk)−∇f (τ)iτk

(wk) +∇f (τ)(wk)− hkτ ,

and will add hkτ back after aggregation.

Next we apply the compression and error feedback techniques, i.e., we compress the vector η
L1
gkτ +e

k
τ

on each node to get g̃kτ = Q(ηL1
gkτ + ekτ), where Q is a contraction compressor and L1 is a positive

parameter. The accumulated error ek+1
τ is updated by the compression error at iteration k. On

each node, a scalar ukτ is also maintained, and only uk1 will be updated. The summation of ukτ for
1 ≤ τ ≤ n is uk, and we use uk to control the update frequency of the reference point wk.6 Each
node sends the two compressed vectors g̃kτ , Q1(∇f (τ)(wk) − hkτ), and a scalar uk+1

τ to the other
nodes. After aggregating g̃k = 1

n

∑n
τ=1 g̃

k
τ , we add the average vector hk = 1

n

∑n
τ=1 h

k
τ after

multiplying the stepsize η
L1

to it to get the search direction g̃k + η
L1
hk. We also use the following

standard proximal operator for the update of zk:

proxηψ(x) := argmin
y

{
1
2∥x− y∥2 + ηψ(y)

}
.

The reference point wk will be updated if uk+1 = 1. It is easy to see that wk will be updated with
probability p at each iteration. All nodes maintain the same copies of xk, wk, yk, zk, g̃k, hk, and uk.

We need the following assumptions in this section.
Assumption 3.1. The two compressors Q and Q1 in Algorithm 1 are contraction compressors with
parameters δ and δ1, respectively.

Assumption 3.2. f (τ)i is L-smooth, f (τ) is L̄-smooth, f is Lf -smooth and µf -strongly convex, and
ψ is µψ-strongly convex, where µf ≥ 0, µψ ≥ 0, and µ := µf + µψ > 0.

3.2 Convergence analysis: preliminaries

First, we introduce some perturbed vectors which will be used in the convergence analysis. The
perturbed vector is usually used in the analysis of error compensated methods [Karimireddy et al.,
2019]. In Algorithm 1, let ek = 1

n

∑n
τ=1 e

k
τ , gk = 1

n

∑n
τ=1 g

k
τ , and x̃k = xk − 1

1+ησ1
ek, z̃k =

zk − 1
1+ησ1

ek for k ≥ 0. Then ek+1 = 1
n

∑n
τ=1

(
ekτ +

η
L1
gkτ − g̃kτ

)
= ek + η

L1
gk − g̃k, and from

the optimality condition for the proximal operator, we have

z̃k+1 = zk+1 − 1
1+ησ1

ek+1

= 1
1+ησ1

(
ησ1x

k + zk − g̃k − η
L1
hk

)
− η∂ψ(zk+1

(1+ησ1)L1
)− ek+1

1+ησ1

= 1
1+ησ1

(
ησ1x

k + zk − ek − η
L1
gk − η

L1
hk

)
− η∂ψ(zk+1)

(1+ησ1)L1

= 1
1+ησ1

(
ησ1x̃

k + z̃k − η
L1
gk − η

L1
hk

)
− η∂ψ(zk+1)

(1+ησ1)L1
. (9)

The above relation plays a vital role in the convergence analysis, and allows us to follow the analysis
of original L-Katyusha. In particular, we will use z̃k to construct Lyapunov functions. Next we define
some notations which will be used to construct Lyapunov functions. Define Z̃k := L1+ηµ/2

2η ∥z̃k −

6We can also use a single shared random variable uk instead.

5

Algorithm 1 Error Compensated Loopless Katyusha (ECLK)

1: Parameters: stepsize parameters η = 1
3θ1

> 0, L1 > 0, σ1 =
µf

2L1
≥ 0, θ1, θ2 ∈ (0, 1);

probability p ∈ (0, 1]
2: Initialization: x0 = y0 = z0 = w0 ∈ Rd; u0τ = 0 ∈ R; e0τ = 0 ∈ Rd; h0τ ∈ Rd;
u0 =

∑n
τ=1 u

0
τ ; h0 = 1

n

∑n
τ=1 h

0
τ

3: for k = 0, 1, 2, ... do
4: for τ = 1, ..., n do
5: Sample iτk uniformly and independently in [m] on each node
6: gkτ = ∇f (τ)iτk

(xk)−∇f (τ)iτk
(wk) +∇f (τ)(wk)− hkτ

7: g̃kτ = Q(ηL1
gkτ + ekτ), hk+1

τ = hkτ +Q1(∇f (τ)(wk)− hkτ)

8: ek+1
τ = ekτ +

η
L1
gkτ − g̃kτ , uk+1

τ = 0 for τ = 2, ..., n

9: uk+1
1 =

{
1 with probability p
0 with probability 1− p

10: Send g̃kτ , Q1(∇f (τ)(wk)− hkτ), and uk+1
τ to the other nodes

11: Receive g̃kτ , Q1(∇f (τ)(wk)− hkτ), and uk+1
τ from the other nodes

12: g̃k = 1
n

∑n
τ=1 g̃

k
τ , uk+1 =

∑n
τ=1 u

k+1
τ

13: zk+1 = prox η
(1+ησ1)L1

ψ

(
1

1+ησ1

(
ησ1x

k + zk − g̃k − η
L1
hk

))
14: yk+1 = xk + θ1(z

k+1 − zk)

15: wk+1 =

{
yk if uk+1 = 1
wk otherwise

16: xk+1 = θ1z
k+1 + θ2w

k+1 + (1− θ1 − θ2)y
k+1

17: hk+1 = hk + 1
n

∑n
τ=1Q1(∇f (τ)(wk)− hkτ)

18: end for
19: end for

x∗∥2, Yk := 1
θ1
(P (yk) − P ∗), and Wk := θ2

pqθ1
(P (wk) − P ∗) for k ≥ 0, where P ∗ := P (x∗).

From the update rule of wk in Algorithm 1, it is easy to see that

Ek[Wk+1] = (1− p)Wk + θ2
q Y

k, (10)

for k ≥ 0. Let Bf (x, y) := f(x) − f(y) − ⟨∇f(y), x − y⟩ be the Bregman divergence and Ek[·]
denote the expectation conditional on xk, yk, zk, wk, hkτ , ukτ , and ekτ . The following lemma reveals
the evolution of the other two terms Z̃k and Yk.

Lemma 3.3. If L1 ≥ Lf and θ1 + θ2 ≤ 1, then Ek
[
Z̃k+1 + Yk+1

]
can be upper bounded by

L1

L1+ηµ/2
Z̃k + (1− θ1 − θ2)Yk + pqWk +

(
L1

2η +
µf

2

)
∥ek∥2 +

(
L1

2η + µ
2

)
Ek

[
∥ek+1∥2

]
− 1
θ1

(
θ2 − 2L

nL1

)
Bf (w

k, xk)− 1−θ1−θ2
θ1

Bf (y
k, xk).

Because of the compression, we have the additional error terms ∥ek∥2 and ∥ek+1∥2 in the evolution
of Z̃k and Yk in Lemma 3.3. To upper bound these error terms, we need to analyze the evolution of
1
n

∑n
τ=1 e

k
τ and 1

n

∑n
τ=1 ∥hkτ −∇f (τ)(wk)∥2 in the next two lemmas.

Lemma 3.4. The quantity Ek
[
1
n

n∑
τ=1

∥ek+1
τ ∥2

]
is upper bounded by the expression

(
1− δ

2

)
1
n

n∑
τ=1

∥ekτ∥2 +
4(1−δ)η2
δnL2

1

n∑
τ=1

∥∇f (τ)(wk)− hkτ∥2 +
2(1−δ)η2

L2
1

(
4L̄
δ + L

)
Bf (w

k, xk).

Lemma 3.5. The quantity 1
n

∑n
τ=1 Ek[∥hk+1

τ −∇f (τ)(wk+1)∥2] is upper bounded by the expression

(
1− δ1

2

)
1
n

n∑
τ=1

∥hkτ −∇f (τ)(wk)∥2 + 4L̄p
(
1 + 2p

δ1

)
Bf (y

k, xk) + 4L̄p
(
1 + 2p

δ1

)
Bf (w

k, xk).

6

Under the additional Assumption 2.1, we need to analyze the evolution of ∥ek∥2 and ∥hk−∇f(wk)∥2
as well, which can be found in the appendix.

3.3 Convergence analysis: main results

With the above lemmas at hand, we are ready to construct suitable Lyapunov functions which enable
us to prove linear convergence. First, we construct the Lyapunov function Φk for the general case.
Let L2 := 6L

n + 112(1−δ)L̄
3δ2 + 28(1−δ)L

3δ + 224(1−δ)L̄p
δ2δ1

(
1 + 2p

δ1

)
, and for k ≥ 0 define

Φk := Z̃k + Yk +Wk + 4L1

δη · 1
n

n∑
τ=1

∥ekτ∥2 +
56(1−δ)

3θ1δ2δ1L1
· 1
n

n∑
τ=1

∥hkτ −∇f (τ)(wk)∥2.

Then we can get the linear convergence of Φk in the following theorem.
Theorem 3.6. Let Assumption 3.1 and Assumption 3.2 hold. If L1 ≥ max{Lf , 3µη}, θ1 + 2θ2 ≤ 1,
and θ2 ≥ L2

3L1
, then we have

E
[
Φk

]
≤

(
1−min

(
µ

µ+6θ1L1
, θ1 + θ2 − θ2

q , p(1− q), δ6 ,
δ1
6

))k
Φ0, ∀k ≥ 0.

If Assumption 2.1 holds, we define the Lyapunov function Ψk as follows. Let L3 := 6L
n +

112(1−δ)Lf

3δ2 + 224(1−δ)L̄
δ2n + 308(1−δ)L

3δn + 224(1−δ)p
δ2δ1

(
Lf +

9L̄
n

)(
1 + 2p

δ1

)
, and for k ≥ 0 define

Ψk := Z̃k + Yk +Wk + 4L1

δη ∥ek∥2 + 28L1(1−δ)
δηn · 1

n

n∑
τ=1

∥ekτ∥2

+ 56(1−δ)η
δ2δ1L1

∥hk −∇f(wk)∥2 + 504(1−δ)η
δ2δ1nL1

· 1
n

n∑
τ=1

∥hkτ −∇f (τ)(wk)∥2.

Then we can get the linear convergence of Ψk in Theorem 3.7.
Theorem 3.7. Let Assumption 2.1 , Assumption 3.1 and Assumption 3.2 hold. If L1 ≥ max{Lf , 3µη},
θ1 + 2θ2 ≤ 1, and θ2 ≥ L3

3L1
, then we have

E
[
Ψk

]
≤

(
1−min

(
µ

µ+6θ1L1
, θ1 + θ2 − θ2

q , p(1− q), δ6 ,
δ1
6

))k
Ψ0, ∀k ≥ 0.

From Theorems 3.6 and 3.7, by choosing the parameters appropriately, we can obtain the iteration
complexity for ECLK.
Theorem 3.8. Let Assumption 3.1 and Assumption 3.2 hold. Let L1 = max (L4, Lf , 3µη), θ2 =

L4

3max{Lf ,L4} , and

θ1 =

min

(√
µ

L4p
θ2, θ2

)
if Lf ≤ L4

p

min

(√
µ
Lf
, p3

)
otherwise

.

(i) Let L4 = L2. Then with some q ∈ [23 , 1), we have E[Φk] ≤ ϵΦ0 for

k ≥ O
((

1
δ +

1
δ1

+ 1
p +

√
Lf

µ +
√

L2

µp

)
log 1

ϵ

)
.

In particular, if p ≤ O(δ1), then the iteration complexity becomes

k ≥ O
((

1
δ +

1
p +

√
Lf

µ +
√

L
µpn + 1

δ

√
(1−δ)L̄
µp +

√
(1−δ)L
µpδ

)
log 1

ϵ

)
. (11)

(ii) Let L4 = L3. If Assumption 2.1 holds, then for some q ∈ [23 , 1), we have E[Ψk] ≤ ϵΨ0 for

k ≥ O
((

1
δ +

1
δ1

+ 1
p +

√
Lf

µ +
√

L3

µp

)
log 1

ϵ

)
. If p ≤ O(δ1), the iteration complexity becomes

k ≥ O
((

1
δ +

1
p +

√
Lf

µ +
√

L
µpn + 1

δ

√
(1−δ)Lf

µp +
√

(1−δ)L
µpδn

)
log 1

ϵ

)
. (12)

From Theorem 3.8, it is easy to see that the optimal p for ECLK is Θ(δ1).

7

Comparison to ADIANA. ADIANA [Li et al., 2020] is an accelerated and compressed dis-
tributed method with any unbiased compressor. The iteration complexity of ADIANA is

O
(
ω
(
1 +

√
L̄
nµ

)
log 1

ϵ

)
when n ≤ ω, and O

((
ω +

√
L̄
µ +

√√
ω
n
ωL̄
µ

)
log 1

ϵ

)
when n > ω.

If we choose Q and Q1 in ECLK to be the contraction compressor 1
ω+1 Q̃ where Q̃ is any unbiased

compressor, then δ = δ1 = 1
ω+1 , and thus the complexity in (12) becomes

O
((

ω +
√

Lf

µ +
√

(ω+1)L
µn + (ω + 1)

√
ωLf

µ +
√

ω(ω+1)L
µn

)
log 1

ϵ

)
,

for p = δ1. In this case, the dependency of ω of the iteration complexity of ADIANA is better than
that of ECLK. However, the full gradients are computed by all nodes at each iteration in ADIANA,
which could be slower than the communication when m is very large. Furthermore, the contraction
compressor could be more efficient than the unbiased compressor in practice, i.e., for the same level
of compression, δ could be larger than 1/(ω+1). This efficiency of the contraction compressor is
the motivation to study the error compensated methods, and in numerical experiments, ECLK is
comparable to ADIANA.

4 Experiments

In this section, we experimentally study the performance of error compensated L-Katyusha (ECLK)
used with several contraction compressors on the logistic regression problem for binary classification,

x 7→ log
(
1 + exp(−yiATi x)

)
+ λ

2 ∥x∥
2,

where {Ai, yi} are the training data points. We use Python 3.7 to perform the experiments. We
use the datasets a5a, a9a, w6a, w8a, phishing, and mushrooms from the LIBSVM library [Chang
and Lin, 2011]. The regularization parameter was set to λ = 10−3. The number of nodes in our
experiments is n = 20, and the optimal solution is obtained by running the uncompressed L-Katyusha
for 105 iterations. More experiments can be found in the appendix.

Compressors. We use three contraction compressors: the TopK compressor with K = 1, or the
compressor 1

ω+1 Q̃, where Q̃ is either the unbiased random dithering compressor with s =
√
d levels

[Alistarh et al., 2017] or the natural compressor [Horváth et al., 2019b]. For the Top1 compressor,
the number of communicated bits for the compressed vector is 64 + ⌈log d⌉, and δ = 1/d. For the
random dithering compressor with s =

√
d, the number of communicated bits for the compressed

vector is 2.8d + 64, and ω = 1 [Alistarh et al., 2017] . For the natural compressor, the number of
communicated bits for the compressed vector is 12d, and ω = 1/8 [Horváth et al., 2019b].

Parameter setting. In all the experiments, we search for the optimal stepsize for all tested algo-
rithms. In particular, we use the parameter setting in Theorem 3.8 (i) for ECLK. From Theorem 3.8
(i), we know that we can set values for all parameters if we know values of µ, δ, δ1, p, and Lipschitz
constants. For the tested problem, µ = λ. Q andQ1 are chosen to be the same contraction compressor
for ECLK, which implies that δ = δ1, and the lower bound for δ can be obtained easily for our used
compressors. We set p = δ for ECLK except in Section 4.4. We calculate the theoretical Lf , L̄, and
L as Lthf , L̄th, and Lth, respectively. Then we choose Lf = t ·Lthf , L̄ = t · L̄th, and L = t ·Lth, and
search for the best t in the set t ∈ {10−k | k = 0, 1, 2, ...}. We set p = δ for EC-LSVRG-DIANA
[Gorbunov et al., 2020]. EC-LSVRG-DIANA requires the use of an additional unbiased compressor;
for this we make use of random dithering.

4.1 Top1 vs random dithering vs natural compression vs no compression

First, we compare the uncompressed L-Katyusha method with ECLK with three contraction compres-
sors: Top1, random dithering, and natural compression; see Figure 1. ECLK is orders of magnitude
better in terms of communication complexity.

4.2 Comparison with EC-LSVRG-DIANA and ECGD

Next, we compare ECLK with EC-LSVRG-DIANA [Gorbunov et al., 2020] and error compensated
GD (ECGD) using the Top1, random dithering, and natural compressor. Note that ECGD is a special

8

0 10 20 30 40 50
Communicated bits per node (1 × 105 bits)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

P(
xk

)−
P

*

mushrooms
Top1
Random dithering
Natural compression
No compression

0 10 20 30 40 50 60
Communicated bits per node (1 × 105 bits)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

P(
xk

)−
P

*

w8a
Top1
Random dithering
Natural compression
No compression

0 10 20 30 40 50 60 70 80
Communicated bits per node (1 × 105 bits)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

P(
xk

)−
P

*

a9a
Top1
Random dithering
Natural compression
No compression

Figure 1: The communication complexity performance of ECLK used with compressors: Top1 vs
random dithering vs natural compression vs no compression. Datasets: mushrooms, w8a, and a9a.

0 5 10 15 20 25 30 35
Communicated bits per node (1 × 105 bits)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

P(
xk

)−
P

*

Top1

data: a9a
ECLK
EC-LSVRG-DIANA
ECGD

0 5 10 15 20 25 30 35 40
Communicated bits per node (1 × 105 bits)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

P(
xk

)−
P

*

Random dithering
data: a9a

ECLK
EC-LSVRG-DIANA
ECGD

0 20 40 60 80 100 120
Communicated bits per node (1 × 105 bits)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

P(
xk

)−
P

*

Natural compression

data: a9a
ECLK
EC-LSVRG-DIANA
ECGD

Figure 2: The communication complexity performance of ECGD vs EC-LSVRG-DIANA vs ECLK
for Top1, Random dithering, and Natural compression on a9a data set.

case of error compensated SGD [Stich et al., 2018] with m = 1, where the full gradient ∇f (τ)(xk)
is calculated on each node. Figures 2 and 3 show that ECGD can only converge to a neighborhood of
the optimal solution, and that ECLK is considerably faster than EC-LSVRG-DIANA.

4.3 Comparison with ADIANA

Let us denote by ECLK-F the special case of ECLK with m = 1, i.e., the full gradient ∇f (τ)(xk)
is calculated on each node. We compare ECLK-F with the accelerated variant of DIANA, called
ADIANA [Li et al., 2020], for six data sets. For ADIANA we use two unbiased compressors: random
dithering and natural compression. Figure 4 shows that in terms of communication complexity,
ECLK-F is comparable to ADIANA, and can be better than ADIANA in some cases.

4.4 Impact of the update frequency of the reference point

Finally, we test the impact of the update frequency of the reference point p for ECLK with Top1
compressor; see Figure 5. We choose five values for p: δ/3, δ, 3δ, 9δ, and 1. Figure 5 shows that the
performance of p = δ is usually better than p = δ/3. As we increase p from p = δ, the performance
of ECLK could be improved. However, if p is too large, the performance of ECLK is no better than
p = δ, generally.

0 10 20 30 40 50
Communicated bits per node (1 × 105 bits)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

P(
xk

)−
P

*

Top1

data: mushrooms
ECLK
EC-LSVRG-DIANA
ECGD

0 2 4 6 8 10 12 14
Communicated bits per node (1 × 105 bits)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

P(
xk

)−
P

*

Random dithering
data: mushrooms
ECLK
EC-LSVRG-DIANA
ECGD

0 20 40 60 80 100 120
Communicated bits per node (1 × 105 bits)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

P(
xk

)−
P

*

Natural compression

data: mushrooms
ECLK
EC-LSVRG-DIANA
ECGD

Figure 3: The communication complexity performance of ECGD vs EC-LSVRG-DIANA vs ECLK
for Top1, Random dithering, and Natural compression on mushrooms data set.

9

0 5 10 15 20 25
Communicated bits per node (1 × 105 bits)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

P(
xk

)−
P

*

mushrooms
ECLK-F Top1
ECLK-F Random dithering
ECLK-F Natural compression
ADIANA Random dithering
ADIANA Natural compression

0 5 10 15 20 25
Communicated bits per node (1 × 105 bits)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

P(
xk

)−
P

*

w8a
ECLK-F Top1
ECLK-F Random dithering
ECLK-F Natural compression
ADIANA Random dithering
ADIANA Natural compression

0 10 20 30 40 50 60
Communicated bits per node (1 × 105 bits)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

P(
xk

)−
P

*

a9a
ECLK-F Top1
ECLK-F Random dithering
ECLK-F Natural compression
ADIANA Random dithering
ADIANA Natural compression

0 5 10 15 20 25 30
Communicated bits per node (1 × 105 bits)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

P(
xk

)−
P

*

phishing
ECLK-F Top1
ECLK-F Random dithering
ECLK-F Natural compression
ADIANA Random dithering
ADIANA Natural compression

0 5 10 15 20 25 30
Communicated bits per node (1 × 105 bits)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

P(
xk

)−
P

*

w6a
ECLK-F Top1
ECLK-F Random dithering
ECLK-F Natural compression
ADIANA Random dithering
ADIANA Natural compression

0 10 20 30 40 50 60
Communicated bits per node (1 × 105 bits)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

P(
xk

)−
P

*

a5a
ECLK-F Top1
ECLK-F Random dithering
ECLK-F Natural compression
ADIANA Random dithering
ADIANA Natural compression

Figure 4: The communication complexity performance of ECLK vs ADIANA for Top1, Random
dithering, and Natural compression on mushrooms, w8a, a9a, phishing, w6a, and a5a data sets.

0 10 20 30 40 50 60
Communicated bits per node (1 × 105 bits)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

P(
xk

)−
P

*

mushrooms
Top1

ECLK p = δ/3
ECLK p = δ
ECLK p = 3δ
ECLK p = 9δ
ECLK p = 1

0 10 20 30 40 50 60
Communicated bits per node (1 × 105 bits)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

P(
xk

)−
P

*

w8a
Top1

ECLK p = δ/3
ECLK p = δ
ECLK p = 3δ
ECLK p = 9δ
ECLK p = 1

0 10 20 30 40 50 60 70 80 90
Communicated bits per node (1 × 105 bits)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

P(
xk

)−
P

*

a9a

Top1
ECLK p = δ/3
ECLK p = δ
ECLK p = 3δ
ECLK p = 9δ
ECLK p = 1

Figure 5: The communication complexity performance of ECLK with the Top1 compressor and
p ∈ {δ/3, δ, 3δ, 9δ, 1} on the mushrooms, w8a, and a9a data sets.

Acknowledgments and Disclosure of Funding

Xun Qian and Peter Richtárik acknowledge funding by the KAUST Baseline Research Funding
Scheme, the Extreme Computing Research Center at KAUST, and administrative support from the
Visual Computing Center at KAUST. Tong Zhang acknowledges further funding by GRF 16201320.

10

References
A. Agarwal and J. C. Duchi. Distributed delayed stochastic optimization. In Advances in Neural

Information Processing Systems (NIPS), pages 873–881, 2011.

D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. QSGD: Communication-efficient SGD
via gradient quantization and encoding. In Advances in Neural Information Processing Systems
(NIPS), pages 1709–1720, 2017.

D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat, and C. Renggli. The convergence
of sparsified gradient methods. In Advances in Neural Information Processing Systems (NeurIPS),
pages 5973–5983, 2018.

Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. The
Journal of Machine Learning Research, 18(1):8194–8244, 2017.

J. Bernstein, Y. X. Wang, K. Azizzadenesheli, and A. Anandkumar. SignSGD: Compressed optimisa-
tion for non-convex problems. pages 560–569, 2018.

A. Beznosikov, S. Horváth, P. Richtárik, and M. Safaryan. On biased compression for distributed
learning. arXiv preprint arXiv:2002.12410, 2020.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST), 2(3):1–27, 2011.

Eduard Gorbunov, Dmitry Kovalev, Dmitry Makarenko, and Peter Richtárik. Linearly converging
error compensated SGD. In Neural Information Processing Systems (NeurIPS), 2020.

P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He.
Accurate, large minibatch SGD: Training imagenet in 1 hour. arXiv preprint arXiv:1706.2677,
2017.

Filip Hanzely and Peter Richtárik. Federated learning of a mixture of global and local models. arXiv
preprint arXiv:2002.05516, 2020.

S. Horváth, D. Kovalev, K. Mishchenko, S. Stich, and P. Richtárik. Stochastic distributed learning
with gradient quantization and variance reduction. arXiv preprint arXiv:1904.05115, 2019a.

Samuel Horváth, Chen-Yu Ho, L’udovít Horvath, Atal Narayan Sahu, Marco Canini, and Peter
Richtárik. Natural compression for distributed deep learning. arXiv preprint arXiv:1905.10988,
2019b.

Peter et al Kairouz. Advances and open problems in federated learning. arXiv preprint
arXiv:1912.04977, 2019.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian U Stich, and Martin Jaggi. Error feedback
fixes SignSGD and other gradient compression schemes. arXiv preprint arXiv:1901.09847, 2019.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local SGD on
identical and heterogeneous data. In The 23rd International Conference on Artificial Intelligence
and Statistics (AISTATS), 2020.

Jakub Konečný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimization:
distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527, 2016a.

Jakub Konečný, H. Brendan McMahan, Felix Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave
Bacon. Federated learning: strategies for improving communication efficiency. In NIPS Private
Multi-Party Machine Learning Workshop, 2016b.

D. Kovalev, S.l Horváth, and P. Richtárik. Don’t jump through hoops and remove those loops: SVRG
and Katyusha are better without the outer loop. In Proceedings of the 31st International Conference
on Algorithmic Learning Theory (ALT), 2020.

Guanghui Lan and Yi Zhou. An optimal randomized incremental gradient method. Mathematical
programming, 171(1):167–215, 2018.

11

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: challenges,
methods, and future directions. arXiv preprint arXiv:1908.07873, 2019.

Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtárik. Acceleration for compressed gradient
descent in distributed and federated optimization. In Proceedings of the 37th International
Conference on Machine Learning (ICML), 2020.

X. Lian, Y. Huang, Y. Li, and J. Liu. Asynchronous parallel stochastic gradient for nonconvex
optimization. In Advances in Neural Information Processing Systems (NIPS), pages 2737–2745,
2015.

Chenxin Ma, Jakub Konečný, Martin Jaggi, Virginia Smith, Michael I. Jordan, Peter Richtárik, and
Martin Takáč. Distributed optimization with arbitrary local solvers. Optimization Methods and
Software, 32(4):813–848, 2017.

H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Proceedings of the
20th International Conference on Artificial Intelligence and Statistics (AISTATS), 2017.

K. Mishchenko, E. Gorbunov, M. Takáč, and P. Richtárik. Distributed learning with compressed
gradient differences. arXiv preprint arXiv:1901.09269, 2019.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate O(1/k2).
Soviet Mathematics Doklady, 27(2):372–376, 1983.

Yurii Nesterov. Introductory lectures on convex optimization: a basic course (Applied Optimization).
Kluwer Academic Publishers, 2004.

Xun Qian, Zheng Qu, and Peter Richtárik. L-SVRG and L-Katyusha with arbitrary sampling. arXiv
preprint arXiv:1906.01481, 2019.

B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing stochastic
gradient descent. In Advances in Neural Information Processing Systems (NIPS), pages 693–701,
2011.

F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochastic gradient descent and its application to
data- parallel distributed training of speech DNNs. Fifteenth Annual Conference of the International
Speech Communication Association, 2014.

S. U. Stich and S. P. Karimireddy. The error-feedback framework: Better rates for SGD with delayed
gradients and compressed communication. arXiv preprint arXiv:1909.05350, 2019.

S. U. Stich, J. B. Cordonnier, and M. Jaggi. Sparsified SGD with memory. In Advances in Neural
Information Processing Systems (NeurIPS), pages 4447–4458, 2018.

Sebastian U. Stich. Local SGD converges fast and communicates little. In International Conference
on Learning Representations (ICLR), 2020.

H. Tang, S. Gan, C. Zhang, T. Zhang, and J. Liu. Communication compression for decentralized
training. In Advances in Neural Information Processing Systems (NeurIPS), pages 7652–7662,
2018.

H. Tang, X. Lian, T. Zhang, and J. Liu. DoubleSqueeze: Parallel stochastic gradient descent with
double-pass error-compensated compression. In Proceedings of the 36th International Conference
on Machine Learning (ICML), pages 6155–6165, 2019.

W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, and H. Li. Terngrad: Ternary gradients to reduce
communication in distributed deep learning. In Advances in Neural Information Processing
Systems (NIPS), pages 1509–1519, 2017.

Blake Woodworth, Kumar Kshitij Patel, Sebastian U. Stich, Zhen Dai, Brian Bullins, H. Brendan
McMahan, Ohad Shamir, and Nathan Srebro. Is local SGD better than minibatch SGD? arXiv
preprint arXiv:2002.07839, 2020.

12

J. Wu, W. Huang, J. Huang, and T. Zhang. Error compensated quantized SGD and its applications to
large-scale distributed optimization. In The 35th International Conference on Machine Learning
(ICML), pages 5321–5329, 2018.

Y. You, I. Gitman, and B. Ginsburg. Scaling SGD batch size to 32k for imagenet training. arXiv
preprint arXiv:1708.03888, 2017.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] We need Assumptions 3.1 and

3.2 for our results.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Assump-
tions 2.1, 3.1, and 3.2.

(b) Did you include complete proofs of all theoretical results? [Yes] We include the
complete proofs in the Appendix.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Data sets are
from the LIBSVM library. Code and instructions are in the supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] We used a fixed random seed to make sure the numerical
results can be reproduced.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] We run the experiments on a laptop,
and we did not count the time. Hence the results are independent of the amount of
compute and the type of resources.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We used the LIBSVM

library and cited.
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction
	Problem Description and Summary of Contributions
	Problem Description
	Contributions

	Error compensated L-Katyusha
	Description of the method
	Convergence analysis: preliminaries
	Convergence analysis: main results

	Experiments
	Top1 vs random dithering vs natural compression vs no compression
	Comparison with EC-LSVRG-DIANA and ECGD
	Comparison with ADIANA
	Impact of the update frequency of the reference point

