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Abstract

Vision transformer (ViT) models exhibit substandard optimizability. In particular,
they are sensitive to the choice of optimizer (AdamW vs. SGD), optimizer hyperpa-
rameters, and training schedule length. In comparison, modern convolutional neural
networks are easier to optimize. Why is this the case? In this work, we conjecture
that the issue lies with the patchify stem of ViT models, which is implemented by
a stride-p p×p convolution (p = 16 by default) applied to the input image. This
large-kernel plus large-stride convolution runs counter to typical design choices
of convolutional layers in neural networks. To test whether this atypical design
choice causes an issue, we analyze the optimization behavior of ViT models with
their original patchify stem versus a simple counterpart where we replace the ViT
stem by a small number of stacked stride-two 3×3 convolutions. While the vast
majority of computation in the two ViT designs is identical, we find that this small
change in early visual processing results in markedly different training behavior in
terms of the sensitivity to optimization settings as well as the final model accuracy.
Using a convolutional stem in ViT dramatically increases optimization stability
and also improves peak performance (by ∼1-2% top-1 accuracy on ImageNet-1k),
while maintaining flops and runtime. The improvement can be observed across the
wide spectrum of model complexities (from 1G to 36G flops) and dataset scales
(from ImageNet-1k to ImageNet-21k). These findings lead us to recommend using
a standard, lightweight convolutional stem for ViT models in this regime as a more
robust architectural choice compared to the original ViT model design.

1 Introduction

Vision transformer (ViT) models [13] offer an alternative design paradigm to convolutional neural
networks (CNNs) [24]. ViTs replace the inductive bias towards local processing inherent in con-
volutions with global processing performed by multi-headed self-attention [43]. The hope is that
this design has the potential to improve performance on vision tasks, akin to the trends observed
in natural language processing [11]. While investigating this conjecture, researchers face another
unexpected difference between ViTs and CNNs: ViT models exhibit substandard optimizability.
ViTs are sensitive to the choice of optimizer [41] (AdamW [27] vs. SGD), to the selection of dataset
specific learning hyperparameters [13, 41], to training schedule length, to network depth [42], etc.
These issues render former training recipes and intuitions ineffective and impede research.

Convolutional neural networks, in contrast, are exceptionally easy and robust to optimize. Simple
training recipes based on SGD, basic data augmentation, and standard hyperparameter values have
been widely used for years [19]. Why does this difference exist between ViT and CNN models? In
this paper we hypothesize that the issues lies primarily in the early visual processing performed by
ViT. ViT “patchifies” the input image into p×p non-overlapping patches to form the transformer
encoder’s input set. This patchify stem is implemented as a stride-p p×p convolution, with p = 16
as a default value. This large-kernel plus large-stride convolution runs counter to the typical design
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Figure 1: Early convolutions help transformers see better: We hypothesize that the substandard
optimizability of ViT models compared to CNNs primarily arises from the early visual processing
performed by its patchify stem, which is implemented by a non-overlapping stride-p p×p convolution,
with p = 16 by default. We minimally replace the patchify stem in ViT with a standard convolutional
stem of only ∼5 convolutions that has approximately the same complexity as a single transformer
block. We reduce the number of transformer blocks by one (i.e., L − 1 vs. L) to maintain parity
in flops, parameters, and runtime. We refer to the resulting model as ViTC and the original ViT as
ViTP . The vast majority of computation performed by these two models is identical, yet surprisingly
we observe that ViTC (i) converges faster, (ii) enables, for the first time, the use of either AdamW
or SGD without a significant accuracy drop, (iii) shows greater stability to learning rate and weight
decay choice, and (iv) yields improvements in ImageNet top-1 error allowing ViTC to outperform
state-of-the-art CNNs, whereas ViTP does not.

choices used in CNNs, where best-practices have converged to a small stack of stride-two 3×3 kernels
as the network’s stem (e.g., [30, 36, 39]).

To test this hypothesis, we minimally change the early visual processing of ViT by replacing its
patchify stem with a standard convolutional stem consisting of only ∼5 convolutions, see Figure 1.
To compensate for the small addition in flops, we remove one transformer block to maintain parity in
flops and runtime. We observe that even though the vast majority of the computation in the two ViT
designs is identical, this small change in early visual processing results in markedly different training
behavior in terms of the sensitivity to optimization settings as well as the final model accuracy.

In extensive experiments we show that replacing the ViT patchify stem with a more standard
convolutional stem (i) allows ViT to converge faster (§5.1), (ii) enables, for the first time, the
use of either AdamW or SGD without a significant drop in accuracy (§5.2), (iii) brings ViT’s
stability w.r.t. learning rate and weight decay closer to that of modern CNNs (§5.3), and (iv) yields
improvements in ImageNet [10] top-1 error of ∼1-2 percentage points (§6). We consistently observe
these improvements across a wide spectrum of model complexities (from 1G flops to 36G flops) and
dataset scales (ImageNet-1k to ImageNet-21k).

These results show that injecting some convolutional inductive bias into ViTs can be beneficial under
commonly studied settings. We did not observe evidence that the hard locality constraint in early
layers hampers the representational capacity of the network, as might be feared [9]. In fact we
observed the opposite, as ImageNet results improve even with larger-scale models and larger-scale
data when using a convolution stem. Moreover, under carefully controlled comparisons, we find that
ViTs are only able to surpass state-of-the-art CNNs when equipped with a convolutional stem (§6).

We conjecture that restricting convolutions in ViT to early visual processing may be a crucial design
choice that strikes a balance between (hard) inductive biases and the representation learning ability of
transformer blocks. Evidence comes by comparison to the “hybrid ViT” presented in [13], which
uses 40 convolutional layers (most of a ResNet-50) and shows no improvement over the default ViT.
This perspective resonates with the findings of [9], who observe that early transformer blocks prefer
to learn more local attention patterns than later blocks. Finally we note that exploring the design
of hybrid CNN/ViT models is not a goal of this work; rather we demonstrate that simply using a
minimal convolutional stem with ViT is sufficient to dramatically change its optimization behavior.

In summary, the findings presented in this paper lead us to recommend using a standard, lightweight
convolutional stem for ViT models in the analyzed dataset scale and model complexity spectrum as a
more robust and higher performing architectural choice compared to the original ViT model design.
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2 Related Work

Convolutional neural networks (CNNs). The breakthrough performance of the AlexNet [23]
CNN [15, 24] on ImageNet classification [10] transformed the field of recognition, leading to
the development of higher performing architectures, e.g., [19, 36, 37, 48], and scalable training
methods [16, 21]. These architectures are now core components in object detection (e.g., [34]),
instance segmentation (e.g., [18]), and semantic segmentation (e.g., [26]). CNNs are typically trained
with stochastic gradient descent (SGD) and are widely considered to be easy to optimize.

Self-attention in vision models. Transformers [43] are revolutionizing natural language processing
by enabling scalable training. Transformers use multi-headed self-attention, which performs global
information processing and is strictly more general than convolution [6]. Wang et al. [46] show
that (single-headed) self-attention is a form of non-local means [2] and that integrating it into a
ResNet [19] improves several tasks. Ramachandran et al. [32] explore this direction further with
stand-alone self-attention networks for vision. They report difficulties in designing an attention-based
network stem and present a bespoke solution that avoids convolutions. In contrast, we demonstrate
the benefits of a convolutional stem. Zhao et al. [53] explore a broader set of self-attention operations
with hard-coded locality constraints, more similar to standard CNNs.

Vision transformer (ViT). Dosovitskiy et al. [13] apply a transformer encoder to image classification
with minimal vision-specific modifications. As the counterpart of input token embeddings, they
partition the input image into, e.g., 16×16 pixel, non-overlapping patches and linearly project them
to the encoder’s input dimension. They report lackluster results when training on ImageNet-1k,
but demonstrate state-of-the-art transfer learning when using large-scale pretraining data. ViTs are
sensitive to many details of the training recipe, e.g., they benefit greatly from AdamW [27] compared
to SGD and require careful learning rate and weight decay selection. ViTs are generally considered
to be difficult to optimize compared to CNNs (e.g., see [13, 41, 42]). Further evidence of challenges
comes from Chen et al. [4] who report ViT optimization instability in self-supervised learning (unlike
with CNNs), and find that freezing the patchify stem at its random initialization improves stability.

ViT improvements. ViTs are gaining rapid interest in part because they may offer a novel direction
away from CNNs. Touvron et al. [41] show that with more regularization and stronger data aug-
mentation ViT models achieve competitive accuracy on ImageNet-1k alone (cf . [13]). Subsequently,
works concurrent with our own explore numerous other ViT improvements. Dominant themes include
multi-scale networks [14, 17, 25, 45, 50], increasing depth [42], and locality priors [5, 9, 17, 47, 49].
In [9], d’Ascoli et al. modify multi-head self-attention with a convolutional bias at initialization and
show that this prior improves sample efficiency and ImageNet accuracy. Resonating with our work,
[5, 17, 47, 49] present models with convolutional stems, but do not analyze optimizability (our focus).

Discussion. Unlike the concurrent work on locality priors in ViT, our focus is studying optimizability
under minimal ViT modifications in order to derive crisp conclusions. Our perspective brings several
novel observations: by adding only ∼5 convolutions to the stem, ViT can be optimized well with
either AdamW or SGD (cf . all prior works use AdamW to avoid large drops in accuracy [41]), it
becomes less sensitive to the specific choice of learning rate and weight decay, and training converges
faster. We also observe a consistent improvement in ImageNet top-1 accuracy across a wide spectrum
of model complexities (1G flops to 36G flops) and dataset scales (ImageNet-1k to ImageNet-21k).
These results suggest that a (hard) convolutional bias early in the network does not compromise
representational capacity, as conjectured in [9], and is beneficial within the scope of this study.

3 Vision Transformer Architectures

Next, we review vision transformers [13] and describe the convolutional stems used in our work.

The vision transformer (ViT). ViT first partitions an input image into non-overlapping p×p patches
and linearly projects each patch to a d-dimensional feature vector using a learned weight matrix. A
patch size of p = 16 and an image size of 224×224 are typical. The resulting patch embeddings (plus
positional embeddings and a learned classification token embedding) are processed by a standard
transformer encoder [43, 44] followed by a classification head. Using common network nomenclature,
we refer to the portion of ViT before the transformer blocks as the network’s stem. ViT’s stem is a
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model ref hidden MLP num num flops params acts time
model size mult heads blocks (B) (M) (M) (min)

ViTP -1GF ∼ViT-T 192 3 3 12 1.1 4.8 5.5 2.6
ViTP -4GF ∼ViT-S 384 3 6 12 3.9 18.5 11.1 3.8
ViTP -18GF =ViT-B 768 4 12 12 17.5 86.7 24.0 11.5
ViTP -36GF 3

5
ViT-L 1024 4 16 14 35.9 178.4 37.3 18.8

model hidden MLP num num flops params acts time
size mult heads blocks (B) (M) (M) (min)

ViTC -1GF 192 3 3 11 1.1 4.6 5.7 2.7
ViTC -4GF 384 3 6 11 4.0 17.8 11.3 3.9
ViTC -18GF 768 4 12 11 17.7 81.6 24.1 11.4
ViTC -36GF 1024 4 16 13 35.0 167.8 36.7 18.6

Table 1: Model definitions: Left: Our ViTP models at various complexities, which use the original
patchify stem and closely resemble the original ViT models [13]. To facilitate comparisons with
CNNs, we modify the original ViT-Tiny, -Small, -Base, -Large models to obtain models at 1GF, 4GF,
18GF, and 36GF, respectively. The modifications are indicated in blue and include reducing the MLP
multiplier from 4× to 3× for the 1GF and 4GF models, and reducing the number of transformer
blocks from 24 to 14 for the 36GF model. Right: Our ViTC models at various complexities that use
the convolutional stem. The only additional modification relative to the corresponding ViTP models
is the removal of 1 transformer block to compensate for the increased flops of the convolutional stem.
We show complexity measures for all models (flops, parameters, activations, and epoch training time
on ImageNet-1k); the corresponding ViTP and ViTC models match closely on all metrics.

specific case of convolution (stride-p, p×p kernel), but we will refer to it as the patchify stem and
reserve the terminology of convolutional stem for stems with a more conventional CNN design with
multiple layers of overlapping convolutions (i.e., with stride smaller than the kernel size).

ViTP models. Prior work proposes ViT models of various sizes, such as ViT-Tiny, ViT-Small,
ViT-Base, etc. [13, 41]. To facilitate comparisons with CNNs, which are typically standardized to 1
gigaflop (GF), 2GF, 4GF, 8GF, etc., we modify the original ViT models to obtain models at about
these complexities. Details are given in Table 1 (left). For easier comparison with CNNs of similar
flops, and to avoid subjective size names, we refer the models by their flops, e.g., ViTP -4GF in place
of ViT-Small. We use the P subscript to indicate that these models use the original patchify stem.

Convolutional stem design. We adopt a typical minimalist convolutional stem design by stacking
3×3 convolutions [36], followed by a single 1×1 convolution at the end to match the d-dimensional
input of the transformer encoder. These stems quickly downsample a 224×224 input image using
overlapping strided convolutions to 14×14, matching the number of inputs created by the standard
patchify stem. We follow a simple design pattern: all 3×3 convolutions either have stride 2 and
double the number of output channels or stride 1 and keep the number of output channels constant.
We enforce that the stem accounts for approximately the computation of one transformer block of
the corresponding model so that we can easily control for flops by removing one transformer block
when using the convolutional stem instead of the patchify stem. Our stem design was chosen to be
purposefully simple and we emphasize that it was not designed to maximize model accuracy.

ViTC models. To form a ViT model with a convolutional stem, we simply replace the patchify stem
with its counterpart convolutional stem and remove one transformer block to compensate for the
convolutional stem’s extra flops (see Figure 1). We refer to the modified ViT with a convolutional stem
as ViTC . Configurations for ViTC at various complexities are given in Table 1 (right); corresponding
ViTP and ViTC models match closely on all complexity metrics including flops and runtime.

Convolutional stem details. Our convolutional stem designs use four, four, and six 3×3 convolutions
for the 1GF, 4GF, and 18GF models, respectively. The output channels are [24, 48, 96, 192], [48,
96, 192, 384], and [64, 128, 128, 256, 256, 512], respectively. All 3×3 convolutions are followed by
batch norm (BN) [21] and then ReLU [29], while the final 1×1 convolution is not, to be consistent
with the original patchify stem. Eventually, matching stem flops to transformer block flops results in
an unreasonably large stem, thus ViTC-36GF uses the same stem as ViTC-18GF.

Convolutions in ViT. Dosovitskiy et al. [13] also introduced a “hybrid ViT” architecture that blends
a modified ResNet [19] (BiT-ResNet [22]) with a transformer encoder. In their hybrid model, the
patchify stem is replaced by a partial BiT-ResNet-50 that terminates at the output of the conv4 stage
or the output of an extended conv3 stage. These image embeddings replace the standard patchify
stem embeddings. This partial BiT-ResNet-50 stem is deep, with 40 convolutional layers. In this
work, we explore lightweight convolutional stems that consist of only 5 to 7 convolutions in total,
instead of the 40 used by the hybrid ViT. Moreover, we emphasize that the goal of our work is not to
explore the hybrid ViT design space, but rather to study the optimizability effects of simply replacing
the patchify stem with a minimal convolutional stem that follows standard CNN design practices.
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4 Measuring Optimizability

It has been noted in the literature that ViT models are challenging to optimize, e.g., they may achieve
only modest performance when trained on a mid-size dataset (ImageNet-1k) [13], are sensitive to data
augmentation [41] and optimizer choice [41], and may perform poorly when made deeper [42]. We
empirically observed the general presence of such difficulties through the course of our experiments
and informally refer to such optimization characteristics collectively as optimizability.

Models with poor optimizability can yield very different results when hyperparameters are varied,
which can lead to seemingly bizarre observations, e.g., removing erasing data augmentation [54]
causes a catastrophic drop in ImageNet accuracy in [41]. Quantitative metrics to measure optimiz-
ability are needed to allow for more robust comparisons. In this section, we establish the foundations
of such comparisons; we extensively test various models using these optimizability measures in §5.

Training length stability. Prior works train ViT models for lengthy schedules, e.g., 300 to 400
epochs on ImageNet is typical (at the extreme, [17] trains models for 1000 epochs), since results at a
formerly common 100-epoch schedule are substantially worse (2-4% lower top-1 accuracy, see §5.1).
In the context of ImageNet, we define top-1 accuracy at 400 epochs as an approximate asymptotic
result, i.e., training for longer will not meaningfully improve top-1 accuracy, and we compare it to the
accuracy of models trained for only 50, 100, or 200 epochs. We define training length stability as the
gap to asymptotic accuracy. Intuitively, it’s a measure of convergence speed. Models that converge
faster offer obvious practical benefits, especially when training many model variants.

Optimizer stability. Prior works use AdamW [27] to optimize ViT models from random initialization.
Results of SGD are not typically presented and we are only aware of Touvron et al. [41]’s report of a
dramatic ∼7% drop in ImageNet top-1 accuracy. In contrast, widely used CNNs, such as ResNets, can
be optimized equally well with either SGD or AdamW (see §5.2) and SGD (always with momentum)
is typically used in practice. SGD has the practical benefit of having fewer hyperparameters (e.g.,
tuning AdamW’s β2 can be important [3]) and requiring 50% less optimizer state memory, which
can ease scaling. We define optimizer stability as the accuracy gap between AdamW and SGD. Like
training length stability, we use optimizer stability as a proxy for the ease of optimization of a model.

Hyperparameter (lr, wd) stability. Learning rate (lr) and weight decay (wd) are among the most
important hyperparameters governing optimization with SGD and AdamW. New models and datasets
often require a search for their optimal values as the choice can dramatically affect results. It is
desirable to have a model and optimizer that yield good results for a wide range of learning rate
and weight decay values. We will explore this hyperparameter stability by comparing the error
distribution functions (EDFs) [30] of models trained with various choices of lr and wd. In this
setting, to create an EDF for a model we randomly sample values of lr and wd and train the model
accordingly. Distributional estimates, like those provided by EDFs, give a more complete view of the
characteristics of models that point estimates cannot reveal [30, 31]. We will review EDFs in §5.3.

Peak performance. The maximum possible performance of each model is the most commonly used
metric in previous literature and it is often provided without carefully controlling training details
such as data augmentations, regularization methods, number of epochs, and lr, wd tuning. To make
more robust comparisons, we define peak performance as the result of a model at 400 epochs using
its best-performing optimizer and parsimoniously tuned lr and wd values (details in §6), while fixing
justifiably good values for all other variables that have a known impact on training. Peak performance
results for ViTs and CNNs under these carefully controlled training settings are presented in §6.

5 Stability Experiments

In this section we test the stability of ViT models with the original patchify (P ) stem vs. the
convolutional (C) stem defined in §3. For reference, we also train RegNetY [12, 31], a state-of-the-art
CNN that is easy to optimize and serves as a reference point for good stability.

We conduct experiments using ImageNet-1k [10]’s standard training and validation sets, and report
top-1 error. Following [12], for all results, we carefully control training settings and we use a minimal
set of data augmentations that still yields strong results, for details see §5.4. In this section, unless
noted, for each model we use the optimal lr and wd found under a 50 epoch schedule (see Appendix).
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Figure 2: Training length stability: We train 9 models for 50 to 400 epochs on ImageNet-1k and plot
the ∆top-1 error to the 400 epoch result for each. ViTC demonstrates faster convergence than ViTP

across the model complexity spectrum, and helps close the gap to CNNs (represented by RegNetY).
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Figure 3: Optimizer stability: We train each model for 50 to 400 epochs with AdamW (upward
triangle N) and SGD (downward triangle H). For the baseline ViTP , SGD yields significantly worse
results than AdamW. In contrast, ViTC and RegNetY models exhibit a much smaller gap between
SGD and AdamW across all settings. Note that for long schedules, ViTP often fails to converge with
SGD (i.e., loss goes to NaN), in such cases we copy the best results from a shorter schedule of the
same model (and show the results via a dashed line).

5.1 Training Length Stability

We first explore how rapidly networks converge to their asymptotic error on ImageNet-1k, i.e., the
highest possible accuracy achievable by training for many epochs. We approximate asymptotic error
as a model’s error using a 400 epoch schedule based on observing diminishing returns from 200 to
400. We consider a grid of 24 experiments for ViT: {P , C} stems × {1, 4, 18} GF model sizes ×
{50, 100, 200, 400} epochs. For reference we also train RegNetY at {1, 4, 16} GF. We use the best
optimizer choice for each model (AdamW for ViT models and SGD for RegNetY models).

Results. Figure 2 shows the absolute error deltas (∆top-1) between 50, 100, and 200 epoch schedules
and asymptotic performance (at 400 epochs). ViTC demonstrates faster convergence than ViTP

across the model complexity spectrum, and closes much of the gap to the rate of CNN convergence.
The improvement is most significant in the shortest training schedule (50 epoch), e.g., ViTP -1GF has
a 10% error delta, while ViTC-1GF reduces this to about 6%. This opens the door to applications
that execute a large number of short-scheduled experiments, such as neural architecture search.

5.2 Optimizer Stability

We next explore how well AdamW and SGD optimize ViT models with the two stem types. We
consider the following grid of 48 ViT experiments: {P , C} stems × {1, 4, 18} GF sizes × {50, 100,
200, 400} epochs × {AdamW, SGD} optimizers. As a reference, we also train 24 RegNetY baselines,
one for each complexity regime, epoch length, and optimizer.

Results. Figure 3 shows the results. As a baseline, RegNetY models show virtually no gap when
trained using either SGD or AdamW (the difference ∼0.1-0.2% is within noise). On the other hand,
ViTP models suffer a dramatic drop when trained with SGD across all settings (of up to 10% for
larger models and longer training schedules). With a convolutional stem, ViTC models exhibit much
smaller error gaps between SGD and AdamW across all training schedules and model complexities,
including in larger models and longer schedules, where the gap is reduced to less than 0.2%. In other
words, both RegNetY and ViTC can be easily trained via either SGD or AdamW, but ViTP cannot.
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Figure 4: Hyperparameter stability for AdamW (lr and wd): For each model, we train 64 instances
of the model for 50 epochs each with a random lr and wd (in a fixed width interval around the optimal
value for each model). Top: Scatterplots of the lr, wd, and lr ·wd for three 4GF models. Vertical bars
indicate optimal lr, wd, and lr ·wd values for each model. Bottom: For each model, we generate an
EDF of the errors by plotting the cumulative distribution of the ∆top-1 errors (∆ to the optimal error
for each model). A steeper EDF indicates better stability to lr and wd variation. ViTC significantly
improves the stability over the baseline ViTP across the model complexity spectrum, and matches or
even outperforms the stability of the CNN model (RegNetY).
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Figure 5: Hyperparameter stability for SGD (lr and wd): We repeat the setup from Figure 4 using
SGD instead of AdamW. The stability improvement of ViTC over the baseline ViTP is even larger
than with AdamW. E.g., ∼60% of ViTC-18GF models are within 4% ∆top-1 error of the best result,
while less than 20% of ViTP -18GF models are (in fact most ViTP -18GF runs don’t converge).

5.3 Learning Rate and Weight Decay Stability

Next, we characterize how sensitive different model families are to changes in learning rate (lr) and
weight decay (wd) under both AdamW and SGD optimizers. To quantify this, we make use of error
distribution functions (EDFs) [30]. An EDF is computed by sorting a set of results from low-to-high
error and plotting the cumulative proportion of results as error increases, see [30] for details. In
particular, we generate EDFs of a model as a function of lr and wd. The intuition is that if a model is
robust to these hyperparameter choices, the EDF will be steep (all models will perform similarly),
while if the model is sensitive, the EDF will be shallow (performance will be spread out).

We test 6 ViT models ({P , C} × {1, 4, 18} GF) and 3 RegNetY models ({1, 4, 16} GF). For each
model and each optimizer, we compute an EDF by randomly sampling 64 (lr, wd) pairs with learning
rate and weight decay sampled in a fixed width interval around their optimal values for that model
and optimizer (see the Appendix for sampling details). Rather than plotting absolute error in the EDF,
we plot ∆top-1 error between the best result (obtained with the optimal lr and wd) and the observed
result. Due to the large number of models, we train each for only 50 epochs.

Results. Figure 4 shows scatterplots and EDFs for models trained by AdamW. Figure 5 shows SGD
results. In all cases we see that ViTC significantly improves the lr and wd stability over ViTP for
both optimizers. This indicates that the lr and wd are easier to optimize for ViTC than for ViTP .
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5.4 Experimental Details

In all experiments we train with a single half-period cosine learning rate decay schedule with a
5-epoch linear learning rate warm-up [16]. We use a minibatch size of 2048. Crucially, weight decay
is not applied to the gain factors found in normalization layers nor to bias parameters anywhere in the
model; we found that decaying these parameters can dramatically reduce top-1 accuracy for small
models and short schedules. For inference, we use an exponential moving average (EMA) of the
model weights (e.g., [8]). The lr and wd used in this section are reported in the Appendix. Other
hyperparameters use defaults: SGD momentum is 0.9 and AdamW’s β1 = 0.9 and β2 = 0.999.

Regularization and data augmentation. We use a simplified training recipe compared to recent
work such as DeiT [41], which we found to be equally effective across a wide spectrum of model
complexities and dataset scales. We use AutoAugment [7], mixup [52] (α = 0.8), CutMix [51]
(α = 1.0), and label smoothing [38] (ε = 0.1). We prefer this setup because it is similar to common
settings for CNNs (e.g., [12]) except for stronger mixup and the addition of CutMix (ViTs benefit
from both, while CNNs are not harmed). We compare this recipe to the one used for DeiT models in
the Appendix, and observe that our setup provides substantially faster training convergence likely
because we remove repeating augmentation [1, 20], which is known to slow training [1].

6 Peak Performance

A model’s peak performance is the most commonly used metric in network design. It represents
what is possible with the best-known-so-far settings and naturally evolves over time. Making fair
comparisons between different models is desirable but fraught with difficulty. Simply citing results
from prior work may be negatively biased against that work as it was unable to incorporate newer,
yet applicable improvements. Here, we strive to provide a fairer comparison between state-of-the-art
CNNs, ViTP , and ViTC . We identify a set of factors and then strike a pragmatic balance between
which subset to optimize for each model vs. which subset share a constant value across all models.

In our comparison, all models share the same epochs (400), use of model weight EMA, and set of
regularization and augmentation methods (as specified in §5.4). All CNNs are trained with SGD with
lr of 2.54 and wd of 2.4e−5; we found this single choice worked well across all models, as similarly
observed in [12]. For all ViT models we found AdamW with a lr/wd of 1.0e−3/0.24 was effective,
except for the 36GF models. For these larger models we tested a few settings and found a lr/wd of
6.0e−4/0.28 to be more effective for both ViTP -36GF and ViTC-36GF models. For training and
inference, ViTs use 224×224 resolution (we do not fine-tune at higher resolutions), while the CNNs
use (often larger) optimized resolutions specified in [12, 39]. Given this protocol, we compare ViTP ,
ViTC , and CNNs across a spectrum of model complexities (1GF to 36GF) and dataset scales (directly
training on ImageNet-1k vs. pretraining on ImageNet-21k and then fine-tuning on ImageNet-1k).

Results. Figure 6 shows a progression of results. Each plot shows ImageNet-1k val top-1 error vs.
ImageNet-1k epoch training time.1 The left plot compares several state-of-the-art CNNs. RegNetY
and RegNetZ [12] achieve similar results across the training speed spectrum and outperform Effi-
cientNets [39]. Surprisingly, ResNets [19] are highly competitive at fast runtimes, showing that under
a fairer comparison these years-old models perform substantially better than often reported (cf . [39]).

The middle plot compares two representative CNNs (ResNet and RegNetY) to ViTs, still using
only ImageNet-1k training. The baseline ViTP underperforms RegNetY across the entire model
complexity spectrum. To our surprise, ViTP also underperforms ResNets in this regime. ViTC is
more competitive and outperforms CNNs in the middle-complexity range.

The right plot compares the same models but with ImageNet-21k pretraining (details in Appendix).
In this setting ViT models demonstrates a greater capacity to benefit from the larger-scale data:
now ViTC strictly outperforms both ViTP and RegNetY. Interestingly, the original ViTP does not
outperform a state-of-the-art CNN even when trained on this much larger dataset. Numerical results
are presented in Table 2 for reference to exact values. This table also highlights that flop counts are
not significantly correlated with runtime, but that activations are (see Appendix for more details), as
also observed by [12]. E.g., EfficientNets are slow relative to their flops while ViTs are fast.

1We time models in PyTorch on 8 32GB Volta GPUs. We note that batch inference time is highly correlated
with training time, but we report epoch time as it is easy to interpret and does not depend on the use case.
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Figure 6: Peak performance (epoch training time vs. ImageNet-1k val top-1 error): Results
of a fair, controlled comparison of ViTP , ViTC , and CNNs. Each curve corresponds to a model
complexity sweep resulting in a training speed spectrum (minutes per ImageNet-1k epoch). Left:
State-of-the-art CNNs. Equipped with a modern training recipe, ResNets are highly competitive in
the faster regime, while RegNetY and Z perform similarly, and better than EfficientNets. Middle:
Selected CNNs compared to ViTs. With access to only ImageNet-1k training data, RegNetY and
ResNet outperform ViTP across the board. ViTC is more competitive with CNNs. Right: Pretraining
on ImageNet-21k improves the ViT models more than the CNNs, making ViTP competitive. Here,
the proposed ViTC outperforms all other models across the full training speed spectrum.

model flops params acts time batch epochs IN
(B) (M) (M) (min) size 100 200 400 21k

ResNet-50 4.1 25.6 11.3 3.4 2048 22.5 21.2 20.7 21.6
ResNet-101 7.8 44.5 16.4 5.5 2048 20.3 19.1 18.5 19.2
ResNet-152 11.5 60.2 22.8 7.7 2048 19.5 18.4 17.7 18.2
ResNet-200 15.0 64.7 32.3 10.7 1024 19.5 18.3 17.6 17.7
RegNetY-1GF 1.0 9.6 6.2 3.1 2048 23.2 22.2 21.5 -
RegNetY-4GF 4.1 22.4 14.5 7.6 2048 19.4 18.3 17.9 18.4
RegNetY-16GF 15.5 72.3 30.7 17.9 1024 17.1 16.4 16.3 15.6
RegNetY-32GF 31.1 128.6 46.2 35.1 512 16.2 15.9 15.9 15.0
RegNetZ-1GF 1.0 11.0 8.8 4.2 2048 20.8 20.2 19.6 -
RegNetZ-4GF 4.0 28.1 24.3 12.9 1024 17.4 16.9 16.6 -
RegNetZ-16GF 16.0 95.3 51.3 32.0 512 16.0 15.9 15.9 -
RegNetZ-32GF 32.0 175.1 79.6 55.3 256 16.3 16.2 16.1 -

model flops params acts time batch epochs IN
(B) (M) (M) (min) size 100 200 400 21k

EffNet-B2 1.0 9.1 13.8 5.9 2048 21.4 20.5 19.9 -
EffNet-B4 4.4 19.3 49.5 19.4 512 18.5 17.8 17.5 -
EffNet-B5 10.3 30.4 98.9 41.7 256 17.3 17.0 17.0 -

ViTP -1GF 1.1 4.8 5.5 2.6 2048 33.2 29.7 27.7 -
ViTP -4GF 3.9 18.5 11.1 3.8 2048 23.3 20.8 19.6 20.6
ViTP -18GF 17.5 86.6 24.0 11.5 1024 19.9 18.4 17.9 16.4
ViTP -36GF 35.9 178.4 37.3 18.8 512 19.9 18.8 18.2 15.1
ViTC -1GF 1.1 4.6 5.7 2.7 2048 28.6 26.1 24.7 -
ViTC -4GF 4.0 17.8 11.3 3.9 2048 20.9 19.2 18.6 18.8
ViTC -18GF 17.7 81.6 24.1 11.4 1024 18.4 17.5 17.0 15.1
ViTC -36GF 35.0 167.8 36.7 18.6 512 18.3 17.6 16.8 14.2

Table 2: Peak performance (grouped by model family): Model complexity and validation top-1
error at 100, 200, and 400 epoch schedules on ImageNet-1k, and the top-1 error after pretraining
on ImageNet-21k (IN 21k) and fine-tuning on ImageNet-1k. This table serves as reference for the
results shown in Figure 6. Blue numbers: best model trainable under 20 minutes per ImageNet-1k
epoch. Batch sizes and training times are reported normalized to 8 32GB Volta GPUs (see Appendix).
Additional results on the ImageNet-V2 [33] test set are presented in the Appendix.

These results verify that ViTC ’s convolutional stem improves not only optimization stability, as seen in
the previous section, but also peak performance. Moreover, this benefit can be seen across the model
complexity and dataset scale spectrum. Perhaps surprisingly, given the recent excitement over ViT,
we find that ViTP struggles to compete with state-of-the-art CNNs. We only observe improvements
over CNNs when using both large-scale pretraining data and the proposed convolutional stem.

7 Conclusion

In this work we demonstrated that the optimization challenges of ViT models are linked to the large-
stride, large-kernel convolution in ViT’s patchify stem. The seemingly trivial change of replacing this
patchify stem with a simple convolutional stem leads to a remarkable change in optimization behavior.
With the convolutional stem, ViT (termed ViTC) converges faster than the original ViT (termed
ViTP ) (§5.1), trains well with either AdamW or SGD (§5.2), improves learning rate and weight decay
stability (§5.3), and improves ImageNet top-1 error by ∼1-2% (§6). These results are consistent
across a wide spectrum of model complexities (1GF to 36GF) and dataset scales (ImageNet-1k to
ImageNet-21k). Our results indicate that injecting a small dose of convolutional inductive bias into
the early stages of ViTs can be hugely beneficial. Looking forward, we are interested in the theoretical
foundation of why such a minimal architectural modification can have such large (positive) impact on
optimizability. We are also interested in studying larger models. Our preliminary explorations into
72GF models reveal that the convolutional stem still improves top-1 error, however we also find that
a new form of instability arises that causes training error to randomly spike, especially for ViTC .
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