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Abstract

This work proposes a new algorithm – the Single-timescale Double-momentum
Stochastic Approximation (SUSTAIN) – for tackling stochastic unconstrained
bilevel optimization problems. We focus on bilevel problems where the lower level
subproblem is strongly-convex and the upper level objective function is smooth.
Unlike prior works which rely on two-timescale or double loop techniques, we
design a stochastic momentum-assisted gradient estimator for both the upper and
lower level updates. The latter allows us to control the error in the stochastic gradi-
ent updates due to inaccurate solution to both subproblems. If the upper objective
function is smooth but possibly non-convex, we show that SUSTAIN requires
O(ε−3/2) iterations (each using O(1) samples) to find an ε-stationary solution.
The ε-stationary solution is defined as the point whose squared norm of the gradient
of the outer function is less than or equal to ε. The total number of stochastic
gradient samples required for the upper and lower level objective functions match
the best-known complexity for single-level stochastic gradient algorithms. We also
analyze the case when the upper level objective function is strongly-convex.

1 Introduction

Many learning and inference problems take a “hierarchical" form, wherein the optimal solution
of one problem affects the objective function of others [27]. Bilevel optimization is often used to
model problems of this kind with two levels of hierarchy [27, 8], where the variables of an upper
level problem depend on the optimizer of certain lower level problem. In this work, we consider
unconstrained bilevel optimization problems of the form:

minx∈Rdup `(x) = f(x, y∗(x)) := Eξ[f(x, y∗(x); ξ)]

s.t. y∗(x) = arg miny∈Rdlo
{
g(x, y) := Eζ [g(x, y; ζ)]

}
,

(1)

where f, g : Rdup × Rdlo → R with x ∈ Rdup and y ∈ Rdlo ; f(x, y; ξ) with ξ ∼ πf (resp. g(x, y; ζ)
with ζ ∼ πg) represents a stochastic sample of the upper level objective (resp. lower level objective).
Note here that the upper level objective f depends on the minimizer of the lower level objective g, and
we refer to `(x) as the outer function. Throughout this paper, g(x, y) is assumed to be strongly-convex
in y, which implies that `(x) is smooth but possibly non-convex.

The applications of (1) include many machine learning problems that have a hierarchical structure.
Examples are meta learning [13, 31], data hyper-cleaning [35], hyper-parameter optimization [12,
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Algorithm Sample (Upper, Lower) Implementation Batch Size Per-Iteration Complexity

BSA [14] O(ε−2), O(ε−3) Double loop O(1) O(d2
lo · log T )

stocBiO [19] O(ε−2), O(ε−2) Double loop O(ε−1) O(d2
lo · log T )

TTSA [18] O(ε−5/2), O(ε−5/2) Single loop O(1) O(d2
lo · log T )

STABLE [5] O(ε−2), O(ε−2) Single loop O(1) O(d3
lo)

SVRB [17] O(ε−3/2), O(ε−3/2) Single loop O(1) O(d3
lo)

SUSTAIN (this work) O(ε−3/2), O(ε−3/2) Single loop O(1) O(d2
lo · log T )

Table 1: Comparison of the number of upper and lower level gradient samples required to achieve an ε-stationary
point in Definition 1.1. For the algorithms with O(d2lo · log T ) per-iteration dependence, the Hessian inverse
can be computed via matrix vector products; algorithms with O(d3lo) dependency requires Hessian inverses and
Hessian projections, which incur heavy computational cost.

13, 29], and reinforcement learning [22], etc.. To better contextualize our study, below we describe
examples on meta-learning problem and data hyper-cleaning problem:

Example 1: Meta learning. The meta learning problem aims to learn task specific parameters that
generalize to a diverse set of tasks [30]. Suppose we have M tasks {Ti, i = 1, . . . ,M} and each task
has a corresponding loss function L(x, yi; ξi) with ξi representing a data sample for task Ti, x ∈ Rdup
the model parameters shared among tasks, and yi ∈ Rdilo the task specific parameters. The goal of
meta learning is then to solve the following problem:

minx∈Rdup
{
Lts(x, ȳ

∗(x)) := 1
M

∑M
i=1 Eξi∼Di [L(x, y∗i (x); ξi)]

}
s.t. ȳ∗(x) ∈ arg min

ȳ∈R
∑M
i=1

di
lo
Ltr(x, ȳ) := 1

M

∑M
i=1

(
Eζi∼Si [L(x, yi; ζi)] +R(yi)

)
, (2)

where ȳ = [yT1 , . . . , y
T
M ]T ,R(·) is a strongly convex regularizer while Si and Di are the training and

testing datasets for task Ti. Compared to the number of tasks, the dataset sizes are usually small for
meta-learning problems, so the stochasticity in tackling (2) results from the fact that at each iteration
we can only sample a subset m out of M tasks. Note that this problem is a special case of (1). �

Example 2: Data hyper-cleaning. The data hyper-cleaning is a hyperparameter optimization problem
that aims to train a classifier model with a dataset of randomly corrupted labels [35]. The optimization
problem is formulated below:

minx∈Rdup `(x) :=
∑
i∈Dval

L(a>i y
∗(x), bi) (3)

s.t. y∗(x) = arg miny∈Rdlo
{
c‖y‖2 +

∑
i∈Dtr

σ(xi)L(a>i y, bi)
}
.

In this problem, we have dup = |Dtr| and dlo is the dimension of the classifier. Moreover, (ai, bi) is
the ith data point; L(·) is the loss function, with y being the model parameter; xi is the parameter
that determines the weight for the ith data sample, and σ : R→ R+ is the weight function; c > 0 is
a regularization parameter; Dval and Dtr are validation and training sets, respectively. Clearly, (3) is
a special case of (1) where the lower level problem finds the classifier y∗(x) with the training set Dtr,
and the upper level problem finds the best weights x with respect to the validation set Dval. �

A natural approach to tackling (1) is to apply alternating stochastic gradient (SG) updates. Let
β, α > 0 be some step sizes, one performs the recursion

y+ ← y − β∇̂yg(x, y), x+ ← x− α∇̂x ˆ̀(x; y) (4)

such that ∇̂yg(x, y), ∇̂x ˆ̀(x; y) are stochastic estimates of ∇yg(x, y), ∇`(x), respectively. Notice
that (4) is significantly different from the standard alternating primal-dual gradient algorithm for
saddle point problems. Particularly, the design of ∇̂x ˆ̀(x; y) is crucial to the SG scheme in (4).
Observe that ∇`(x) can be computed using the implicit function theorem, and its evaluation requires
f(·, ·) and y?(x), the minimizer of g(x, y) given x (cf. (5)). This gives rise to a unique challenge to
bilevel optimization, where y?(x) can only be approximated by y obtained in the first relation of (4).

In light of the above observations, previous endeavors have considered two approaches to improve the
estimate of y?(x) while ∇̂x ˆ̀(x; y) is used as a biased approximation of ∇`(x). The first approach
is to apply the double-loop algorithms. For example, [14] proposed to repeat the y+ update for
multiple times to obtain a better estimate of y?(x) before performing the x+ update, [19] proposed
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to take a large batch size to estimate ∇yg(x, y). While simple to analyze, these algorithms may
suffer from a poor sample complexity for the inner problem. The second approach is to apply
single-loop algorithms where the y+-updates are performed simultaneously with the x+-updates.
Instead, advanced techniques are utilized that allows y+ to accurately track y?(x). For example, [18]
suggested to tune the step size schedule with β � α, [5, 17] proposed single-timescale algorithms
with advanced variance reduction techniques. However, the latter two algorithms require Hessian
projections onto a compact set along with Hessian matrices inversion which scales poorly with
dimension (i.e., in O(d3

lo)). We summarize and compare the complexity results of the state-of-the-art
algorithms in Table 1.

A careful inspection on the above results reveals a gap in the iteration/sample complexity compared
to single-level stochastic optimization. For instance, an optimal stochastic gradient algorithm finds an
ε-stationary solution [cf. Definition 1.1] to minx Eξ[`(x; ξ)] in O(ε−3/2) iterations [10, 7, 37, 42].
For bilevel optimization, the fastest rate available is onlyO(ε−2) to the best of the authors’ knowledge.
In comparison, the proposed algorithm achieves a rate of O(ε−3/2). During the preparation of the
current paper, a preprint [17] has appeared which extended [5], and achieves an improved rate of
O(ε−3/2). We remark that the latter work follows a different design philosophy from ours and maybe
less efficient; see the detailed discussion at the end of Sec. 3.

Contributions. In this paper, we depart from the prior developments which focused on finding
better inner solutions y∗(x) to approximate ∇̂x ˆ̀(x; y) ≈ ∇`(x). Our idea is to exploit the gradient
estimates from prior iterations to improve the quality of the current gradient estimation. This leads
to momentum-assisted stochastic gradient estimators for both ∇yg(x, y) and ∇`(x) using similar
techniques in [7, 37] for single-level stochastic optimization. The resultant algorithm only requires
O(1) samples at each update, and updates x and y using step sizes of the same order, hence the name
single-timescale double-momentum stochastic approximation(SUSTAIN) algorithm. Additionally,
it is worth noting that our algorithm has a O(d2

lo) per iteration complexity, compared to the O(d3
lo)

complexity of STABLE [5] and SVRB [17]. That is, the SUSTAIN algorithm is both sample and
computation efficient. Our specific contributions are:

• We propose the SUSTAIN algorithm for bilevel problems which matches the best complexity
bounds as the optimal SGD algorithms for single-level stochastic optimization. That is, it requires
O(ε−3/2) [resp. O(ε−1)] samples to find an ε-stationary solution for non-convex (resp. strongly-
convex) bilevel problems; see Table 1. Furthermore, the algorithm utilizes a single-loop update
with step sizes of the same order for both upper and lower level problems. Such complexity bounds
match the optimal sample complexity of stochastic gradient algorithms for single-level problems.

• By developing the Lipschitz continuous property of the (biased) stochastic estimates of ∇`(x),
we show that obtaining a good estimate of ∇`(x) does not require explicit (sampled) Hessian
inversion. This key result ensures that our algorithm depends favorably on the problem dimension.

• Comparing with prior works such as TTSA [18], BSA [14], STABLE [5] and SVRB [17], our
analysis reveals that improving the gradient estimation quality for both∇yg(x, y) and∇`(x) is
the key to obtain a sample and computation efficient stochastic algorithm for bilevel optimization.

Related works. The study of the bilevel problem (1) can be traced to that of game theory [36] and
was formally introduced in [2–4]. It is also related to the broader class of problems of Mathematical
Programming with Equilibrium Constraints [26]. Related algorithms include approximate descent
[9, 38], and penalty-based methods [40]; see [6] and [25] for a comprehensive survey.

In addition to the works cited in Table 1, recent works on bilevel optimization have focused on algo-
rithms with provable convergence rates. In [34], the authors proposed BigSAM algorithm for solving
simple bilevel problems (with a single variable) with convex lower level problem. Subsequently, the
works [24, 23] utilized BigSAM and developed algorithms for a general bilevel problem for the cases
when the solution of the lower level problem is not a singleton. Note that all the aforementioned works
[34, 24, 23] assumed the upper level problem to be strongly-convex with convex lower level problem.
In a separate line of work, backpropagation based algorithms have been proposed to approximately
solve bilevel problems [12, 35, 16, 15]. However, the major focus of these works was to develop
efficient gradient estimators rather than on developing efficient optimization algorithms.

Notation. For any x ∈ Rd, we denote ‖x‖ as the standard Euclidean norm; as for X ∈ Rn×d,
‖X‖ is induced by the Euclidean norm. For a multivariate function f(x, y), the notation∇xf(x, y)
[resp.∇yf(x, y)] refers to the partial gradient taken with respect to (w.r.t.) x [resp. y]. For some µ >
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0, a function f(x, y) is said to be µ-strongly-convex in x if f(x, y)− µ
2 ‖x‖

2 is convex in x. For some
L > 0, the map A : Rd → Rm is said to be L-Lipschitz continuous if ‖A(x)−A(y)‖ ≤ L‖x− y‖
for any x, y ∈ Rd. A function f : Rd → R is said to be L-smooth if its gradient is L-Lipschitz
continuous. Uniform distribution over a discrete set {1, . . . , T} is represented by U{1, . . . , T}.
Finally, we state the following definitions for the optimality criteria of (1).
Definition 1.1 (ε-Stationary Point). A point x is called ε-stationary if ‖∇`(x)‖2 ≤ ε. A stochastic
algorithm is said to achieve an ε-stationary point in t iterations if E[‖∇`(xt)‖2] ≤ ε, where the
expectation is over the stochasticity of the algorithm until time instant t.
Definition 1.2 (ε-Optimal Point). A point x is called ε-optimal if `(x) − `∗ ≤ ε, where `∗ :=
minx∈Rdup `(x). A stochastic algorithm is said to achieve an ε-optimal point in t iterations if
E[`(xt)− `∗] ≤ ε, where the expectation is over the stochasticity of the algorithm until time instant t.

2 Preliminaries

We discuss the assumptions on (1) to specify the problem class of interest. We also preface the
proposed algorithm by describing a practical procedure for estimating the stochastic gradients.
Assumption 1 (Upper Level Function). f(x, y) satisfies the following conditions:

(i) ∇xf(x, y) and ∇yf(x, y) are Lipschitz continuous w.r.t. (x, y) ∈ Rdup × Rdlo , and with
constants Lfx ≥ 0 and Lfy ≥ 0, respectively.

(ii) For any (x, y) ∈ Rdup × Rdlo , we have ‖∇yf(x, y)‖ ≤ Cfy , for some Cfy ≥ 0.
Assumption 2 (Lower level Function). g(x, y) satisfies the following conditions:

(i) For any x ∈ Rdup and y ∈ Rdlo , g(x, y) is twice continuously differentiable in (x, y).
(ii) ∇yg(x, y) is Lipschitz continuous w.r.t. (x, y) ∈ Rdup × Rdlo , and with constant Lg ≥ 0.

(iii) For any x ∈ Rdup , g(x, ·) is µg-strongly-convex in y for some µg > 0.
(iv) ∇2

xyg(x, y) and ∇2
yyg(x, y) are Lipschitz continuous w.r.t. (x, y) ∈ Rdup × Rdlo , and with

constants Lgxy ≥ 0 and Lgyy ≥ 0, respectively.

(v) For any (x, y) ∈ Rdup × Rdlo , we have ‖∇2
xyg(x, y)‖2 ≤ Cgxy for some Cgxy > 0.

Assumption 3 (Stochastic Functions). Assumptions 1 and 2 hold for f(x, y; ξ) and g(x, y; ζ), for
all ξ ∈ supp(πf ) and ζ ∈ supp(πg) where supp(π) is the support of π. Moreover, we assume the
following variance bounds.

E
[
‖∇xf(x, y)−∇xf(x, y; ξ)‖2

]
≤ σ2

fx , E‖∇yf(x, y)−∇yf(x, y; ξ)‖2 ≤ σ2
fy ,

E‖∇2
xyg(x, y)−∇2

xyg(x, y; ξ)‖2 ≤ σ2
gxy for some σfx ≥ 0, σfy ≥ 0 and σgxy ≥ 0.

These assumptions are standard in the analysis of bilevel optimization [14]. For example, they are
satisfied by a range of applications such as the meta learning problem (2), data hypercleaning problem
(3) with linear classifier. Notice that under these assumptions, the gradient ∇`(·) is well-defined. By
utilizing Assumption 2–(i) and (ii) along with the implicit function theorem [33], it is easy to show
that for a given x̄ ∈ Rdup , the following holds [14, Lemma 2.1]:

∇`(x̄) = ∇xf(x̄, y∗(x̄))−∇2
xyg(x̄, y∗(x̄))[∇2

yyg(x̄, y∗(x̄))]−1∇yf(x̄, y∗(x̄)). (5)

Obtaining y∗(x) in closed-form is usually a challenging task, so it is natural to use the following
gradient surrogate. At any (x̄, ȳ) ∈ Rdup×dlo , define:

∇̄f(x̄, ȳ) = ∇xf(x̄, ȳ)−∇2
xyg(x̄, ȳ)[∇2

yyg(x̄, ȳ)]−1∇yf(x̄, ȳ). (6)

Evaluating (6) requires computing the exact gradients and Hessian inverse which can be non-trivial.
Below, we describe a practical procedure from [14] to generate a biased estimate of ∇̄f(x̄, ȳ).

Stochastic gradient estimator for∇`(x). The estimator requires a parameter K ∈ N and is based
on a collection ofK+3 independent samples ξ̄ := {ξ, ζ(0), ..., ζ(K), k(K)}, where ξ ∼ µ, ζ(i) ∼ πg ,
i = 0, ...,K, and k(K) ∼ U{0, ...,K − 1}. We set

∇̄f(x, y; ξ̄) = ∇xf(x, y; ξ)− K

Lg
∇2

xyg(x, y; ζ(0))

k(K)∏
i=1

(
I −
∇2

yyg(x, y; ζ(i))

Lg

)
∇yf(x, y; ξ), (7)
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where we have used the convention
∏j
i=1Ai = I if j = 0. It has been shown in [14, 18] that the bias

with the gradient estimator (7) decays exponentially fast with K, as summarized below:

Lemma 2.1. Under Assumptions 1, 2. For any K ≥ 1, the gradient estimator in (7) satisfies

‖∇̄f(x, y)− Eξ̄[∇̄f(x, y; ξ̄)]‖ ≤
CgxyCfy
µg

(
1− µg

Lg

)K
, ∀ (x, y) ∈ Rdup × Rdlo . (8)

The detailed statement of the above lemma is included in Appendix C. We remark that each computa-
tion of ∇̄f(x, y; ξ̄) requires at most K Hessian-vector products, and later we will show that setting
K = O(log(T )) is necessary for the proposed algorithm. Since∇2

yyg(x, y; ζ) is of size dlo× dlo, the
total complexity of this step is O(log(T )d2

lo). On the contrary, STABLE [5] and SVRB [17] require
O(d3

lo) to estimate the Hessian inverse, which is more computationally expensive when dlo � 1.
Indeed, it has been explicitly mentioned in [5] that “our algorithm (STABLE) is preferable in the
regime where the sampling is more costly than computation or the dimension d is relatively small”.

Notice that (7) is not the only option for estimating the gradient surrogate ∇̄f(x, y). For ease of
presentation, below we abstract out the conditions on the stochastic estimates of∇yg, ∇̄f required
by our analysis as the following assumption:

Assumption 4 (Stochastic Gradients). For any (x, y) ∈ Rdup×Rdlo , there exists constants σf , σg ≥ 0
such that the estimates∇yg(x, y; ζ), ∇̄f(x, y; ξ̄) satisfy:

(i) The gradient estimate of the upper level objective satisfies:

Eξ̄
[
‖∇̄f(x, y; ξ̄)− ∇̄f(x, y)−B(x, y)‖2

]
≤ σ2

f , (9)

where B(x, y) = Eξ̄[∇̄f(x, y; ξ̄)]− ∇̄f(x, y) is the bias in estimating ∇̄f(x, y).

(ii) The gradient estimate of the lower level objective satisfies

Eζ
[
‖∇yg(x, y; ζ)−∇yg(x, y)‖2

]
≤ σ2

g . (10)

As observed from Lemma 2.1, the gradient estimator (7) satisfies Assumption 4(i).

Lastly, the approximate gradient defined in (6), the true gradient (5), as well as the optimal solution
of the lower level problem are Lipschitz continuous, as proven below:

Lemma 2.2. [14, Lemma 2.2] Under Assumptions 1, 2 and 3, we have

‖∇̄f(x, y)−∇`(x)‖ ≤ L‖y∗(x)− y‖, ‖y∗(x1)− y∗(x2)‖ ≤ Ly‖x1 − x2‖,
‖∇`(x1)−∇`(x2)‖ ≤ Lf‖x1 − x2‖,

(11)

for all x, x1, x2 ∈ Rdup and y ∈ Rdlo . The above Lipschitz constants are defined as:

L = Lfx +
LfyCgxy
µg

+ Cfy

(
Lgxy
µg

+
LgyyCgxy

µ2
g

)
, Lf = L+

LCgxy
µg

, Ly =
Cgxy
µg

. (12)

The first result in (11) reveals that ∇̄f(x, y) approximates ∇`(x) when y ≈ y∗(x). This suggests
that a double-loop algorithm which solves the strongly-convex lower level problem to sufficient
accuracy can be applied to tackle (1). Such approach has been pursued in [14, 19]. Next, we propose
an algorithm which rely on single-loop updates with improved sample efficiency.

3 The proposed SUSTAIN algorithm

Equipped with a practical stochastic gradient estimator for ∇`(x) [cf. (7)], our next endeavor is to
develop a single-loop algorithm to tackle (1) through drawingO(1) samples for upper and lower level
problems at each iteration. Our main idea is to adopt the recursive momentum techniques developed
in [7, 37]. Notice that these works utilize unbiased stochastic gradients evaluated at consecutive
iterates to construct a variance reduced gradient estimate for single-level stochastic optimization.

In the context of bilevel stochastic optimization (1), a few key challenges are in order:
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Algorithm 1 The Proposed SUSTAIN Algorithm

1: Input: Parameters: {βt}T−1
t=0 , {αt}T−1

t=0 , {ηft }T−1
t=0 , and {ηgt }T−1

t=0 with ηf0 = ηg0 = 1

2: Initialize: x0, y0; set x−1 = y−1 = hf−1 = hg−1 = 0
3: for t = 0 to T − 1 do
4: (y-update) Compute the gradient estimator hgt by (13) and set yt+1 = yt − βthgt .
5: (x-update) Compute the gradient estimator hft by (14) and set xt+1 = xt − αthft .
6: end for
7: Return: xa(T ) where a(T ) ∼ U{1, ..., T}.

• Recall from Lemma 2.1 that obtaining an unbiased estimator for the outer gradient∇`(x) requires
using K → ∞ samples in (7), this calls for the new techniques to control the bias arising from
approximating∇`(x).

• The gradient estimator (7) has a more complicated structure than a plain gradient estimator,
as it involves up to three different stochastic vectors/matrices related to ∇xf(x, y), ∇yf(x, y),
∇xyg(x, y), and one stochastic inversion that is related to [∇yyg(x, y)]−1. It is not clear which
are the most important objects for which variance reduction shall be applied.

Our key innovation is to develop a useful estimate of ∇̄f(x, y) by using a novel double-momentum
technique. First, we build a recursive momentum estimator for ∇yg(x, y), based upon which the
variable y gets updated. Then, with such a "stabilized" inner iteration, we compute an estimate of
∇̄f(x, y) as given in (7), by using the four stochastic vectors/matrices mentioned above but without
performing any variance reduction. Such a stochastic estimator will then be used to construct a
recursive momentum estimator for ∇̄f(x, y). The intuition is that as long as y is accurate enough,
then the stochastic terms in (7) are also accurate enough, so they can be used to construct the estimator
for the outer gradient. Our approach only tracks two vector estimators, while still being able to
leverage the low-complexity sample-based Hessian inversion as given in (7).

The SUSTAIN algorithm is summarized in Algorithm 1. Define ηgt ∈ [0, 1], ηft ∈ [0, 1]. For the
lower level problem involving y, it utilizes the following momentum-assisted gradient estimator,
hgt ∈ Rdlo , defined recursively as

hgt = ηgt∇yg(xt, yt; ζt) + (1− ηgt )
(
hgt−1 +∇yg(xt, yt; ζt)−∇yg(xt−1, yt−1; ζt)

)
; (13)

For the upper level problem involving x, we utilize a similar estimate, hft ∈ Rdup , defined as

hft = ηft ∇̄f(xt, yt; ξ̄t) + (1− ηft )
(
hft−1 + ∇̄f(xt, yt; ξ̄t)− ∇̄f(xt−1, yt−1; ξ̄t)

)
. (14)

The gradient estimators hgt and hft are computed from the current and past gradient estimates
∇yg(xt, yt; ζt),∇yg(xt−1, yt−1; ζt) and ∇̄f(xt, yt; ξ̄t), ∇̄f(xt−1, yt−1; ξ̄t). Note that the stochastic
gradients at two consecutive iterates are computed using the same sample sets ζt for hgt and ξ̄t for hft .

Both x and y-update steps mark a major departure of the SUSTAIN algorithm from existing algo-
rithms on bilevel optimization [14, 18, 19]. The latter works apply the direct gradient estimator
∇̄f(xt, yt+1; ξ̄t) [cf. (7)] to serve as an estimate to ∇̄f(x, y) [and subsequently ∇`(x)]. To guaran-
tee convergence, these works focused on improving the tracking performance of yt+1 ≈ y?(xt) by
employing double-loop updates, e.g., by repeatedly applying SG step multiple times for the inner
problem; or a sophisticated two-timescale design for the step sizes, e.g., by setting βt/αt →∞.

A recent preprint [17] suggested the SVRB algorithm which applies a similar recursive momentum
technique as SUSTAIN. However, SVRB is different from SUSTAIN as the momentum estimator
is applied exhaustively to all the individual random quantities involved in (7) and requires Hessian
projection. As a result, the SVRB algorithm entails a high complexity in storage and computation
as the latter has to store matrix variables of size dlo × dlo and computes a matrix inverse for each
iteration. In comparison, the SUSTAIN algorithm only requires storing the gradient estimators hgt , h

f
t

of size dlo, dup, respectively, and the computation complexity is only O(d2
loK) for each iteration.
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3.1 Convergence analysis

In the following, we present the convergence analysis for the SUSTAIN algorithm when `(·) is a
smooth function [cf. consequence of Assumptions 1, 2 and 3]. Before proceeding to the main results,
we present a lemma about the Lipschitzness of the gradient estimate ∇̄f(x, y; ξ̄) given in (7):
Lemma 3.1. Under Assumptions 1, 2 and 3, we have for any (x1, y1), (x2, y2) ∈ Rdup × Rdlo ,

Eξ̄‖∇̄f(x1, y1; ξ̄)− ∇̄f(x2, y2; ξ̄)‖ ≤ L2
K

{
‖x1 − x2‖+ ‖y1 − y2‖

}2
,

where

LK =

√
2L2

fx
+

6C2
gxyL

2
fy
K

2µgLg − µ2
g

+
6C2

fy
L2
gxyK

2µgLg − µ2
g

+
6C2

gxyC
2
fy
L2
gyyK

3

(Lg − µg)2(2µgLg − µ2
g)
, (15)

and K is the number of samples required to construct the stochastic gradient estimate given in (7).

The detailed proof can be found in Appendix C. We remark that the above result is crucial for
analyzing the error of the gradient estimate hft defined in (14). To see this, let us first define the errors
of the gradient estimates for the outer and inner functions as follows

eft := hft − ∇̄f(xt, yt)−Bt, egt := hgt − ∇̄yg(xt, yt), (16)

where Bt := B(xt, yt) denotes the bias. Rewriting eft using (14) gives the following recursion:

eft = (1− ηft )eft−1 + (1− ηft )
{
∇̄f(xt, yt; ξ̄t)− ∇̄f(xt−1, yt−1; ξ̄t)

− (∇̄f(xt, yt) +Bt − ∇̄f(xt−1, yt−1)−Bt−1)
}

+ ηft
(
∇̄f(xt, yt; ξ̄t)− ∇̄f(xt, yt)−Bt

)
.

Lemma 3.1 allows us to control the variance of the second term in the above relation as
O(α2

t ‖h
f
t−1‖2 + β2

t ‖h
g
t−1‖2). This subsequently leads to a reduced error magnitude for E[‖eft ‖2].

Similarly, we can show a reduced error magnitude for E[‖egt ‖2] for the inner gradient estimate.

The above discussion suggests that we can track the gradient∇`(x) using only stochastic gradient
estimates (7), without needing to track each component stochastic vectors/matrices. This allows us to
avoid costly Hessian inversions. In contrast, [5, 17] track the individual stochastic vectors/matrices of
(7), and then combine them together to yield an estimate of∇`(x). This approach is unable to utilize
the cheap stochastic estimates of Hessian and have to invert it directly.

Turning back to the convergence analysis of the SUSTAIN algorithm, the main idea of our analysis is
to demonstrate reduction of a properly constructed potential function across iterations. For smooth
(possibly non-convex) objective function, this potential function consists of a linear combination of
the norms of the error terms E[‖eft ‖2] and E[‖egt ‖2] along with the outer objective function `(xt) and
the inner optimality gap ‖yt − y∗(xt)‖2. We obtain:
Theorem 3.2. Under Assumptions 1–4. Fix T ≥ 1 as the maximum iteration number. Set the number
of samples used for the gradient estimator in (7) as K = (Lg/µg) log

(
CgxyCfyT/µg

)
and

αt =
1

(w + t)1/3
, βt = cβαt, ηft = cηfα

2
t , ηgt = cηgα

2
t , (17)

where w, cβ , cηf , cηg are defined in (29) of appendix. The iterates generated by Algorithm 1 satisfy

E‖∇`(xa(T ))‖2 = O
(
`(x0)− `∗

T 2/3
+
‖y0 − y∗(x0)‖2

T 2/3
+

log(T )σ2
f

T 2/3
+

log(T )σ2
g

T 2/3

)
. (18)

Details of the constants in the theorem and its proof can be found in Appendix D. The above result
shows that to reach an ε-stationary point, the SUSTAIN algorithm requires Õ(ε−3/2) (omitting
logarithmic factors) samples of stochastic gradients from both the upper and lower level functions.

This sample complexity matches the best complexity bounds for single-level stochastic optimization
like SPIDER [10], STORM [7], SNVRG [42] and Hybrid SGD [37]. We claim that this is a near-
optimal sample complexity for bilevel stochastic optimization since for example, we have imposed
additional smoothness conditions on the Hessian of the lower level problem. We will leave this as an
open question to investigate the lower bound complexity for bilevel stochastic optimization.

Strongly-convex `(x). We also discuss the case when in addition to smoothness, `(·) is µf -strongly-
convex. Here, a stronger guarantee can be obtained:

7



Theorem 3.3. Under Assumptions 1–4, and suppose `(x) is µf -strongly-convex. Fix any T ≥ 1, set
the number of samples for the gradient estimator (7) as K = (Lg/2µg) log

(
C2
gxyC

2
fy
T/µ2

g

)
and

αt ≡ α ≤
{

1

µf + 1
,

1

2µg ĉβ
,
µg
ĉβL2

g

,
1

8L2
K + Lf

,
L2 + 2L2

y

4L2
KL

2
g ĉ

2
β

}
, ηft ≡ (µf + 1)α, βt ≡ ĉβα,

where ηgt ≡ 1, ĉβ = 8L2
y + 8L2 + 2µf/µg and LK is defined in (15). The iterates generated by

Algorithm 1 satisfy for any t ≥ 1 that:

E[`(xt)− `∗] ≤ (1− µfα)t∆̄0 +
1

µf

{ 2

T
+
[
(2ĉ2β + 8ĉ2βL

2
K)σ2

g + 2(µf + 1)2σ2
f

]
α
}
, (19)

where ∆̄0 := `(x0)− `∗ + σ2
f + ‖y0 − y∗(x0)‖2.

The detailed proof can be found in Appendix E. For large T , setting α � 1/T shows that the bound
in (19) decreases at the rate of O(1/T ).

Theorem 3.3 shows that to reach an ε-optimal point, the SUSTAIN algorithm requires Õ(ε−1)
stochastic gradient samples from the upper and lower level problems, also see the detailed calculations
in Appendix E. This improves over TTSA [18] which requires Õ(ε−1.5) samples, and BSA [14]
which requires Õ(ε−1), O(ε−2) samples for the upper and lower level problems, respectively. Again,
we achieve similar sample complexity as SGD applied on strongly-convex single-level optimization.

Interestingly, in Theorem 3.3, we have selected ηgt ≡ 1 where the momentum term in the lower
level gradient vanishes. In this way, the SUSTAIN algorithm is reduced into a single-momentum
algorithm where the recursive momentum acceleration is only applied to the upper level gradient.
Similarly, in Theorem 3.2, if SUSTAIN utilizes only the upper level momentum, i.e., ηgt ≡ 1, then
with appropriate choice of parameters, we get E‖∇`(xa(T ))‖2 ≤ O(1/

√
T ) (please see [20] for

further details). This implies that to achieve an ε-stationary solution SUSTAIN with only upper level
momentum requires O(ε−2) stochastic samples for both the upper and the lower level functions.
Note that this improves over TTSA [18] which utilizes a vanilla SGD update for both the upper and
the lower level problems, i.e., ηft ≡ 1 and ηgt ≡ 1 and requires O(ε−5/2) stochastic samples for both
upper and lower level functions.

4 Numerical experiments

In this section, we evaluate the performance of the SUSTAIN algorithm on two popular machine
learning tasks: hyperparameter optimization and meta learning.

Hyperparameter optimization. We consider the data hyper-cleaning task (3), and compare
SUSTAIN with several algorithms such as stocBiO [19] for different batch size choices, and the
HOAG algorithm in [29]. Note that in [19], the authors shown that stocBio exhibits better practical
performance compared with other bilevel optimization algorithms.

We consider problem (3) with L(·) being the cross-entropy loss (i.e., a data cleaning problem for
logistic regression); σ(x) := 1

1+exp(−x) ; c = 0.001; see [35]. The problem is trained on the
FashionMNIST dataset [41] with 50k, 10k, and 10k image samples allocated for training, validation
and testing purposes, respectively. The step sizes for different algorithms are chosen according to
their theoretically suggested values. Let the outer iteration be indexed by t, for SUSTAIN we choose
αt = βt = 0.1/(1 + t)1/3 and tune for cηf and cηg (see Theorem 3.2), for stocBiO and HOAG we
select αt = dα, βt = dβ and tune for parameters dα and dα in the range [0, 1].

In Figure 1, we compare the performance of different algorithms when the dataset has a corruption
probability of 0.3. As observed, SUSTAIN outperforms stocBiO and HOAG. We remark that HOAG
is a deterministic algorithm and hence requires full batch gradient computations at each iteration.
Similarly, stocBio relies on large batch gradients which results in relatively slow convergence. This
fast convergence of SUSTAIN results form the single timescale update with reduced variance resulting
from the double-momentum variance reduced updates.

Meta learning. We consider a few-shot meta learning problem [11, 30] (cf. (2)) and compare the
performance of SUSTAIN to ITD-BiO [19] and ANIL [30]. The task of interest is 5-way 5-shot
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Figure 1: Hyperparameter optimization: Data hyper-cleaning task on the FashionMNIST dataset.
We plot the training loss and testing accuracy against the number of gradients evaluated with
corruption rate p = 0.3.

Figure 2: Meta learning: 5-way 5-shot learning task on the miniImageNet dataset. We plot the
training and testing accuracy against the number of iterations.

learning and we conduct experiments on the miniImageNet dataset [39, 32] with 100 classes and 600
images per class. We apply learn2learn [1] (available: https://github.com/learnables/
learn2learn) to partition the 100 classes from miniImageNet into subsets of 64, 16 and 20 for
meta training, meta validation and meta testing, respectively. Similar to [1, 19], we implement a
4-layer convolutional neural network (CNN) with ReLU activation for the learning task. At each
iteration, we sample a batch of 32 tasks from a set of 20000 tasks allocated for training and 600
each for validation and testing. For each algorithm, we implement 10 inner and 1 outer update. The
performance is averaged over 10 Monte Carlo runs.

For ANIL and ITD-BiO, we use the parameter selection suggested in [1, 19]. Specifically, for ANIL,
we use inner-loop stepsize of 0.1 and the outer-loop (meta) stepsize as 0.002. For ITD-BiO, we
choose the inner-loop stepsize as 0.05 and the outer-loop stepsize to be 0.005. For SUSTAIN, we
choose the outer-loop stepsize αt as κ/(1 + t)1/3 and choose κ ∈ [0.1, 1], we choose the momentum
parameter ηt as c̄α2

t /κ
2 and tune for c̄ ∈ {2, 5, 10, 15, 20}, finally, we fix the inner stepsize as 0.05.

For the outer loop update ANIL and ITD-BiO utilize SGD optimizer whereas SUSTAIN uses the
hybrid gradient estimator.

From Figure 2 which compares the training and testing accuracy against the iteration number, we
observe that SUSTAIN achieves a better performance compared to ANIL and ITD-BiO on the meta
learning task. Also, notice that in the initial iterations SUSTAIN converges faster but then converges
probably as a consequence of diminishing stepsizes (and momentum parameter). In contrast, ANIL
and ITD-BiO slowly improve in performance and catch up with SUSTAIN’s performance. In the
appendix, we show that the SUSTAIN algorithm requires less computation time to achieve better
performance compared to the ANIL and ITD-BiO.

For further evaluation of the performance of SUSTAIN, we have included additional experiments on
hyperparameter optimization and meta learning on different datasets in the supplementary material.
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Conclusions and limitations

We have developed the SUSTAIN algorithm for unconstrained bilevel optimization with strongly
convex lower level subproblems. The proposed algorithm executes on a single-timescale, without the
need to use either two-timescale updates, large batch gradients, or double-loop algorithm. We showed
that SUSTAIN is both sample and computation efficient, because it matches the best-known sample
complexity guarantees for single-level problems with non-convex and strongly convex objective
(smooth) functions, while matching the best-known per-iteration computational complexity for the
same class of bi-level problems. In the future, we plan to rigorously show the sample complexity
lower bounds for the considered class of bilevel problems. Further, we plan to develop sample and
communication efficient algorithms for a more general class of bilevel problems, such as those with
constraints in the lower level problems.
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Appendix

A Additional experiments

In this section, we supplement the numerical results presented in Section 4 with additional experiments
on real datasets. We demonstrate the efficacy of SUSTAIN for the meta learning and hyperparameter
optimization tasks. Furthermore, we examine the performance of SUSTAIN when combined with an
Adam-like update rule [cf. see Algorithm 2].

Meta learning. In Figure 2 of Section 4 in the main paper, we established that when SUSTAIN,
ITD-BiO and ANIL utilize vanilla SG direction for the outer level update, SUSTAIN outperforms rest
of the algorithms for the meta learning problem. Specifically, we compared the training and testing
performance of the algorithms with the number of iterations (i.e., the outer update t in Algorithm 1). In
each iteration, all the algorithms access the same number of samples while SUSTAIN requiring twice
the number of gradient computations (cf. (14)). As observed from Figure 2, SUSTAIN requires the
smallest number of iterations (samples) and gradient computations to achieve a given training/testing
accuracy on the benchmarked dataset.

We conduct additional experiments for meta learning and demonstrate the following: (1) for the
outer level update we can adapt Adam [21] optimizer with the SUSTAIN framework to achieve
better performance, (2) the outer gradient estimate (14) for SUSTAIN can be designed with only
one gradient computation per iteration (instead of two) without compromising performance, and (3)
SUSTAIN outperforms MAML [11], ANIL [30] and ITD-BiO [19] when all algorithms implement
Adam for the outer level update. Next, we discuss the datasets and the parameter settings.

We consider meta learning problem with miniImageNet [39, 32] and FC100 [28] datasets. Both
datasets consist of 100 classes with each class containing 600 images. For the miniImageNet,
we consider the same setting as in Section 4. For FC100, we follow the setting of [28, 19] where
100 classes are split into 60, 20 and 20 classes for meta-training, meta-validation and meta-testing,
respectively. For both datasets, we consider a 5-way 5-shot learning task where the algorithm
aims to classify samples into 5 unseen classes using only 5 available samples. We implement the
solver using a 4-layer CNN (with different width for each dataset). We compare heuristic versions of
SUSTAIN with MAML [11], ANIL [30] and recently proposed ITD-BiO [19], where these algorithms
all utilize the Adam [21] solver for the outer problem’s update. These heuristic algorithms are also
used in [19] when comparing performance of the bilevel algorithms for meta-learning tasks. Note
that these Adam-based bilevel algorithms for meta learning do not have any theoretical performance
guarantees. Nevertheless, in the following we show that they perform well in practice [19].

We first discuss the parameter setting for the meta learning task using miniImageNet dataset. All
the algorithms sample 32 tasks in each iteration. For the Adam versions of MAML, ANIL and
ITD-BiO, we choose the parameters as suggested in [1, 19]. For all the algorithms, we execute 10
update steps in the inner loop followed by a single outer update step. Each update step is counted as a

Figure 3: Meta learning: 5-way 5-shot learning task on the miniImageNet dataset. We plot the
training and testing accuracy against the number of iterations with each iteration representing one
outer level update step. All the algorithms utilize Adam [21] optimizer for the outer loop update.
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Algorithm 2 Update direction for Adam-SUSTAIN (also see footnote1)

1: Parameters: γ1 = 0.9, γ2 = 0.999, m0 = 0, v0 = 0, ε = 10−8 and ηft
2: for t = 1, · · · , T do
3: Input: (xt, yt), (xt−1, yt−1) from Algorithm 1.
4: Compute the gradient estimator h̄ft using Option I or II in (20)
5: Update first moment estimate: mt ← γ1 ·mt−1 + (1− γ1)h̄ft
6: Bias-correction for first moment estimate: mt ← mt/(1− (γ1)t)

7: Update second moment estimate: vt ← γ2 · vt−1 + (1− γ2)(h̄ft )2

8: Bias-correction for second moment estimate: vt ← vt/(1− (γ2)t)

9: Use the update direction: hft ← mt/(
√
vt + ε)

10: end for
11: Return: hft

single iteration. The implementation of MAML and ANIL is adopted from existing implementations
in [1]. For MAML, we choose the inner loop stepsize to be 0.5 and the outer loop stepsize to
be 0.003. For ANIL we utilize inner loop stepsize of 0.1 and outer loop stepsize of 0.002. Both
ITD-BiO and SUSTAIN utilize gradient descent with stepsize of 0.05 as the inner optimizer. For
the outer update ITD-BiO uses a stepsize of 0.002 (the parameters for ITD-BiO are selected based
the repository https://github.com/JunjieYang97/stocBiO). For SUSTAIN we set the outer
stepsize as αt = 0.005 and tune for the momentum parameter ηft = c̄/κ2(1 + t)2/3 with fixed
κ = 0.005 by choosing c̄ ∈ {0.25, 2.5, 5, 10}. In contrast to other algorithms, SUSTAIN applies
Adam [21] to the hybrid stochastic gradient estimator used for the outer update (14). For detailed
steps please see Algorithm 22. Moreover, it is worth noting that the direction update rule Option II
given in (20) is a modification of the original update given in (14) (or equivalently Option I in (20)).
Such a rule requires just a single (mini-batch) gradient computation per iteration (which is the same
as MAML, ANIL and ITD-BiO), and in practice, its performance is very close to that of Option I.
Our results below uses Option II as the update direction.

h̄ft =


∇̄f(xt, yt; ξ̄t) + (1− ηft )

(
h̄ft−1 − ∇̄f(xt−1, yt−1; ξ̄t)

)
Option I

∇̄f(xt, yt; ξ̄t) + (1− ηft )
(
h̄ft−1 − ∇̄f(xt−1, yt−1; ξ̄t−1)︸ ︷︷ ︸

Previous SG

)
Option II (20)

In Figure 3, we plot the training and testing performance against the number of iterations for the
Adam version SUSTAIN with other algorithms for 5-way 5-shot learning task on miniImageNet
dataset. Note from the discussion above, we know that in each iteration all the algorithms access

2Note that the vector division and exponent operations in the Algorithm are implemented element wise. The
values of the parameters chosen for Adam are default values used by the PyTorch library.

Figure 4: Meta learning: 5-way 5-shot learning task on the FC100 dataset. We plot the training and
testing accuracy against the number of iterations with each iteration representing one outer level
update. All the algorithms utilize Adam [21] optimizer for the outer loop update.
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the same number of sample, and spend the same amount of (mini-batch) gradient computation
efforts. Consequently, Figure 3 implies that SUSTAIN outperforms ITD-BiO, ANIL and MAML
as it requires fewest iteration (thus samples and gradient computation) to achieve the improved
performance. Importantly, these Adam-based algorithms significantly outperform their vanilla
version (cf. Figure 2 for performance with SGD), in terms of both accuracy and speed.

Next, we compare the performance of SUSTAIN with other algorithms for the meta learning task
using FC100 dataset. For this task all the algorithms sample 32 tasks in each iteration. In contrast
to the previous dataset, for this task we execute 20 update steps in the inner loop followed by a
single outer update step. Similar to miniImageNet dataset, we adopt existing implementations of
MAML and ANIL from [1] and ITD-BiO from [19]. For MAML, we choose inner loop stepsize of
0.5 and the outer loop stepsize of 0.001. For ANIL we utilize inner loop stepsize of 0.1 and outer
loop stepsize of 0.001. In the inner loop, both ITD-BiO and SUSTAIN utilize gradient descent with a
stepsize of 0.1. For the outer update ITD-BiO uses a stepsize of 0.001 ((the parameters for ITD-BiO
are selected based the repository https://github.com/JunjieYang97/stocBiO)). For the outer
update SUSTAIN utilizes the same setting as required for miniImageNet dataset and the Adam
based outer update direction as computed in Algorithm 2.

In Figure 4, we plot the training and testing performance with the number of iterations for SUS-
TAIN and other algorithms for 5-way 5-shot learning task on FC100 dataset. Note that SUSTAIN out-
performs rest of the algorithms on the training task and performs on par with other algorithms with
respect to the testing performance. Moreover, note that initially ANIL performs better but since the
number of inner steps are relatively large (20 in this case), ANIL’s performance degrades after a
certain number of iterations. Similar behavior was noted for ANIL in the results of [19].

The above set of experiments showed that the Adam [21] optimizer can be incorporated with
SUSTAIN and other algorithms to achieve improved performance compared to vanilla SG based
algorithms. We also showed that the gradient estimator for SUSTAIN can be modified to require
only single (batch) gradient evaluation per iteration (cf. (20)) without comprising performance of the
algorithm. In this section, we use an additional set of results to demonstrate that under most settings
SUSTAIN outperforms other state-of-the-art algorithms.

Hyperparameter optimization. For data hyperparameter optimization problem, we consider the
hyper-cleaning task as discussed earlier in Section 4 and benchmark the performance of SUS-
TAIN against stocBiO [19] and HOAG [29]. Importantly, in this section we demonstrate that
SUSTAIN performs well under (relatively) high level of data corruption.

Here we consider an additional set of results for the hyper-cleaning task on Fashion-MNIST dataset
[41]. All the parameter settings are the same as in Section 4, except that we use a higher level 40%
corruption rate. Note that HOAG is a deterministic algorithm and requires full gradient computation
at each iteration. In contrast, stocBiO is a stochastic algorithm but it relies on large batch gradient
computations. We conduct experiments for two settings where stocBiO uses a batch size of 5000 and
1000 (for both inner and outer updates). Our algorithm SUSTAIN is purely a stochastic algorithm and
does not rely on large batch gradient computations. Specifically, SUSTAIN computes two gradients
(on a single sample) in each iteration for both inner and outer updates (cf. (13) and (14)). Since at

Figure 5: Data hyperparameter optimization: Training loss and testing accuracy against the number
of gradients evaluated with corruption rate p = 0.4.
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each outer iteration, the sample sizes (and gradient computations) accessed by each algorithms are
very different, so it is no longer fair to compare the per-iteration performance for different algorithms
(this is different compared with the meta learning example in the previous section). Therefore, in
this section we compare the training and testing performance of the competing algorithms using
the number of total outer gradient computations (which is same as the inner gradient computations)
across iterations. Note that for HOAG and stocBiO, the number of samples accessed is same as the
number of gradient evaluations, whereas for SUSTAIN we compute two gradients for each sample
accessed (cf. (14))3. The experiments in Figure 5 establish that SUSTAIN outperforms HOAG and
stocBiO, in terms of the total number of gradient evaluations as well as the number of samples, even
under high corruption rate.

3Note that this requirement can be easily relaxed without compromising performance via using the gradient
construction (20).
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Proofs of Theoretical Results

Now we present the proofs of the theoretical results.

B Useful lemmas

Lemma B.1. Consider a collection of functions Φi : Rn → Z with i = {1, 2, . . . , k} andZ ⊆ Rn×n,
which satisfy the following assumptions:

(i) There exist Li > 0, i ∈ [k], such that

‖Φi(x)− Φi(y)‖ ≤ Li‖x− y‖, ∀ i ∈ [k], x, y ∈ Rn.

(ii) For each i ∈ [N ] and k ∈ N we have ‖Φi(x)‖ ≤Mi for all x ∈ Rn.

Then the following holds for all x, y ∈ Rn:∥∥∥∥ k∏
i=1

Φi(x)−
k∏
i=1

Φi(y)

∥∥∥∥2

≤ k
k∑
i=1

( k∏
j=1,j 6=i

Mj

)2

L2
i ‖x− y‖2. (21)

Moreover, if k is generated uniformly at random from {0, 1, . . . ,K − 1}, then the following holds for
all x, y ∈ Rn:

Ek
∥∥∥∥ k∏
i=1

Φi(x)−
k∏
i=1

Φi(y)

∥∥∥∥2

≤ K
K∑
i=1

Ek
[( k∏

j=1,j 6=i

Mj

)2
]
L2
i ‖x− y‖2. (22)

Here we use the convention that
∏k
i=1 Φi(x) = I if k = 0.

Proof. We first prove (21). To do so we will first show that the following holds for all x, y ∈ Rn and
k ∈ N: ∥∥∥∥ k∏

i=1

Φi(x)−
k∏
i=1

Φi(y)

∥∥∥∥ ≤ k∑
i=1

( k∏
j=1,j 6=i

Mj

)
Li‖x− y‖, (23)

Then by combining the above result with the identity that

‖z1 + z2 + . . .+ zk‖2 ≤ k‖z1‖2 + k‖z2‖2 + . . .+ k‖zk‖2, for all z, k ∈ N, (24)

we can conclude the first statement.

To show (23), we use an induction argument. The base case for k = 1 holds because of the Lipschitz
assumption (i) given in the statement of the lemma. Then assuming claim (23) holds for arbitrary k,
we have for k + 1∥∥∥∥ k+1∏
i=1

Φi(x)−
k+1∏
i=1

Φi(y)

∥∥∥∥ =

∥∥∥∥ k+1∏
i=1

Φi(x)−
k∏
i=1

Φi(x)Φk+1(y) +

k∏
i=1

Φi(x)Φk+1(y)−
k+1∏
i=1

Φi(y)

∥∥∥∥
(a)

≤
∥∥∥∥ k∏
i=1

Φi(x)

∥∥∥∥ ∥∥Φk+1(x)− Φk+1(y)
∥∥+

∥∥Φk+1(y)
∥∥ ∥∥∥∥ k∏

i=1

Φi(x)−
k∏
i=1

Φi(y)

∥∥∥∥
(b)

≤
( k∏
j=1

Mj

)
Lk+1

∥∥x− y∥∥+

k∑
i=1

( k+1∏
j=1,j 6=i

Mj

)
Li
∥∥x− y∥∥

(c)

≤
k+1∑
i=1

( k+1∏
j=1,j 6=i

Mj

)
Li‖x− y‖.

where (a) follows from the application of the triangle inequality and the Cauchy-Schwartz inequality;
the first expression in (b) results from the application of Cauchy-Schwartz inequality and Assumption
(i) and (ii) of the statement of the lemma; the second expression in (b) follows from the assumption
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that claim (23) holds for k; (c) follows from combining the two expressions. We conclude that (23)
holds for all k ∈ N.

Now consider the case when k is chosen uniformly at random from k ∈ {0, 1, . . . ,K−1}. First, note
from the definition that for k = 0 we have

∏k
i=1 Φi(x) = I . This implies that (21) is also satisfied if

we have k = 0. We then have

Ek
∥∥∥∥ k∏
i=1

Φi(x)−
k∏
i=1

Φi(y)

∥∥∥∥2 (a)

≤ Ek
[
k

k∑
i=1

( k∏
j=1,j 6=i

Mj

)2

‖Φi(x)− Φi(y)‖2
]

(b)

≤ K

K∑
i=1

Ek
[( k∏

j=1,j 6=i

Mj

)2
]
‖Φi(x)− Φi(y)‖2

(c)

≤ K

K∑
i=1

Ek
[( k∏

j=1,j 6=i

Mj

)2
]
L2
i ‖x− y‖2.

where (a) uses the fact that (21) holds for all k ∈ {0, 1, . . . ,K − 1} almost surely; (b) follows from
the fact that k ≤ K almost surely; (c) results from Assumption (i) of the lemma.

C Proofs of preliminary lemmas

C.1 Estimation of the stochastic gradient

We construct the stochastic gradient ∇̄f(x, y; ξ̄) as [14, 18]:

1. For K ∈ N, choose k ∈ {0, 1, . . . ,K − 1} uniformly at random.

2. Compute unbiased Hessian approximations ∇2
xyg(x, y; ζ(0)) and ∇2

yyg(x, y; ζ(i)) for i ∈
{1, . . . , k}, where {ζ(i)}ki=0 are chosen independently.

3. Compute unbiased gradient approximations∇xf(x, y; ξ) and∇yf(x, y; ξ) where ξ is chosen
independently of {ζ(i)}ki=0.

4. Construct the stochastic gradient estimate ∇̄f(x, y; ξ̄) with ξ̄ denoted as ξ̄ = {ξ, {ζ(i)}ki=0}:
∇̄f(x, y; ξ̄)

= ∇xf(x, y; ξ)−∇2
xyg(x, y; ζ(0))

[
K

Lg

k∏
i=1

(
I − 1

Lg
∇2
yyg(x, y; ζ(i))

)]
∇yf(x, y; ξ),

(25)

with
∏k
i=1

(
I − 1

Lg
∇2
yyg(x, y; ζ(i))

)
= I if k = 0.

Next, we state the result showing that the bias of the stochastic gradient estimate of the upper level
objective defined in (7) decays linearly with the number of samples K chosen to approximate the
Hessian inverse.
Lemma C.1. [18, Lemma 11] Under Assumptions 1, 2 and 3 the stochastic gradient estimate of the
upper level objective defined in (25), satisfies

‖B(x, y)‖ = ‖∇̄f(x, y)− E[∇̄f(x, y; ξ̄)]‖ ≤
CgxyCfy
µg

(
1− µg

Lg

)K
,

where B(x, y) is the bias of the stochastic gradient estimate and K is the number of samples chosen
to approximate the Hessian inverse in (25). Moreover, we have

Eξ̄
[∥∥∇̄f(x, y)− Eξ̄[∇̄f(x, y; ξ̄)]

∥∥2] ≤ σ2
fx +

3

µ2
g

[
(σ2
fy + C2

fy )
(
σ2
gxy + 2C2

gxy

)
+ σ2

fyC
2
gxy

]
.

Lemma C.1 implies that the bias B(x, y) can be made to satisfy ‖B(x, y)‖ ≤ ε with only
K = (Lg/µg) log(CgxyCfy/µgε)

stochastic Hessian samples of∇2
yyg(x, y).
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C.2 Lipschitz continuity of gradient estimate

Lemma C.2 (Lipschitzness of Stochastic Gradient Estimate). If the stochastic functions f(x, y; ξ)
and g(x, y; ζ) satisfy Assumptions 1, 2 and 3, then we have

(i) For a fixed y ∈ Rdup

Eξ̄‖∇̄f(x1, y; ξ̄)− ∇̄f(x2, y; ξ̄)‖2 ≤ L2
K‖x1 − x2‖2, ∀ x1, x2 ∈ Rdup .

(ii) For a fixed x ∈ Rdup

Eξ̄‖∇̄f(x, y1; ξ̄)− ∇̄f(x, y2; ξ̄)‖2 ≤ L2
K‖y1 − y2‖2, ∀ y1, y2 ∈ Rdup .

In the above expressions, LK > 0 is defined as:

L2
K = 2L2

fx + 6C2
gxyL

2
fy

(
K

2µgLg − µ2
g

)
+ 6C2

fyL
2
gxy

(
K

2µgLg − µ2
g

)
+ 6C2

gxyC
2
fy

K3L2
g

(Lg − µg)2(2µgLg − µ2
g)
,

and where K is the number of samples required to construct the stochastic approximation of ∇̄f (see
(25) above).

Proof. We prove only statement (i) of the lemma, the proof of (ii) follows from a similar argument.
From the definition of ∇̄f(x1, y; ξ̄) we have for x1, x2 ∈ Rdup and y ∈ Rdup

‖∇̄f(x1, y; ξ̄)− ∇̄f(x2, y; ξ̄)‖2

(a)

≤ 2
∥∥∇xf(x1, y; ξ)−∇xf(x2, y; ξ)

∥∥2

+ 2

∥∥∥∥∇2
xyg(x1, y; ζ(0))

[
K

Lg

k∏
i=1

(
I − 1

Lg
∇2
yyg(x1, y; ζ(i))

)]
∇yf(x1, y; ξ)

−∇2
xyg(x2, y; ζ(0))

[
K

Lg

k∏
i=1

(
I − 1

Lg
∇2
yyg(x2, y; ζ(i))

)]
∇yf(x2, y; ξ)

∥∥∥∥2

(b)

≤ 2L2
fx

∥∥x1 − x2

∥∥2

+ 2

∥∥∥∥∇2
xyg(x1, y; ζ(0))

[
K

Lg

k∏
i=1

(
I − 1

Lg
∇2
yyg(x1, y; ζ(i))

)]
∇yf(x1, y; ξ)

−∇2
xyg(x2, y; ζ(0))

[
K

Lg

k∏
i=1

(
I − 1

Lg
∇2
yyg(x2, y; ζ(i))

)]
∇yf(x2, y; ξ)

∥∥∥∥2

, (26)

where inequality (a) follows from the definition of ∇̄f(x1, y; ξ̄) and (24); inequality (b) follows
from the Lipschitz-ness Assumption 1–(ii) made for stochastic upper level objective. The variable
k ∈ {0, . . . ,K − 1} above is a random variable define in Section C.1 above. Let us consider the
second term of (26) above, we have∥∥∥∥∇2

xyg(x1, y; ζ(0))

[
K

Lg

k∏
i=1

(
I − 1

Lg
∇2
yyg(x1, y; ζ(i))

)]
∇yf(x1, y; ξ)

−∇2
xyg(x2, y; ζ(0))

[
K

Lg

k∏
i=1

(
I − 1

Lg
∇2
yyg(x2, y; ζ(i))

)]
∇yf(x2, y; ξ)

∥∥∥∥2

(a)

≤ 3C2
gxy

K2

L2
g

(
1− µg

Lg

)2k

‖∇yf(x1, y; ξ)−∇yf(x2, y; ξ)‖2
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+ 3C2
fy

K2

L2
g

(
1− µg

Lg

)2k

‖∇2
xyg(x1, y; ζ(0))−∇2

xyg(x2, y; ζ(0))‖2

+ 3C2
gxyC

2
fy

∥∥∥∥KLg
k∏
i=1

(
I − 1

Lg
∇2
yyg(x1, y; ζ(i))

)
− K

Lg

k∏
i=1

(
I − 1

Lg
∇2
yyg(x2, y; ζ(i))

)∥∥∥∥2

(b)

≤ 3C2
gxy

K2

L2
g

(
1− µg

Lg

)2k

L2
fy‖x1 − x2‖2 + 3C2

fy

K2

L2
g

(
1− µg

Lg

)2k

L2
gxy‖x1 − x2‖2

+ 3C2
gxyC

2
fy

K2

L2
g

∥∥∥∥ k∏
i=1

(
I − 1

Lg
∇2
yyg(x1, y; ζ(i))

)
−

k∏
i=1

(
I − 1

Lg
∇2
yyg(x2, y; ζ(i))

)∥∥∥∥2

,

where inequality (a) follows from (21) in Lemma B.1, Assumption 1–(iii) and Assumption 2–
(ii)(iii)(vi); inequality (b) follows from the Lipschitz continuity Assumption 1–(ii) and Assumption
2–(v) made for the stochastic upper and lower level objectives. On both sides taking expectation w.r.t
k, we get:

Ek
∥∥∥∥∇2

xyg(x1, y; ζ(0))

[
K

Lg

k∏
i=1

(
I − 1

Lg
∇2
yyg(x1, y; ζ(i))

)]
∇yf(x1, y; ξ)

−∇2
xyg(x2, y; ζ(0))

[
K

Lg

k∏
i=1

(
I − 1

Lg
∇2
yyg(x2, y; ζ(i))

)]
∇yf(x2, y; ξ)

∥∥∥∥2

≤ 3C2
gxy

K2

L2
g

Ek
[(

1− µg
Lg

)2k]
L2
fy‖x1 − x2‖2 + 3C2

fy

K2

L2
g

Ek
[(

1− µg
Lg

)2k]
L2
gxy‖x1 − x2‖2

+ 3C2
gxyC

2
fy

K2

L2
g

Ek
∥∥∥∥ k∏
i=1

(
I − 1

Lg
∇2
yyg(x1, y; ζ(i))

)
−

k∏
i=1

(
I − 1

Lg
∇2
yyg(x2, y; ζ(i))

)∥∥∥∥2

(a)

≤ 3C2
gxyL

2
fy

(
K

2µgLg − µ2
g

)
‖x1 − x2‖2 + 3C2

fyL
2
gxy

(
K

2µgLg − µ2
g

)
‖x1 − x2‖2

+ 3C2
gxyC

2
fy

K2

L2
g

Ek
∥∥∥∥ k∏
i=1

(
I − 1

Lg
∇2
yyg(x1, y; ζ(i))

)
−

k∏
i=1

(
I − 1

Lg
∇2
yyg(x2, y; ζ(i))

)∥∥∥∥2

,

(27)

where (a) follows from the fact that we have:

Ek
[(

1− µg
Lg

)2k]
=

1

K

K−1∑
k=0

(
1− µg

Lg

)2k

≤ 1

K

(
L2
g

2µgLg − µ2
g

)
,

where the first equality above follows from the fact that k ∈ {0, 1, . . . ,K − 1} is chosen uniformly
at random and the second equality results from the sum of a geometric progression.

Finally, considering the last term of (27), we have

Ek
∥∥∥∥ k∏
i=1

(
I − 1

Lg
∇2
yyg(x1, y; ζ(i))

)
−

k∏
i=1

(
I − 1

Lg
∇2
yyg(x2, y; ζ(i))

)∥∥∥∥2

(a)

≤ K

K∑
i=1

Ek
[(

1− µg
Lg

)2(k−1)]
1

L2
g

∥∥∇2
yyg(x1, y; ζ(i))−∇2

yyg(x2, y; ζ(i))
∥∥2

(b)

≤
(

L2
g

(Lg − µg)2

)(
1

2µgLg − µ2
g

) K∑
i=1

∥∥∇2
yyg(x1, y; ζ(i))−∇2

yyg(x2, y; ζ(i))
∥∥2

(c)

≤
KL2

gL
2
gyy

(Lg − µg)2(2µgLg − µ2
g)
‖x1 − x2‖2, (28)
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where (a) follows from the application of (22) in Lemma B.1 along with Assumption 2–(ii)(iii);
inequality (b) utilizes

Ek
[(

1− µg
Lg

)2(k−1)]
=

1

K

K−1∑
k=0

(
1− µg

Lg

)2(k−1)

≤ 1

K

(
L2
g

(Lg − µg)2

)(
L2
g

2µgLg − µ2
g

)
,

where the first equality above again utilizes the fact that k ∈ {0, 1, . . . ,K − 1} is chosen uniformly
at random and the second equality results from the sum of a geometric progression; inequality (c)
utilizes Assumption 2–(v) made for stochastic lower level objective.

Finally, taking expectation in (26) and substituting the expressions obtained in (27) and (28) in (26),
we obtain

E‖∇̄f(x1, y; ξ̄)− ∇̄f(x2, y; ξ̄)‖2 ≤ L2
K‖x1 − x2‖2,

where L2
K defined as:

L2
K := 2L2

fx + 6C2
gxyL

2
fy

(
K

2µgLg − µ2
g

)
+ 6C2

fyL
2
gxy

(
K

2µgLg − µ2
g

)
+ 6C2

gxyC
2
fy

K3L2
gyy

(Lg − µg)2(2µgLg − µ2
g)
.

Statement (i) of the Lemma is proved.

The proof of the statement (ii) follows the same procedure, so it is omitted.

D Proof of Theorem 3.2: smooth (possibly non-convex) outer objective

First, we consider the descent achieved by the outer objective in consecutive iterates generated by the
Algorithm 1 when the outer problem is smooth and is possibly non-convex. We define the following
constants for the stepsize parameters:

w = max
{

2, 27L3
f , 8L3

µgc
3
β , (µg + Lg)

3c3β , c
3/2
ηf
, c3/2ηg

}
, cβ =

6
√

2LyL

Lµg
,

cηf =
1

3Lf
+ max

{
36L2

K ,
4L2

KLµg (µg + Lg)c
2
β

L2

}
,

cηg =
1

3Lf
+ 8L2

gc
2
β +

[
8L2

L2
µg

+
2L2

Lµg (µg + Lg)

]
max

{
36L2

g,
4L2

gLµg (µg + Lg)c
2
β

L2

}
,

(29)

where we have defined Lµg =
µgLg
µg+Lg

.

D.1 Descent in the function value

Lemma D.1. For non-convex and smooth `(·), with eft defined as: eft := hft − ∇̄f(xt, yt)−Bt, the
consecutive iterates of Algorithm 1 satisfy:

E[`(xt+1)] ≤ E
[
`(xt)−

αt
2
‖∇`(xt)‖2 −

αt
2

(1− αtLf )‖hft ‖2 + αt‖eft ‖2

+ 2αtL
2‖yt − y∗(xt)‖2 + 2αt‖Bt‖2

]
.

for all t ∈ {0, 1, . . . , T − 1}, where the expectation is w.r.t. the stochasticity of the algorithm.

Proof. Using the Lipschitz smoothness of the objective function from Lemma 2.2 we have:

`(xt+1) ≤ `(xt) +
〈
∇`(xt), xt+1 − xt

〉
+
Lf
2
‖xt+1 − xt‖2

(a)
= `(xt)− αt

〈
∇`(xt), hft

〉
+
α2
tLf
2
‖hft ‖2

(b)
= `(xt)−

αt
2
‖∇`(xt)‖2 −

αt
2

(1− αtLf )‖hft ‖2 +
αt
2
‖hft −∇`(xt)‖2. (30)
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where (a) results from Step 7 of Algorithm 1 and (b) uses 〈a, b〉 = 1
2‖a‖

2 + 1
2‖b‖

2 − 1
2‖a − b‖

2.
Next, we bound the term ‖hft −∇`(xt)‖2 as follows

‖hft −∇`(xt)‖2 = ‖hft − ∇̄f(xt, yt)−Bt + ∇̄f(xt, yt) +Bt −∇`(xt)‖2

(c)

≤ 2‖hft − ∇̄f(xt, yt)−Bt‖2 + 4‖∇̄f(xt, yt)−∇`(xt)‖2 + 4‖Bt‖2

(d)

≤ 2‖eft ‖2 + 4L2‖yt − y∗(xt)‖2 + 4‖Bt‖2,

where inequality (c) uses (24) and (d) results from the definition of eft := hft − ∇̄f(xt, yt)−Bt and
(11) in Lemma 2.2. Substituting the above in (30) and taking expectation w.r.t. the stochasticity of
the algorithm we get the statement of the lemma.

D.2 Descent in the iterates of the lower level problem

Lemma D.2. Define egt := hgt − ∇yg(xt, yt). then the iterates of the inner problem generated
according to Algorithm 1, satisfy

E‖yt+1 − y∗(xt+1)‖2

≤ (1 + γt)(1 + δt)

(
1− 2βt

µgLg
µg + Lg

)
E‖yt − y∗(xt)‖2 +

(
1 +

1

γt

)
L2
yα

2
tE‖h

f
t ‖2

− (1 + γt)(1 + δt)

(
2βt

µg + Lg
− β2

t

)
E‖∇yg(xt, yt)‖+ (1 + γt)

(
1 +

1

δt

)
β2
tE‖e

g
t ‖2.

for all t ∈ {0, . . . , T − 1} with some γt, δt > 0., where the expectation is w.r.t. the stochasticity of
the algorithm.

Proof. Consider the term E‖yt+1 − y∗(xt+1)‖2, we have

E‖yt+1 − y∗(xt+1)‖2
(a)

≤ (1 + γt)E‖yt+1 − y∗(xt)‖2 +

(
1 +

1

γt

)
E‖y∗(xt)− y∗(xt+1)‖2

(b)
= (1 + γt)E‖yt − βthgt − y∗(xt)‖2 +

(
1 +

1

γt

)
L2
yE‖xt+1 − xt‖2

(c)

≤ (1 + γt)(1 + δt)E‖yt − βt∇yg(xt, yt)− y∗(xt)‖2

+ (1 + γt)

(
1 +

1

δt

)
β2
t ‖h

g
t −∇yg(xt, yt)‖2 +

(
1 +

1

γt

)
L2
yα

2
tE‖h

f
t ‖2.

(31)

where (a) results from the Young’s inequality; (b) uses Step 5 of Algorithm 1 and Lipschitzness of
y∗(·) in Lemma 2.2 and (c) again utilizes Young’s inequality and Step 7 of Algorithm 1. Next, we
consider the first term of the above equation we have

‖yt − βt∇yg(xt, yt)− y∗(xt)‖2

= ‖yt − y∗(xt)‖2 + β2
t ‖∇yg(xt, yt)‖2 − 2βt〈∇yg(xt, yt), yt − y∗(xt)〉

(d)

≤
(

1− 2βt
µgLg
µg + Lg

)
‖yt − y∗(xt)‖2 −

(
2βt

µg + Lg
− β2

t

)
‖∇yg(xt, yt)‖2,

where inequality (d) above results from the strong convexity of g, which implies

〈∇yg(xt, yt), yt − y∗(xt)〉 ≥
µgLg
µg + Lg

‖yt − y∗(xt)‖2 +
1

µg + Lg
‖∇yg(xt, yt)‖2.

Substituting in (31) and using the definition egt := hgt − ∇yg(xt, yt) we get the statement of the
lemma.
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D.3 Descent in the gradient estimation error of the outer function

Before presenting the descent in the gradient estimation error of the outer function we define
Ft = σ{y0, x0, . . . , yt, xt} as the sigma algebra generated by the sequence of iterates up to the tth
iteration of SUSTAIN.
Lemma D.3. Define eft := hft − ∇̄f(xt, yt) − Bt. Then the consecutive iterates of Algorithm 1
satisfy:

E‖eft+1‖2 ≤ (1− ηft+1)2E‖eft ‖2 + 2(ηft+1)2σ2
f + 4(1− ηft+1)2L2

Kα
2
tE‖h

f
t ‖2

+ 8(1− ηft+1)2L2
Kβ

2
tE‖e

g
t ‖2 + 8(1− ηft+1)2L2

Kβ
2
tE‖∇yg(xt, yt)‖2,

for all t ∈ {0, . . . , T − 1}, with LK defined in the statement of Lemma C.2. Here the expectation is
taken w.r.t the stochasticity of the algorithm.

Proof. From the definition of eft we have

E‖eft+1‖2 (32)

= E‖hft+1 − ∇̄f(xt+1, yt+1)−Bt+1‖2

(a)
= E

∥∥ηft+1∇̄f(xt+1, yt+1; ξt+1) + (1− ηt+1)
(
hft + ∇̄f(xt+1, yt+1; ξt+1)− ∇̄f(xt, yt; ξt+1)

)
− ∇̄f(xt+1, yt+1)−Bt+1

∥∥2

(b)
= E

∥∥(1− ηft+1)eft + ηft+1(∇̄f(xt+1, yt+1; ξt+1)− ∇̄f(xt+1, yt+1)−Bt+1)

+ (1− ηft+1)
(
(∇̄f(xt+1, yt+1; ξt+1)− ∇̄f(xt+1, yt+1)−Bt+1)

− (∇̄f(xt, yt; ξt+1)− ∇̄f(xt, yt)−Bt)
)∥∥2

(c)
= (1− ηft+1)2E

∥∥eft ∥∥2
+ E

∥∥ηft+1(∇̄f(xt+1, yt+1; ξt+1)− ∇̄f(xt+1, yt+1)−Bt+1)

+ (1− ηft+1)
(
(∇̄f(xt+1, yt+1; ξt+1)− ∇̄f(xt+1, yt+1)−Bt+1)

− (∇̄f(xt, yt; ξt+1)− ∇̄f(xt, yt)−Bt)
)∥∥2

(d)

≤ (1− ηft+1)2E‖eft ‖2 + 2(ηft+1)2E
∥∥∇̄f(xt+1, yt+1; ξt+1)− ∇̄f(xt+1, yt+1)−Bt+1

∥∥2

+ 2(1− ηft )2E
∥∥(∇̄f(xt+1, yt+1; ξt+1)− ∇̄f(xt+1, yt+1)−Bt+1

)
−
(
∇̄f(xt, yt; ξt+1)− ∇̄f(xt, yt)−Bt

)∥∥2

(e)

≤ (1− ηft+1)2E‖eft ‖2 + 2(ηft+1)2σ2
f

+ 2(1− ηft )2E
∥∥(∇̄f(xt+1, yt+1; ξt+1)− ∇̄f(xt+1, yt+1)−Bt+1

)
−
(
∇̄f(xt, yt; ξt+1)− ∇̄f(xt, yt)−Bt

)∥∥2

(33)

where equality (a) uses the definition of the recursive gradient estimator (14); (b) results from the
definition eft := hft − ∇̄f(xt, yt) − Bt; (c) follows from the fact that conditioned on Ft+1 =
σ{y0, x0, . . . , yt, xt, yt+1, xt+1}

E
〈
eft , (∇̄f(xt+1, yt+1; ξt+1)− ∇̄f(xt+1, yt+1)−Bt+1)

− (1− ηft+1)
(
(∇̄f(xt, yt; ξt+1)− ∇̄f(xt, yt)−Bt)

)〉
E
〈
eft ,E

[
(∇̄f(xt+1, yt+1; ξt+1)− ∇̄f(xt+1, yt+1)−Bt+1)

−(1− ηft+1)
(
(∇̄f(xt, yt; ξt+1)− ∇̄f(xt, yt)−Bt)

)
|Ft+1

]︸ ︷︷ ︸
=0

〉
= 0,

which follows from the fact that the second term in the inner product above is zero mean as a
consequence of Assumption 4-(i) and inequality (d) utilizes (24); and (e) results from Assumption
4-(i).
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Next, we bound the last term of (33) above

2(1− ηft+1)2E
∥∥(∇̄f(xt+1, yt+1; ξt+1)− ∇̄f(xt, yt; ξt+1)

)
−
((
∇̄f(xt+1, yt+1) +Bt+1

)
−
(
∇̄f(xt, yt) +Bt

))∥∥2

(a)

≤ 2(1− ηft+1)2E
∥∥∇̄f(xt+1, yt+1; ξt+1)− ∇̄f(xt, yt; ξt+1)‖2

(b)

≤ 4(1− ηft+1)2E
∥∥∇̄f(xt+1, yt+1; ξt+1)− ∇̄f(xt, yt+1; ξt+1)

∥∥2

+ 4(1− ηft+1)2E
∥∥∇̄f(xt, yt+1; ξt+1)− ∇̄f(xt, yt; ξt+1)

∥∥2

(c)

≤ 4(1− ηft+1)2L2
KE‖xt+1 − xt‖2 + 4(1− ηft+1)2L2

KE‖yt+1 − yt‖2

(d)

≤ 4(1− ηft+1)2L2
Kα

2
tE‖h

f
t ‖2 + 4(1− ηft+1)2L2

Kβ
2
tE‖h

g
t ‖2,

(e)

≤ 4(1− ηft+1)2L2
Kα

2
tE‖h

f
t ‖2 + 8(1− ηft+1)2L2

Kβ
2
tE‖e

g
t ‖2

+ 8(1− ηft+1)2L2
Kβ

2
tE‖∇yg(xt, yt)‖2, (34)

where (a) follows from the mean variance inequality: For a random variable Z we have E‖Z −
E[Z]‖2 ≤ E‖Z‖2 with Z defined as Z := ∇̄f(xt+1, yt+1; ξt+1)− ∇̄f(xt, yt; ξt+1); (b) again uses
(24); (c) follows from Lemma C.2; inequality (d) uses Steps 5 and 7 of Algorithm 1; finally, (e)
utilizes (24) and the definition of egt .

Finally, substituting (34) in (33), we get the statement of the lemma.

Therefore, the lemma is proved.

D.4 Descent in the gradient estimation error of the inner function

We consider the descent on the gradient estimation error of the inner function.

Lemma D.4. Define egt := hgt −∇yg(xt, yt). Then the iterates generated from Algorithm 1 satisfy

E‖egt+1‖2 ≤
(

(1− ηgt+1)2 + 8(1− ηgt+1)2L2
gβ

2
t

)
E‖egt ‖2 + 2(ηgt+1)2σ2

g

+ 4(1− ηgt+1)2L2
gα

2
tE‖h

f
t ‖2 + 8(1− ηgt+1)2L2

gβ
2
tE‖∇yg(xt, yt)‖2

for all t ∈ {0, 1, · · · , T − 1}, where the expectation is taken w.r.t. the stochasticity of the algorithm.

26



Proof. From the definition of egt we have

E‖egt+1‖2 = E‖hgt+1 −∇yg(xt+1, yt+1)‖2

(a)
= E‖∇yg(xt+1, yt+1, ζt+1) + (1− ηgt+1)

(
hgt −∇yg(xt, yt; ζt+1)

)
−∇yg(xt+1, yt+1)‖2

(b)
= E

∥∥(1− ηgt+1)egt +
(
∇yg(xt+1, yt+1, ζt+1)−∇yg(xt+1, yt+1)

)
− (1− ηgt+1)

(
∇yg(xt, yt; ζt+1)−∇yg(xt, yt)

)∥∥2

(c)
= (1− ηgt+1)2E‖egt ‖2

+ E‖∇yg(xt+1, yt+1, ζt+1)−∇yg(xt+1, yt+1)− (1− ηgt+1)
(
∇yg(xt, yt; ζt+1)−∇yg(xt, yt)

)
‖2

(d)

≤ (1− ηgt+1)2E‖egt ‖2 + 2(ηgt+1)2σ2
g + 2(1− ηgt+1)2E‖∇yg(xt+1, yt+1, ζt+1)−∇yg(xt, yt; ζt+1)‖2

(e)

≤ (1− ηgt+1)2E‖egt ‖2 + 2(ηgt+1)2σ2
g

+ 4(1− ηgt+1)2E‖∇yg(xt+1, yt+1, ζt+1)−∇yg(xt, yt+1; ζt+1)‖2

+ 4(1− ηgt+1)2E‖∇yg(xt, yt+1, ζt+1)−∇yg(xt, yt; ζt+1)‖2

(f)

≤ (1− ηgt+1)2E‖egt ‖2 + 2(ηgt+1)2σ2
g + 4(1− ηgt+1)2L2

gE‖xt+1 − xt‖2 + 4(1− ηgt+1)2L2
gE‖yt+1 − yt‖2

(g)

≤ (1− ηgt+1)2E‖egt ‖2 + 2(ηgt+1)2σ2
g + 4(1− ηgt+1)2L2

gα
2
tE‖h

f
t ‖2 + 4(1− ηgt+1)2L2

gβ
2
tE‖h

g
t ‖2

(h)

≤ (1− ηgt+1)2E‖egt ‖2 + 2(ηgt+1)2σ2
g + 4(1− ηgt+1)2L2

gα
2
tE‖h

f
t ‖2

+ 8(1− ηgt+1)2L2
gβ

2
tE‖e

g
t ‖2 + 8(1− ηgt+1)2L2

gβ
2
tE‖∇yg(xt, yt)‖2

≤
(

(1− ηgt+1)2 + 8(1− ηgt+1)2L2
gβ

2
t

)
E‖egt ‖2 + 2(ηgt+1)2σ2

g + 4(1− ηgt+1)2L2
gα

2
tE‖h

f
t ‖2

+ 8(1− ηgt+1)2L2
gβ

2
tE‖∇yg(xt, yt)‖2,

where equality (a) uses the definition of hybrid gradient estimator (13); (b) uses the definition of egt ;
(c) uses the fact that conditioned on Ft+1 = σ{y0, x0, . . . , yt, xt, yt+1, xt+1}

E
〈
egt ,
(
∇yg(xt+1, yt+1, ζt+1)−∇yg(xt+1, yt+1)

)
− (1− ηgt+1)

(
∇yg(xt, yt; ζt+1)−∇yg(xt, yt)

)〉
= E

〈
egt ,E

[(
∇yg(xt+1, yt+1, ζt+1)−∇yg(xt+1, yt+1)

)
− (1− ηgt+1)

(
∇yg(xt, yt; ζt+1)−∇yg(xt, yt)

)
|Ft+1

]︸ ︷︷ ︸
=0

〉
= 0.

Inequality (d) results from the application of (24) and Assumption 4-(ii); (e) again uses (24); (f)
utilizes Assumption 2; (g) follows from Steps 5 and 7 of Algorithm 1 and finally, (h) follows from
the application of (24) and the definition of egt .

Therefore, the lemma is proved.

D.5 Descent in the potential function

Let us define the potential function as:

Vt := `(xt) +
2L

3
√

2Ly
‖yt − y∗(xt)‖2 +

1

c̄ηf

‖eft ‖2

αt−1
+

1

c̄ηg

‖egt ‖2

αt−1
(35)

where we define

c̄ηf := max

{
36L2

K ,
4L2

KLµg (µg + Lg)c
2
β

L2

}
and c̄ηg := max

{
36L2

g,
4L2

gLµg (µg + Lg)c
2
β

L2

}
.

(36)

with Lµg defined as Lµg :=
µgLg
µg+Lg

.

Next, we quantify the expected descent in the potential function E[Vt+1 − Vt].
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Lemma D.5. Consider Vt defined in (35). Suppose the parameters of Algorithm 1 are chosen as

αt :=
1

(w + t)1/3
, βt := cβαt, η

f
t+1 := cηfα

2
t , and ηgt+1 := cηgα

2
t for all t ∈ {0, 1, . . . , T − 1}.

with

cβ :=
6
√

2LyL

Lµg
, cηf :=

1

3Lf
+ c̄ηf and cηg :=

1

3Lf
+ 8L2

gc
2
β +

[
8L2

L2
µg

+
2L2

Lµg (µg + Lg)

]
c̄ηg ,

where Lµg :=
µgLg
µg+Lg

and

c̄ηf = max

{
36L2

K ,
4L2

KLµg (µg + Lg)c
2
β

L2

}
and c̄ηg = max

{
36L2

g,
4L2

gLµg (µg + Lg)c
2
β

L2

}
.

and the parameters

γt :=
βtLµg/2

1− βtLµg
and δt :=

βtLµg
1− 2βtLµg

.

Then the iterates generated by Algorithm 1 when the outer problem is non-convex satisfy:

E[Vt+1 − Vt] ≤ −
αt
2
E‖∇`(xt)‖2 + 2αt‖Bt‖2 +

2(ηft+1)2

c̄ηfαt
σ2
f +

2(ηgt+1)2

c̄ηgαt
σ2
g .

for all t ∈ {0, 1, . . . , T − 1}

Proof. We have from Lemma D.2

E‖yt+1 − y∗(xt+1)‖2 − E‖yt − y∗(xt)‖2 ≤
[
(1 + γt)(1 + δt)

(
1− 2βt

µgLg
µg + Lg

)
− 1

]
E‖yt − y∗(xt)‖2

− (1 + γt)(1 + δt)

(
2βt

µg + Lg
− β2

t

)
E‖∇yg(xt, yt)‖

+ (1 + γt)

(
1 +

1

δt

)
β2
tE‖e

g
t ‖2 +

(
1 +

1

γt

)
L2
yα

2
tE‖h

f
t ‖2.

(37)

Let us consider coefficient of the first term of (37) above, choosing γt and δt such that we have

(1 + γt)(1 + δt)(1− 2βtLµg ) = 1−
βtLµg

2
(38)

where we define Lµg :=
µgLg
µg+Lg

. First we choose γt such that we have

(1 + δt)(1− 2βtLµg ) = 1− βtLµg ⇒ 1 + δt =
1− βtLµg
1− 2βtLµg

⇒ δt =
βtLµg

1− 2βtLµg

Moreover, this implies that we have:

1 +
1

δt
= 1 +

1− 2βtLµg
βtLµg

≤ 1

βtLµg
.

Using the definition of δt in (38) we

(1 + γt)(1− βtLµg ) = 1−
βtLµg

2
⇒ 1 + γt =

1− βtLµg
2

1− βtLµg
⇒ γt =

βtLµg/2

1− βtLµg
Moreover, this implies that we have:

1 +
1

γt
= 1 +

1− βtLµg
βtLµg/2

≤ 2

βtLµg
.
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Substituting the above bounds in (37), we get

E‖yt+1 − y∗(xt+1)‖2 − E‖yt − y∗(xt)‖2 ≤ −
βtLµg

2
E‖yt − y∗(xt)‖2 −

(
2βt

µg + Lg
− β2

t

)
E‖∇yg(xt, yt)‖

+
2

βtLµg
β2
tE‖e

g
t ‖2 +

2

βtLµg
L2
yα

2
tE‖h

f
t ‖2.

Choosing βt ≤ 1
µg+Lg

we get

E‖yt+1 − y∗(xt+1)‖2 − E‖yt − y∗(xt)‖2 ≤ −
βtLµg

2
E‖yt − y∗(xt)‖2 −

βt
µg + Lg

E‖∇yg(xt, yt)‖

+
2

βtLµg
β2
tE‖e

g
t ‖2 +

2

βtLµg
L2
yα

2
tE‖h

f
t ‖2.

Using the definition of βt = cβαt and multiplying both sides by 4L2

cβLµg
we get

4L2

cβLµg
E
[
‖yt+1 − y∗(xt+1)‖2 − ‖yt − y∗(xt)‖2

]
≤ −2αtL

2E‖yt − y∗(xt)‖2 −
4L2αt

Lµg (µg + Lg)
E‖∇yg(xt, yt)‖

+
8L2αt
L2
µg

E‖egt ‖2 +
8L2

yL
2αt

c2βL
2
µg

E‖hft ‖2.

Finally, choosing cβ =
6
√

2LyL
Lµg

such that
8L2

yL
2

c2βL
2
µg

= 1
9

2L

3
√

2Ly
E
[
‖yt+1 − y∗(xt+1)‖2 − ‖yt − y∗(xt)‖2

]
≤ −2αtL

2E‖yt − y∗(xt)‖2 −
4L2αt

Lµg (µg + Lg)
E‖∇yg(xt, yt)‖

+
8L2αt
L2
µg

E‖egt ‖2 +
αt
9
E‖hft ‖2.

(39)

Next, we have from Lemma D.3

E‖eft+1‖2

αt
−

E‖eft+1‖2

αt−1
≤
[

(1− ηft+1)2

αt
− 1

αt−1

]
E‖eft ‖2 +

2(ηft+1)2

αt
σ2
f + 4L2

KαtE‖h
f
t ‖2

+
8L2

Kβ
2
t

αt
E‖egt ‖2 +

8L2
Kβ

2
t

αt
E‖∇yg(xt, yt)‖2,

(40)

where we have utilized the fact that 0 < 1− ηt < 1 for all t ∈ {0, 1, . . . , T − 1}. Now we consider
the coefficient of the first term on the right hand side of (40), we have

(1− ηft+1)2

αt
− 1

αt−1
≤ 1

αt
−
ηft+1

αt
− 1

αt−1
. (41)

Using the definition of αt we have

1

αt
− 1

αt−1
= (w + t)1/3 − (w + t− 1)1/3]

(a)

≤ 1

3(w + t− 1)2/3

(b)

≤ 1

3(w/2 + t)2/3

=
22/3

3(w + 2t)2/3
≤ 22/3

3(w + t)2/3

(c)

≤ 22/3

3
α2
t

(d)

≤ αt
3Lf

,

where (a) follows from (x + y)1/3 − x1/3 ≤ y/(3x2/3); (b) results from the fact that we choose
w ≥ 2 hence 1 ≤ w/2; (c) results from the definition of αt and (d) uses the fact that we choose
αt ≤ 1/3Lf . Substituting in (41) and using ηft+1 = cηfα

2
t , we get

(1− ηft+1)2

αt
− 1

αt−1
≤ αt

3Lf
− cηfαt ≤ −c̄ηfαt,
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which follows from the choice

cηf =
1

3Lf
+ c̄ηf with c̄ηf = max

{
36L2

K ,
4L2

KLµg (µg + Lg)c
2
β

L2

}
.

Substiuting in (40)

1

c̄ηf
E
[‖eft+1‖2

αt
−
‖eft+1‖2

αt−1

]
≤ −αtE‖eft ‖2 +

2(ηft+1)2

c̄ηfαt
σ2
f +

αt
9
E‖hft ‖2 +

2L2

Lµg (µg + Lg)
αtE‖egt ‖2

+
2L2

Lµg (µg + Lg)
αtE‖∇yg(xt, yt)‖2,

(42)

Next, from Lemma D.4, we have

E‖egt+1‖2

αt
− E‖egt ‖2

αt−1
≤
[

(1− ηgt+1)2 + 8(1− ηgt+1)2L2
gβ

2
t

αt
− 1

αt−1

]
E‖egt ‖2 +

2(ηgt+1)2

αt
σ2
g

+ 4L2
gαtE‖h

f
t ‖2 +

8L2
gβ

2
t

αt
E‖∇yg(xt, yt)‖2

(43)

where we have utilized the fact that 0 < 1− ηgt ≤ 1 for all t ∈ {0, 1, . . . , T − 1}. Let us consider
the coefficient of the first term on the right hand side of (43) we have

(1− ηgt+1)2 + 8(1− ηgt+1)2L2
gβ

2
t

αt
− 1

αt−1
≤

(1− ηgt+1)

αt

(
1 + 8L2

gβ
2
t

)
− 1

αt−1

=
1

αt
− 1

αt−1
+

8L2
gβ

2
t

αt
− cηgαt(1 + 8L2

gβ
2
t ),

using the fact that from earlier we have 1
αt
− 1

αt−1
≤ αt

3Lf
and the definition of βt = cβαt, we have

(1− ηgt+1)2 + 8(1− ηgt+1)2L2
gβ

2
t

αt
− 1

αt−1
≤ αt

3Lf
+ 8L2

gc
2
βαt − cηgαt,

Next choosing cηg as

cηg =
1

3Lf
+ 8L2

gc
2
β +

[
8L2

L2
µg

+
2L2

Lµg (µg + Lg)

]
c̄ηg with c̄ηg = max

{
36L2

g,
4L2

gLµg (µg + Lg)c
2
β

L2

}
.

Therefore, we get

(1− ηgt+1)2 + 8(1− ηgt+1)2L2
gβ

2
t

αt
− 1

αt−1
≤ −

[
8L2

L2
µg

+
2L2

Lµg (µg + Lg)

]
c̄ηgαt,

Finally, replacing in (43) we get

1

c̄ηg
E
[‖egt+1‖2

αt
− ‖e

g
t ‖2

αt−1

]
≤ −

[
8L2

L2
µg

+
2L2

Lµg (µg + Lg)

]
αtE‖egt ‖2 +

2(ηgt+1)2

c̄ηgαt
σ2
g

+
αt
9
E‖hft ‖2 +

2L2

Lµg (µg + Lg)
αtE‖∇yg(xt, yt)‖2

(44)

Finally, adding (39), (42), (44) and the result of Lemma D.1 with αt ≤ 1/3Lf , we get

E[Vt+1 − Vt] ≤ −
αt
2
E‖∇`(xt)‖2 + 2αt‖Bt‖2 +

2(ηft+1)2

c̄ηfαt
σ2
f +

2(ηgt+1)2

c̄ηgαt
σ2
g .

Therefore, we have the statement of the Lemma.
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D.6 Proof of Theorem 3.2

Summing the result of Lemma D.5 for t = 0 to T − 1, dividing by T on both sides and using the
definition ηft+1 := cηfα

2
t and ηgt+1 := cηgα

2
t we get

E[VT − V0]

T
≤ − 1

T

T−1∑
t=0

αt
2
E‖∇`(xt)‖2 +

2

T

T∑
t=0

αt‖Bt‖2 +
2c2ηfσ

2
f

c̄ηf

T−1∑
t=0

α3
t +

2c2ηgσ
2
g

c̄ηg

T−1∑
t=0

α3
t .

(45)

Next considering
∑T−1
t=0 αt in the last two terms on the right hand side of (45), we have from the

definition of αt that

T−1∑
t=0

α3
t =

T−1∑
t=0

1

w + t

(a)

≤
T−1∑
t=0

1

1 + t
≤ log(T + 1)

where inequality (a) results from the fact that we choose w ≥ 1. Substituting the above in (45) we
get

E[VT − V0]

T
≤ − 1

T

T−1∑
t=0

αt
2
E‖∇`(xt)‖2 +

2

T

T∑
t=0

αt‖Bt‖2 +
2c2ηf
c̄ηf

log(T + 1)

T
σ2
f +

2c2ηg
c̄ηg

log(T + 1)

T
σ2
g

Rearranging the terms we get

1

T

T−1∑
t=0

αt
2
E‖∇`(xt)‖2 ≤

E[V0 − `∗]
T

+
2

T

T∑
t=0

αt‖Bt‖2 +
2c2ηf
c̄ηf

log(T + 1)

T
σ2
f +

2c2ηg
c̄ηg

log(T + 1)

T
σ2
g

Using the fact that αt is decreasing in twe have αT ≤ αt for all t ∈ {0, 1, . . . , T−1} and multiplying
by 2/αT on both sides we get

1

T

T−1∑
t=0

E‖∇`(xt)‖2 ≤
2E[V0 − `∗]

αTT
+

4

αTT

T∑
t=0

αt‖Bt‖2 +
4c2ηf
c̄ηf

log(T + 1)

αTT
σ2
f +

4c2ηg
c̄ηg

log(T + 1)

αTT
σ2
g

Finally, we have from the definition of the Potential function

E[V0] := E
[
`(x0) +

2L

3
√

2Ly
‖y0 − y∗(x0)‖2 +

1

c̄ηf

‖ef0‖2

α−1
+

1

c̄ηg

‖eg0‖2

α−1

]
≤ `(x0) +

2L

3
√

2Ly
‖y0 − y∗(x0)‖2 +

σ2
f

c̄ηfα−1
+

σ2
g

c̄ηgα−1
,

which follows from the assumption and the definition of hft and hgt . Therefore, we have

1

T

T−1∑
t=0

‖∇`(xt)‖2 ≤
2(`(x0)− `∗)

αTT
+

4L

3
√

2Ly

‖y0 − y∗(x0)‖2

αTT
+

2

c̄ηfα−1

σ2
f

αTT
+

2

c̄ηgα−1

σ2
g

αTT

+
4

αTT

T∑
t=0

αt‖Bt‖2 +
4c2ηf
c̄ηf

log(T + 1)

αTT
σ2
f +

4c2ηg
c̄ηg

log(T + 1)

αTT
σ2
g

Finally, we have from the definition of αT := 1/(w + T )1/3 and α1 = α0, moreover using the fact
that for the choice of K = (Lg/µg) log(CgxyCfyT/µg) stochastic Hessian samples of ∇2

yyg(x, y)
we have ‖Bt‖ = 1/T , we get

E‖∇`(xa(T ))‖2 ≤ O
(
`(x0)− `∗

T 2/3

)
+O

(
‖y0 − y∗(x0)‖2

T 2/3

)
+ Õ

(
σ2
f

T 2/3

)
+ Õ

(
σ2
g

T 2/3

)
.

Hence, the theorem is proved.
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E Proof of Theorem 3.3: strongly-convex outer objective

To prove Theorem 3.3, we utilize the descent results obtained for the proof of Theorem 3.2 in
Appendix D. The proof follows similar structure as the proof of non-convex case. We first consider
the descent achieved by the consecutive iterates generated by Algorithm 1 when the outer function is
strongly-convex and smooth.

E.1 Descent in the function value

Lemma E.1. For strongly-convex and smooth `(·), with eft defined as: eft := hft −∇̄f(xt, yt+1)−Bt,
the consecutive iterates of Algorithm 1 satisfy:

E[`(xt+1)− `∗] ≤ E
[
(1− αtµf )

(
`(xt)− `∗

)
− αt

2
(1− αtLf )‖hft ‖2 + αt‖eft ‖2

+ 2αtL
2‖yt − y∗(xt)‖2 + 2αt‖Bt‖2

]
,

for all t ∈ {0, 1, . . . , T − 1}, where the expectation is w.r.t. the stochasticity of the algorithm.

Proof. Note that from Lemma D.1 derived in Appendix D, we have

E[`(xt+1)] ≤ E
[
`(xt)−

αt
2
‖∇`(xt)‖2 −

αt
2

(1− αtLf )‖hft ‖2 + αt‖eft ‖2 (46)

+ 2αtL
2‖yt − y∗(xt)‖2 + 2αt‖Bt‖2

]
.

Now using the fact that for a strongly convex function we have:

‖∇`(x)‖2 ≥ 2µf (`(x)− `∗) for all x ∈ Rdup ,
substituting in (46), subtracting `∗ from both sides and rearranging the terms yields the statement of
the Lemma.

E.2 Descent in the iterates of the lower level problem

Lemma E.2. The iterates of the inner problem generated according to Algorithm 1, satisfy
E‖yt+1 − y∗(xt+1)‖2 ≤ (1 + γt)

(
1− 2βtµg + β2

tL
2
g

)
E‖yt − y∗(xt)‖2

+

(
1 +

1

γt

)
L2
yα

2
tE‖h

f
t ‖2 + (1 + γt)β

2
t σ

2
g .

for all t ∈ {0, . . . , T − 1} with some γt > 0, where the expectation is w.r.t. the stochasticity of the
algorithm.

Proof. Consider the term E‖yt+1 − y∗(xt+1)‖2, we have

E‖yt+1 − y∗(xt+1)‖2
(a)

≤ (1 + γt)E‖yt+1 − y∗(xt)‖2 +

(
1 +

1

γt

)
E‖y∗(xt+1)− y∗(xt)‖2

(b)

≤ (1 + γt)E‖yt − βthgt − y∗(xt)‖2 +

(
1 +

1

γt

)
L2
yE‖xt+1 − xt‖2

(c)

≤ (1 + γt)E‖yt − βthgt − y∗(xt)‖2 +

(
1 +

1

γt

)
L2
yα

2
tE‖h

f
t ‖2 (47)

where (a) results from Young’s inequality; (b) uses Step 5 of Algorithm 1 and Lipschitzness of y∗(·)
given in Lemma 2.2; and (c) uses Step 7 of Algorithm 1.

Next, we consider the first term of (47) above:
E‖yt − βthgt − y∗(xt)‖2 = E‖yt − y∗(xt)‖2 + β2

tE‖h
g
t ‖2 − βtE〈yt − y∗(xt), h

g
t 〉

(a)

≤ E‖yt − y∗(xt)‖2 + β2
tE‖∇yg(xt, yt)‖2 + β2

tE‖h
g
t −∇yg(xt, yt)‖2

− βtE〈yt − y∗(xt),∇yg(xt, yt)〉
(b)

≤ (1− 2µgβt + β2
tL

2
g)E‖yt − y∗(xt)‖2 + +β2

t σ
2
g (48)
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where (a) utilizes the fact that for ηgt = 1 we have E[hgt |Ft] = ∇yg(xt, yt) and (b) uses the fact
that (1)∇yg(x, y∗(x)) = 0 and the Lipschitzness of∇yg(x, ·) in Assumption 2-(ii); (2) Assumption
4-(ii); and (3) g(x, y) is µg-strongly convex w.r.t. y, we therefore have〈

∇gy(x, y1)−∇gy(x, y2), y1 − y2

〉
≥ µg‖y1 − y2‖2,

using y1 = yt and y2 = y∗(xt) yields inequality (b). Finally, substituting (48) in (47) yields the
statement of the lemma.

E.3 Descent in the gradient estimation error

Lemma E.3. Define eft := hft − ∇̄f(xt, yt) − Bt. Then the consecutive iterates of Algorithm 1
satisfy:

E‖eft+1‖2 ≤ (1− ηft+1)2E‖eft ‖2 + 2(ηft+1)2σ2
f + 4(1− ηft+1)2L2

Kα
2
tE‖h

f
t ‖2

+ 8(1− ηft+1)2L2
Kβ

2
t σ

2
g + 8(1− ηft+1)2L2

KL
2
gβ

2
tE‖yt − y∗(xt)‖2,

for all t ∈ {0, . . . , T − 1}, with LK defined in the statement of Lemma C.2. Here the expectation is
taken w.r.t the stochasticity of the algorithm.

Proof. From the statement of Lemma D.3, we have

E‖eft+1‖2 ≤ (1− ηft+1)2E‖eft ‖2 + 2(ηft+1)2σ2
f + 4(1− ηft+1)2L2

Kα
2
tE‖h

f
t ‖2

+ 8(1− ηft+1)2L2
Kβ

2
tE‖e

g
t ‖2 + 8(1− ηft+1)2L2

Kβ
2
tE‖∇yg(xt, yt)‖2,

The proof follows by noticing the fact that for the gradient estimate hgt with ηgt = 1, we have
E‖egt ‖2 ≤ σ2

g from Assumption 4-(ii) and the Lipschitzness of ∇yg(x, ·) combined with the fact that
∇yg(x, y∗(x)) = 0.

E.4 Descent in potential function

In this section, we define the potential function as:

V̂t := (`(xt)− `∗) + ‖eft ‖2 + ‖yt − y∗(xt)‖2, (49)

which is different from that of (35). We next show that the potential function decreases with
appropriate choice of parameters.

Lemma E.4. With the potential function, V̂t, defined in (49), with the choice of parameters

ηft+1 = (µf + 1)αt, βt = ĉβαt with ĉβ =
8L2

y + 8L2 + 2µf

µg
and γt =

µgβt
2(1− µgβt)

for all t ∈ {0, 1, . . . , T − 1},

with α−1 = α0, moreover, we choose

αt ≤
{

1

µf + 1
,

1

2µg ĉβ
,
µg
ĉβL2

g

,
1

8L2
K + Lf

,
L2 + 2L2

y

4L2
KL

2
g ĉ

2
β

}
. (50)

Further, we choose

K =
Lg
2µg

log

((
CgxyCfy
µg

)2

T

)
such that we have ‖Bt‖2 ≤ 1/T , then we have

E[V̂t+1] ≤ (1− µfαt+1)E[V̂t] +
2αt
T

+
[
(2ĉ2β + 8ĉ2βL

2
K)σ2

g + 2(µf + 1)2σ2
f

]
α2
t ,

for all t ∈ {0, 1, . . . , T − 1}.

Proof. From Lemma E.3, we have

E‖eft+1‖2 ≤ (1− ηft+1)E‖eft ‖2 + 2(ηft+1)2σ2
f + 4L2

Kα
2
tE‖h

f
t ‖2 + 8L2

Kβ
2
t σ

2
g + 8L2

KL
2
gβ

2
tE‖yt − y∗(xt)‖2,

(51)
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which follows from 1− ηft+1 ≤ 1. With the choice of ηt = (µf + 1)αt and βt = ĉβαt we get from
(51):

E‖eft+1‖2 ≤ (1− (µf + 1)αt)E‖eft ‖2 + 2(µf + 1)2α2
tσ

2
f + 4L2

Kα
2
tE‖h

f
t ‖2

+ 8L2
K ĉ

2
βα

2
tσ

2
g + 8L2

KL
2
g ĉ

2
βα

2
tE‖yt − y∗(xt)‖2,

(52)
Next, we consider the descent in the iterates of inner problem. Again using Lemma E.2 we have

E‖yt+1 − y∗(xt+1)‖2 ≤ (1 + γt)
(
1− 2βtµg + β2

tL
2
g

)
E‖yt − y∗(xt)‖2 (53)

+

(
1 +

1

γt

)
L2
yα

2
tE‖h

f
t ‖2 + (1 + γt)β

2
t σ

2
g .

Using the fact that βt ≤ µg
L2
g

, βt ≤ 1
2µg

and from the choice of γt we have 1 + 1
γt
≤ 2

µgβt
Substituting

the γt, βt and the upper bound on 1 + 1
γt

in (53) above we get:

E‖yt+1 − y∗(xt+1)‖2 ≤
(

1− ĉβµgαt
2

)
E‖yt − y∗(xt)‖2 +

2L2
yαt

µg ĉβ
E‖hft ‖2 + 2ĉ2βα

2
tσ

2
g . (54)

Next, replacing the choice of ĉβ in (54), we get:

E‖yt+1 − y∗(xt+1)‖2 ≤
(
1− [4L2

y + 4L2 + µf ]αt
)
E‖yt − y∗(xt)‖2 +

αt
4
E‖hft ‖2 + 2ĉ2βα

2
tσ

2
g .

(55)
Finally, to construct the potential function defined in (49) we add (52) and (55) to the expression of
Lemma E.1, we get

E[V̂t+1] ≤ (1− µfαt)E[V̂t+1]−
(
α

2
(1− αtLf )− αt

4
− 4L2

Kα
2
t

)
E‖hft ‖2 + 2αt‖Bt‖2

−
(
4L2αt + 4L2

yαt − 2L2αt − 8L2
KL

2
g ĉ

2
βα

2
t

)
E‖yt − y∗(xt)‖2

+ (2ĉ2β + 8ĉ2βL
2
K)α2

tσ
2
g + 2(µf + 1)2α2

tσ
2
f .

Noting the fact that αt ≤ 1
8L2

K+Lf
and αt ≤

L2+2L2
y

4L2
KL

2
g ĉ

2
β

and choosing Bt such that we have ‖Bt‖2 ≤
1
T , we get

E[V̂t+1] ≤ (1− µfαt)E[V̂t] +
2αt
T

+
[
(2ĉ2β + 8ĉ2βL

2
K)σ2

g + 2(µf + 1)2σ2
f

]
α2
t .

This concludes the proof of the lemma.

E.5 Proof of Theorem 3.3

Next, we conclude the proof for the case of strongly-convex outer objective function case based on
fixed step sizes and momentum parameters.

Proof. With fixed step sizes, i.e. αt = α for all t ∈ {0, 1, . . . , T − 1}, we have from the Lemma E.4

E[V̂t+1] ≤ (1− µfα)E[V̂t] +
2α

T
+
[
(2ĉ2β + 8ĉ2βL

2
K)σ2

g + 2(µf + 1)2σ2
f

]
α2.

applying the above inequality recursively we get

E[V̂t] ≤ (1− µfα)tE[V̂0] +
2α

T

t−1∑
k=0

(1− µfα)k +
[
(2ĉ2β + 8ĉ2βL

2
K)σ2

g + 2(µf + 1)2σ2
f

]
α2

t−1∑
k=0

(1− µfα)k

(a)

≤ (1− µfα)t
(
(`(x0)− `∗) + E‖ef0‖2 + E‖y0 − y∗(x0)‖2

)
+

2α

T

t−1∑
k=0

(1− µfα)k

+
[
(2ĉ2β + 8ĉ2βL

2
K)σ2

g + 2(µf + 1)2σ2
f

]
α2

t−1∑
k=0

(1− µfα)k

(b)

≤ (1− µfα)t
{

(`(x0)− `∗) + σ2
f + ‖y0 − y∗(x0)‖2

}
+

2

µfT
+

(2ĉ2β + 8ĉ2βL
2
K)σ2

g + 2(µf + 1)2σ2
f

µf
α,

(56)
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where (a) follows from the definition of V̂t given in (49) and (b) utilizes the summation of a geometric
progression.

This concludes the proof of the theorem.

Sample complexity of SUSTAIN in the strongly convex setting Let us estimate the total number
of iterations, T , needed to reach an ε-optimal solution. First, we select a constant step size such that

α ≤ µf

4
[
(2ĉ2β + 8ĉ2βL

2
K)σ2

g + 2(µf + 1)2σ2
f

]ε =⇒
[
(2ĉ2β + 8ĉ2βL

2
K)σ2

g + 2(µf + 1)2σ2
f

]
µf

α ≤ ε

4
,

(57)
which controls the last term in (56). Secondly, to control the second term in (56), we observe that
T ≥ 8

µf ε
implies 2

µfT
≤ ε

4 . Finally, controlling the first term in (56) requires

ε

2
≥ (1− µfα)T

(
(`(x0)− `∗) + σ2

f + ‖y0 − y∗(x0)‖2
)

(58)

which means we require:

(1− µfα)T ≤ ε

2
(
(`(x0)− `∗) + σ2

f + ‖y0 − y∗(x0)‖2
)

⇐⇒ T log(1− µfα) ≤ log

(
ε

2
(
(`(x0)− `∗) + σ2

f + ‖y0 − y∗(x0)‖2
))

⇐⇒ T ≥
log

(
2
(

(`(x0)−`∗)+σ2
f+‖y0−y∗(x0)‖2

)
ε

)
− log(1− µfα)

⇐= T
(a)

≥ log

(
2
(
(`(x0)− `∗) + σ2

f + ‖y0 − y∗(x0)‖2
)

ε

)
1

µfα
, (59)

where (a) is due to log x ≤ x − 1 for all x > 0. This along with (57) imply that we require at
most T = Õ(ε−1) iterations to reach an ε-optimal solution, i.e., E[`(xt)− `∗] ≤ ε. Finally, as each
iteration takes a batch of K = O(log(T )) samples, the total sample complexity required to reach an
ε-optimal solution is bounded as T = Õ(ε−1).
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