
A Appendix

A.1 Full experimental results

In this section we provide the full experimental results that extend the results demonstrated in the
Section 4.2. Table 8 demonstrates the evaluation on 16 robustly trained CIFAR10 models from
RobustBench [28] that was summarized in the Table 2. We consider four configurations of the
attack for each of the models. SA and AA correspond to the update size schedules proposed by
Andriushchenko et al. [1] and Croce and Hein [2] respectively. "Uni" denotes sampling the color
for the update uniformly. MSAs+MSAc is a combination of an update size controller with the color
sampling controller that we denoted as MSA in the Section 4.2. MSAs+Uni is an ablated version in
which we only use an update size controller MSAs. The clean and robust accuracy of the models are
taken from https://robustbench.github.io/.

Table 8: We compare the update size controller MSAs to the schedules from the SA [1] and the
AA [2] in the `∞ threat model with ε = 8/255 on 1000 CIFAR10 test images. We also compare the
uniform color sampling denoted as "Uni" to our color controller MSAc. Averaged across at least 3
runs with different random seeds.

Model Accuracy (%) Square Color Query budget
Clean Robust size 500 1000 2500 5000

Wong et al. [51] 83.34 43.21

SA Uni 69.7±0.15 63.5±0.10 55.1±0.04 50.8±0.08
AA Uni 69.5±0.21 63.9±0.10 57.4±0.07 53.6±0.06
MSAs Uni 63.9±0.11 59.8±0.10 54.0±0.16 51.1±0.08
MSAs MSAc 63.9±0.12 59.1±0.09 53.0±0.16 49.8±0.08

Ding et al. [3] 84.36 41.44

SA Uni 68.7±0.20 63.2±0.28 57.8±0.13 54.9±0.17
AA Uni 66.6±0.18 62.2±0.14 57.5±0.12 55.0±0.20
MSAs Uni 62.4±0.15 59.4±0.09 56.1±0.10 54.6±0.06
MSAs MSAc 62.2±0.14 59.1±0.16 55.9±0.15 54.1±0.15

Engstrom et al. [56] 87.03 49.25

SA Uni 72.8±0.19 67.4±0.21 59.9±0.17 56.3±0.07
AA Uni 71.9±0.1 67.9±0.14 61.6±0.12 58.0±0.06
MSAs Uni 67.9±0.12 64.2±0.15 58.9±0.05 56.4±0.12
MSAs MSAc 67.8±0.12 63.4±0.18 58.2±0.06 55.9±0.04

Gowal et al. [62] 89.48 62.76

SA Uni 80.6±0.09 76.7±0.06 70.8±0.14 67.5±0.07
AA Uni 80.0±0.17 76.8±0.11 72.2±0.10 69.2±0.08
MSAs Uni 76.9±0.05 73.7±0.05 69.8±0.13 67.6±0.04
MSAs MSAc 76.9±0.07 73.4±0.13 69.0±0.08 67.2±0.04

Carmon et al. [63] 89.69 59.53

SA Uni 79.0±0.15 76.0±0.14 68.2±0.07 65.4±0.09
AA Uni 78.0±0.10 74.5±0.11 69.6±0.04 67.1±0.05
MSAs Uni 74.4±0.09 70.8±0.06 67.5±0.07 65.6±0.07
MSAs MSAc 74.6±0.10 70.3±0.07 67.0±0.07 65.4±0.08

Huang et al. [52] 83.48 53.34

SA Uni 72.3±0.1 66.6±0.16 60.5±0.09 57.3±0.08
AA Uni 70.6±0.10 66.5±0.07 61.2±0.10 58.5±0.11
MSAs Uni 66.4±0.12 63.4±0.08 59.2±0.07 57.4±0.15
MSAs MSAc 66.1±0.10 62.9±0.15 58.7±0.05 56.8±0.08

Andriushchenko
and
Flammarion
[64]

79.84 43.93

SA Uni 66.0±0.22 60.5±0.24 54.0±0.06 50.2±0.03
AA Uni 64.6±0.12 60.2±0.22 55.7±0.10 52.1±0.15
MSAs Uni 60.4±0.09 57.0±0.07 52.5±0.19 50.0±0.06
MSAs MSAc 60.1±0.07 56.8±0.15 51.9±0.15 49.4±0.22

Zhang et al. [65] 84.92 53.08

SA Uni 72.3±0.03 67.2±0.19 62.0±0.09 59.0±0.06
AA Uni 70.8±0.22 67.2±0.17 62.7±0.10 60.3±0.17
MSAs Uni 67.5±0.06 64.2±0.18 60.8±0.07 59.0±0.07
MSAs MSAc 66.8±0.09 63.9±0.07 60.4±0.06 58.7±0.13

Hendrycks et al. [66] 87.11 54.92

SA Uni 75.3±0.30 69.8±0.19 64.2±0.15 60.8±0.00
AA Uni 74.7±0.17 70.5±0.26 64.7±0.12 62.8±0.15
MSAs Uni 71.1±0.07 66.6±0.15 63.2±0.12 61.0±0.07
MSAs MSAc 70.6±0.17 66.1±0.12 62.7±0.13 60.4±0.15

Wang et al. [67] 87.50 56.29

SA Uni 77.7±0.12 72.2±0.03 65.8±0.15 62.2±0.03
AA Uni 76.7±0.06 72.8±0.12 67.6±0.20 64.0±0.17
MSAs Uni 73.1±0.18 69.8±0.09 64.9±0.15 62.3±0.03
MSAs MSAc 72.7±0.07 69.5±0.09 64.3±0.18 62.0±0.07

Cui et al. [54] 88.22 52.86

SA Uni 75.5±0.22 69.6±0.09 62.9±0.20 59.2±0.15
AA Uni 74.2±0.13 70.2±0.07 64.8±0.07 61.1±0.23
MSAs Uni 70.1±0.07 66.7±0.18 61.8±0.12 59.7±0.03
MSAs MSAc 70.0±0.15 66.2±0.25 60.8±0.09 59.0±0.06

16

https://robustbench.github.io/

Model Accuracy (%) Square Color Query budget
Clean Robust size 500 1000 2500 5000

Sitawarin et al. [68] 86.84 50.72

SA Uni 73.4±0.06 66.4±0.10 61.1±0.07 57.4±0.12
AA Uni 72.0±0.20 66.8±0.23 62.3±0.20 59.4±0.12
MSAs Uni 66.7±0.06 63.6±0.03 60.3±0.17 57.5±0.03
MSAs MSAc 66.9±0.00 63.1±0.09 59.3±0.12 57.0±0.00

Wu et al. [53] 85.36 56.17

SA Uni 75.0±0.19 69.7±0.21 63.8±0.12 60.4±0.07
AA Uni 73.6±0.03 69.5±0.25 64.5±0.07 62.3±0.07
MSAs Uni 69.6±0.09 66.1±0.20 63.1±0.17 60.7±0.07
MSAs MSAc 69.4±0.23 65.7±0.12 62.6±0.12 60.3±0.03

Zhang et al. [69] 89.36 59.64

SA Uni 79.6±0.27 74.6±0.03 66.9±0.07 64.0±0.07
AA Uni 78.4±0.06 75.3±0.03 68.9±0.06 65.6±0.03
MSAs Uni 75.1±0.09 71.4±0.09 66.2±0.20 64.3±0.06
MSAs MSAc 75.0±0.19 70.4±0.17 65.6±0.09 63.8±0.10

Zhang et al. [70] 84.52 53.51

SA Uni 73.4±0.03 67.5±0.09 61.5±0.12 58.9±0.09
AA Uni 72.3±0.06 67.7±0.00 62.3±0.06 60.4±0.06
MSAs Uni 67.4±0.09 63.6±0.25 61.2±0.03 59.3±0.10
MSAs MSAc 67.6±0.06 63.5±0.09 60.6±0.10 59.0±0.10

Zhang et al. [71] 87.20 44.83

SA Uni 73.1±0.00 66.2±0.26 56.5±0.15 52.5±0.12
AA Uni 71.8±0.23 66.5±0.07 59.2±0.09 54.7±0.12
MSAs Uni 66.9±0.18 61.9±0.09 55.2±0.15 52.6±0.09
MSAs MSAc 66.4±0.06 60.8±0.15 54.6±0.09 51.9±0.12

Table 9 provides an extended version of the Table 4 in which we additionally provide the results for
the ablated version MSAs+Uni to demonstrate that the update size controller on its own provides
better results than the considered baselines SA [1] and AA [2]. However, if we add a color sampling
controller MSAc, we manage to further improve the robust accuracy estimate.

Table 10 demonstrates the the results for the `2 threat model for five `2 robust models from Robust-
Bench [28]. We have chosen the models for which Croce and Hein [2] provide their evaluation of the
Square Attack. They evaluate on the whole CIFAR10 test set and we evaluate on a subset of 1000
test images. Therefore their estimate is not identical to our entry AA+Uni. But we still provide it as
Sq AA [2] in the Table 10 for additional reference.

A.2 Meta-training the Controllers

The meta-training of controllers was described in Section 3 and Section 4.1. We summarize it
schematically for the case of general random-search based black-box attack (Figure 3) and for the
Meta Square Attack (Figure 4). We provide some additional details and illustrate the learning curves.

Table 9: Results of attacking 1000 ImageNet validation set images with `∞ threat model and
ε = 4/255 as in Croce and Hein [2]. For the SA update size schedule, we use the parameter
p0 = 0.05 as suggested in Andriushchenko et al. [1]. AA and Uni are defined as in Table 1. MSAs

and MSAc are meta-trained on CIFAR10 (see Section 4.1 for details). We report mean and standard
error of robust accuracy for different queries budgets across 3 runs with different random seeds.

Model Accuracy (%) Square Color Query budget
Clean Robust size 500 1000 2500 5000

resnet18 Salman
et al. [55] 52.5 25.0

SA Uni 50.6±1.43 48.1±1.18 43.9±1.00 40.3±1.21
AA Uni 45.2±1.09 43.5±0.86 41.0±1.07 39.0±1.21
MSAs Uni 43.4±0.94 41.7±1.13 39.5±1.07 38.3±1.33
MSAs MSAc 43.3±1.00 41.7±0.94 39.1±1.23 37.8±1.36

resnet50
Engstrom et al.
[56]

63.4 27.6

SA Uni 59.8±0.64 57.2±0.79 52.9±1.11 48.6±1.31
AA Uni 54.6±0.99 52.8±1.09 50.3±1.43 48.1±1.18
MSAs Uni 52.6±1.07 51.2±1.40 48.3±1.22 45.8±1.26
MSAs MSAc 52.5±1.23 50.8±1.47 48.0±1.15 45.8±1.35

17

Figure 3: Schematic illustration of the general meta-learning procedure described in Section 3.2 for
two subsequent steps of the random search attack (3). We describe forward (black) and backward (red)
pass. ∇xf denotes gradient for scalar-valued functions f and Jacobian for vector-valued functions.
Differential expressions with search distribution Dω are informal and in need to be handled with
reparametrization trick or other methods when applying the method to particular attacks (for examples
see Section 3.3). Please note that the gradient with respect to ξt is set to 0 for all t (see Section 3.2).

Figure 4: Illustration of Meta Square Attack described in Section 3.3. The search distribution D(s,c)

depends on parameters s and α that are provided by the update size controller πcωc
and the color

controller πsωs
, respectively. Square positions (px, py) are sampled from the uniform distribution

U({1, ..., smax − s}2)
.

18

Table 10: MSA2
s is the update size controller trained for the `2 attack on a CIFAR10 model described

in the Section 4.1. MSA∞s denotes the update size controller meta-trained for the `∞ Square Attack
on CIFAR10. The color controller MSAc is the same as for the `∞ case. We compare to the `2
versions of SA [1] and AA [2] with ε = 0.5 on 1000 CIFAR10 images.

Model Accuracy (%) Square Color Query budget
Clean Robust Sq AA [2] size 500 1000 2500 5000

Ding et al. [3] 88.02 66.09 76.99

SA Uni 85.5±0.06 83.9±0.08 81.1±0.00 78.7±0.06
AA Uni 82.8±0.09 81.4±0.06 79.2±0.00 77.7±0.15
MSA∞s Uni 82.6±0.09 81.7±0.12 79.8±0.12 77.9±0.07
MSA∞s MSAc 82.5±0.22 81.5±0.03 78.5±0.06 76.9±0.17
AA MSAc 82.6±0.03 81.1±0.17 78.2±0.10 76.5±0.09
MSA2

s MSAc 82.3±0.03 80.9±0.07 77.4±0.09 75.8±0.19

Rice et al. [61] 88.67 67.68 79.01

SA Uni 86.3±0.07 84.7±0.10 81.4±0.15 79.7±0.07
AA Uni 83.7±0.12 81.4±0.09 79.9±0.09 78.6±0.18
MSA∞s Uni 83.2±0.12 81.8±0.07 80.1±0.07 79.1±0.09
MSA∞s MSAc 83.0±0.15 81.2±0.06 79.6±0.03 78.3±0.03
AA MSAc 83.4±0.12 81.2±0.10 79.3±0.09 78.0±0.06
MSA2

s MSAc 82.6±0.09 81.0±0.07 78.7±0.03 76.9±0.25

Augustin et al. [72] 91.08 72.91 83.10

SA Uni 89.0 88.4 86.9 84.2
AA Uni 87.8±0.03 86.8±0.09 84.8±0.17 83.3±0.17
MSA∞s Uni 87.7±0.06 87.0±0.09 85.2±0.03 83.4±0.10
MSA∞s MSAc 87.4±0.15 86.5±0.12 84.1±0.20 82.8±0.13
AA MSAc 87.7±0.12 86.6±0.09 83.9±0.13 82.7±0.09
MSA2

s MSAc 87.5±0.12 86.3±0.06 83.4±0.03 81.8±0.07

Engstrom et al. [56] 90.83 69.24 80.92

SA Uni 87.3 86.1 84.0 80.8
AA Uni 85.3±0.06 83.7±0.15 81.5±0.24 79.5±0.18
MSA∞s Uni 85.2±0.12 84.2±0.17 82.0±0.09 79.9±0.07
MSA∞s MSAc 85.1±0.07 83.7±0.03 80.6±0.06 78.8±0.09
AA MSAc 85.2±0.07 83.5±0.07 80.6±0.06 78.5±0.15
MSA2

s MSAc 84.7±0.09 83.1±0.06 79.7±0.13 77.4±0.00

Rony et al. [73] 89.05 66.44 78.05

SA Uni 85.4 83.5 80.5 78.3
AA Uni 82.0±0.10 80.8±0.10 78.9±0.03 77.0±0.15
MSA∞s Uni 81.8±0.03 81.0±0.10 79.1±0.15 77.7±0.07
MSA∞s MSAc 81.9±0.07 80.7±0.06 78.5±0.17 76.5±0.03
AA MSAc 81.9±0.09 80.6±0.12 78.3±0.07 76.2±0.03
MSA2

s MSAc 81.6±0.03 80.4±0.00 77.2±0.00 75.7±0.09

As discussed in Section 3.3, we maximize the following meta-objective:

R(F,D, ω) =
1

T

∑
fi

∑
(xj ,yj)

T−1∑
t=1

L(fi, xj , yj ,ΠS(ξt + δt+1)), (6)

where δt+1 ∼ Dω(t, ξ0, δ0, . . . , ξt, δt). Recall from Section 3.1 thatL(f, x, y, ξ) := l(f(a(x, ξ)), y).
As discussed in in Section 3.3, we use total loss improvement over attack as our meta-loss. Therefore,
we choose l in a way that it represents loss improvement caused by the update ξ i. e.

l(f(a(x, ξ)), y) = (h(f(a(x, ξ)), y)− hmax)+, (7)

where (x)+ is positive part function, h(p, q) is cross-entropy loss and hmax is the largest cross-
entropy value obtained so far. In our case at step t we have hmax = h(f(a(x,ΠS(ξt)), y) by design
of the random search attack (3). Finally, instead of solving the problem of maximizing R(F,D, ω),
we are solving the equivalent problem of minimizing −R(F,D, ω). Therefore, the loss that we use
for training our controllers for Meta Square Attack is:

RMSA(F,D, ω) = − 1

T

∑
fi

∑
(xj ,yj)

T−1∑
t=1

(h(fi(a(xj ,ΠS(ξt+δt+1))), yj)−h(fi(a(xj ,ΠS(ξt)), yj))+.

(8)

As discussed in Section 4, we use 1000 CIFAR10 test set images for meta-training and different
1000 images for evaluation. We use the default order of CIFAR10 images (i. e., we do not shuffle).

19

(a) meta-loss (b) robust accuracy

Figure 5: Meta-loss and robust accuracy on the training set during meta-training.

For meta-training we use images from 0 to 999 and for evaluation we use images from 9000 to
9999. Figure 5 demonstrates the minimization of RMSA(F,D, ω) and corresponding behavior of
the accuracy on the training set. One can see that the proposed meta-loss RMSA(F,D, ω) serves
as a reasonable differentiable proxy for the robust accuracy. We observe that the loss reaches a
close-to-minimal value already after two epochs.

A.3 Square relaxation

In Section 3.3, we formalize update size and color controllers that we learn for Meta Square Attack.
Here we provide additional details on how we avoid blocking of gradient flow in our optimization
scheme using relaxed square sampling.

g =
1

T

∑
fi

∑
(xj ,yj)

T−1∑
t=1

∇ωL(fi, xj , yj , ξ
t + δt+1), (9)

for simplicity assuming that projection operator ΠS in Equation (5) is incorporated into L. Since
we rewrite∇ωL(fi, xj , yj , ξ

t + δt+1) = ∇δt+1L(fi, xj , yj , ξ
t + δt+1)∇ωδt+1, we need to compute

the Jacobian∇ωδt+1 of update vector δt+1 with respect to meta-parameters ω.

Recall that in Section 3.3 we denote ω = (ωs, ωc) and consider controllers πsωs
and πcωc

for the
update size and color respectively. Since computing ∇ωc

δt+1 is done via Gumbel softmax [46, 47],
here we concentrate on computing ∇ωs

δt+1. Since πsωs
only controls update size, we assume its

position and color to be fixed when computing the gradient.

In SA [1] each update is parametrized by an integer square width from {1, ..., w} where w is image
width. This parameter is obtained by rounding real value s obtained from the update size schedule to
the closest integer in the feasible range. During meta-training we cannot round the output s of πsωs

since in that case we get ∇ωs
δt+1 = 0 almost everywhere. Therefore, we propose a differentiable

relaxation (see Figure 6). The inner part of the square with width odd(s) = 2 · b s−1
2 c+ 1 is filled

with the sampled color c completely. The color of pixels in the 1-pixel boundary is interpolated
between the background color c0 and the new color c as: k · c+ (1− k) · c0. The coefficient k of
the new color is equal to the fraction that the square of non-integer width s would occupy in the
respective pixel. Therefore, for the 4-neighborhood the new color fraction is k = s−odd(s)

2 and for
the pixel of 8-neighborhood that do not belong to 4-neighborhood k = (s−odd(s)

2)2.

A.4 Additional analysis of the learned controllers

In this Section we provide some additional analysis of the meta-learned controllers that we have
started in the Section 4.3.

20

(a) (b) (c)

Figure 6: (a) illustration of a square with non-integer size s (red), size odd(s) (black), 4-neighborhood
(white) and 8-neighborhood pixels that do not belong to 4-neighborhood (green), (b) standard square
attack perturbation, (c) square attack perturbation with proposed square relaxation.

(a) Update size controller (b) Color controller

0 500 1000 1500 2000 2500
Query

0

10

20

30

Up
da

te
 S

ize

Target schedule
constant
linear
exponential

(c) Update size schedule adjustment

Figure 7: Additional analysis of the meta-learned controllers. The plot of the (a) update size controller
MSAs and (b) color controller MSAc as functions of their inputs. (c) MSAs adjustment to the target
schedules (averaged over 25 runs).

Since our controllers are functions of 2 inputs as described in the Section 3.3 we can illustrate the
dependence of their outputs on these inputs. We show it in Figure 7a for the update size controller
and Figure 7b for the color controller.

The Figure 7c illustrates observed schedules for idealized (and untypical) target schedules: these
target schedules are unknown to the controller and are encoded in the success probabilities by setting
p(rt = 1) = 0.4 for update sizes smaller or equal to the value of the target schedules and to
p(rt = 1) = 0.1 otherwise. This abrupt change of the success probabilities and the shape of the target
schedules “constant” and “linear” are very unlike the behavior of the attacks during meta-training;
nevertheless the empirical schedules by the controller follow the target behavior reasonably good,
indicating that the learned square-size controller generalizes well.

21

Figure 8: Perturbation of the `2 attack. Image source: Andriushchenko et al. [1]

A.5 Meta Square Attack for the `2 threat model

To meta-learn the update size controller for the `2 threat model we use the same procedure as
discussed in Section 3.3. The only difference is the relaxation that we use to sample continous
updates since the update geometry is different. See Section A.3 for the `∞ case.

The sampling procedure of the `2 Square Attack is described in detail in the Algorithm 3 in An-
driushchenko et al. [1]. On a high level the algoritm consists of 2 steps (Figure 8):

1. Take the mass from W2

2. Update W1

Let s be non-integer square size. odd(s) – the largest odd integer number not exceeding s, odd(s) =
2 · b s−1

2 c+ 1. The performed update is a linear interpolation between the squares of size odd(s) and
odd(s) + 2. We denote frac(s) = s−odd(s)

2 ∈ [0; 1) that will be an interpolation coefficient.

For the step 1 we consider the window W2 of size odd(s) and denote it’s 1-pixel outer boundary as
WB

2 . As in SA [1], we set the whole W2 to 0 and add ||W2||2 to the update budget. We also add
frac(s) · ||WB

2 ||2 to the budget, therefore taking frac(s) part of the norm. We update the boundary
as WB

2,new :=
√

1− frac(s)2 ·WB
2 . We get ||WB

2 ||22 = ||WB
2,new||22 + frac(s)2 · ||WB

2 ||22.

22

A.6 Used data

In this work we only use the data published under formal licenses. To the best of our knowledge, data
used in this project do not contain any personally identifiable information or offensive content.

For the CIFAR10 and CIFAR100 experiments in Table 8, we use pre-trained models from the
RobustBench [28]. Information about architecture of the models and licenses of the corresponding
model weights are in Table 11. Full texts of the licenses are available under the following link:
https://github.com/RobustBench/robustbench/blob/master/LICENSE.

Table 11: Architecture and licenses of the models used in this work

Dataset Model Architecture Model weights license

CIFAR10

Wong et al. [51] ResNet-18 MIT
Ding et al. [3] WideResNet-28-4 Attribution-NonCommercial-

ShareAlike 4.0 International;
Copyright (c) 2020, Borealis AI

Engstrom et al. [56] ResNet-50 MIT
Gowal et al. [62] WideResNet-28-10 Apache License 2.0; Copyright (c)

2021, Google
Carmon et al. [63] WideResNet-28-10 MIT
Huang et al. [52] WideResNet-34-10 MIT
Andriushchenko and
Flammarion [64]

PreActResNet-18 MIT

Zhang et al. [65] WideResNet-34-10 MIT
Hendrycks et al. [66] WideResNet-28-10 Apache License 2.0; Copyright (c)

2019, Dan Hendrycks
Wang et al. [67] WideResNet-28-10 MIT
Cui et al. [54] WideResNet-34-10 MIT
Sitawarin et al. [68] WideResNet-34-10 MIT
Wu et al. [53] WideResNet-34-10 MIT
Zhang et al. [69] WideResNet-28-10 MIT
Zhang et al. [70] WideResNet-34-10 MIT
Zhang et al. [71] WideResNet-34-10 MIT
Rice et al. [61] PreActResNet-18 MIT
Augustin et al. [72] ResNet-50 MIT
Rony et al. [73] WideResNet-28-10 BSD 3-Clause License; Copyright

(c) 2018, Jerome Rony

CIFAR100 Wu et al. [53] WideResNet-34-10 MIT
Cui et al. [54] WideResNet-34-10 MIT

ImageNet

Salman et al. [55] ResNet-18 MIT
Engstrom et al. [56] ResNet-50 MIT

He et al. [58] ResNet-50 BSD-3-Clause License
(torchvision [74])

Simonyan and Zisser-
man [59]

VGG16-BN BSD-3-Clause License (torchvision
[74])

Szegedy et al. [60] Inception v3 BSD-3-Clause License
(torchvision [74])

23

https://github.com/RobustBench/robustbench/blob/master/LICENSE

	Appendix
	Full experimental results
	Meta-training the Controllers
	Square relaxation
	Additional analysis of the learned controllers
	Meta Square Attack for the
	Used data

