Supplemental Material of Action-guided 3D Human Motion Prediction

A More experimental evaluation

In this section, we provide more experimental evaluation on our approach. In Figure 1, we present visualization results of the predicted 3D human mesh from Human3.6M dataset [1]. We can observe that our approach can better handle tiny cues of motion dynamics.

Table 1 and Table 2 provide additional ablation results for our approach on the Penn Action dataset [6] when DTW is not applied. Detailed setting of these experiments can be found in Section 4.2 of the main paper.

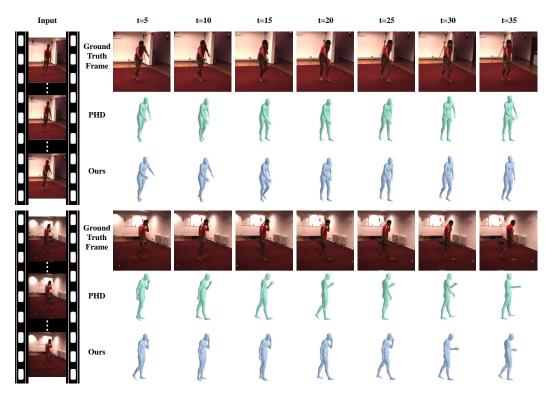


Figure 1: Visualization of 3D human motion prediction. From left to right: the observed input video and motion predicted at different time steps. We provide samples of walking dog and phoning. For each sample, the top row contains the ground-truth frames. The results obtained by PHD [5] and our approach are presented in the mid and bottom row, respectively.

B Licenses of referenced assets

We provide the links pointing to the licenses of our referenced assets, including pre-trained models and datasets.

Human3.6M dataset [1] http://vision.imar.ro/human3.6m/eula.php

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

	PCK ↑			
Method	5	10	20	30
Baseline	76.8	71.5	66.8	58.6
+ Prediction with Bank	77.9	74.2	69.5	62.1
+ Decoding with Bank	78.6	75.9	71.4	64.7
+ Action Constraint	79.1	76.7	72.8	66.5

Table 1: Evaluation of our action context modeling on Penn Action dataset without DTW.

Table 2:	Evaluation of our action-specific memory
bank on	Penn Action dataset without DTW.

	PCK ↑				
	5	10	20	30	
Baseline	76.8	71.5	66.8	58.6	
Action-agnostic Bank Action-specific Bank					

Penn action dataset [6] http://dreamdragon.github.io/PennAction/

PHD model [5] https://github.com/jasonyzhang/phd/blob/master/LICENSE

SMPL model [3] https://smpl.is.tue.mpg.de/modellicense

RGB-based classifier [4] https://github.com/dluvizon/deephar/blob/master/LICENSE.md

Skeleton-based classifier [2] https://github.com/kenziyuliu/MS-G3D/blob/master/LICENSE

References

- [1] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Human3. 6m: Large scale datasets and predictive methods for 3d human sensing in natural environments. *IEEE transactions on pattern analysis and machine intelligence*, 36(7):1325–1339, 2013.
- [2] Ziyu Liu, Hongwen Zhang, Zhenghao Chen, Zhiyong Wang, and Wanli Ouyang. Disentangling and unifying graph convolutions for skeleton-based action recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 143–152, 2020.
- [3] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J Black. Smpl: A skinned multi-person linear model. ACM transactions on graphics (TOG), 34(6):1–16, 2015.
- [4] Diogo Luvizon, David Picard, and Hedi Tabia. Multi-task deep learning for real-time 3d human pose estimation and action recognition. *IEEE transactions on pattern analysis and machine intelligence*, 2020.
- [5] Jason Y Zhang, Panna Felsen, Angjoo Kanazawa, and Jitendra Malik. Predicting 3d human dynamics from video. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 7114–7123, 2019.
- [6] Weiyu Zhang, Menglong Zhu, and Konstantinos G Derpanis. From actemes to action: A strongly-supervised representation for detailed action understanding. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 2248–2255, 2013.