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Appendix Outline

In Section 7 discuss potential for negative impact. In Section B we investigate the utility of using
RPP-EMLP for the policy function only on the Mujoco tasks. In Section C we detail the datasets
and experimental methodology used in the paper. Finally in Sections D and E we break down the
components of the Mujoco environment state and action spaces, and the representations that we use
for them.

A Potential Negative Impacts

As one of our primary application areas is reinforcement learning, and specifically exploiting approx-
imate symmetries in reinforcement learning, we must address the potential negative impacts of the
deployment of RPPs in RL systems. In general model free RL algorithms tend to be brittle, and often
policies and behavior learned in a simulated environment like Mujoco don’t transfer easily to real
world robots. This point is acknowledged by most RL researchers, and a large effort is being made to
improve the situation. Applying neural networks to the control of real robots can be dangerous if the
functions are important or failure can cause injury to the robot or humans. We believe that RL will
ultimately be impactful for robot control, however practitioners need to be responsible and exercise
caution.

B Benefit of Equivariant Value Functions

In principle both the policy and the value or critic function can benefit from equivariance. However,
the policy learns from the value function in the policy update which is approximately equivalent to
minimizing the KL divergence

Es∼D[KL(πφ(·|s)| exp(Qθ(·, s))/Zθ(s))]
as derived in Haarnoja et al. [18]. If the value functionQ is a standard MLP yielding a non equivariant
distribution and the policy function π is an RPP that merely has a bias towards equivariance, then the
RPP policy will learn to fit the non equivariant parts of Q as if it were a ground truth dataset that is
not equivariant. This likely explains why we find in practice that using an RPP for the value function
has a stronger impact on performance as shown in Figure 5.

C Experimental Details

Here we present the training details of the models used in the paper. Experiments were run on private
servers with NVIDIA Titan RTX and RTX 2080 Ti GPUs. We estimate that all runs performed in the
initial experimentation and final evaluation on the RL tasks used approximately 500 GPU hours. The
experiments on dynamical systems, CIFAR-10, and UCI data required an additional 200 GPU hours.

C.1 Synthetic Dataset Experiments (5.1 and 5.3)

The windy pendulum dataset is a variant of the double spring pendulum Hamiltonian system from
Finzi et al. [14]. In addition to the Hamiltonian of the base system

H0(x1, x2, p1, p2) = V (x1, x2) + T (p1, p2)

where T (p1, p2) = ‖p1‖2/2m1 + ‖p2‖2/2m2 and V (x1, x2) =

1
2k1(‖x1‖ − `1)2 + 1

2k2(‖x1 − x2‖ − `2)2 +m1g
>x1 +m2g

>x2,

we add a perturbation H1(x1, x2, p1, p2) = −w>x1 − w>x2 that is the energy of the wind acting as
a constant force pushing in the w = [−8,−5, 0] direction. Setting H = H0 + εH1, we can control
the strength of the wind and we choose ε = 0.01. This perturbation breaks the SO(2) symmetry
about the z axis.
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Figure 6: Average reward curves (max over steps) for an RPP-EMLP applied to the policy π only, as
well as an RPP-EMLP for both the policy π and the critic Q. Mean and standard deviation taken over
4 trials shown in the shaded region. Only minor performance gains are achieved if using RPP for the
policy only, however this variant is more stable and can to train on Humanoid-v2 without diverging.

For the MLP, EMLP, and RPP we use 3 layer deep 128 hidden unit Hamiltonian neural networks [16]
to fit the data using the rollouts of an ODE integrator [8] with an MSE loss on rollouts of length 5
timesteps with ∆t = 0.2. For training we use 500 trajectory chunks and use another 500 for testing.
We train all models in section 5.1 for 1000 epochs, sufficient for convergence. The input and output
representation for EMLP and RPP-EMLP is V 4

O(3) → R, where VO(3) is the restricted representation
from the standard representation of a 3D rotation matrix to the given group in question, like SO(2)
for rotations about the z axis. The input is V 4

O(3) because there are two point masses each of which
has a 3D vectors for position and for momentum. The scalar R output is the Hamiltonian function.

The Modified Inertia dataset is a small regression dataset off of the task also from Finzi et al. [14]
for learning the moment of inertia matrix in 3D of a collection of 5 point masses. For the base
Inertia dataset, the targets are I =

∑5
i=1mi(x

>
i xiI − xix>i ) from the input tuples (mi, xi)

5
i=1.

In order to break the equivariance of the dataset, we add an additional term so that the target
is y = vec(I + 0.3I2ẑẑ>I) where ẑ is the unit vector along the z axis. The input and output
representations for EMLP and RPP-EMLP on this problem are (R⊕ V )5 → V ⊗ V , representing
the 5 point masses and vectors mapping to matrices V ⊗ V .

We use 1000 train and test examples for the inertia datasets and we train for 500 epochs. In both
cases we use an Adam optimizer [26] with a learning rate of 0.003.

C.2 Image and UCI experiments (5.4)

We use the CIFAR-10 and UCI datasets, taken from Krizhevsky et al. [28] and Dua and Graff
[11] respectively. In Section 5 we train models on dynamical systems and CIFAR-10 and UCI
regression data. For the CIFAR-10 experiments we use a convolutional neural network (and the
equivalent MLP) with 9 convolutional layers and 1 fully connected layer, and max-pooling layers
after the third and sixth convolutional layers. The channel sizes of the 9 layers are, in order:
16, 16, 16, 32, 32, 32, 32, 32, 32. We train for 200 epochs using a cosine learning rate schedule with
an initial learning rate of 0.05 and the Adam optimizer.

For the UCI tasks we use a small convolutional neural network, and the equivalent MLP, with 3
convolutional layers and 1 fully connected layer, with each convolutional layer having 32 channels.
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Models are trained for 1000 epochs using an Adam optimizer with a learning rate of 0.01 and a
cosine learning rate schedule.

C.3 Model Free RL

We train on the Mujoco locomotion tasks in the OpenAI gym environments [7]. We follow the
implementation details and hyperparameters from Haarnoja et al. [19], with a learned temperature
function, stochastic policies, and double critics. Additionally we use the recommendation from
Andrychowicz et al. [4] to initialize the last layer of the policy network with 100x smaller weights,
which we find slightly improves the performance of both RPP and the baseline. Additionally for
RPP which can be less stable than standard SAC, we use the Adam betas β1 = 0.5 and β2 = 0.999
that are used in he GAN community [37] rather than the defaults. Training with the RPP π and Q
functions on the Mujoco locomotion tasks takes about 8 hours for 1 million steps.

We found it necessary to reduce the speed τ of the critic moving average to keep SAC stable on some
of the environments, with values shown in Table 4. In general, higher τ ’s are favorable for learning
quickly. Unfortunately we were not able to get SAC with an RPP Q function to train reliably on
Humanoid, even after trying multiple values of τ .

Walker2d Hopper HalfCheetah Swimmer Ant Humanoid

Baseline τ .005 .005 .005 .005 .005 .005
RPP τ .004 .005 .005 .004 .005 7

Table 4: Critic moving average speed τ .

C.4 Transition Models for Mujoco

We train the transition models on a dataset of 50000 transitions which are composed of 5000 trajectory
chunks of length 10. These trajectory chunks are sampled uniformly from the replay buffer collected
over the course of training a standard SAC agent for 106 steps on each of the environments. We train
by minimizing the `1 norm of the rollout error over a 10 step trajectory, and we evaluate on a holdout
set of 50 trajectories of length 100.

The models are simple MLPs or RPPs mapping from the state and control actions to the state space,
predicting the change in state,

xt+1 = xt + NN(xt, ut).

For the MLPs and RPPs we use 2 hidden layers of size 256 as well as swish activations [40]. We use
a prior variance of 106 in the equivariant subspace and 3 in the non equivariant subspace. The RPP is
a standard RPP-EMLP with the input representation ρX ⊕ ρU (concatenation of the representation
of the state space and the action space), output representation ρX , and symmetry group described
in Appendix D the same as for the model free experiments. We train the transition models for 500
epochs which takes about 45 minutes for RPP compared to 15 minutes for the standard MLPs.

D Mujoco State and Action Representations

Based on the state and action spaces of the Mujoco environments we describe in Appendix E, we
define appropriate group representations on these spaces. Let V be the base representation of the
group acted upon by permutations for Zn and by rotation matrices for SO(2), let R denote a scalar
representation (of dimension 1) that is unaffected by the transformations, and let P be a pseudoscalar
representation (of dimension 1) that transforms by the sign of the permutation. For Z2, P takes the
values 1 and −1 and acts by negating the values when a flip or L/R reflection is applied.

From the raw state and action spaces listed in Appendix E, we convert quaternions to 3D rotation
matrices for Humanoid and Ant, and we reorder elements to group together left/right pairs for
Walker2d and Swimmer. The representations of these transformed state and action vectors are shown
in Table 5. Note that V 3 denotes V ⊕ V ⊕ V = V ⊕3, and is simply the concatenation of 3 copies
of V as R3 would be 3 copies of R. This is not to be confused with powers of the tensor product,
V ⊗3 = V ⊗ V ⊗ V . For Humanoid, we denote the restricted representation of 3D rotation matrices
restricted to the SO(2) rotations about the z axis as VSO(3).
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Table 5: Mujoco Locomotion State and Action Representations used for RPP-EMLP

Env State Representation Action Rep Group

Hopper R⊕ P 5 ⊕ R⊕ P 4 P 3 Z2

Swimmer R⊕ P↔ ⊕ (P↔ ⊗ Vl)⊕ (R⊕ P )2 ⊕ (P↔ ⊗ Vl) P↔ ⊗ Vl Z↔2 × Zl2
HalfCheetah R⊕ P 8 ⊕ R⊕ P 7 P 6 Z2

Walker2d R2 ⊕ V 3 ⊕ R3 ⊕ V 3 V 3 Z2

Ant R5 ⊕ V 2 ⊕ R6 ⊕ V 2 V 2 Z4

Humanoid R⊕ V ⊗2SO(3) ⊕ R17 ⊕ V 2
SO(3) ⊕ R17 R17 SO(2)

E Mujoco State and Action Spaces

In order to build symmetries into the state and action representations for Mujoco environments, we
need to have a detailed understanding of what the state and action spaces for these environments
represent. As these spaces are not well documented, for each of the Mujoco environments we
experimented in the simulator and identified the meanings of the state vectors in Tables 10, 12, 11, 7,
9, 6, and 8. We hope that these detailed descriptions can be useful to other researchers.

Table 6: Hopper-v2 State and Action Spaces

State Space

X (Unobserved)
Y

Orientation Angle
Hip Angle

Knee Angle
Ankle Angle
X Velocity
Y Velocity

Orientation Angular Velocity
Hip Angular Velocity

Knee Angular Velocity
Ankle Angular Velocity

Action Space
Hip

Knee
Ankle

Table 7: Swimmer-v2 State and Action Spaces

State Space

X (Unobserved)
Y (Unobserved)

Orientation Angle
Head Joint Angle
Tail Joint Angle

X Velocity
Y Velocity

Orientation Angular Velocity
Head Joint Angular Velocity
Tail Joint Angular Velocity

Action Space Head Joint
Tail Joint
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Table 8: HalfCheetah-v2 State and Action Spaces

State Space

X (Unobserved)
Y

Orientation Angle
Rear Hip Angle

Rear Knee Angle
Rear Ankle Angle
Front Hip Angle

Front Knee Angle
Front Ankle Angle

X Velocity
Y Velocity

Orientation Angular Velocity
Rear Hip Angular Velocity

Rear Knee Angular Velocity
Rear Ankle Angular Velocity
Front Hip Angular Velocity

Front Knee Angular Velocity
Front Ankle Angular Velocity

Action Space

Rear Hip
Rear Knee
Rear Ankle
Front Hip

Front Knee
Front Ankle

Table 9: Walker2d-v2 State and Action Spaces

State Space

X (Unobserved)
Y

Orientation Angle
Right Hip Angle

Right Knee Angle
Right Ankle Angle

Left Hip Angle
Left Knee Angle
Left Ankle Angle

X Velocity
Y Velocity

Orientation Angular Velocity
Right Hip Angular Velocity

Right Knee Angular Velocity
Right Ankle Angular Velocity

Left Hip Angular Velocity
Left Knee Angular Velocity
Left Ankle Angular Velocity

Action Space

Right Hip
Right Knee
Right Ankle

Left Hip
Left Knee
Left Ankle
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Table 10: Ant-v2 State and Action Spaces

State Space

X (Unobserved)
Y (Unobserved)

Z
Orientation Quaternion (4D)

Limb 2 Left/Right
Limb 2 Up/Down
Limb 3 Left/Right
Limb 3 Up/Down
Limb 4 Left/Right
Limb 4 Up/Down
Limb 1 Left/Right
Limb 1 Up/Down

Action Space

Limb 1 Left/Right
Limb 1 Up/Down
Limb 2 Left/Right
Limb 2 Up/Down
Limb 3 Left/Right
Limb 3 Up/Down
Limb 4 Left/Right
Limb 4 Up/Down

Table 11: Humanoid-v2 Action Space

Action Space

Torso Forward/Backward
Torso Z

Torso Left/Right
Right Hip Left/Right
Right Hip Up/Down

Right Hip Front/Back
Right Knee Front/Back

Left Hip Left/Right
Left Hip Up/Down

Left Hip Front/Back
Left Knee Front/Back

Right Shoulder Left/Right
Right Shoulder Front/Back

Right Elbow Front/Back
Left Shoulder Left/Right
Left Shoulder Front/Back

Left Elbow Front/Back

Table 12: Humanoid-v2 State Space

State Space (Position)

X (Unobserved)
Y (Unobserved)

Z
Orientation Quaternion (4D)

Torso Z
Torso Forward/Backward

Torso Left/Right
Right Hip Left/Right

Right Knee Left/Right
Right Hip Up/Down

Right Knee Up/Down
Left Hip Left/Right

Left Knee Left/Right
Left Hip Up/Down

Left Knee Up/Down
Right Shoulder Left/Right
Right Shoulder Up/Down
Right Elbow Left/Right
Left Shoulder Left/Right
Left Shoulder Up/Down
Left Elbow Left/Right

State Space (Velocity)

Body Linear Velocity (3D)
Body Angular Velocity (3D)

Torso Z
Torso Forward/Backward

Torso Left/Right
Right Hip Left/Right

Right Knee Left/Right
Right Hip Up/Down

Right Knee Up/Down
Left Hip Left/Right

Left Knee Left/Right
Left Hip Up/Down

Left Knee Up/Down
Right Shoulder Left/Right
Right Shoulder Up/Down
Right Elbow Left/Right
Left Shoulder Left/Right
Left Shoulder Up/Down
Left Elbow Left/Right
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