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Abstract

Federated Learning is an emerging direction in distributed machine learning that en-
ables jointly training a model without sharing the data. Since the data is distributed
across many edge devices through wireless / long-distance connections, federated
learning suffers from inevitable high communication latency. However, the latency
issues are undermined in the current literature [15] and existing approaches such
as FedAvg [27] become less efficient when the latency increases. To overcome
the problem, we propose Delayed Gradient Averaging (DGA), which delays the
averaging step to improve efficiency and allows local computation in parallel to
communication. We theoretically prove that DGA attains a similar convergence
rate as FedAvg, and empirically show that our algorithm can tolerate high network
latency without compromising accuracy. Specifically, we benchmark the training
speed on various vision (CIFAR, ImageNet) and language tasks (Shakespeare),
with both IID and non-IID partitions, and show DGA can bring 2.55⇥ to 4.07⇥
speedup. Moreover, we built a 16-node Raspberry Pi cluster and show that DGA
can consistently speed up real-world federated learning applications.

1 Introduction

Federated Learning [18, 27] has gained growing attention as it enables multi-clients distributed
training without exposing the data from private users. During the training, only the model updates are
exchanged between clients and servers, thus private training data never leave local devices, enhancing
privacy. Many successful applications such as next-word prediction [10], voice recognition [38], and
health care applications [50] have been derived under the framework.

A significant difference between federated scenarios and typical in-center distributed settings [6, 8] is
the networking condition. Unlike high-end in-cluster network infrastructures where high bandwidth
(100⇠Gbps) and low latency (1ms) network is available, edge devices are usually connected
through wireless and long-distance connection, thus the bandwidth and latency are strictly limited.
This dwarfs the performance of federated systems and slows the development of related applications.

While the bandwidth constraints have been efficiently addressed by gradient compression [25], low-
rank updates [18] and quantization techniques [43], the issue related to network latency is rarely
studied in the recent literature [12, 15]. However, high network latency is inevitable in federated
settings because of (1) wireless connections and (2) long-distance transmission (Figure. 1.(b)). On the
one hand, the high-density urban office and home environments create a lot of contention, as dozens
of devices compete for the same radio frequency. On the other hand, the multi-geographic located
data entails a minimum latency cost: even with the speed of light, it requires hundreds of milliseconds
to send a packet across the world. In either case, the high latency is a hard barrier introduced by
physical limits thus inevitable. If not handled specifically, such communication lag, in the magnitude
of hundreds of milliseconds, or even seconds, will significantly degrade the scalability of the learning
algorithm as shown in the Figure. 1.
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Figure 1: Left, Middle: The training settings of conventional distributed training v.s. federated
learning are very different. Right: High latency cost greatly degrades the FedAvg’s [27] performance,
proposing a severe challenge to scale up the training system. The latency statistics is referenced from
Verizon [46] and speedtest [42].

In this paper, we propose Delayed Gradient Aggregation (DGA) to address the latency bottleneck.
The key idea is to delay the gradient averaging to a future iteration thus the communication can be
pipelined with computation. By accepting stale average gradients for model updates, DGA allows
the communication to execute in parallel with the computation, thus scalable even under extreme
latency. We prove that our DGA shares the same convergence as FedAvg and provide extensive
experiments on image and language tasks in both i.i.d. and non-i.i.d settings. We demonstrate that
(i) DGA speeds up FedAvg by a factor 2.6⇥ to 4.1⇥ over various datasets; (ii) no accuracy drop
under extreme communication lag (e.g., > 1 second). We further set up a Raspberry Pi cluster to
simulate the real-world scenario and demonstrate that DGA is robust against network stragglers. Our
contributions can be summarized as follows:

• We propose DGA, a novel distributed optimization method to tolerate the communication latency
for federated learning. To our best knowledge, our algorithm is the first work that can achieve
scalable federated training under high latency (>1s).

• We theoretically justify the convergence of DGA. We show that under reasonable delay interval, it
shares the same convergence rate as FedAvg [51]. We also discuss its extension with momentum
update to better suit modern federated optimizations.

• We empirically evaluate the accuracy on diverse datasets and benchmark the speed on different
latency setups. Under an extremely high latency, DGA can show impressive improvement over
previous algorithms while preserving similar performance on both i.i.d and non-i.i.d partitions.

• We build up a Raspberry Pi cluster of 16 devices to evaluate our algorithm in a real-world setting.
Even with unpredictable packet loss and latency fluctuation, DGA still shows consistent speedup.

2 Delayed Gradient Averaging

2.1 Problem Setting, Preliminaries and Related Works

In this work, we formalize the problem as the minimization of sum of stochastic functions,

min
w

f(w) =
1

N

NX

i=1

fi(w) with fi(w) = E⇣i [Fi(w, ⇣i)],

where N denotes the number of clients and fi represents the loss function on i-th client. In the setting
of empirical risk minimization, fi could be further expressed as finite sums and the random variable
⇣i corresponds to a mini-batch sample.

Computation and Communication cost Each client represents a computational resource that can
either perform local gradient updates or exchange information with others. We model the computation
and communication cost by:

• We encounter a computational cost ⌧g for each gradient/mini-batch evaluation.
• The communication suffers a cost ⌧c per transmission. We further define the normalized com-

munication cost: D =

⇠
⌧c

⌧g

⇡
.
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In other words, one communication round takes the same amount of time as D gradient updates. This
normalized cost D serves as the main parameter in our discussion on the computation/communication
trade-off. Note that the communication cost usually depends on the bandwidth, amount of bits
transmitted and the latency, we start revisiting FedAvg [27] to illustrate the effect on latency.

FedAvg and its variants One of the key components in Federated Learning is the step of parameter
averaging. This step aggregates the model parameter across clients, without revealing personal
training data, enhancing privacy. However, the averaging step is synchronous by design [3], in the
sense that no local updates are allowed when the averaging takes place. Specifically, FedAvg [27]
alternate the local updates and averaging step:

FedAvg : averaging (communication) ! K⇥local updates ! averaging (communication) · · ·
where the parameter K indicates the number of mini-batches (gradients) locally updated between
two averaging steps. The alternating structure of the update naturally decomposes the algorithm into
rounds, with K local updates and one communication per round. The total running time of FedAvg
after T rounds is given by

TFedAvg = T (K⌧g + ⌧c) = T

✓
K +

⌧c

⌧g

◆
⌧g ⇡ T (K +D) ⌧g. (1)

As we can see, the communication cost D inflates the total run time by a non-negligible factor,
especially when D is large. For instance, if D � K, half of the running time is indeed wasted,
where clients sit and wait on the synchronization of averages, making the algorithm inefficient.
The same drawback persists in all recent extensions of FedAvg [17, 21, 22, 28, 51], its momentum
variants [5, 26, 47], variance reduced variant SCAFFOLD [16] and adaptive variant [34], etc.

Compression/Quantization techniques in FL To improve communication efficiency, extensive
efforts have been devoted to reducing the bits on gradient exchanges in large-scale distributed
training. Techniques such as gradient quantization QSGD [1], Onebit [39], Tengrad [49] and
gradient compression DGC [25], Sparsification [48], DenseCommu [43], DoubleSqueeze [44] can
safely reduce the amount of information transmitted by a factor of 1000, while maintaining the
high performance of the model. These techniques have been successfully applied to accelerate
FL [9, 24, 35, 36], enabling training on mobile devices with limited bandwidth connection. Therefore,
bandwidth is no longer a critical bottleneck on edge learning.

On the other hand, the latency issue is less discussed in the current FL literature [15] as it is a
hard physical barrier. To focus on such inherent and non-improvable subject, we assume that the

bandwidth is sufficient,* and the communication cost ⌧c is dominated by network’s latency. In
this case, the running time of FedAvg and its variants in Eq.1 can still be significantly inflated by the
latency, even compression/quantization techniques are applied.

The ineffectiveness of the existing approaches to deal with the high latency setting motivates us
to ask the following question: is it possible to design an algorithm that could scale up under high
latency settings while keeping the accuracy? We provide a positive answer by introducing the delayed
gradient averaging.

2.2 A step-by-step walk through Delayed Gradient Averaging

The main idea of our algorithm is to allow local updates during the communication of the averaging.
In FedAvg, clients send its parameter to each other at the end of each round, wait until the averaging
(communication) ended, later starts the next round. In our algorithm, the averaging barrier is

delayed to a later iteration so that clients can immediately start the next round and an gradient

correction term is designed to compensate the staleness:

1. Clients send updates to each other at the end of t-th round;
2. Clients continue performing local updates using the latest local parameter;
3. When other’s t-th round info arrived, the client has already performed D extra local updates.
4. Delayed averaging step: replace the local gradients at the t-th round by the received averaging

(we will detail this step right away).
*otherwise apply gradient compression techniques.
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Algorithm 1 Delayed Gradient Averaging (DGA)

1: Initialize each worker with w
i
1,1 = w1 for i 2 [1, N ], the number of local update K, the delayed

parameter D � 1. Define s = (D � 1)//K as the integer quotient.
2: for rounds t = 1, · · · , T do

3: for client i in parallel do

4: Set wi
t,1 = w

i
t�1,K+1 as the last iterate at round (t� 1)

5: for k = 1, · · · ,K do

6: Sample the stochastic gradient git,k at the previous iterate w
i
t,k and update

w
i
t,k+1 =

(
w

i
t,k � ⌘g

i
t,k if k 6⌘ D (mod K) or t� 1� s < 1;

w
i
t,k � ⌘(git,k �m

i
t�1�s +mt�1�s) if k ⌘ D (mod K) and t� 1� s � 1.

where m
i
t�1�s is the accumulated gradient (see line 8) at the earlier round t � 1 � s,

mt�1�s is the average of mi
t�1�s among all clients, i.e. mt�1�s =

1
N

P
i m

i
t�1�s.

7: end for

8: Send the t-th round accumulated gradient mi
t =

PK
k=1 g

i
t,k to all other clients.†

9: end for

10: end for

11: Return wT = 1
N

PN
i=1 w

i
T,K+1.

The benefit is plain to see: we no longer freeze the local computation power during the communication.
To make the discussion more explicit, we denote the parameter on the i-th client at the k-th iteration
within the t-th round by w

i
t,k and the corresponding stochastic gradient as git,k. In the very first round

t = 1, solely local updates are performed, hence the last iterate in the first round can be expressed as

w
i
1,K+1 = w

i
1,K � ⌘g

i
1,K = · · · = w1 � ⌘

KX

k=1

g
i
1,k

| {z }
:=mi

1

.

As the first round’s computation has completed, we send the accumulated gradient mi
1 :=

PK
k=1 g

i
1,k

to all the clients, i.e. perform averaging. Right after the gradients are sent, we immediately proceed
the second round’s local updates, leaving the first round averages in transmission. By the time the
average is received, we already performed D extra local updates in the second round, starting from
the last iterate of first round w

i
1,K+1:

w
i
2,D � ⌘g

i
2,D| {z }

last iterate before averaging

= · · · = w
i
1,K+1 � ⌘

DX

k=1

g
i
2,k

| {z }
D updates

= w1 � ⌘

KX

k=1

g
i
1,k

| {z }
1st round

�⌘

DX

k=1

g
i
2,k

| {z }
2nd round

. (2)

At this point, the average of the first round arrives

m1 =
1

N

NX

i=1

m
i
1 =

1

N

NX

i=1

KX

k=1

g
i
1,k =

KX

k=1

 
1

N

NX

i=1

g
i
1,k

!
:=

KX

k=1

g1,k, (accumulated averages)

where g1,k represents the average gradient at k-th iteration in the 1st round. With the averaging m1

in hand, we substitute all the first round local gradients in Eq.2 by their averages, leading to:

w
i
2,D+1 = w1 � ⌘

KX

k=1

g1,k

| {z }
common on all clients

� ⌘

DX

k=1

g
i
2,k

| {z }
2nd round unchanged

(delayed gradients averaging)

†The accumulated gradient is indeed implemented as mt  mt + git,k under the for loop on k, which do not
require extra memory to store gt,k.
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Computation Communication Synchronization Barrier 

Increased latency 
slows the training! 

Latency is amortized by multiple 
steps, but still slow the training! No longer blocks the training!

(1) Vanilla Synchronous SGD

for i in iters:
 L = loss(net, data, label)
 grad[i] = L.backward()
 send(grad[i], iter=i)
 avg_grad = recv(iter=i)
 W = W - lr * avg_grad

for i in iters:
 L = loss(net, data, label)
 grad[i] = L.backward()
 send(grad[i], iter=i)
 stale_avg_grad = recv(iter=i-d)
 W = W - lr * (grad[i] - 

grad[i-d] + stale_avg_grad)

for i in iters:
 L = loss(net, data, label)
 grad[i] = L.backward()
 if (I+d) % k == 0:

 send(grad[i], iter=i)
 If I % k == 0

 stale_avg_grad = recv(iter=i-d)
 W = W - lr * (grad[i] - 

grad[i-d] + stale_avg_grad)
K 统⼀⼤写

(2) Federated Averaging (K=2)

(4) DGA (D=2, K=2)

Latency is amortized by multiple steps, 
but still slow the training!

High latency longer blocks the training!Delay the averaging High latency longer blocks the training!

(a) Federated Averaging  
(K=1)

(c) Delayed Averaging 
(D=2, K=1)

(b) Federated Averaging  
(K=2)

(d) Delayed Averaging  
(D=2, K=2)

(b) Delayed Gradient Averaging: D indicates how many steps the averaging receiving timing are delayed.

(a) Federated Averaging: K indicates how many local steps before averaging. 

Local updates and communication  
are performed sequentially.

Increase  can amortize the effect, 
but still suffer from high latency.

K

(i) K=1 (ii) K=2

for iter in 1...M:
 g = grad(net, data)
 m += g
 if iter % K != 0:
  W = W - lr * g
 elif iter % K == 0:
  send(m, id=iter)
  avg_m = recv(id=iter)
  W = W - lr * (g - m + avg_m)
  m = 0

(iii) Pseudo code 

Gradients Correction

 Local updates in parallel 
with communication 

(i) D=1, K=1 (ii) D=1, K=2

We delay the averaging adequately 
to deal with high latency 

(iii) Pseudo code 

M: is dict storing stale m
for iter in 1...M:
 g = grad(net, data)
 m += g 
 if iter % K != D and iter % K != 0:
  W = W - lr * g
 elif iter % K == 0:
  send(m, id=iter)
  M[iter] = m
  acc_g = 0
 elif iter % K == D:
  avg_m = recv(id=iter-D)
  W = W - lr * (g - M[iter-D] + avg_m)

Delay by D iters

Gradients Correction

(a) Federated Averaging: K indicates how many local steps before the averaging starts.

Computation Communication Synchronization Barrier 

Increased latency 
slows the training! 

Latency is amortized by multiple 
steps, but still slow the training! No longer blocks the training!

(1) Vanilla Synchronous SGD

for i in iters:
 L = loss(net, data, label)
 grad[i] = L.backward()
 send(grad[i], iter=i)
 avg_grad = recv(iter=i)
 W = W - lr * avg_grad

for i in iters:
 L = loss(net, data, label)
 grad[i] = L.backward()
 send(grad[i], iter=i)
 stale_avg_grad = recv(iter=i-d)
 W = W - lr * (grad[i] - 

grad[i-d] + stale_avg_grad)

for i in iters:
 L = loss(net, data, label)
 grad[i] = L.backward()
 if (I+d) % k == 0:

 send(grad[i], iter=i)
 If I % k == 0

 stale_avg_grad = recv(iter=i-d)
 W = W - lr * (grad[i] - 

grad[i-d] + stale_avg_grad)
K 统⼀⼤写

(2) Federated Averaging (K=2)

(4) DGA (D=2, K=2)

Latency is amortized by multiple steps, 
but still slow the training!

High latency longer blocks the training!Delay the averaging High latency longer blocks the training!

(a) Federated Averaging  
(K=1)

(c) Delayed Averaging 
(D=2, K=1)

(b) Federated Averaging  
(K=2)

(d) Delayed Averaging  
(D=2, K=2)

(b) Delayed Gradient Averaging: D indicates how many steps the averaging receiving timing are delayed.

(a) Federated Averaging: K indicates how many local steps before averaging. 

Local updates and communication  
are performed sequentially.

Increase  can amortize the effect, 
but still suffer from high latency.

K

(i) K=1 (ii) K=2

for iter in 1...M:
 g = grad(net, data)
 m += g
 if iter % K != 0:
  W = W - lr * g
 elif iter % K == 0:
  send(m, id=iter)
  avg_m = recv(id=iter)
  W = W - lr * (g - m + avg_m)
  m = 0

(iii) Pseudo code 

Gradients Correction

 Local updates in parallel 
with communication 

(i) D=1, K=1 (ii) D=1, K=2

We delay the averaging adequately 
to deal with high latency 

(iii) Pseudo code 

M: is dict storing stale m
for iter in 1...M:
 g = grad(net, data)
 m += g 
 if iter % K != D and iter % K != 0:
  W = W - lr * g
 elif iter % K == 0:
  send(m, id=iter)
  M[iter] = m
  acc_g = 0
 elif iter % K == D:
  avg_m = recv(id=iter-D)
  W = W - lr * (g - M[iter-D] + avg_m)

Delay by D iters

Gradients Correction

(b) Delayed Gradient Averaging: D indicates how many delayed steps before the averaging finishes.

Figure 2: We provide another interpretation of our algorithm DGA, iterating over the gradient
iterations, for instance, the (tK + k)-th iteration in the pseudo code represents the t-th round k-th
iterations in Algorithm 1. The averaging occurs periodically with period K and the delay parameter
D naturally shows up indicating the number of gradients between the sending and reception. The
cyan cube in the visualization (a,b) indicates local computation and the yellow cube represents the
transmission of the averages. The red bar indicates when the averaging is actually performed. In DGA,
the transmission is in parallel to the computation, which is the main reason why DGA can tolerate
high latency.

Rewrite the update rule using the accumulated gradients mi
1 and m1 gives the compact form:

w
i
2,D+1 = w

i
2,D � ⌘(gi2,D �m

i
1 +m1| {z }

gradient correction

), (compact DGA update)

serving as the main building block in our Algorithm 1.

In the most general setting, the delayed gradients could take several rounds before arriving. This
happens when the latency is high, i.e. D > K. To take care of such cases, we express the delay
parameter in the quotient/remainder form D = sK + r, with s � 0 and r 2 [1,K]. The integer
quotient s indicates the number of rounds skipped due to the latency. In this scenario, the gradients
sent at t � 1 � s round is received in the middle of the t-th round, which justifies our update rule
in Algorithm 1. The example we discussed earlier in (compact DGA update) is a special case when
s = 0, i.e. D  K, where the gradients sent in the last round are received in the current round.

We call such operation as Delayed Gradients Averaging (DGA), as every round’s averaging has been
delayed to later rounds.‡ With our designed gradient correction term in ( compact DGA update, blue
part in Figure. 2b), each update ensures that all clients replace the previous round’s local gradients

by their averages, thus shares the same (t�D)-round gradients. In another word, different workers
only differ on the most recent D gradients.

Last but not the least, in the ideal case when there is no delay, i.e. D = 0, our algorithm DGA
recovers the original Federated Averaging [27]. When D � 1, our algorithm DGA allows the clients
to pipeline local updates with communication, and the divergence of Federated Average and DGA
is bounded by a constant number. To further clarify, we now conduct a sketch of the convergence
analysis by bounding the staleness between different clients.

‡DGA requires to store the recent D copies of gradients to perform the update. This can bring challenges to
edge platforms when the model size is very large.
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2.3 Theoretical Analysis

To start the convergence analysis, we assume that the objective function is L-smooth:

Assumption 1 (L-smoothness). Each function fi(x) is L-smooth, i.e. differentiable with L-Lipschitz

gradient:

||rfi(x)�rfi(y)||  L||x� y||. 8x, y 2 Rd

Remind that each individual function is stochastic and we have access to an unbiased gradient gi
such that E[gi(w)] = rfi(w) for any w and i. We further assume that gi has bounded variance and
second moment as in the analysis of FedAvg [51]:

Assumption 2 (Bounded gradients & variances). We assume that the unbiased gradients has bounded

second moment and variance:

E||gi(w)||2  G
2
, and E||gi(w)�rfi(w)||2  �

2
, 8w, 8i.

We now present two main ingredients to drive the analysis. The first one is that no matter delayed
gradient averaging is performed or not, the average parameter across the clients always behaves as a
local gradient descent:

Lemma 2.1. Let us denote wt,k = 1
N

PN
i=1 w

i
t,k, as the average parameters across all clients at

t-th round k-th iteration. Then we always have

wt,k+1 = wt,k � ⌘

N

NX

i=1

g
i
t,k.

The effect of the delayed averaging step is to align the gradient of the previous round across all clients,
without changing wt,k. In other words, the delayed averaging step reduces the staleness between the
clients and ensures the bounded variation given Assumption 2:

Lemma 2.2 (Bounded Variation). The difference between the i-th client and the average parameter

across all clients is uniformly bounded:

E
⇥
kwi

t,k � wt,kk2
⇤
 4⌘2(K +D)2G2 8t, k, i.

Comparing with FedAvg, the upper bound has an additional staleness D due to the delayed gradient
averaging. Based on the bound, we can derive the following convergence result:

Theorem 2.3. Under Assumption 1 and 2. The sequence generated by DGA in Algorithm 1 with

stepsize ⌘  1
L satisfies

1

TK

TX

t=1

KX

k=1

E[krf(wt,k)k2] 
2

⌘TK
(E[f(w1)]� f(wT )) + 4⌘2L2

G
2(K +D)2 +

L

N
⌘�

2

Our proof closely follows the analysis of FedAvg in the non-convex setting [51] and we delay it to
Appendix A.2. The upper bound on the right-hand-side is essentially the same as the convergence
rate of FedAvg, where (K +D)2 taking places of K2 in [51]. Finally, when the number of rounds is
large enough, we balance the terms by setting an appropriate stepsize:

Corollary 2.3.1. When the function f is lower bounded with f(w1) � f
⇤  � and the number

rounds T is large enough such that T � N/(K +D), then set the stepsize ⌘ =
p
N

L
p

T (K+D)
yields

1

TK

TX

t=1

KX

k=1

E[krf(wt,k)k2 = O

 
2L�+ �

2

p
NTK

·
r
1 +

D

K
+

N(K +D)

T

!
.

As long as D = O(K) and N(K+D)  T
1/3, the first term dominates and our algorithm shares the

same convergence speed O(1/
p
NTK) as the vanilla FedAvg. Meanwhile, as the communication is

fully covered by computation, the total run time of DGA is TDGA = TK⌧g, which reduces the run
time of FedAvg in (1) by a factor K+D

K . In the high latency setting where delay can take multiple
rounds, this run time improvement becomes significant.
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DGA with momentum update To incorporate momentum update [31, 33] in DGA, we combine
the past gradients in an exponential weighted average:

u
i
t,k = �u

i
t,k�1 + g

i
t,k,

where � is the momentum parameter, usually set as 0.9. Then we use it to perform the local update:

w
i
t,k+1 =

(
w

i
t,k � ⌘u

i
t,k if k 6⌘ D (mod K) or t� 1� s < 1;

w
i
t,k � ⌘(ui

t,k � 1��D

1�� (vit�1�s � vt�1�s)]) if k ⌘ D (mod K) and t� 1� s � 1.

where v
i
t =

PK
k=1 u

i
t,k. The delayed gradient averaging step is calibrated carefully by a factor

(1� �
D)/(1� �), due to the exponentially weighted averages. The derivation details are attached in

Appendix. We remark that when � = 0, we recover this to the vanilla update of DGA in Algorithm 1.
For other other optimizers (e.g., Adam, RMSProp), such modification can be made similarly. We
leave it of as future work.

Comparison with Asynchronous While asynchronous methods remove synchronization lock and
deal with heterogeneity between faster and slow workers, it does not take care of the latency issue.
We first revisit the traditional ASGD [45]:

W :pull parameters ! local evaluation ! push gradients
PS :collect gradients ! update parameters & send parameters

Each worker still suffers from high latency when pulling parameters, even though the central pa-
rameter server is asynchronous. In contrast, though our delayed averaging has a synchronization
barrier (described in Figure 2b), it allows local gradient updates to be performed simultaneously
as communication. In other words, the workers (W) keep evaluating new local updates during the
process of pulling/pushing parameters. The ability to pipeline communication with computation
makes distinct differentiation between ASGD and DGA and allows us to achieve better training
efficiency against high latency communication.

Comparison with FedAvg The delayed nature of our averaging step makes it substantially different
from the traditional averaging step. In FedAvg, the averaging step synchronizes the weights on all
clients, making sure that the next round starts with a common parameter. In contrast, our averaging
happens in the middle of the second round, where additional local steps have been proceeded. Due to
these D most recent local updates, the parameter wi

2,D+1 does not match w
j
2,D+1 even after averaging,

for distinct clients i 6= j. The encountered staleness is the trade-off for allowing computation during
communication.

Comparison with SVRG For readers who are familiar with variance reduction techniques, the
compact DGA update looks very similar to the update in SVRG [13]:

wt+1 = wt � ⌘ [rfi(wt)�rfi(w̃) +rf(w̃)] , (SVRG update)

where w̃ is a snapshot reference point and rf(w̃) is the full gradient. The introduction of such
reference point in SVRG reduces the variance of stochastic gradient, leading to faster convergence
analysis than vanilla SGD.

Although the two formulas share a common pattern, there is an intrinsic difference in the choice of
the averaged gradients. In SVRG, the full gradient is evaluated at the reference point w̃, which must
be common at all i; in contrast, the averaged gradients in our algorithm is not a full gradient by any
means, because of the staleness introduced by the extra local updates. Moreover, SVRG uses a fixed
reference point w̃ inside the same round while as the vector mt in our algorithm is an accumulation of
gradient of the entire round, see (accumulated averages). Hence SVRG and DGA are incomparable
from their starting point: while as SVRG aims to reduce variance based on a fixed reference point,
DGA is targeting the latency, favoring staleness.

Perhaps the works closest to ours is delayed SGD [2, 14, 23, 52], where the update rule is given by
wk+1 = wk � ⌘g(k�d). In this case, the gradient updates are delayed but there is no correction
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Table 1: Ablation studies about our gradient correction term. Without our correction term, using pure
stale gradients suffers from significant accuracy drop. The accuracy is measured on CIFAR-10.

w/o gradient correction w/ gradient correction

K=5, D=5 88.7 89.2

K=5, D=10 86.9 89.3

K=5, D=15 85.5 89.0

K=5, D=20 84.2 88.7

term as DGA. Though these studies show sub-linear convergence in theory, such a simple method
accumulates the staleness over iterations and hurts model performance especially when the delay
steps is large as shown in Table. 1. Therefore, they cannot handle high latency network.

To summarize, we have introduced the delayed gradient averaging, which delays the averaging
operation thus allows local updates to be pipelined with communication. We then design a correction
term to handle delayed gradients and compensate the staleness. We next conduct experiments showing
that DGA speeds up FedAvg without losing accuracy.

3 Experiment

3.1 Accuracy Evaluation

We evaluate the effectiveness of DGA on diverse tasks: Image classification on CIFAR-10 [19]
and ImageNet [20], next word prediction on Shakespheare [41]. We implement DGA in PyTorch
framework [30] and choose Horovod [40] as the distributed training backend. The task-specific
details are described below.

On CIFAR-10 [19], we train a MobilenetV2-0.25 [37] using 64 workers and each equips with single
V100 GPU. The training epochs is 200 and the batch size 64 per worker. The learning rate ⌘ is
initially set to NUM_GPUs ⇥ 0.0125 and momentum � is 0.9. The learning rate linearly increases
during the first 5 epochs, following the warm-up strategy in [8], and then decays with cosine anneal
schedule.

On ImageNet [7], we evaluate ResNet-50 [11] with 64 worker nodes. The total mini-batch size is
2048, and we train the model for 150 epochs. We apply the warm-up strategy in [8] to schedule
the learning rate and only random crop and flip are used as data augmentations in the training. The
learning rate adopts the same scaling strategy as CIFAR’s.

On Shakespeare, we adopt the 2-layer LSTM language model architecture with 1500 hidden units per
layer [32] and follow the preprocessing in Leaf [4]. We set the learning rate to 20 and clip gradients
with a norm larger than 0.25 to avoid gradient explosion. The model is trained with 40 epochs while
the first epoch is used for warm-up.

Table 2: Comparison of FedAvg and our DGA’s accuracy on 3 datasets with both i.i.d and non-
i.i.d partitions. The speedup is measured on latency with 1s latency. Not only DGA demonstrates
consistent training speedup, but also DGA maintains the accuracy, on both i.i.d and non-i.i.d partition.

Datasets Partition

FedAvg

(K=5)

FedAvg

(K=10)

FedAvg

(K=20)

DGA

(K=5, D=20)

Acc Speedup Acc Speedup Acc Speedup Acc Speedup

CIFAR i.i.d 88.7 1⇥ 88.5 1.51⇥ 88.1 2.05⇥ 88.6 3.16⇥non-i.i.d 48.2 47.2 43.9 48.0

ImageNet i.i.d 76.6 1⇥ 76.5 1.43⇥ 76.2 1.81⇥ 76.4 2.55⇥non-i.i.d 55.4 52.5 48.6 54.9

Shakespeare i.i.d 47.6 1⇥ 47.3 1.66⇥ 47.4 2.51⇥ 47.1 4.07⇥non-i.i.d 36.9 34.3 30.1 36.3
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For non-i.i.d. experiments, we follow the partition used in [4, 22] to split the dataset. In CIFAR and
ImageNet, we distribute the dataset such that each device only contains samples from two classes. In
Shakespeare dataset, each role is considered as a data source and each device only has two sources.

We show the accuracy and run time comparison when the latency is 1s in Table 2, the speed up is
measured in run time, normalized by the run time of FedAvg (K=5):

• When we compare FedAvg(K = 5) with DGA(K = 5, D = 20), DGA achieves a speed up from
2.5⇥ to 4.07⇥ with almost no accuracy drop.

• To strengthen the baseline, we increase K in FedAvg, which amortizes the effect of latency.
However, increasing K reduces the communication frequency, degrading the model performance,
especially in the non-i.i.d. setting. As the data distribution is usually non-i.i.d in federated
learning, increasing too much K is not a good idea to compensate communication cost.

Therefore, DGA is the clear winner which achieves notable speedup while maintaining accuracy in
the high latency setting. This is because DGA (i) keeps the same communication frequency (ii)

pipelines the communication and local updates, fully covering the latency by local computations.
We attach the training curve and ablation studies of different D in Appendix. A.1.

3.2 Speedup Comparison

Throughout the derivation of DGA, we have assumed that the latency remains constant. However, in
the real-world scenario, latency may vary due to unstable connection and packet losses. One way to
handle such potential fluctuation is to set a large delay parameter D, pretending the worst scenario
happens. In other words, we will artificially set D to be a large number even though the actual latency
is small. In this way, we can study how the variation on latency changes the performance of DGA.

In order to simulate different network conditions, we evaluate the effectiveness of DGA in two
different ways. We first experiment on a set of synthetic latency controlled by Netem [29], which
allows us to control the communication delays precisely. Then we build up a Raspberry Pi clus-
ter consisting of 16 Model 4B+ devices and use Netgear R6300v2 to provide the connection,
which reflects a realistic home Wi-Fi environment for federated learning as shown in Figure. 3.

Figure 3: Our Raspberry
Pi farm. Experiments are
conducted on two racks.

In the Figure. 4a, we manually simulate the network latency from 1ms to
5000ms via Netem [29], and plot the normalized run time. The run time
is normalized by FedAvg (K = 5) with latency 1ms, which serves as
the baseline of in-cluster training. When the latency gradually increases,
FedAvg slows down almost linearly. Though setting a larger number
of local steps K can alleviate the degradation, the performance gap
is still growing. Moreover, let alone a too large K will hurt the final
accuracy drastically as shown in Section 3.1. In contrast, DGA (solid red
line) as shown in Figure 4a, consistently yields a stable speed as long
as the latency is covered by the threshold D. Even under an extreme
communication delay (e.g., 5 seconds), the training speed is not much
affected.

Next we benchmark real-world settings on the Raspberry Pi cluster in the
Figure. 4a.. Instead of simulating different latency settings, we consider
four representative cases for federated learning [i] wired [ii] (wireless)
different rooms [iii] (wireless) different floors [iv] (wireless) different buildings, where the latency
numbers are 1ms, 16ms and 132ms and 470ms respectively. By placing the Pi cluster at different
locations, we can emulate different quality of connection. Different from synthetic latency, the real
wireless connection also suffers from unpredictable network stragglers and packet loss, thus the
overall throughput on Pi-clusters is worse and FedAvg’s performance degrades more quickly. Even
under such challenging network, the throughput of DGA remains steady.

Figure. 5 shows the speedup ratio (scalability) on the Pi cluster. We adopt small models LeNet and
2-layer lstm for the benchmark. Given the limited computation budget of edge devices, the batch
size is reduced to 1/8 of the original ones. To better evaluate our algorithm, we choose the most
challenging settings where devices are linked through wireless connections from different buildings.
With an average latency of 470ms, FedAvg’s training is significantly slowed by the communication.
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(a) GPU servers with Netem [29] generated syn-
thetic latency from 1ms to 5000ms.
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(b) Raspberry Pi cluster (16 nodes) with real-world
latency (1ms, 16ms, 132ms, 470ms).

Figure 4: Benchmark FedAvg [27] and DGA on different communication latency. On both latency
settings, FedAvg’s performance starts to degrade when latency grows, while DGA shows a stable
performance even under extreme latency.
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Figure 5: The speedup comparison between FedAvg and DGA on Raspberry Pi cluster. On both
vision and language tasks, DGA demonstrate consistent improvement over FedAvg.

When scaling the training to two devices, the speedup ratio is only 0.6, which is even slower than
single devices. Instead, our proposed DGA demonstrates ideal scalability under a high-latency
network. When scaling to eight devices, the speedup ratio is about 13.1. This performance is close to
what conventional algorithms achieved inside a data center.

4 Conclusion

In this paper, we propose Delay Gradient Averaging (DGA) to tolerate high network latency in
federated learning. We have justified that the theoretical convergence is no slower than FedAvg
in non-convex settings. We further demonstrate that our algorithm is capable of enjoying high
scalability under poor network conditions and preserving accuracy especially on non-i.i.id partitions.
Furthermore, on a realistic setup consisting of 16 Raspberry Pi devices, our algorithms demonstrate
consistent speedup previous algorithms. We believe that our work will enable a wide range of
federated learning applications in high latency network.
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Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, H Brendan McMahan, et al.
Towards federated learning at scale: System design. arXiv preprint arXiv:1902.01046, 2019. 3

[4] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan
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