
Batched Thompson Sampling

Cem Kalkanlı and Ayfer Özgür
Department of Electrical Engineering

Stanford University
{cemk, aozgur}@stanford.edu

Abstract

We introduce a novel anytime batched Thompson sampling policy for multi-armed
bandits where the agent observes the rewards of her actions and adjusts her policy
only at the end of a small number of batches. We show that this policy simulta-
neously achieves a problem dependent regret of order O(log(T)) and a minimax
regret of order O(

√
T log(T)) while the number of batches can be bounded by

O(log(T)) independent of the problem instance over a time horizon T . We also
prove that in expectation the instance dependent batch complexity of our policy is
of order O(log log(T)). These results indicate that Thompson sampling performs
competitively with recently proposed algorithms for the batched setting, which
optimize the batch structure for a given time horizon T and prioritize exploration
in the beginning of the experiment to eliminate suboptimal actions. Unlike these
algorithms, the batched Thompson sampling algorithm we propose is an anytime
policy, i.e. it operates without the knowledge of the time horizon T , and as such
it is the only anytime algorithm that achieves optimal regret with O(log log(T))
expected batch complexity. This is achieved through a dynamic batching strategy,
which uses the agents estimates to adaptively increase the batch duration.

1 Introduction

The multi-armed bandit problem models the scenario where an agent plays repeated actions and
observes rewards associated with her actions. The agent aims to accumulate as much reward as
possible, and consequently, she has to balance between playing arms that generated high rewards
in the past, i.e. exploitation, and selecting under-explored arms that could potentially return better
rewards, i.e. exploration. In the ideal scenario, the agent can adjust her policy once she receives
feedback, e.g a reward, before the next action instance. However, many real-world applications limit
the number of times the agent can interact with the system. For example, in medical applications
[26], many patients are treated simultaneously in each trial, and the experimenter has to wait for the
outcome of one trial before planing the next. In online marketing [25], there may be millions of
responses per second, and as a result, it is not feasible for the advertiser to update her algorithm every
time she receives feedback.

Recently, Perchet et al. [19] proposed to model this problem as the batched multi-armed bandits. Here,
the experiment of duration T is split into a small number of batches and the agent does not receive any
feedback regarding the rewards of its actions until the end of each batch. For the two-armed bandit
problem, they proposed a general class of batched algorithms called explore-then-commit (ETC)
policies, where the agent plays both arms the same number of times until the terminal batch and
commits to the better performing arm in the last round unless the sample mean of one arm sufficiently
dominates the other in earlier batches. They show that this algorithm achieves the optimal problem-
dependent regret O(log(T)) and the optimal minimax regret O(

√
T), matching the performance

in the classical case where the agent receives instantaneous feedback about her actions, by using
only O(log(T/ log(T))) and O(log log(T)) batches respectively. Their algorithm takes the time

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

horizon T and divides it into a fixed number of batches before the experiment where the specific batch
structure is tuned to the target performance criteria, i.e. problem-dependent or minimax regret. Gao
et al. [10] later generalized this result to the setting where the agent had more than two arms to choose
from and she could adaptively adjust the batch sizes based on the past data. Their algorithm, called
BaSE, is similar to the ETC algorithm in that in each batch the agent plays each of the remaining
actions in a round robin fashion, and eliminates the underperforming arms at the end of each batch.
They showed that this algorithm required O(log(T)) and O(log log(T)) number of batches to achieve
the optimal problem-dependent and the optimal minimax regret respectively, with batching strategies
that were again tailored to the specific objective. More recently several other batched algorithms
appeared in the context of asymptotic optimality [13], stochastic and adversarial bandits [9], and
linear contextual bandits [11, 22, 20, 21], where the authors provided optimal algorithms in their
respective settings. We note that there are also some earlier algorithms developed in the context of
the classical bandit setting or bandits with switching cost that even-though not specially developed
for the batched setting can be applied in a batched fashion [4, 6].

In this paper, we aim to study whether Thompson sampling, an algorithm that has been developed in
1933 [26] and since then successfully applied to a broad range of online optimization problems [7, 25],
can achieve a similar performance in the batched setting. In the Thompson sampling algorithm, the
agent chooses an action randomly according to its likelihood of being optimal, and after receiving
feedback, i.e. observing rewards, updates its beliefs about the optimal action. The performance of
Thompson sampling has been thoroughly analyzed in the literature [16, 17, 1, 2, 23, 24] and is known
to achieve the optimal problem-dependent and minimax regret in the classical case. Our goal is to
understand whether Thompson sampling can be combined with an adaptive batching strategy and
maintain its regret performance when allowed to update its beliefs only at the end of a small number
of batches. Note that the earlier algorithms developed specifically for the batched setting [19, 10]
heavily prioritize exploration in the initial batches to eliminate the possibility that a suboptimal arm
is played in the final exponentially larger batches, while Thompson sampling inherently balances
between exploration and exploitation by randomly sampling actions according to their probability
of being optimal. A first result in this direction has appeared in [14], which presents a batched
Thompson sampling strategy called iPASE. However, [14] provides almost sure guarantees on the
asymptotic regret which do not imply the guarantees on expected finite-time regret of interest in this
paper and the previously mentioned literature.

Our main contribution in this paper is to show that Thompson sampling, combined with a novel
adaptive batching scheme, achieves the optimal problem-dependent performance O(log(T)) and at
the same time a minimax regret of order O(

√
T log(T)) by using O(log(T)) batches independent

of the problem instance. This performance is achieved simultaneously by a single strategy without
the need to tune the batching structure according to the target criteria, i.e. problem-dependent or
minimax regret. Moreover, unlike most of the previously mentioned batched algorithms where T is
used both in action selection and the optimization of the batch structure, our strategy is an anytime
strategy, i.e. it operates without the knowledge of the time horizon T . We note that policies designed
for minimizing the problem-dependent regret can indeed be turned into anytime algorithms while
retaining their O(log(T)) regret and O(log(T)) batch complexities with the help of the so called
doubling trick in [5], but the same extension does not hold for minimax policies. This is because
even with the best known doubling schemes (exponential or geometric), the minimax policies either
suffer a regret significantly larger than

√
T or have their batch complexity increase to Ω(log(T))

(exponential doubling leads to the first conclusion and geometric doubling leads to the second).
This implies that our anytime Thompson sampling strategy matches the batch size of O(log(T))
needed for these anytime extensions. In addition, we develop a problem-dependent bound on the
expected number of batches used by our strategy which is O(log log(T)). This shows that while
our strategy uses O(log(T)) batches in the worst case, similar to previous algorithms, in a given
instance of the problem with fixed reward distributions we only need O(log log(T)) batches on
average. To the best of our knowledge, our scheme is the only strategy that can reduce the number of
batches to O(log log(T)) without the knowledge of the time horizon T . This corresponds to a doubly
exponential reduction in the interaction needed with the environment as compared to the classical
case. We achieve this with a two-fold adaptive batching scheme that allows the batch sizes to increase
doubly exponentially as the agent becomes more confident in its decisions. The scheme consists of
two layers comprising of batches and multiple cycles inside each batch: the number of cycles per
batch is increased exponentially, while at the same time each cycle becomes longer as the agent learns
the environment and a suboptimal action is played less and less frequently. This notion of cycles is

2

key to allowing the batching scheme to dynamically adopt to each instance of the problem, which
enables the O(log log(T)) guarantee on its expected problem-dependent batch complexity.

Finally, we would like to mention a concurrent and independent work by Karbasi et al. [15], also
accepted to NeurIPS 2021. They consider the same problem and also develop a batch Thompson
sampling strategy for the multi-armed bandits setting. While their results have some overlap with
ours, there are also some differences. For example, they establish a O(log(T)) worst-case guarantee
on the batch complexity of their algorithm as we do in our paper, however their algorithm lacks a
O(log log(T)) guarantee on its expected batch complexity. In contrast, they generalize their batch
Thompson sampling strategy to the linear contextual setting, while we restrict our attention to
multi-armed bandits.

2 Problem Formulation

2.1 Notations

We denote the natural logarithm as log(·) while a logarithmic function of base a > 1 is loga(·). For
the non-negative sequences of {an} and {bn}, an = O(bn) if and only if lim supn→∞

an

bn
<∞ and

an = Ω(bn) if and only if bn = O(an). We also denote by Q(·) the probability of a standard normal
random variable X being bigger than a certain threshold x, i.e. Q(x) = P(X ≥ x) for any x ∈ R.
Finally 1(·) is defined as the indicator function.

2.2 Batched Multi-Armed Bandit

We consider the batched multi-armed bandit setting. Here there are K arms, where each consecutive
pull of the ith arm produces bounded i.i.d. rewards {Yi,t}∞t=1 such that

Yi,1 ∈ [0, 1],

E[Yi,1] = µi ∈ R.

These mean rewards {µi}Ki=1 are assumed to be deterministic parameters unknown to the agent,
whose goal is to accumulate as much reward as possible by repeatedly pulling these arms. Therefore,
at each time instance t, the agent plays an arm At ∈ {1, 2, ...,K} and receives the reward YAt,t.
Since she can only act causally and does not know {µi}Ki=1, she can only use the past observations,
Ht = {A1, YAt,1, ..., At, YAt,t} whereH0 = ∅, to select the next action At+1.

In this paper, we study the batched version of this multi-armed bandit problem, where the agent has
to play these arms in batches and can only incorporate the feedback from the system, i.e. her rewards,
into her algorithm at the end of a batch. In other words, there are batch end points 0 = T0 < T1 < ...,
and the actions the agent plays in the jth batch [Tj−1 + 1, Tj] as well as the size of the batch itself,
i.e. Tj − Tj−1, can depend only on the information present in HTj−1 for any j ∈ Z+ and some
external randomness that is independent of the system. Note that in this setting, the agent is allowed
to adaptively choose the batch sizes depending on the past observations.

Finally, we let µ1 > µi for any i ≥ 2. Given that the agent aims to maximize her cumulative reward,
she would only play the first arm if she knew the hidden system parameters {µi}Ki=1. This observation
naturally leads to the cumulative regret term, R(T):

E[R(T)] =

K∑
i=2

∆i E[Ni(T)] (1)

where µ1 − µi = ∆i and

Ni(T) =

T∑
t=1

1(At = i)

for i ∈ {1, 2, ...,K}.

3

3 Batched Thompson Sampling

In this section, we describe our Batched Thompson sampling strategy for the batched multi-armed
bandit setting described in the previous section. This policy uses Gaussian priors in the spirit of [2]
and each arm is sampled randomly according to its likelihood of being optimal under this prior and
the observations from previous batches. We combine this strategy with an batching mechanism which
relies on the notion of cycles. A cycle is defined as follows. The first cycle starts in the beginning
of the experiment and ends when the agent selects an action different from the previous actions,
i.e. it corresponds to the shortest time interval starting from the beginning of the experiment where
two different actions are selected. Then the jth cycle for j > 1 is defined recursively as the time
interval from the end of the j − 1th cycle to the first time step where the agent selects an action
different from the first action in the cycle. In other words, in each cycle the agent plays exactly two
different actions. Consider the following example. Assume that the first seven actions played by
the agent are as follows: A1 = 1, A2 = 1, A3 = 2, A4 = 1, A5 = 3, A6 = 2, A7 = 2. Then the
first cycle is [1, 3] because only at the third time step the agent selected an arm different from the
earlier actions. Similarly, the second cycle is [4, 5] where the agent played the first and the third
actions. The third cycle that started on t = 6 has not ended yet because only a single action has been
played so far. We use the concept of a cycle to adaptively decide on the batch size. At the beginning
of the jth batch, the Thompson sampling agent checks the number of cycles in which each action
i has been played since the beginning of the experiment, denoted Mi(Tj−1), and sets upper limits
Ui,j = max{1, ⌈α×Mi(Tj−1)⌉} for the cycle count of each action. Here α > 1 is a batch growth
factor to be chosen. Throughout the jth batch, the agent employs Thompson sampling, and at the end
of each cycle checks whether or not the number of cycles in which a certain arm has been selected
since the beginning of the experiment has reached its upper limit Ui,j set for the current batch. The
batch ends if there is one such action hitting its upper limit. After the jth batch, the agent observes
the rewards of its actions and repeats the same process in the next batch. Note that as the algorithm
proceeds the batch size increases due to two different reasons. First, the cycle count of each action
is increased at the end of each batch. This alone leads to an exponential increase in the number of
cycles per batch with base α. However, in addition to this, the length of each cycle becomes longer
as the agent becomes more confident about its decisions and the probability of playing an optimal
arm decreases. Note that the exponential increase in the number of cycles per batch is there even
if the algorithm does not make progress in learning its environment, e.g. always plays arms with
equal or near-equal probability due to a very noisy environment. However, the increase in the cycle
duration is tightly coupled with the confidence of the agent and the cycle duration increases only if
the agent becomes more confident. Therefore, this notion of cycles allows us to adopt the batch size
much more dynamically to the current progress of the agent in a given instance of the problem.

We now introduce the following notation to denote the beginning and end of the kth cycle, Cb,k and
Ce,k respectively:

Cb,k =

{
1 if k = 1
Ce,k−1 + 1 if k > 1

and
Ce,k = min{t ∈ Z+|At ̸= At−1 and t > Cb,k}

for any positive integer k. As can be seen from these definitions, the interval [Cb,k, Ce,k] describes
the kth cycle. We also define Mi(T) and Si(T) as follows

Mi(T) =

T∑
t=1

1(At = i, t = Cb,k or Ce,k for some k)

and

Si(T) =

T∑
t=1

1(At = i, t = Cb,k or Ce,k for some k)Yi,t.

Here Mi(T) denotes the number of cycles in which the ith action has been selected, while Si(T)
is the sum of rewards the agent received from playing the ith action at either the beginning or
the end of a cycle over the duration T of the experiment. Note that whether the condition {t =
Cb,k or Ce,k for some k} is satisfied or not can be verified by checking the actions taken until the
time step t, i.e. {Aj}tj=1. We also define b(t) = max{j ∈ Z≥0|t − 1 ≥ Tj} as the index of the

4

last batch, and B(t) = min{j ∈ Z+|t ≤ Tj} as the batch index of the tth time step. We provide a
pseudo-code for our Batched Thompson Sampling policy in Algorithm 1.

Algorithm 1: Batched Thompson Sampling

Input: Batch growth factor α > 1, Gaussian variance σ2

Initialization: t = 1, Mi(0) = 0, Si(0) = 0, Ui,1 = 1, j = 1, T0 = 0.
while Experiment Run do

Sample for Each Arm: θi(t) ∼ N (
Si(Tj−1)

1+Mi(Tj−1)
, σ2

1+Mi(Tj−1)
)

Play an Arm: At = argmaxi θi(t)
Update the Pull Count: Mi(t)←Mi(t− 1) + 1(At = i, t = Cb,k or Ce,k for some k)
if t = Ce,k for some k & Mi(t) = Ui,j for some i then

End the Current Batch: Tj = t

Receive the Rewards: {YAt,t}
Tj

t=Tj−1+1

Update the Cumulative Rewards for Each Arm:
Si(Tj) = Si(Tj−1) +

∑Tj

l=Tj−1+1 1(Al = i, l = Cb,k or Ce,k for some k)Yi,l

Update the Upper Limites for the Cycle Counts: Ui,j+1 = max{1, ⌈α×Mi(Tj)⌉}
Update the Batch Index: j ← j + 1

end
Update the Time Index: t← t+ 1

end

Note that in Algorithm 1, the posterior distribution from which each arm is selected depends only on
{Mi(Tb(t)), Si(Tb(t))}Ki=1, that is we only use the rewards from the first and last action selected in
each cycle and ignore the rest of the observed rewards. This is to simplify the analysis in the following
sections. However, we can also apply the algorithm by incorporating all the observed rewards, which
in general can yield better performance while still maintaining the same batch structure. In that case,
θi(t) for any t in the jth batch is drawn instead as

θi(t) ∼ N
(∑Tj−1

t=1 1(At = i)Yi,t

1 +Ni(Tj−1)
,

σ2

1 +Ni(Tj−1)

)
.

4 Main Results

In this section, we state the main results of our paper. We start with the regret performance of Batched
Thompson sampling.
Theorem 1. Consider the batched multi-armed bandit setup described in Section 2. If T ≥ 2 and the
batch growth factor α satisfies 1 < α ≤ 5σ2

4 , then Batched Thompson sampling obeys the following
inequalities

E[Ni(T)] ≤ C1ασ
2 log(T)

∆2
i

(2)

for any i ≥ 2, which lead to

E[R(T)] ≤ C1ασ
2

K∑
i=2

log(T)

∆i
, (3)

and
E[R(T)] ≤ C2σ

√
αKT log(T) (4)

where C1, C2 ≥ 1 are absolute constants independent of the system parameters.

We provide the proof of this theorem for the special case of K = 2, α = 2, σ2 = 1 in Section 6.1,
and defer the proof of the general version to the supplementary materials.

Theorem 1 states that Batched Thompson sampling achieves O(log(T)
∑K

i=2 ∆
−1
i) problem-

dependent regret and O(
√
KT log(T)) minimax regret, which match the asymptotic lower bound of

Ω(log(T)) [18] and the minimax lower bound of Ω(
√
KT) [3] up to a

√
log(T) term respectively.

5

We next compare our bounds with the results on classical Thompson sampling [2]. As described in the
previous section, we use Gaussian priors for Thompson sampling following the work of Agrawal and
Goyal [2]. This is one of the two priors considered in that work for Thompson sampling: beta priors
and Gaussian priors. For Thompson sampling with Beta priors, Agrawal and Goyal [2] provides two
different bounds on the expected regret:

E[R(T)] ≤ (1 + ϵ)

K∑
i=2

log(T)

d(µi, µ1)
∆i +O(

K

ϵ2
), (5)

for any ϵ ∈ (0, 1), and
E[R(T)] ≤ O(

√
KT log(T)), (6)

where d(µi, µ1) = µi log(
µi

µ1
) + (1 − µi) log(

1−µi

1−µ1
). In addition, they show that with Gaussian

priors the expected regret of the classical Thompson sampling is bounded by O(
√
KT log(K))

if T ≥ K. Considering that d(µi, µ1) ≥ 2∆2
i by Pinsker’s inequality, (5) provides a tighter

performance guarantee than (3) in terms of the dependence on the reward distributions, but we note
that the minimax performance of Batched Thompson sampling, (4), matches the performance of
classical Thompson sampling when the agent receives instantaneous feedback about rewards and
can update its policy after each action. These results show that Batched Thompson sampling, apart
from the dependence on the reward distributions in the problem dependent bound, matches the regret
performance in the classical case.

We note that the regret bounds in the theorem depend on the batch growth factor α. The regret
increases linearly as α grows bigger; this is not surprising since bigger batch sizes mean fewer updates
for Batched Thompson sampling.

We now present the batch complexity results for our algorithm.
Theorem 2. Consider the batched multi-armed bandit setup described in Section 2. If T ≥ 2 and
1 < α ≤ 5σ2

4 , then the batch complexity B(T) of Batched Thompson sampling satisfies the following:

B(T) ≤ 1 +K +K logα(1 +
T

K
), (7)

E[B(T)] ≤ 1 +K + logα(1 + Cασ2
K∑
i=2

log(T)

∆2
i

)) +

K∑
i=2

logα(1 + Cασ2 log(T)

∆2
i

), and (8)

E[B(T)] ≤ 1 + 2Cασ2
K∑
i=2

log(T)

∆2
i

, (9)

where C is an absolute constant independent of the system parameters.

Theorem 2 states three different batch complexity guarantees; the first is a deterministic guarantee on
the number of batches while the last two bound the number of batches in expectation. If we consider
(7), we see that Batched Thompson sampling uses at most O(log(T)) many batches regardless of
the reward distributions. This result and Theorem 1 indicate that Batched Thompson sampling
matches the regret performance and the batch complexities of optimal problem-dependent batched
algorithms developed in [4, 10, 9, 15], which also achieve O(K log(T)) problem-dependent regret
with O(log(T)) batch complexity. However, compared with the other optimal algorithms, we show
that we can further reduce the expected batch complexity down to O(K log log(T)) in (8). This is
because our batching strategy uses the information it gathers about the system (through the notion of
cycles) to adaptively decide on the sizes of the batches while most prior batched algorithms use a
static batch structure. We note that Algorithm 1 of Esfandiari et al. [9] does use an adaptive batching
strategy however that strategy appears to be geared towards obtaining a tighter regret bound rather
than reducing the batch complexity.

We note that the bounds on the number of batches in (7) and (8) diverge to infinity as α ↓ 1. The
bound in (9) on the other hand decreases with α and can be relevant when α is chosen very small. We
also note that if α < 1+ 1

T for a fixed T , then Batched Thompson sampling will only allow one cycle
per batch throughout the experiment of duration T and the notion of a batch will coincide with the

6

notion of a cycle. In this extremal case with one cycle per batch, (9) shows that Batched Thompson
sampling will have O(log(T)) batch complexity, while still satisfying the regret bounds stated in
Theorem 1. The O(K log log(T)) bound on the expected batch complexity in (8) is enabled by the
fact that for larger α we allow for exponentially more cycles in each batch. As the algorithm proceeds
and becomes more confident about the system, choosing a suboptimal arm becomes less likely and
as a result the cycle durations become inherently larger. At the same time, the algorithm allows
for exponentially more cycles in each batch. This double batching strategy in our algorithm, via
cycles and batches is key to obtain O(K log log(T)) guarantee in (8) with an anytime strategy. Note
that the best previously available guarantee on batch complexity for an anytime batching strategy is
O(log(T)).

The proof of these theorems are provided in Section 6. The main technical novelty in the proof
comes from the fact that the notion of cycles leads to a random duration for each batch without any
deterministic upper bound on the number of times each arm is played in the batch. This makes it
more difficult to control the regret accumulated during a given batch. We note that without the notion
of cycles (e.g. when a cycle corresponds to a pull of an arm) the exponential increase in the number
of arms per batch is relatively easy to deal with, as in this case we have a deterministic upper bound
on the number of times each arm can be played in a given batch.

5 Experiments

In this section, we provide some experimental results on the performance of Batched Thompson
sampling where we do not skip samples, i.e. the variant mentioned at the end of Section 3, for different
values of α, {1.00001, 1.25, 1.5, 2}, and how they perform against normal Thompson sampling under
different reward distributions and action counts when time horizon T = 5× 104 and the sampling
variance σ2 = 1. We mainly consider four setups: Bernoulli rewards when K = 2, Figure 1 (a);
Bernoulli rewards when K = 5, Figure 1 (b); Gaussian rewards when K = 2, Figure 1 (c); Gaussian
rewards when K = 5, Figure 1 (d). Finally each figure is the result of an experiment averaged over
104 repeats and the average number of batches used throughout the experiment is rounded up to the
nearest integer and reported in the parenthesis to the right of the algorithm names on the figures. The
figures show that our batching strategy matches the performance of classical Thompson sampling by
using roughly 100 batches over a time horizon of T = 5× 104.

As can be seen from Figure 1, Batched Thompson sampling achieves almost the same empirical
performance as the normal Thompson sampling when we set α small enough so that there is only one
cycle per batch, i.e. α = 1.00001. We also observe that this Batched Thompson sampling version
α = 1.00001, can have a batch count as small as 15. However when α is very small, the problem
independent guarantees in (7) and (8) become very loose and the number of batches can vary more
with the reward distributions. This can be partly observed in the figures: for α = 1.00001, there is
larger variation in the average batch complexity across different reward distributions though in all
cases the average numbe of batches remain very small. Increasing α leads to a more stable batch
complexity behavior, at the cost of a small multiplicative regret factor; we observe that the batch count
almost remains constant for α = 2 across different reward distributions. The source codes of the
experiment can be found in https://github.com/incsmi/BatchedThompsonSampling.git.

6 Technical Analysis

In this section we provide technical proofs for our results. We start with the proof of Theorem 1 for a
special case and at the end prove Theorem 2.

6.1 Proof of Theorem 1 when K = 2, α = 2, and σ2 = 1

We first introduce N2,j(t) as the number of times the second arm is pulled if Batched Thompson
sampling is employed for t many round with the past knowledge ofHTj−1

. In this case, N2,j(Tj −
Tj−1) = N2(Tj)−N2(Tj−1). We know that in the first T rounds, there can be no more than T many
batches, and each batch can not last longer than T rounds. As a result, we have the following bound

7

https://github.com/incsmi/BatchedThompsonSampling.git

(a) Y1,t ∼Bern(0.75), Y2,t ∼Bern(0.25) (b) Y1,t ∼Bern(0.75), Yi,t ∼Bern(0.25) 2 ≤ i ≤ 5

(c) Y1,t ∼ N (1, 1), Y2,t ∼ N (0, 1) (d) Y1,t ∼ N (1, 1), Yi,t ∼ N (0, 1) 2 ≤ i ≤ 5

Figure 1: Empirical Regret Performance of Batched and normal Thompson sampling

on N2(T):

N2(T) ≤
T∑

j=1

min(N2,j(Tj − Tj−1), N2,j(T)).

Now we first analyze the expected number of times the second is pulled in the first cycle of the jth

batch. It is easy to see the time the first arm is selected in this cycle is an upper bound on the number
of times the second arm is picked. This observation follows from the fact that if the first action is
selected in the first round, then the second is selected only once in the current cycle, if not the time
the first arm is selected becomes one more than the number of times the second arm is picked. As a
result, conditioned on the pastHTj−1 , the expected number of times the second arm is picked in a
single cycle is upper bounded by 1

P(ATj−1+1=1|HTj−1
) . Also note that since there are only two actions,

each cycle will contain both of them, and in the first j batches, there will be 2j−1 many cycles by
the construction of Algorithm 1. This observation means that there are no more than 2j−1 many
identically distributed such cycles in the jth batch, and we have the following bound for any j:

E[N2,j(Tj − Tj−1)] ≤ 2j−1 E[
1

P(ATj−1+1 = 1|HTj−1
)
] ≤ C2j−1 (10)

where C ≥ 2 is a constant independent of j. The last inequality in (10) follows from the following
Lemma 3 and the fact that in the first batch P(ATj−1+1 = 1|HTj−1

) = P(A1 = 1) = 1
2 .

Lemma 3. If K = 2, α = 2, and σ2 = 1, then any j ≥ 2:

E
[1

P(ATj−1+1 = 1|HTj−1
)

]
≤ C, (11)

P(ATj−1+1 = 2) ≤ exp(−2j−4

3
∆2

2), (12)

8

where C ≥ 2 is a constant independent of j.

In addition, we also have:

E[N2,j(T)] = T P(ATj−1+1 = 2) ≤ T exp(−2j−4

3
∆2

2) (13)

for j ≥ 2 by the same lemma. The overall analysis shows that for any positive integer k, we have:

E[N2(T)] ≤ E[
T∑

j=1

min(N2,j(Tj − Tj−1), N2,j(T))] ≤
k∑

j=1

E[N2,j(Tj − Tj−1)] +

T∑
j=k+1

E[N2,j(T)]

≤ C(2k − 1) + T

T∑
j=k+1

exp(−2j−4

3
∆2

2) (14)

where the last step follows from (10) and (13). Let k be the smallest positive integer such that
2k

3 ≥ 8 log(T)
∆2

2
. Then we have

T

T∑
j=k+1

exp(−2j−4

3
∆2

2) ≤ T

∞∑
i=0

exp(−2i 2
k−3

3
∆2

2) ≤ T

∞∑
i=0

exp(−2i log(T))

=

∞∑
i=0

1

T 2i−1
≤

∞∑
i=0

1

T i
≤ 2

where the last inequality follows from the assumption that T ≥ 2. This analysis bounds the last
summation term in (14). To bound C(2k − 1), note that k is the smallest positive integer bigger
than log2(24

log(T)
∆2

2
). Since ∆2

2 ≤ 1 and T ≥ 2, we know 24 log(T)
∆2

2
≥ 1. This analysis shows that

k ≤ log2(24
log(T)
∆2

2
)+1 = log2(48

log(T)
∆2

2
). As a result, C(2k−1) ≤ 48C log(T)

∆2
2

. The overall analysis

shows that E[R(T)] = ∆2 E[N2(T)] ≤ 48C log(T)
∆2

+ 2∆2 by (14). This finishes the proof of (3).

Finally (4) is proven by (3) if ∆2 >
√

log(T)
T . If not, then E[R(T)] ≤ T∆2 ≤

√
T log(T), and this

proves (4).

6.2 Proof of Theorem 2

Let us consider the case where the agent has already employed the Batched Thompson sampling,
Algorithm 1, for T many steps and denote ij ∈ {1, 2, ..., B(T) − 1} for j ∈ {1, 2, ..., ki} as
the indices where Mi(Tij) = Ui,ij . Since each batch end point Tj has to satisfy the condition
Ml(Tj) = Ul,j for some l, we have

B(T)− 1 ≤
K∑
i=1

ki. (15)

By the definition of Ui,j , we know that Mi(Ti1) = 1. In addition, note that there may be batches in
between ithj−1 and ithj ones and the agent may have picked the ith arm while the condition Mi(Tj) =
Ui,j is not satisfied. These observations lead to max{αMi(Tij−1

),Mi(Tij−1
) + 1} ≤ Mi(Tij) for

j ≥ 2. The overall analysis shows that if ki ≥ 1, then αki−1 ≤ Mi(Tiki
) ≤ Mi(TB(T)−1) due to

the fact that Tiki
≤ TB(T)−1, which leads to ki ≤ 1 + logα(1 +Mi(TB(T)−1)) for any ki ≥ 0. In

addition, we also have the following trivial bound ki ≤ Mi(Tiki
) ≤ Mi(TB(T)−1). As a result of

these inequalities and (15), we have

B(T) ≤ 1 +K +

K∑
i=1

logα(1 +Mi(TB(T)−1)) (16)

and

B(T) ≤ 1 +

K∑
i=1

Mi(TB(T)−1). (17)

9

First of all, since log(·) is a concave function, Jensen’s inequality and (16) lead to

B(T) ≤ 1 +K +K logα(1 +
1

K

K∑
i=1

Mi(TB(T)−1)). (18)

Considering that each cycle has to contain at least two action steps, there can be no more than T
2

many cycles in the first B(T) − 1 batches. In addition, each cycle can only be recorded once by
two different actions. This observation leads to

∑K
i=1 Mi(TB(T)−1) ≤ T , which proves (7) by (18).

To prove (8), we first note that M1(TB(T)−1) ≤
∑K

i=2 Mi(TB(T)−1) because each cycle of the
first arm has to be accompanied by another arm. Since Mi(TB(T)−1) ≤ Ni(T) for any i, we have
B(T) ≤ 1 +K + logα(1 +

∑K
i=2 Ni(T)) +

∑K
i=2 logα(1 +Ni(T)) by (16), which shows that

E[B(T)] ≤ E[1 +K + logα(1 +

K∑
i=2

Ni(T)) +

K∑
i=2

logα(1 +Ni(T))]

≤ 1 +K + logα(1 +

K∑
i=2

E[Ni(T)]) +

K∑
i=2

logα(1 + E[Ni(T)]).

The last inequality follows from Jensen’s inequality. This leads to (8) by the fact that E[Ni(T)] ≤
Cασ2 log(T)

∆2
i

from (2). Finally, the previous analysis also implies that B(T) ≤ 1 + 2
∑K

i=2 Ni(T) by
(17). This inequality and (2) prove (9).

7 Conclusion

We proposed an anytime Batched Thompson sampling algorithm and proved that it achieves the
optimal problem-dependent and minimax regret with only O(log(T)) instance-independent batch
complexity, matching the state-of-the-art anytime batched algorithms. More interestingly, we showed
that in a given instance of the problem our algorithm requires only O(log log(T)) batches on average,
which corresponds to a doubly exponential decrease in the interaction needed with the environment
as compared to the classical case. To the best of our knowledge, previous anytime algorithms only
satisfy a worst-case O(log(T)) guarantee on the batch complexity. Finally, simulations show that
Batched Thompson sampling performs empirically close to classical Thompson sampling by using
drastically fewer batches.

8 Acknowledgements

This work was supported in part by a Google Faculty Research Award, and the National Science
Foundation under grants CCF1704624 and NeTS-1817205.

References
[1] Marc Abeille, Alessandro Lazaric, et al. Linear thompson sampling revisited. Electronic

Journal of Statistics, 11(2):5165–5197, 2017.

[2] Shipra Agrawal and Navin Goyal. Near-optimal regret bounds for thompson sampling. Journal
of the ACM (JACM), 64(5):1–24, 2017.

[3] Jean-Yves Audibert, Sébastien Bubeck, et al. Minimax policies for adversarial and stochastic
bandits. In COLT, volume 7, pages 1–122, 2009.

[4] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2-3):235–256, 2002.

[5] Lilian Besson and Emilie Kaufmann. What doubling tricks can and can’t do for multi-armed
bandits. arXiv preprint arXiv:1803.06971, 2018.

10

[6] Nicolo Cesa-Bianchi, Ofer Dekel, and Ohad Shamir. Online learning with switching costs
and other adaptive adversaries. In Advances in Neural Information Processing Systems, pages
1160–1168, 2013.

[7] Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In Advances
in neural information processing systems, pages 2249–2257, 2011.

[8] Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.

[9] Hossein Esfandiari, Amin Karbasi, Abbas Mehrabian, and Vahab Mirrokni. Regret bounds for
batched bandits. arXiv preprint arXiv:1910.04959, 2019.

[10] Zijun Gao, Yanjun Han, Zhimei Ren, and Zhengqing Zhou. Batched multi-armed bandits
problem. In Advances in Neural Information Processing Systems, pages 503–513, 2019.

[11] Yanjun Han, Zhengqing Zhou, Zhengyuan Zhou, Jose Blanchet, Peter W Glynn, and Yinyu
Ye. Sequential batch learning in finite-action linear contextual bandits. arXiv preprint
arXiv:2004.06321, 2020.

[12] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. In The
Collected Works of Wassily Hoeffding, pages 409–426. Springer, 1994.

[13] Tianyuan Jin, Pan Xu, Xiaokui Xiao, and Quanquan Gu. Double explore-then-commit: Asymp-
totic optimality and beyond. arXiv preprint arXiv:2002.09174, 2020.

[14] Cem Kalkanlı and Ayfer Özgür. Asymptotic performance of thompson sampling in the batched
multi-armed bandits. In 2021 IEEE International Symposium on Information Theory (ISIT),
pages 539–544. IEEE, 2021.

[15] Amin Karbasi, Vahab Mirrokni, and Mohammad Shadravan. Parallelizing thompson sampling.
arXiv preprint arXiv:2106.01420, 2021.

[16] Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. Thompson sampling: An asymptotically
optimal finite-time analysis. In International conference on algorithmic learning theory, pages
199–213. Springer, 2012.

[17] Nathaniel Korda, Emilie Kaufmann, and Remi Munos. Thompson sampling for 1-dimensional
exponential family bandits. In Advances in neural information processing systems, pages
1448–1456, 2013.

[18] Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Ad-
vances in applied mathematics, 6(1):4–22, 1985.

[19] Vianney Perchet, Philippe Rigollet, Sylvain Chassang, Erik Snowberg, et al. Batched bandit
problems. The Annals of Statistics, 44(2):660–681, 2016.

[20] Zhimei Ren and Zhengyuan Zhou. Dynamic batch learning in high-dimensional sparse linear
contextual bandits. arXiv preprint arXiv:2008.11918, 2020.

[21] Zhimei Ren, Zhengyuan Zhou, and Jayant R Kalagnanam. Batched learning in generalized
linear contextual bandits with general decision sets. IEEE Control Systems Letters, 2020.

[22] Yufei Ruan, Jiaqi Yang, and Yuan Zhou. Linear bandits with limited adaptivity and learning
distributional optimal design. arXiv preprint arXiv:2007.01980, 2020.

[23] Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. Mathematics
of Operations Research, 39(4):1221–1243, 2014.

[24] Daniel Russo and Benjamin Van Roy. An information-theoretic analysis of thompson sampling.
The Journal of Machine Learning Research, 17(1):2442–2471, 2016.

[25] Eric M Schwartz, Eric T Bradlow, and Peter S Fader. Customer acquisition via display
advertising using multi-armed bandit experiments. Marketing Science, 36(4):500–522, 2017.

[26] William R Thompson. On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

[27] Roman Vershynin. High-dimensional probability, 2019.

11

A Outline

The appendix is organized as follows.

1. Section B states technical tools necessary for our proofs.
2. Section C provides the proof of Lemma 3, which is stated in Section 6.1.
3. In Section D, we present couple propositions and lemmas in preparation for the proof of

Theorem 1 in the general case of K, α, and σ2.
4. The full proof of Theorem 1 is finally given in Section E.
5. In Section F, we provide additional experiments in which we compare different variants

of Batched Thompson sampling: the one using all the observations and the one skipping
samples of multiple instances from the same arm.

B Technical Tools

B.1 Bounded Random Variable Moment-generating Function Bound

Let X be a bounded zero mean random variable such that a ≤ X ≤ b and |a|, |b| <∞. Hoeffding
[12] showed that

E[exp(λX)] ≤ exp(λ2 (b− a)2

8
) (19)

for any real number λ.

B.2 Gaussian Tail Bounds

Proposition 2.1.2 of [27] shows that(1
δ
− 1

δ3

)exp(− δ2

2)√
2π

≤ Q(δ) ≤ 1

δ

exp(− δ2

2)√
2π

, (20)

if δ > 0. Since exponential functions decay faster than power functions, there exists δ0 such that if
δ ≥ δ0, then

exp(−3δ2/4) ≤ Q(δ)

which leads to

Q−1(1/x) ≥
√

4

3
log(x) (21)

if x ≥ x0 for some x0 ≥ 2, where Q−1(·) is the inverse function of Q(·). Note that the last inequality

follows from setting δ =
√

4
3 log(x) and the fact that Q(·) is decreasing.

B.3 Expectation of Non-negative Random Variables

Let X be a non-negative random variable, i.e. X ≥ 0, then

E[X] =

∫ ∞

0

P(X > x)dx (22)

by Lemma 2.2.13 of [8].

C Proof of Lemma 3

First of all,

E
[1

P(ATj−1+1 = 1|HTj−1
)

]
=

∫ ∞

0

P
(1

P(ATj−1+1 = 1|HTj−1
)
> x

)
dx

≤ 2 +

∫ ∞

2

P(P(ATj−1+1 = 1|HTj−1) ≤
1

x
)dx (23)

12

by (22). Conditioned onHTj−1 , θi(Tj−1+1) is distributed asN (
Si(Tj−1)

1+Mi(Tj−1)
, 1
1+Mi(Tj−1)

). However
when K = 2 and α = 2, we know that Mi(Tj−1) = 2j−2. This overall analysis leads to

P(ATj−1+1 = 1|HTj−1
) = P

(
N
(S1(Tj−1)

1 + 2j−2
,

1

1 + 2j−2

)
≥ N

(S2(Tj−1)

1 + 2j−2
,

1

1 + 2j−2

)
|HTj−1

)
= P

(
N
(S1(Tj−1)− S2(Tj−1)

1 + 2j−2
,

2

1 + 2j−2

)
≥ 0|HTj−1

)
= 1− P

(
N
(
0,

2

1 + 2j−2

)
≥ S1(Tj−1)− S2(Tj−1)

1 + 2j−2
|HTj−1

)
= 1−Q

(S1(Tj−1)− S2(Tj−1)√
2 + 2j−1

)
where the last equality follows from the definition of the function Q(·). Combining the last analysis
with (23) shows that

E
[1

P(ATj−1+1 = 1|HTj−1
)

]
≤ 2 +

∫ ∞

2

P
(
1−Q

(S1(Tj−1)− S2(Tj−1)√
2 + 2j−1

)
≤ 1

x

)
dx

= 2 +

∫ ∞

2

P
(
Q
(S1(Tj−1)− S2(Tj−1)√

2 + 2j−1

)
≥ 1− 1

x

)
dx

= 2 +

∫ ∞

2

P
(S2(Tj−1)− S1(Tj−1)√

2 + 2j−1
≥ −Q−1

(
1− 1

x

))
dx (24)

= 2 +

∫ ∞

2

P
(S2(Tj−1)− S1(Tj−1)√

2 + 2j−1
≥ Q−1

(1
x

))
dx (25)

where (24) follows from the fact that Q(·) is a decreasing function, and (25) is the result of the
symmetric nature of the normal distribution.

Let λ be any real number. Here we are going to use induction hypothesis. We know that
E[exp(λ(S2(T1) − S1(T1) + ∆2))] ≤ exp(λ2/4) by (19) and the fact that S1(T1) and S2(T1)
are independent bounded random variables. Now assume that E[exp(λ(S2(Tj) − S1(Tj) +
2j−1∆2))] ≤ exp(2j−3λ2) for some j ≥ 1. However we know that HTj , S1(Tj+1) − S1(Tj),
and S2(Tj+1) − S2(Tj) are mutually independent. This is because regardless of what the agent
observes in the first j batches, i.e. HTj , she is going to record rewards from both arms only 2j−1

numbers times in the j + 1th batch and it does not matter at which time indices these are recorded
since all the future rewards from any arm are i.i.d. as well. This leads to

E[exp(λ(S2(Tj+1)− S1(Tj+1) + 2j∆2))]

= E[exp(λ(S2(Tj)− S1(Tj) + 2j−1∆2))

E[exp(λ(S2(Tj+1)− S2(Tj)− S1(Tj) + S1(Tj+1) + 2j−1∆2))|HTj]] (26)

However from the earlier analysis and the fact that the j + 1th batch contains 2j−1 recorded rewards
from each arm, we have

E[exp(λ(S2(Tj+1)− S2(Tj)− S1(Tj) + S1(Tj+1) + 2j−1∆2))|HTj]

= E[exp(λ(S2(Tj+1)− S2(Tj)− 2j−1µ2))]E[exp(−λ(S1(Tj+1)− S1(Tj)− 2j−1µ1))]

≤ exp(2j−3λ2) (27)

where the last inequality follows from (19) and the fact that the first l rewards and l + 1th reward
from the same arm are independent since the rewards are i.i.d. Note that each arm will be picked
infinitely often since probability selecting any arm in any batch will be almost surely positive due
to using Gaussian distribution to select arms. Finally, (26) and (27), along with the induction step,
shows that

E[exp(λ(S2(Tj−1)− S1(Tj−1) + 2j−2∆2))] ≤ exp(2j−4λ2) (28)
for any j ≥ 2. This result leads to the following bound for any λ ≥ 0 and x ≥ 2:

P
(S2(Tj−1)− S1(Tj−1)√

2 + 2j−1
≥ Q−1

(1
x

))
≤ P

(S2(Tj−1)− S1(Tj−1) + 2j−2∆2√
2 + 2j−1

≥ Q−1
(1
x

))
≤ exp(λ2/8− λQ−1(1/x))

13

where the last inequality follows from the Chernoff bound. Since Q−1(1/x) ≥ 0 when x ≥ 2, setting
λ = 4Q−1(1/x) shows that

P
(S2(Tj−1)− S1(Tj−1)√

2 + 2j−1
≥ Q−1

(1
x

))
≤ exp(−2(Q−1(1/x))2)

for any x ≥ 2. Finally, by (21)

P
(S2(Tj−1)− S1(Tj−1)√

2 + 2j−1
≥ Q−1

(1
x

))
≤ 1

x8/3
(29)

if x ≥ x0. Putting (29) back into (25) leads to:

E
[1

P(ATj−1+1 = 1|HTj−1
)

]
≤ x0 +

∫ ∞

x0

1

x8/3
dx ≤ x0 + 1,

which proves (11) since x0 is independent of any system parameter.

We now prove (12). Similar to the earlier analysis, we can describe the probability of selecting the
second arm as the sample from the second arm being bigger than the first arm’s:

P(ATj−1+1 = 2) = P
(
N
(S2(Tj−1)− S1(Tj−1)

1 + 2j−2
,

2

1 + 2j−2

)
≥ 0
)

= P
(
N
(S2(Tj−1)− S1(Tj−1)

1 + 2j−2
+

2j−2

1 + 2j−2
∆2,

2

1 + 2j−2

)
≥ 2j−2

1 + 2j−2
∆2

)
In view of (28), we know that S2(Tj−1)− S1(Tj−1) + 2j−2∆2 is sub Gaussian with variance proxy
2j−3. As a result, N (

S2(Tj−1)−S1(Tj−1)
1+2j−2 + 2j−2

1+2j−2∆2,
2

1+2j−2) has the following variance proxy:

2j−3

(1 + 2j−2)2
+

2

1 + 2j−2
=

2j−3 + 2(1 + 2j−2)

(1 + 2j−2)2
.

This observation and Chernoff bound, which states that P(X ≥ x) ≤ exp(−x2/(2σ2)) if x ≥ 0 and
X is sub Gaussian with variance proxy σ2, lead to:

P(ATj−1+1 = 2) ≤ exp(− (1 + 2j−2)2

2j−2 + 4(1 + 2j−2)

(2j−2)2

(1 + 2j−2)2
∆2

2)

= exp(− 22j−4

2j−2 + 4(1 + 2j−2)
∆2

2)

≤ exp(− 22j−4

3× 2j
∆2

2)

= exp(−2j−4

3
∆2

2)

which finishes the proof of (12).

D Results Related to Theorem 1

D.1 Martingale Lemma

In this part, we present a key martingale lemma.
Lemma 4. Let F t = {YA1,1, YA1,1, ..., YATb(t)

,Tb(t)
, A1, A2, ..., At}, then Xt = exp(λ(Si(Tb(t))−

µiMi(Tb(t)))− λ2

8 (1 +Mi(Tb(t)))) is a non-negative supermartingale adapted to F t for any real λ
and i ∈ {1, 2, ..,K}. Finally for any t we have

E[Xt] ≤ 1, (30)

and in particular any stopping time τ ≤ ∞ for {F t} satisfies the following inequality

E[Xτ] ≤ 1, (31)

where limt→∞ Xt = X∞.

14

Proof. First of all, it is clear that Xt’s are integrable, since the rewards {YAt,t} are bounded. That
means the only thing we need to prove is that {Xt} is a supermartingale sequence, i.e. the following
inequality

E[Xt+1| F t] ≤ Xt (32)
almost surely for any positive integer t. By the definition b(t) we know that b(t) and b(t + 1) are
functions of {A1, A2, ..., At} ⊆ F t. Note that the batch end points are decided by the actions taken.
In addition, on {b(t) = b(t+ 1)} Xt is equal to Xt+1. These observations lead to

E[Xt+1| F t] = E[exp(λ(Si(Tb(t+1))− µiMi(Tb(t+1)))−
λ2

8
(1 +Mi(Tb(t+1))))| F t]

= 1(b(t) = b(t+ 1))Xt

+ E[1(b(t) ̸= b(t+ 1)) exp(

Tb(t+1)∑
j=Tb(t)+1

1(Aj = i, j = Cb,k or Ce,k for some k)(λYi,j − λµi −
λ2

8
))| F t]Xt

(33)

where the last equality follows from the definitions of Si(Tb(t)) and Mi(Tb(t)). Note that b(t) ̸=
b(t+ 1) if and only if t is a batch end point, which leads to

1(b(t) ̸= b(t+ 1)) =

t−1∑
l=0

1(Tb(t+1) = t, Tb(t) = l). (34)

We first prove that 1(Tb(t+1) = t, Tb(t) = l) and {Yi,j}tj=l+1 are independent. To that end, it is
enough to show that

P(Tb(t+1) = t, Tb(t) = l, (Yi,l+1, ..., Yi,t) ∈ S) = P(Tb(t+1) = t, Tb(t) = l)P((Yi,l+1, ..., Yi,t) ∈ S)

for any Borel set S of Rt−l. Note that Tb(t) = l and Tb(t+1) = t if and only if l is a batch end
point, call this event E1, and the smallest batch end point strictly bigger than l is t, call this event
E2. This means {Tb(t) = l, Tb(t+1) = t} = E1 ∩E2. Then we know P((Yi,l+1, ..., Yi,t) ∈ S, E1) =
P((Yi,l+1, ..., Yi,t) ∈ S)P(E1) due to the fact that whether or not l is a batch end point depends on
the past actions {Aj}lj=1, which are independent of the future rewards from the ith arm {Yi,j}tj=l+1.
In addition, conditioned on the fact that there is a batch end point at l, i.e. the event E1, different
values for {Yi,j}tj=l+1 won’t change the probability of E2 happening. This is because the agent can
not use the information present in {Yi,j}tj=l+1 unless the current that started at l+1 ends. As a result,
we have P(E2|E1, (Yi,l+1, ..., Yi,t) ∈ S) = P(E2|E1). The overall analysis leads to

P(Tb(t+1) = t, Tb(t) = l, (Yi,l+1, ..., Yi,t) ∈ S) = P(E1, E2, (Yi,l+1, ..., Yi,t) ∈ S)
= P((Yi,l+1, ..., Yi,t) ∈ S)P(E1|(Yi,l+1, ..., Yi,t) ∈ S)P(E2|E1, (Yi,l+1, ..., Yi,t) ∈ S)
= P((Yi,l+1, ..., Yi,t) ∈ S)P(E1)P(E2|E1)

= P((Yi,l+1, ..., Yi,t) ∈ S)P(E1, E2)

= P((Yi,l+1, ..., Yi,t) ∈ S)P(Tb(t+1) = t, Tb(t) = l), (35)

which finishes the proof of the fact that 1(Tb(t+1) = t, Tb(t) = l) and {Yi,j}tj=l+1 are
independent. Similar to the earlier analysis, conditioned on {Tb(t+1) = t, Tb(t) = l},
{A1, YA1,1, A2, YA2,2, ..., ATb(t)

, YATb(t)
,Tb(t)
} and {Yi,j}tj=l+1 are independent, because the future

rewards from the ith arm can not affect the past observations, i.e. actions and rewards. In addition,
conditioned on {Tb(t+1) = t, Tb(t) = l}, we know that the actions {Aj}tj=Tb(t)+1 are sampled
according to the information present in {A1, YA1,1, A2, YA2,2, ..., ATb(t)

, YATb(t)
,Tb(t)
}. As a result,

conditioned on {Tb(t+1) = t, Tb(t) = l}, F t and {Yi,j}tj=l+1 are independent. This overall analysis
shows that for any Borel set S of Rt−l and any element G of the sigma algebra generated by F t we
have

P(Tb(t+1) = t, Tb(t) = l, (Yi,l+1, ..., Yi,t) ∈ S,G)
= P(Tb(t+1) = t, Tb(t) = l, (Yi,l+1, ..., Yi,t) ∈ S)P(G|Tb(t+1) = t, Tb(t) = l, (Yi,l+1, ..., Yi,t) ∈ S)
= P((Yi,l+1, ..., Yi,t) ∈ S)P(Tb(t+1) = t, Tb(t) = l)P(G|Tb(t+1) = t, Tb(t) = l) (36)

= P((Yi,l+1, ..., Yi,t) ∈ S)P(Tb(t+1) = t, Tb(t) = l,G), (37)

15

where (36) follows from (35) and the fact that conditioned on {Tb(t+1) = t, Tb(t) = l}, F t and
{Yi,j}tj=l+1 are independent. Since S is arbitrary, {Yi,j}tj=l+1 and 1(Tb(t+1) = t, Tb(t) = l,G) are
independent.

Now we go back to (34), and note that 1(Tb(t+1) = t, Tb(t) = l) can be written as a sum of the terms
of the following form

1(Tb(t+1) = t, Tb(t) = l)

t∏
n=l+1

(1(an = −1) + an × 1(An = i, n = Cb,k or Ce,k for some k)),

(38)
where an ∈ {−1, 1}. Note that the terms of this form are indicator functions with disjoint domains.
Then we have for any element Ĝ of the sigma algebra generated by F t

E[1(Tb(t+1) = t, Tb(t) = l)(

t∏
n=l+1

(1(an = −1) + an × 1(An = i, n = Cb,k or Ce,k for some k)))1(Ĝ)

exp(

Tb(t+1)∑
j=Tb(t)+1

1(Aj = i, j = Cb,k or Ce,k for some k)(λYi,j − λµi −
λ2

8
))]

= E[1(Tb(t+1) = t, Tb(t) = l)(

t∏
n=l+1

(1(an = −1) + an × 1(An = i, n = Cb,k or Ce,k for some k)))1(Ĝ)

exp(

t∑
j=l+1

1(aj = 1)(λYi,j − λµi −
λ2

8
))] (39)

Note that an’s are deterministic variables and by the earlier analysis, i.e. (37), we
know that 1(Tb(t+1) = t, Tb(t) = l)(

∏t
n=l+1(1(an = −1) + an × 1(An = i, n =

Cb,k or Ce,k for some k)))1(Ĝ) and {Yi,j}tj=l+1 are independent. Then by the fact that

E[exp(λYi,j − λµi − λ2

8)] ≤ 1 due to (19), we have

E[1(Tb(t+1) = t, Tb(t) = l)(

t∏
n=l+1

(1(an = −1) + an × 1(An = i, n = Cb,k or Ce,k for some k)))1(Ĝ)

exp(

Tb(t+1)∑
j=Tb(t)+1

1(Aj = i, j = Cb,k or Ce,k for some k)(λYi,j − λµi −
λ2

8
))]

≤ E[1(Tb(t+1) = t, Tb(t) = l)(

t∏
n=l+1

(1(an = −1) + an × 1(An = i, n = Cb,k or Ce,k for some k)))1(Ĝ)].

Since Ĝ is arbitrary, the previous inequality shows that

E[1(Tb(t+1) = t, Tb(t) = l)(

t∏
n=l+1

(1(an = −1) + an × 1(An = i, n = Cb,k or Ce,k for some k)))

exp(

Tb(t+1)∑
j=Tb(t)+1

1(Aj = i, j = Cb,k or Ce,k for some k)(λYi,j − λµi −
λ2

8
))| F t]

≤ 1(Tb(t+1) = t, Tb(t) = l)(

t∏
n=l+1

(1(an = −1) + an × 1(An = i, n = Cb,k or Ce,k for some k)))

almost surely, which leads to

E[1(Tb(t+1) = t, Tb(t) = l) exp(

Tb(t+1)∑
j=Tb(t)+1

1(Aj = i, j = Cb,k or Ce,k for some k)(λYi,j − λµi −
λ2

8
))| F t]

≤ 1(Tb(t+1) = t, Tb(t) = l) (40)

16

almost surely by the observation in (38). Finally combining (34) and (40) proves that

E[1(b(t) ̸= b(t+ 1)) exp(

Tb(t+1)∑
j=Tb(t)+1

1(Aj = i, j = Cb,k or Ce,k for some k)(λYi,j − λµi −
λ2

8
))| F t]

≤ 1(b(t) ̸= b(t+ 1)) (41)

almost surely. This inequality and (33) lead to (32). We have showed that Xt is a supermartingale
sequence.

Finally, we prove (30) and (31). Firstly, note that Tb(1) = T0 = 0, Si(0) = 0, and Mi(0) = 0,
which lead to E[Xt] ≤ E[X1] = exp(−λ2/8) ≤ 1 for any t by the properties of supermartingales.
Coupling this fact with the following theorem finishes the proof:
Theorem 4.8.4 of [8]. If Xt is a non-negative supermartingale and τ ≤ ∞ is a stopping time, then
E[Xτ] ≤ E[X1] where limt→∞ Xt exists and X∞ = limt→∞ Xt.

D.2 Estimation Error Bound

In this section, we provide a proposition stating that if a certain arms is selected in sufficiently many
cycles, then sample θi corresponding to that arm has to be close to the true mean with high probability.

Proposition 5. Let T ≥ 2, then for any positive integer t and i ∈ {1, 2, ...,K}, we have

P
(
θ1(t) ≤

µ1 + µi

2
,M1(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)
≤ 2

T
(42)

and

P
(
θi(t) >

µ1 + µi

2
,Mi(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)
≤ 2

T
. (43)

Proof. We first prove (42). Here we have

P
(
θ1(t) ≤

µ1 + µi

2
,M1(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)
≤ P

(
θ1(t) ≤

µ1 + µi

2
,

S1(Tb(t))

1 +M1(Tb(t))
≥ 3µ1 + µi

4
,M1(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)
+ P

(S1(Tb(t))

1 +M1(Tb(t))
<

3µ1 + µi

4
,M1(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)
(44)

We know that conditioned on Ht−1, θ1(t) is distributed as N (
S1(Tb(t))

1+M1(Tb(t))
, σ2

1+M1(Tb(t))
). This fact

leads to

P(θ1(t) ≤
µ1 + µi

2
|Ht−1) = Q

(√1 +M1(Tb(t))

σ

(S1(Tb(t))

1 +M1(Tb(t))
− µ1 + µi

2

))
.

Then we have

P
(
θ1(t) ≤

µ1 + µi

2
,

S1(Tb(t))

1 +M1(Tb(t))
≥ 3µ1 + µi

4
,M1(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)
= E[P(θ1(t) ≤

µ1 + µi

2
|Ht−1)1

(S1(Tb(t))

1 +M1(Tb(t))
≥ 3µ1 + µi

4
,M1(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)
]

= E[Q
(√1 +M1(Tb(t))

σ

(S1(Tb(t))

1 +M1(Tb(t))
− µ1 + µi

2

))
1

(S1(Tb(t))

1 +M1(Tb(t))
≥ 3µ1 + µi

4
,M1(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)
] (45)

17

where the first equality follows from the fact that S1(Tb(t)) and M1(Tb(t)) are measurable with
respect toHt−1. Since√

1 +M1(Tb(t))

σ

(S1(Tb(t))

1 +M1(Tb(t))
− µ1 + µi

2

)
≥
√
2 log(T)

on { S1(Tb(t))

1+M1(Tb(t))
≥ 3µ1+µi

4 ,M1(Tb(t)) ≥ 32σ2 log(T)
∆2

i
}, (45) leads to

P
(
θ1(t) ≤

µ1 + µi

2
,

S1(Tb(t))

1 +M1(Tb(t))
≥ 3µ1 + µi

4
,M1(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)
≤ Q(

√
2 log(T)).

However, we know that Q(x) ≤ exp(−x2/2) for x ≥ 1 by (20), which results in

P
(
θ1(t) ≤

µ1 + µi

2
,

S1(Tb(t))

1 +M1(Tb(t))
≥ 3µ1 + µi

4
,M1(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)
≤ 1

T
. (46)

We now bound the second term on the right-hand side of (44). Note that

P
(S1(Tb(t))

1 +M1(Tb(t))
<

3µ1 + µi

4
,M1(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)
= P

(S1(Tb(t))− µ1M1(Tb(t))

1 +M1(Tb(t))
<

3µ1 + µi

4
− µ1

M1(Tb(t))

1 +M1(Tb(t))
,M1(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)
= P

(S1(Tb(t))− µ1M1(Tb(t))

1 +M1(Tb(t))
< −∆i

4
+ µ1

1

1 +M1(Tb(t))
,M1(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)
. (47)

We know that µ1 ≤ 1 and

µ1

1 +M1(Tb(t))
≤ ∆2

i

32σ2 log(T)
≤ ∆i

8

if M1(Tb(t)) ≥ 32σ2 log(T)
∆2

i
. Note that the last inequality follows from the fact that 0 ≤ ∆i ≤ 1 and

32σ2 log(T) ≥ 8 for T ≥ 2 and σ2 ≥ 1. This analysis and (47) indicate that

P
(S1(Tb(t))

1 +M1(Tb(t))
<

3µ1 + µi

4
,M1(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)
≤ P

(S1(Tb(t))− µ1M1(Tb(t))

1 +M1(Tb(t))
< −∆i

8
,M1(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)
. (48)

Then by Lemma 4 with λ = −∆i

2

1 ≥ E[exp(−∆i

2
(S1(Tb(t))− µ1M1(Tb(t)))−

∆2
i

32
(1 +M1(Tb(t))))

1(
S1(Tb(t))− µ1M1(Tb(t))

1 +M1(Tb(t))
< −∆i

8
,M1(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)]

≥ E[exp(
∆2

i

32
(1 +M1(Tb(t))))1(

S1(Tb(t))− µ1M1(Tb(t))

1 +M1(Tb(t))
< −∆i

8
,M1(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)]

(49)

≥ T P
(S1(Tb(t))− µ1M1(Tb(t))

1 +M1(Tb(t))
< −∆i

8
,M1(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)
(50)

where (49) from the condition set inside the indicator function, i.e. S1(Tb(t))−µ1M1(Tb(t))

1+M1(Tb(t))
< −∆i

8 .

Similarly, the condition M1(Tb(t)) ≥ 32σ2 log(T)
∆2

i
and σ2 ≥ 1 lead to (50). Then combining (48) and

(50) results in

P
(S1(Tb(t))

1 +M1(Tb(t))
<

3µ1 + µi

4
,M1(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)
≤ 1

T

18

which, along with (44) and (46), proves (42). We now prove (43). However its proof is almost the
same as the proof of (42). Similarly we have

P
(
θi(t) >

µ1 + µi

2
,Mi(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)
≤ P

(
θi(t) >

µ1 + µi

2
,

Si(Tb(t))

1 +Mi(Tb(t))
≤ µ1 + 3µi

4
,Mi(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)
+ P

(Si(Tb(t))

1 +Mi(Tb(t))
>

µ1 + 3µi

4
,Mi(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)
(51)

Here conditioned onHt−1, θi(t) is distributed as N (
Si(Tb(t))

1+Mi(Tb(t))
, σ2

1+Mi(Tb(t))
). Then it is easy to see

that

P(θi(t) >
µ1 + µi

2
|Ht−1) = Q

(√1 +Mi(Tb(t))

σ

(µ1 + µi

2
−

Si(Tb(t))

1 +Mi(Tb(t))

))
,

which will lead to

P
(
θi(t) >

µ1 + µi

2
,

Si(Tb(t))

1 +Mi(Tb(t))
≤ µ1 + 3µi

4
,Mi(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)
≤ 1

T
(52)

by an analysis that is almost the same as the one prior to (46). On the other hand, the last summand
in (51) satisfies

P
(Si(Tb(t))

1 +Mi(Tb(t))
>

µ1 + 3µi

4
,Mi(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)
= P

(Si(Tb(t))− µiMi(Tb(t))

1 +Mi(Tb(t))
>

µ1 + 3µi

4
− µi

Mi(Tb(t))

1 +Mi(Tb(t))
,Mi(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)
≤ P

(Si(Tb(t))− µiMi(Tb(t))

1 +Mi(Tb(t))
>

∆i

8
,Mi(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)
.

Similar to the analysis in (50), setting λ = ∆i

2 in Lemma 4 leads to

P
(Si(Tb(t))

1 +Mi(Tb(t))
>

µ1 + 3µi

4
,Mi(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)
≤ 1

T
. (53)

In view of (51), combining (52) and (53) finishes the proof of (43).

D.3 Bounds on Functions of Q

This section provides bounds on various functions of Q function. Before we state our results, we
introduce for any i

τ̂i,j =

{
min{t ∈ Z+|At = i, t = Cb,k or Ce,k for some k} if j = 1
min{t ∈ Z+|At = i, t = Cb,k or Ce,k for some k, t > τ̂i,j−1} if j > 1.

Note that if a set is empty, then τ̂i,j is set to be infinity. Here τ̂i,j denotes the time index where we
choose the ith arm for jth time at the beginning or at the end of a cycle. It is clear that τ̂i,j is a
stopping time for {F t} specified in Lemma 4, so (31) in Lemma 4 remains true if we set τ to be τ̂i,j :

E[λ(Si(Tb(τ̂i,j))− µiMi(Tb(τ̂i,j)))−
λ2

8
(1 +Mi(Tb(τ̂i,j))))] ≤ 1 (54)

for any i ∈ {1, 2, ...,K} and real λ.
Lemma 6. For any j > 1 and i ∈ {1, 2, ...,K}, if x ≥ 0:

P
(
τ̂i,j <∞,

Si(Tb(τ̂i,j))− µiMi(Tb(τ̂i,j))√
1 +Mi(Tb(τ̂i,j))

> x
)
≤ exp(−2x2/α), (55)

and if x ≤ 0:

P
(
τ̂i,j <∞,

Si(Tb(τ̂i,j))− µiMi(Tb(τ̂i,j))√
1 +Mi(Tb(τ̂i,j))

< x
)
≤ exp(−2x2/α). (56)

19

Proof. We start with the proof of (55). Assume x ≥ 0. By setting λ = 4x√
αj

in (54), we have

1 ≥ E[exp(
4x√
αj

(Si(Tb(τ̂i,j))− µiMi(Tb(τ̂i,j)))−
2x2

αj
(1 +Mi(Tb(τ̂i,j))))]

≥ E[exp(
4x√
αj

(Si(Tb(τ̂i,j))− µiMi(Tb(τ̂i,j)))−
2x2

αj
(1 +Mi(Tb(τ̂i,j))))

1

(
τ̂i,j <∞,

Si(Tb(τ̂i,j))− µ1Mi(Tb(τ̂i,j))√
1 +Mi(Tb(τ̂i,j))

> x
)
]

≥ E[exp(
4x√
αj

(Si(Tb(τ̂i,j))− µiMi(Tb(τ̂i,j)))−
2x2

α
)1(τ̂i,j <∞,

Si(Tb(τ̂i,j))− µ1Mi(Tb(τ̂i,j))√
1 +Mi(Tb(τ̂i,j))

> x)]

(57)

Note that the last inequality follows from Mi(Tb(τ̂i,j)) ≤ j − 1 since Tb(τ̂i,j) is the last
batch end point, which is strictly smaller than τ̂i,j . Also by the construction of Algorithm
1, max{1, ⌈αMi(Tb(τ̂i,j))⌉} ≥ j. Given that j > 1, Mi(Tb(τ̂i,j)) ≥ 1, which results in

α(1 + Mi(Tb(τ̂i,j))) ≥ j by α > 1. Then on {τ̂i,j < ∞,
Si(Tb(τ̂i,j)

)−µiMi(Tb(τ̂i,j)
)√

1+Mi(Tb(τ̂i,j)
)

> x}, we

have

4x√
αj

(Si(Tb(τ̂i,j))− µiMi(Tb(τ̂i,j))) ≥
4x2

α
.

Using this inequality inside (57) proves (55). Finally, the proof of (56) will follow the same steps
with a single exception: here we set λ = − 4x√

αj
in (54). This finishes the proof.

Proposition 7. Assume 5σ2/4 ≥ α. Then for any positive integer j and i ≥ 2, we have

E

[
1(τ̂1,j <∞)

1

Q2

(√
1+M1(Tb(τ̂1,j)

)

σ

(
µ1+µi

2 −
S1(Tb(τ̂1,j)

)

1+M1(Tb(τ̂1,j)
)

))
]
≤ C (58)

and

E

[
1(τ̂i,j <∞)

1

Q2

(√
1+Mi(Tb(τ̂i,j)

)

σ

(
Si(Tb(τ̂i,j)

)

1+Mi(Tb(τ̂i,j)
) −

µ1+µi

2

))
]
≤ C (59)

where C is an absolute constant independent of the system parameters.

Proof. We start with the proof of (58) and the proof of (59) will follow similarly. First note that if
j = 1, then M1 and S1 terms will be zeros, and as a result, the denominator inside the expectation is
lower bounded as follows:

Q(
µ1 + µi

2σ
) ≥ Q(0.5)

since µi, µ1 ≤ 1 and σ2 ≥ 1. So for j = 1, we can choose C to be 1/Q2(0.5).

20

For j > 1 by (22)

E

[
1(τ̂1,j <∞)

1

Q2

(√
1+M1(Tb(τ̂1,j)

)

σ

(
µ1+µi

2 −
S1(Tb(τ̂1,j)

)

1+M1(Tb(τ̂1,j)
)

))
]

=

∫ ∞

x=0

P

(
1(τ̂1,j <∞)

1

Q2

(√
1+M1(Tb(τ̂1,j)

)

σ

(
µ1+µi

2 −
S1(Tb(τ̂1,j)

)

1+M1(Tb(τ̂1,j)
)

)) > x

)
dx

≤ 4 +

∫ ∞

x=4

P

(
τ̂1,j <∞, Q

(√
1 +M1(Tb(τ̂1,j))

σ

(µ1 + µi

2
−

S1(Tb(τ̂1,j))

1 +M1(Tb(τ̂1,j))

))
<

1√
x

)
dx

≤ 4 +

∫ ∞

x=4

P

(
τ̂1,j <∞,

√
1 +M1(Tb(τ̂1,j))

σ

(µ1 + µi

2
−

S1(Tb(τ̂1,j))

1 +M1(Tb(τ̂1,j))

)
> Q−1(1/

√
x)

)
dx,

(60)

where the last inequality follows from the fact that Q(·) is a decreasing function. Now note that

µ1 + µi

2
−

S1(Tb(τ̂1,j))

1 +M1(Tb(τ̂1,j))
=

µ1 + µi

2
− µ1 + µ1 −

µ1M1(Tb(τ̂1,j))

1 +M1(Tb(τ̂1,j))
−

S1(Tb(τ̂1,j))− µ1M1(Tb(τ̂1,j))

1 +M1(Tb(τ̂1,j))

≤ 1

1 +M1(Tb(τ̂1,j))
−

S1(Tb(τ̂1,j))− µ1M1(Tb(τ̂1,j))

1 +M1(Tb(τ̂1,j))
.

The last inequality follows from µ1 ≤ 1. This analysis shows that if
√
1 +M1(Tb(τ̂1,j))(

µ1+µi

2 −
S1(Tb(τ̂1,j)

)

1+M1(Tb(τ̂1,j)
)) > σQ−1(1/

√
x), then −

S1(Tb(τ̂1,j)
)−µ1M1(Tb(τ̂1,j)

)√
1+M1(Tb(τ̂1,j)

)
> σQ−1(1/

√
x) −

1√
1+M1(Tb(τ̂1,j)

)
. Since M1(Tb(τ̂1,j)) ≥ 0 and σ2 ≥ 1, the last inequality leads to

E

[
1(τ̂1,j <∞)

1

Q2

(√
1+M1(Tb(τ̂1,j)

)

σ

(
µ1+µi

2 −
S1(Tb(τ̂1,j)

)

1+M1(Tb(τ̂1,j)
)

))
]

≤ 4 +

∫ ∞

x=4

P
(
τ̂1,j <∞,−

S1(Tb(τ̂1,j))− µ1M1(Tb(τ̂1,j))√
1 +M1(Tb(τ̂1,j))

> σ(Q−1(1/
√
x)− 1)

)
dx (61)

by (60). However, (21) indicates that there exists x0 such that if x ≥ x0, then Q−1(1√
x
) − 1 ≥√

16
25 log(x), which leads to

P
(
τ̂1,j <∞,−

S1(Tb(τ̂1,j))− µ1M1(Tb(τ̂1,j))√
1 +M1(Tb(τ̂1,j))

> σ(Q−1(1/
√
x)− 1)

)
≤ exp(−32σ2

25α
log(x))

by Lemma 6 for x ≥ x0. Since α ≤ 5σ2

4 , the last inequality can be refined to

P
(
τ̂1,j <∞,−

S1(Tb(τ̂1,j))− µ1M1(Tb(τ̂1,j))√
1 +M1(Tb(τ̂1,j))

> σ(Q−1(1/
√
x)− 1)

)
≤ 1

x128/125
(62)

for any x ≥ x0. Finally, (61) and (62) shows that

E

[
1(τ̂1,j <∞)

1

Q2

(√
1+M1(Tb(τ̂1,j)

)

σ

(
µ1+µi

2 −
S1(Tb(τ̂1,j)

)

1+M1(Tb(τ̂1,j)
)

))
]
≤ x0 +

∫ ∞

x=x0

1

x128/125
dx

21

This result proves (58) since x0 is an absolute constant independent of the system parameters and
the final integral is finite. Note that we already upper bounded the j = 1 term earlier by an absolute
constant so we can just take the maximum of the two.

The proof of (59) will similarly follow. First of all, for j = 1 we can bound the Q terms inside the
expectation as follows

Q(−µ1 + µi

2σ
) ≥ Q(0) = 0.5

where these follow from the fact that expected means are non-negative. So for j = 1, we can choose
C to be 4. If j > 1, we have

E

[
1(τ̂i,j <∞)

1

Q2

(√
1+Mi(Tb(τ̂i,j)

)

σ

(
Si(Tb(τ̂i,j)

)

1+Mi(Tb(τ̂i,j)
) −

µ1+µi

2

))
]

≤ 4 +

∫ ∞

x=4

P

(
τ̂i,j <∞,

√
1 +Mi(Tb(τ̂i,j))

σ

(Si(Tb(τ̂i,j))

1 +Mi(Tb(τ̂i,j))
− µ1 + µi

2

)
> Q−1(1/

√
x)

)
dx.

(63)

As for the terms inside:

Si(Tb(τ̂i,j))

1 +Mi(Tb(τ̂i,j))
− µ1 + µi

2
=

Si(Tb(τ̂i,j))− µiMi(Tb(τ̂i,j))

1 +Mi(Tb(τ̂i,j))
+

µiMi(Tb(τ̂i,j))

1 +Mi(Tb(τ̂i,j))
− µi + µi −

µ1 + µi

2

≤
Si(Tb(τ̂i,j))− µiMi(Tb(τ̂i,j))

1 +Mi(Tb(τ̂i,j))
,

where the last step follows from µi ≥ 0. This analysis and (63) lead to

E

[
1(τ̂i,j <∞)

1

Q2

(√
1+Mi(Tb(τ̂i,j)

)

σ

(
Si(Tb(τ̂i,j)

)

1+Mi(Tb(τ̂i,j)
) −

µ1+µi

2

))
]

≤ 4 +

∫ ∞

x=4

P

(
τ̂i,j <∞,

Si(Tb(τ̂i,j))− µiMi(Tb(τ̂i,j))√
1 +Mi(Tb(τ̂i,j))

> σQ−1(1/
√
x)

)
dx.

The rest of the proof follows exactly the same way it did after (61) in the proof of (58).

Proposition 8. Assume 5σ2/4 ≥ α, T ≥ 2, and j > 1024ασ2 log(T)
∆2

i
, then

E

[
1(τ̂1,j <∞)

(
1

Q

(√
1+M1(Tb(τ̂1,j)

)

σ

(
µ1+µi

2 −
S1(Tb(τ̂1,j)

)

1+M1(Tb(τ̂1,j)
)

)) − 1

)2]
≤ C

T

where C is an absolute constant independent of the system parameters.

Proof. Since j > 1, we know that j ≤ ⌈α×M1(Tb(τ̂1,j))⌉ by the construction of Algorithm 1, and
as a result,

1024ασ2 log(T)

∆2
i

< j ≤ ⌈α×M1(Tb(τ̂1,j))⌉ ≤ 2αM1(Tb(τ̂1,j)),

22

which leads to M1(Tb(τ̂1,j)) > 512σ2 log(T)
∆2

i
. Note that M1(Tb(τ̂1,j)) ≥ 1 if j > 1. Then by (22) we

have

E

[
1(τ̂1,j <∞)

(
1

Q

(√
1+M1(Tb(τ̂1,j)

)

σ

(
µ1+µi

2 −
S1(Tb(τ̂1,j)

)

1+M1(Tb(τ̂1,j)
)

)) − 1

)2]

=

∫ ∞

x=0

P

(
1(τ̂1,j <∞)

(
1

Q

(√
1+M1(Tb(τ̂1,j)

)

σ

(
µ1+µi

2 −
S1(Tb(τ̂1,j)

)

1+M1(Tb(τ̂1,j)
)

)) − 1

)2

> x

)
dx

=

∫ ∞

x=0

P

(
τ̂1,j <∞, Q

(√
1 +M1(Tb(τ̂1,j))

σ

(µ1 + µi

2
−

S1(Tb(τ̂1,j))

1 +M1(Tb(τ̂1,j))

))
<

1

1 +
√
x

)
dx

=

∫ ∞

x=0

P

(
τ̂1,j <∞,

√
1 +M1(Tb(τ̂1,j))

σ

(µ1 + µi

2
−

S1(Tb(τ̂1,j))

1 +M1(Tb(τ̂1,j))

)
> Q−1(

1

1 +
√
x
)

)
dx.

(64)

These steps follow from simple algebra and the decreasing nature of Q(·).
Now the goal here is to divide the integral in (64) into three regions, where the the contribution from
each is in the order of 1/T . As we will show next, the first region [0, 1/T] will be upper bounded by
1/T . In the second region [1/T, x0] for some big x0, the probability term will be of O(1/T). Finally,
the integrand in the third region [x0,∞) will decay faster than 1

Txδ for some δ > 1, and this will
result in a contribution of order O(1/T). The fact that x0 is an absolute constant will finish the proof.
We will start the analysis with the second region. First of all, the symmetry of the normal distribution
leads to

Q−1(
1

1 +
√
x
) = −Q−1(

√
x

1 +
√
x
) (65)

for x ≥ 0. Given that Q(y) ≤ exp(−y2/2) for y ≥ 0 by the Chernoff bound, we also know

Q−1(exp(−y2/2)) ≤ y for y ≥ 0. Clearly
√
2 log(1 +

√
T) ≥ 0 and letting y =

√
2 log(1 +

√
T)

shows that

Q−1(

√
x

1 +
√
x
) ≤

√
2 log(1 +

√
T)

if x = 1/T . Since Q−1(1
1+

√
x
) is an increasing function of x, for x ≥ 1/T , we have

Q−1(
1

1 +
√
x
) ≥ −

√
2 log(1 +

√
T).

by (65). This analysis proves that

Q−1(
1

1 +
√
x
) + 2

√
2 log(T) ≥ 0 (66)

for x ≥ 1/T since T ≥ 2. In addition, by simple algebra√
1 +M1(Tb(τ̂1,j))

σ
(
µ1 + µi

2
−

S1(Tb(τ̂1,j))

1 +M1(Tb(τ̂1,j))
)

=

√
1 +M1(Tb(τ̂1,j))

σ
(
µ1 + µi

2
− µ1 + µ1 −

µ1M1(Tb(τ̂1,j))

1 +M1(Tb(τ̂1,j))
−

S1(Tb(τ̂1,j))− µ1M1(Tb(τ̂1,j))

1 +M1(Tb(τ̂1,j))
)

=
µ1M1(Tb(τ̂1,j))− S1(Tb(τ̂1,j))

σ
√
1 +M1(Tb(τ̂1,j))

+

√
1 +M1(Tb(τ̂1,j))

σ
(−∆i

2
+

µ1

1 +M1(Tb(τ̂1,j))
). (67)

23

Note here that µ1

1+M1(Tb(τ̂1,j)
) ≤

∆2
i

512σ2 log(T) ≤
∆i

4 since M1(Tb(τ̂1,j)) > 512σ2 log(T)
∆2

i
, T ≥ 2, and

σ2 ≥ 1. Then (67) leads to√
1 +M1(Tb(τ̂1,j))

σ
(
µ1 + µi

2
−

S1(Tb(τ̂1,j))

1 +M1(Tb(τ̂1,j))
)

≤
µ1M1(Tb(τ̂1,j))− S1(Tb(τ̂1,j))

σ
√
1 +M1(Tb(τ̂1,j))

−
∆i

√
1 +M1(Tb(τ̂1,j))

4σ

≤
µ1M1(Tb(τ̂1,j))− S1(Tb(τ̂1,j))

σ
√
1 +M1(Tb(τ̂1,j))

− 4
√

2 log(T). (68)

where the last inequality is the result of M1(Tb(τ̂1,j)) > 512σ2 log(T)
∆2

i
. The overall analysis shows

that if x ≥ 1/T :

P

(
τ̂1,j <∞,

√
1 +M1(Tb(τ̂1,j))

σ

(µ1 + µi

2
−

S1(Tb(τ̂1,j))

1 +M1(Tb(τ̂1,j))

)
> Q−1(

1

1 +
√
x
)

)

≤ P

(
τ̂1,j <∞,

µ1M1(Tb(τ̂1,j))− S1(Tb(τ̂1,j))√
1 +M1(Tb(τ̂1,j))

> 4σ
√
2 log(T) + σQ−1(

1

1 +
√
x
)

)
(69)

≤ exp
(
−

2σ2(4
√
2 log(T) +Q−1(1

1+
√
x
))2

α

)
(70)

≤ exp
(
− 16σ2 log(T)

α

)
exp

(
−

2σ2(2
√

2 log(T) +Q−1(1
1+

√
x
))2

α

)
(71)

≤ 1

T
(72)

(69) follows from (68). Lemma 6 and (66) lead to (70). Similarly (71) is due to (66) and the fact that
(a+ b)2 ≥ a2 + b2 for any non-negative a and b. Finally, (72) follows from the fact that α ≤ 5σ2

4 .

However, for big x values, we can provide a tighter upper bound. Firstly, Q−1(1
1+

√
x
) ≥

√
2
3 log(x)

if x ≥ x0 for some x0 ≥ 4 by (21). So for x ≥ x0

exp
(
−

2σ2(2
√
2 log(T) +Q−1(1

1+
√
x
))2

α

)
≤ exp(−4σ2 log(x)

3α
) ≤ 1

x16/15

where we used the fact that α ≤ 5σ2

4 . This inequality shows that

P

(
τ̂1,j <∞,

√
1 +M1(Tb(τ̂1,j))

σ

(µ1 + µi

2
−

S1(Tb(τ̂1,j))

1 +M1(Tb(τ̂1,j))

)
> Q−1(

1

1 +
√
x
)

)
≤ 1

Tx16/15

(73)
if x ≥ x0 by (71). Overall, if we plug (72) and (73) back into (64), we have

E

[
1(τ̂1,j <∞)

(
1

Q

(√
1+M1(Tb(τ̂1,j)

)

σ

(
µ1+µi

2 −
S1(Tb(τ̂1,j)

)

1+M1(Tb(τ̂1,j)
)

))−1
)2]

≤ 1 + x0

T
+

∫ ∞

x=x0

1

Tx16/15
,

which finishes the proof since x0 is an absolute constant.

E Proof of Theorem 1

First of all, (3) is the immediate result of (1) and (2). To prove (4), note that the regret contribution

from the arms with ∆i ≤ σ
√

αK log(T)
T in the first T rounds can not exceed σ

√
αKT log(T).

24

As for any arm with ∆i > σ
√

αK log(T)
T , by (2) ∆i E[Ni(T)] ≤

C1σ
√

αT log(T)√
K

, which leads to

a maximum regret contribution of C1σ
√

αKT log(T) from these arms. As a result, E[R(T)] ≤
(1 + C1)σ

√
αKT log(T) and this proves (4).

We will now prove (2). Lets pick any i ≥ 2. We start the proof by first dividing Ni(T) into smaller
terms as follows:

E[Ni(T)] = E[
T∑

t=1

1(At = i, θi(t) >
µ1 + µi

2
)] + E[

T∑
t=1

1(At = i, θi(t) ≤
µ1 + µi

2
)]

≤ E[
T∑

t=1

1(At = i, θi(t) >
µ1 + µi

2
,Mi(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)] (74)

+ E[
T∑

t=1

1(At = i, t = Ce,k for some k, θi(t) >
µ1 + µi

2
,Mi(Tb(t)) < 32σ2 log(T)

∆2
i

)] (75)

+ E[
T∑

t=1

1(At = i, t ̸= Ce,k for all k, θi(t) >
µ1 + µi

2
,Mi(Tb(t)) < 32σ2 log(T)

∆2
i

)] (76)

+ 1 + E[
T∑

t=2

1(At = i, θi(t) ≤
µ1 + µi

2
,M1(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)] (77)

+ E[
T∑

t=2

1(At = i, At−1 = 1, θi(t) ≤
µ1 + µi

2
,M1(Tb(t)) < 32σ2 log(T)

∆2
i

)] (78)

+ E[
T∑

t=2

1(At = i, At−1 ̸= 1, θi(t) ≤
µ1 + µi

2
,M1(Tb(t)) < 32σ2 log(T)

∆2
i

)] (79)

Before we proceed to bound each of these terms, we provide our understanding as to how we
decomposed this Ni(T) term.

How to Decompose Ni(T) and Handle Each Term: Since Thompson sampling relies on samples
{θi(t)}Ki=1 to decide on the next action, it is natural that the term Ni(T) is split whether θi(t) is
above a certain threshold or not. In our analysis, we set this threshold to be µ1+µi

2 and the resulting
terms are

∑T
t=1 1(At = i, θi(t) > µ1+µi

2) and
∑T

t=1 1(At = i, θi(t) ≤ µ1+µi

2). We should
note that as the agent observes more rewards from the ith arm, its samples θi(t) will concentrate
around its true mean µi and the contribution from 1(At = i, θi(t) >

µ1+µi

2) terms will diminish.
On the other hand, if the samples are already near their true mean, then as the agent receives
more rewards from the optimal arm, her likelihood of playing the ith arm will decrease, i.e. the
contributions from the terms 1(At = i, θi(t) ≤ µ1+µi

2) will diminish. Given this discussion, it is
natural to center the decomposition of the terms

∑T
t=1 1(At = i, θi(t) >

µ1+µi

2), i.e. (74)-(76), and∑T
t=1 1(At = i, θi(t) ≤ µ1+µi

2), i.e. (77)-(79), around Mi and M1 respectively. Earlier discussion
also indicates that if there are enough observations from ith and the optimal arm, i.e. Mi and M1 are
above reasonable thresholds, the agent’s estimates should be close to the true values, which means
that the terms in (74) and (77) should be small, i.e. of order O(1). The main technical difficulty
of analyzing the rest of the decomposition terms is that our algorithm uses random stopping times
to decide on batch end points. So we need to show that these cycles are relatively short and their
lengths do not diverge before the agent receives enough feedback. One way to show that these
cycles are short is that we introduce conditions that naturally end the cycles, {t = Ce,k} in (75)
and {At = i, At−1 = 1} in (78). Since we assume that Mi and M1 are bounded in these terms,
the contributions from (75) and (78) will be of order O(log(T)). As for the terms in (76) and (79),
even though it is not immediately clear that cycles containing these elements will be short, we can
see that the conditions inside these indicator functions should naturally lead to short cycles. This is
because in (76), even if the terms are not cycle end points and there not enough observations from the
ith arm, {θi(t) > µ1+µi

2 } condition can not persist for long. As for the term in (79), the conditions
{At−1 ̸= 1} and {θi(t) ≤ µ1+µi

2 } work against each other from the earlier discussion. As such,
most of the proof is dedicated to showing that the terms in (76) and (79) indeed lead to short cycles

25

on average and they are of order O(log(T)). We achieve this result by using a modified version of
Lemma 2.8 [2] and the tails bounds specialized for our algorithm, which are the results from Section
D. We now present the technical proof.

First of all, the terms with Mi(Tb(t)) or M1(Tb(t)) being bigger than a certain level account for the
estimation error and will be bounded by constants. We know that by (43) of Proposition 5 that

E[
T∑

t=1

1(At = i, θi(t) >
µ1 + µi

2
,Mi(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)] ≤ 2. (80)

Now note that if At = i and θi(t) ≤ µ1+µi

2 , then θ1(t) ≤ µ1+µi

2 . That means

E[
T∑

t=2

1(At = i, θi(t) ≤
µ1 + µi

2
,M1(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)]

≤ E[
T∑

t=2

1(θ1(t) ≤
µ1 + µi

2
,M1(Tb(t)) ≥ 32σ2 log(T)

∆2
i

)] ≤ 2 (81)

where the last inequality follows from (42) of Proposition 5.

Now we bound the remaining terms. We first note that the condition {At = i, t = Ce,k for some k}
signifies a cycle where the ith arm has been played at the end. Considering that the cycle count from
the last batch can not increase more than its α multiple plus one by Algorithm 1, we know

E[
T∑

t=1

1(At = i, t = Ce,k for some k, θi(t) >
µ1 + µi

2
,Mi(Tb(t)) < 32σ2 log(T)

∆2
i

)] ≤ 32ασ2 log(T)

∆2
i

+1

(82)
due to the {Mi(Tb(t)) < 32σ2 log(T)

∆2
i
} condition restricting the number of times we can count a unique

cycle. Similarly the condition {At = i, At−1 = 1} means that t− 1 is either a cycle beginning or
end point, and again by M1(Tb(t)) < 32σ2 log(T)

∆2
i

limiting the number of times we can count a unique
cycle with the first action we have

E[
T∑

t=2

1(At = i, At−1 = 1, θi(t) ≤
µ1 + µi

2
,M1(Tb(t)) < 32σ2 log(T)

∆2
i

)] ≤ 32ασ2 log(T)

∆2
i

+ 1.

(83)

Finally the only summands we did not bound are in (76) and (79). We will start with the harder (76)
one and use the analysis there to bound (79) at the end. Let Ĥt = {Ht, θA1

(1), θA2
(2), ..., θAt

(t)}
and define the following stopping times for {Ĥt}

τb,k =

{
min{t ∈ Z+|At = i, t ̸= Ce,k for all k, θi(t) > µ1+µi

2 } if k = 1
min{t ∈ Z+|At = i, t ̸= Ce,k for all k, θi(t) > µ1+µi

2 , t > τe,k−1} if k > 1

and

τe,k = min{t ∈ Z+|At ̸= i or θi(t) ≤
µ1 + µi

2
such that t > τb,k}.

Note that if any of these min operators are over an empty set, then the random variable is set to
infinity. By the definitions of τb,k and τe,k, it is easy to see that 1(At = i, t ̸= Ce,k for all k, θi(t) >
µ1+µi

2 ,Mi(Tb(t)) < 32σ2 log(T)
∆2

i
) = 1 only if τb,k ≤ t < τe,k for some k. This observations suggests

that it is enough to only consider the intervals of [τb,k, τe,k − 1] while summing over the elements
of 1(At = i, t ̸= Ce,k for all k, θi(t) > µ1+µi

2 ,Mi(Tb(t)) < 32σ2 log(T)
∆2

i
) in (76). However, we can

only consider an interval of [τb,k, τe,k − 1] if τb,k <∞. That means we have the following bound

26

T∑
t=1

1(At = i, t ̸= Ce,k for all k, θi(t) >
µ1 + µi

2
,Mi(Tb(t)) < 32σ2 log(T)

∆2
i

)

=

T∑
t=1

1(At = i, t ̸= Ce,k for all k, θi(t) >
µ1 + µi

2
,Mi(Tb(t)) < 32σ2 log(T)

∆2
i

,M1(t) ≤ T)

(84)

≤
∞∑
k=1

1(τb,k <∞)

τe,k−1∑
t=τb,k

1(At = i, t ̸= Ce,k for all k, θi(t) >
µ1 + µi

2
,Mi(Tb(t)) < 32σ2 log(T)

∆2
i

,M1(t) ≤ T)

(85)

≤
∞∑
k=1

1(τb,k <∞,Mi(Tb(τb,k)) < 32σ2 log(T)

∆2
i

,M1(τb,k) ≤ T)(τe,k − τb,k), (86)

where (84) follows from the fact that M1(t) ≤ T is satisfied for any t ≤ T . Earlier discussion leads
to (85). Finally, note that the time interval [τb,k, τe,k−1], where only the ith action is played, is inside
a single cycle, so Mi(Tb(t)) and M1(t) stay the same for any t ∈ [τb,k, τe,k − 1]. This observation
and ignoring the condition {At = i, t ̸= Ce,k for all k, θi(t) > µ1+µi

2 } inside the indicator functions
lead to (86). As the for expectation of the summands in (86):

E[1(τb,k <∞,Mi(Tb(τb,k)) < 32σ2 log(T)

∆2
i

,M1(τb,k) ≤ T)(τe,k − τb,k)]

= E[E[1(τb,k <∞,Mi(Tb(τb,k)) < 32σ2 log(T)

∆2
i

,M1(τb,k) ≤ T)(τe,k − τb,k)|Ĥτb,k]]

= E[1(τb,k <∞,Mi(Tb(τb,k)) < 32σ2 log(T)

∆2
i

,M1(τb,k) ≤ T)E[τe,k − τb,k|Ĥτb,k]], (87)

The last inequality is the result of the indicator function inside the expectation being measurable with
respect to Ĥτb,k . If τb,k <∞, then conditioned on Ĥτb,k we know that τe,k − τb,k − 1 is a geometric
random variable for failures, where the the success probability is 1− P(Aτb,k+1 = i, θi(τb,k + 1) >
µ1+µi

2 |Ĥτb,k). The reason is that since τb,k <∞, we know that τe,k− τb,k ≥ 1 and by the definitions
of τb,k and τe,k [τb,k, τe,k] defines a time interval in a single cycle like we mentioned earlier. These
observations show that the sampling process remains the same throughout [τb,k, τe,k], and conditioned
on Ĥτb,k [τb,k + 1, τe,k − 1] is a period of failures if we were to define success as Ai(t) ̸= i or
θi(t) ≤ µ1+µi

2 . The overall analysis proves the following set of inequalities

1(τb,k <∞)E[τe,k − τb,k|Ĥτb,k] = 1(τb,k <∞)
1

1− P(Aτb,k+1 = i, θi(τb,k + 1) > µ1+µi

2 |Ĥτb,k)

≤ 1(τb,k <∞)
1

P(θi(τb,k + 1) ≤ µ1+µi

2 |Ĥτb,k)

27

almost surely. Putting this inequality inside (87) and summing the elements like in (86) shows that

E[
T∑

t=1

1(At = i, t ̸= Ce,k for all k, θi(t) >
µ1 + µi

2
,Mi(Tb(t)) < 32σ2 log(T)

∆2
i

)]

≤ E[
∞∑
k=1

1(τb,k <∞,Mi(Tb(τb,k)) < 32σ2 log(T)

∆2
i

,M1(τb,k) ≤ T)
1

P(θi(τb,k + 1) ≤ µ1+µi

2 |Ĥτb,k)
]

= E[
∞∑
k=1

1(τb,k <∞,Mi(Tb(τb,k)) < 32σ2 log(T)

∆2
i

,M1(τb,k) ≤ T,Aτe,k = i)
1

P(θi(τb,k + 1) ≤ µ1+µi

2 |Ĥτb,k)
]

(88)

+ E[
∞∑
k=1

1(τb,k <∞,Mi(Tb(τb,k)) < 32σ2 log(T)

∆2
i

,M1(τb,k) ≤ T,Aτe,k ̸= i)
1

P(θi(τb,k + 1) ≤ µ1+µi

2 |Ĥτb,k)
]

(89)

Note by the earlier analysis we know that on {τb,k <∞} τe,k is almost surely finite. Then the last
equality follows from dividing the terms according to Aτe,k = i or not. We will first bound the
summand in (88). To that end, we now analyze 1(τb,k <∞)P(Aτe,k = 1|Ĥτb,k). Note that by the
earlier analysis we know the sampling distributions remains the same throughout [τb,k, τe,k], which
leads to

P(Aτe,k = 1|Ĥτb,k) =
P(Aτb,k+1 = 1|Ĥτb,k)

1− P(Aτb,k+1 = i, θi(τb,k + 1) > µ1+µi

2 |Ĥτb,k)
(90)

≥
P(θ1(τb,k + 1) > µ1+µi

2 , θj(τb,k + 1) ≤ µ1+µi

2 for all j ̸= 1|Ĥτb,k)

1− P(Aτb,k+1 = i, θi(τb,k + 1) > µ1+µi

2 |Ĥτb,k)
(91)

=
P(θ1(τb,k + 1) > µ1+µi

2 |Ĥτb,k)P(θj(τb,k + 1) ≤ µ1+µi

2 for all j ̸= 1|Ĥτb,k)

1− P(Aτb,k+1 = i, θi(τb,k + 1) > µ1+µi

2 |Ĥτb,k)
(92)

on {τb,k < ∞}. Note that since τb,k < ∞, all the conditional probabilities stated here are almost
surely positive. Here (90) trivially follows from the definition of success and failure of the geometric
random variable we have defined earlier, i.e. τe,k − τb,k − 1. (91) is the result of the action selection
process where we know that for the first action to be chosen the sample θ1 has to be at least as big as
the other samples. Finally, conditioned on Ĥτb,k , {θj(τb,k + 1)}Kj=1 are independent, which results
in (92). On the other hand

P(Aτe,k = i|Ĥτb,k) =
P(Aτb,k+1 = i, θi(τb,k + 1) ≤ µ1+µi

2 |Ĥτb,k)

1− P(Aτb,k+1 = i, θi(τb,k + 1) > µ1+µi

2 |Ĥτb,k)
(93)

≤
P(θj(τb,k + 1) ≤ µ1+µi

2 for all j|Ĥτb,k)

1− P(Aτb,k+1 = i, θi(τb,k + 1) > µ1+µi

2 |Ĥτb,k)
(94)

=
P(θ1(τb,k + 1) ≤ µ1+µi

2 |Ĥτb,k)P(θj(τb,k + 1) ≤ µ1+µi

2 for all j ̸= 1|Ĥτb,k)

1− P(Aτb,k+1 = i, θi(τb,k + 1) > µ1+µi

2 |Ĥτb,k)
(95)

on {τb,k < ∞}. Note that (93) follows from the fact that Aτe,k = i only if θi(τe,k) ≤ µ1+µi

2 by
the definition of τe,k. Considering that {Aτb,k+1 = i, θi(τb,k + 1) ≤ µ1+µi

2 } means θj(τb,k + 1) ≤
µ1+µi

2 for all j, we have (94). (95) is the result of the conditional independence. Combining (92) and
(95) leads to

P(Aτe,k = i|Ĥτb,k) ≤
P(θ1(τb,k + 1) ≤ µ1+µi

2 |Ĥτb,k)

P(θ1(τb,k + 1) > µ1+µi

2 |Ĥτb,k)
P(Aτe,k = 1|Ĥτb,k). (96)

28

on {τb,k <∞}. As a result

E[1(τb,k <∞,Mi(Tb(τb,k)) < 32σ2 log(T)

∆2
i

,M1(τb,k) ≤ T,Aτe,k = i)
1

P(θi(τb,k + 1) ≤ µ1+µi

2 |Ĥτb,k)
]

= E[E[1(τb,k <∞,Mi(Tb(τb,k)) < 32σ2 log(T)

∆2
i

,M1(τb,k) ≤ T)
1

P(θi(τb,k + 1) ≤ µ1+µi

2 |Ĥτb,k)

1(Aτe,k = i)|Ĥτb,k]]

= E[1(τb,k <∞,Mi(Tb(τb,k)) < 32σ2 log(T)

∆2
i

,M1(τb,k) ≤ T)
1

P(θi(τb,k + 1) ≤ µ1+µi

2 |Ĥτb,k)

P(Aτe,k = i|Ĥτb,k)] (97)

≤ E[1(τb,k <∞,Mi(Tb(τb,k)) < 32σ2 log(T)

∆2
i

,M1(τb,k) ≤ T)
1

P(θi(τb,k + 1) ≤ µ1+µi

2 |Ĥτb,k)

P(θ1(τb,k + 1) ≤ µ1+µi

2 |Ĥτb,k)

P(θ1(τb,k + 1) > µ1+µi

2 |Ĥτb,k)
P(Aτe,k = 1|Ĥτb,k)] (98)

= E[1(τb,k <∞,Mi(Tb(τb,k)) < 32σ2 log(T)

∆2
i

,M1(τb,k) ≤ T)
1

P(θi(τb,k + 1) ≤ µ1+µi

2 |Ĥτb,k)

P(θ1(τb,k + 1) ≤ µ1+µi

2 |Ĥτb,k)

P(θ1(τb,k + 1) > µ1+µi

2 |Ĥτb,k)
1(Aτe,k = 1)]

≤ E[1(τb,k <∞, Aτe,k = 1,Mi(Tb(τb,k)) < 32σ2 log(T)

∆2
i

,M1(τb,k) ≤ T)
1

P2(θi(τb,k + 1) ≤ µ1+µi

2 |Ĥτb,k)
]

+ E[1(τb,k <∞, Aτe,k = 1,Mi(Tb(τb,k)) < 32σ2 log(T)

∆2
i

,M1(τb,k) ≤ T)
P2(θ1(τb,k + 1) ≤ µ1+µi

2 |Ĥτb,k)

P2(θ1(τb,k + 1) > µ1+µi

2 |Ĥτb,k)
].

(99)

(97) follows from the measurability of the indicator function and the inverse probability term with
respect to Ĥτb,k . (96) leads to (98). Finally, the last inequality follows from the fact that 2

√
a× b ≤

a+ b for any non-negative a and b. Here (99) shows that

E[
∞∑
k=1

1(τb,k <∞,Mi(Tb(τb,k)) < 32σ2 log(T)

∆2
i

,M1(τb,k) ≤ T,Aτe,k = i)
1

P(θi(τb,k + 1) ≤ µ1+µi

2 |Ĥτb,k)
]

≤ E[
∞∑
k=1

1(τb,k <∞, Aτe,k = 1,Mi(Tb(τb,k)) < 32σ2 log(T)

∆2
i

)
1

P2(θi(τb,k + 1) ≤ µ1+µi

2 |Ĥτb,k)
]

+ E[
∞∑
k=1

1(τb,k <∞, Aτe,k = 1,M1(τb,k) ≤ T)
P2(θ1(τb,k + 1) ≤ µ1+µi

2 |Ĥτb,k)

P2(θ1(τb,k + 1) > µ1+µi

2 |Ĥτb,k)
] (100)

Here we eliminated one condition from each indicator function in the last inequality. However, we
know by the action selection process of Thompson sampling and b(τb,k + 1) = b(τb,k) equality due
to τb,k and τb,k + 1 being in the same cycle that

P(θ1(τb,k + 1) >
µ1 + µi

2
|Ĥτb,k) = Q

(√
1 +M1(Tb(τb,k))

σ

(µ1 + µi

2
−

S1(Tb(τb,k))

1 +M1(Tb(τb,k))

))
(101)

and

P(θi(τb,k + 1) ≤ µ1 + µi

2
|Ĥτb,k) = Q

(√
1 +Mi(Tb(τb,k))

σ

(Si(Tb(τb,k))

1 +Mi(Tb(τb,k))
− µ1 + µi

2

))
(102)

29

on {τb,k <∞}. Considering (101) and (102), we see can view (100) as

E[
∞∑
k=1

1(τb,k <∞,Mi(Tb(τb,k)) < 32σ2 log(T)

∆2
i

,M1(τb,k) ≤ T,Aτe,k = i)
1

P(θi(τb,k + 1) ≤ µ1+µi

2 |Ĥτb,k)
]

≤ E[
∞∑
k=1

1(τb,k <∞, Aτe,k = 1,Mi(Tb(τb,k)) < 32σ2 log(T)

∆2
i

)f1(Mi(Tb(τb,k)), Si(Tb(τb,k)))]

+ E[
∞∑
k=1

1(τb,k <∞, Aτe,k = 1,M1(τb,k) ≤ T)f2(M1(Tb(τb,k)), S1(Tb(τb,k)))]

where f1 and f2 are some functions with domain R≥0 × R. If we let

τ̂i,j =

{
min{t ∈ Z+|At = i, t = Cb,k or Ce,k for some k} if j = 1
min{t ∈ Z+|At = i, t = Cb,k or Ce,k for some k, t > τ̂i,j−1} if j > 1,

which denotes the time indices where we choose the ith arm at the beginning or at the end of
a cycle, we notice that Mi(Tb(τb,k)) = Mi(Tb(τ̂i,j)) and Si(Tb(τb,k)) = Si(Tb(τ̂i,j)) for some j

on {τb,k < ∞} since τb,k < ∞ means that the agent has played the ith action at the beginning
of the cycle containing τb,k. However, when we look 1(τb,k < ∞, Aτe,k = 1,Mi(Tb(τb,k)) <

32σ2 log(T)
∆2

i
)f1(Mi(Tb(τb,k)), Si(Tb(τb,k))) terms, we realize that each time interval [τb,k, τe,k − 1]

will belong to a different cycle due to Aτe,k = 1, and the condition {Mi(Tb(τb,k)) < 32σ2 log(T)
∆2

i
}

implies that the indicator function can be non-zero only if [τb,k, τe,k] is inside the one of the first
⌈32ασ2 log(T)

∆2
i
⌉ cycles of the ith arm. The overall discussion leads to the following bound:

∞∑
k=1

1(τb,k <∞, Aτe,k = 1,Mi(Tb(τb,k)) < 32σ2 log(T)

∆2
i

)f1(Mi(Tb(τb,k)), Si(Tb(τb,k)))

≤

⌈32ασ2 log(T)

∆2
i

⌉∑
j=1

1(τ̂i,j <∞)f1(Mi(Tb(τ̂i,j)), Si(Tb(τ̂i,j))). (103)

On the other hand, on {τb,k < ∞, Aτe,k = 1}, M1(Tb(τb,k)) = M1(Tb(τ̂1,j)) and S1(Tb(τb,k)) =
S1(Tb(τ̂1,j)) for some j since τe,k here is the cycle end point. Similar to the earlier analysis, for each
k that satisfies the {τb,k <∞, Aτe,k = 1,M1(τb,k) ≤ T} condition, [τb,k, τe,k] will be in a distinct
cycle from the first T + 1 ones containing the first arm. This observation shows that

∞∑
k=1

1(τb,k <∞, Aτe,k = 1,M1(τb,k) ≤ T)f2(M1(Tb(τb,k)), S1(Tb(τb,k)))

≤
T+1∑
j=1

1(τ̂1,j <∞)f2(M1(Tb(τ̂1,j)), S1(Tb(τ̂1,j))) (104)

In view of (100), (103) and (104) result in the following bound

E[
∞∑
k=1

1(τb,k <∞,Mi(Tb(τb,k)) < 32σ2 log(T)

∆2
i

,M1(τb,k) ≤ T,Aτe,k = i)
1

P(θi(τb,k + 1) ≤ µ1+µi

2 |Ĥτb,k)
]

≤ E

[⌈32ασ2 log(T)

∆2
i

⌉∑
j=1

1(τ̂i,j <∞)
1

Q2

(√
1+Mi(Tb(τ̂i,j)

)

σ

(
Si(Tb(τ̂i,j)

)

1+Mi(Tb(τ̂i,j)
) −

µ1+µi

2

))
]

+ E

[
T+1∑
j=1

1(τ̂1,j <∞)

(
1

Q

(√
1+M1(Tb(τ̂1,j)

)

σ

(
µ1+µi

2 −
S1(Tb(τ̂1,j)

)

1+M1(Tb(τ̂1,j)
)

)) − 1

)2]
. (105)

30

where we replaced f1 and f2 with their exact forms. Note that although we did not define f1 and
f2 explicitly, it is easy understand their exact formulation from the earlier discussion, i.e. from the
conditional probability functions in (100) and the equalities stated in (101) and (102). Here we know
that the first expectation to the right-side of the inequality is upper bounded by C(1 + 32ασ2 log(T)

∆2
i

)

by Proposition 7, where C is an absolute constant. On the other hand, we have

E

[
1(τ̂1,j <∞)

(
1

Q

(√
1+M1(Tb(τ̂1,j)

)

σ

(
µ1+µi

2 −
S1(Tb(τ̂1,j)

)

1+M1(Tb(τ̂1,j)
)

)) − 1

)2]

≤

{
C if j ≤ 1024ασ2 log(T)

∆2
i

C/T if j > 1024ασ2 log(T)
∆2

i
,

where C is an absolute constant independent of the system variables. Note that the constant bound
follows from Proposition 7, while O(1/T) bound is the result of Proposition 8. This overall analysis
and (105) lead to

E[
∞∑
k=1

1(τb,k <∞,Mi(Tb(τb,k)) < 32σ2 log(T)

∆2
i

,M1(τb,k) ≤ T,Aτe,k = i)
1

P(θi(τb,k + 1) ≤ µ1+µi

2 |Ĥτb,k)
]

≤ C(2 + 1056ασ2 log(T)

∆2
i

) (106)

for an absolute constant C. This proof bounds the term in (88). However, with the analysis we have
done so far, bounding the term in (89) is almost immediate. First note that, similar to the earlier
analysis, Mi(Tb(τb,k)) = Mi(Tb(τ̂i,j)) and Si(Tb(τb,k)) = Si(Tb(τ̂i,j)) for some j on {τb,k < ∞}
since τb,k <∞ means that the agent has played the ith action at the beginning of the cycle containing
τb,k. Then by (102)

P(θi(τb,k + 1) ≤ µ1 + µi

2
|Ĥτb,k) = Q

(√
1 +Mi(Tb(τ̂i,j))

σ

(Si(Tb(τ̂i,j))

1 +Mi(Tb(τ̂i,j))
− µ1 + µi

2

))
on {τb,k < ∞} for some j. However, for each k that satisfies the condition {τb,k <

∞,Mi(Tb(τb,k)) < 32σ2 log(T)
∆2

i
,M1(τb,k) ≤ T,Aτe,k ̸= i}, [τb,k, τe,k] has to be in a distinct cy-

cle from the first ⌈32ασ2 log(T)
∆2

i
⌉ cycles of the ith arm. Note that the distinctiveness follows from the

fact that Aτe,k ̸= i condition ends the cycle, while the upper bound on the number of cycles is the
result of {Mi(Tb(τb,k)) < 32σ2 log(T)

∆2
i
} and the way Algorithm 1 is implemented. These arguments

naturally lead to

E[
∞∑
k=1

1(τb,k <∞,Mi(Tb(τb,k)) < 32σ2 log(T)

∆2
i

,M1(τb,k) ≤ T,Aτe,k ̸= i)
1

P(θi(τb,k + 1) ≤ µ1+µi

2 |Ĥτb,k)
]

≤ E

[⌈32ασ2 log(T)

∆2
i

⌉∑
j=1

1(τ̂i,j <∞)
1

Q

(√
1+Mi(Tb(τ̂i,j)

)

σ

(
Si(Tb(τ̂i,j)

)

1+Mi(Tb(τ̂i,j)
) −

µ1+µi

2

))
]

≤ C(1 + 32ασ2 log(T)

∆2
i

) (107)

where the last inequality follows from Proposition 7 and the range of Q being from zero to one. In
view of (88) and (89), combining (106) and (107) shows that

E[
T∑

t=1

1(At = i, t ̸= Ce,k for all k, θi(t) >
µ1 + µi

2
,Mi(Tb(t)) < 32σ2 log(T)

∆2
i

)]

≤ C(3 + 1088ασ2 log(T)

∆2
i

) (108)

31

where C is an absolute constant. This finishes the analysis of the summand in (76).

Finally, we will bound the summand in (79). However, most of the proof ideas will follow from
earlier analysis. First note that if θ1(t) > µ1+µi

2 , while θj(t) ≤ µ1+µi

2 for j ≥ 2, then At = 1:

P(At = 1|Ht−1) ≥ P(θ1(t) >
µ1 + µi

2
|Ht−1)P(θj(t) ≤

µ1 + µi

2
for all j ̸= 1|Ht−1) (109)

where we also used the conditional independence of θj(t)s givenHt−1. On the other hand, if At = i

and θi(t) ≤ µ1+µi

2 , then θj(t) ≤ µ1+µi

2 for all j ≥ 2:

P(At = i, θi(t) ≤
µ1 + µi

2
|Ht−1) ≤ P(θj(t) ≤

µ1 + µi

2
for all j ̸= 1|Ht−1). (110)

The combination of (109) and (110) lead to

P(At = i, θi(t) ≤
µ1 + µi

2
|Ht−1) ≤

P(At = 1|Ht−1)

P(θ1(t) > µ1+µi

2 |Ht−1)
. (111)

Note that considering the action selection process of Algorithm 1 where conditioned on the past
observations θ1 has a Gaussian distribution, P(θ1(t) > µ1+µi

2 |Ht−1) will almost surely be non-zero.
Then we have

E[1(At = i, At−1 ̸= 1, θi(t) ≤
µ1 + µi

2
,M1(Tb(t)) < 32σ2 log(T)

∆2
i

)]

= E[E[1(At = i, At−1 ̸= 1, θi(t) ≤
µ1 + µi

2
,M1(Tb(t)) < 32σ2 log(T)

∆2
i

)|Ht−1]]

= E[P(At = i, θi(t) ≤
µ1 + µi

2
|Ht−1)1(At−1 ̸= 1,M1(Tb(t)) < 32σ2 log(T)

∆2
i

)] (112)

≤ E[
P(At = 1|Ht−1)

P(θ1(t) > µ1+µi

2 |Ht−1)
1(At−1 ̸= 1,M1(Tb(t)) < 32σ2 log(T)

∆2
i

)] (113)

= E[
1

P(θ1(t) > µ1+µi

2 |Ht−1)
1(At = 1, At−1 ̸= 1,M1(Tb(t)) < 32σ2 log(T)

∆2
i

)], (114)

where (112) follows from moving terms measurable with respect to Ht−1 out of the conditional
expectation. The bound in (111) leads to (113). Finally, using (114) in (79) shows that

E[
T∑

t=2

1(At = i, At−1 ̸= 1, θi(t) ≤
µ1 + µi

2
,M1(Tb(t)) < 32σ2 log(T)

∆2
i

)]

≤ E[
T∑

t=2

1

P(θ1(t) > µ1+µi

2 |Ht−1)
1(At = 1, At−1 ̸= 1,M1(Tb(t)) < 32σ2 log(T)

∆2
i

)] (115)

Note here that if At = 1 and At−1 ̸= 1, then t is either a cycle beginning or a cycle end point, which
means that t = τ̂1,j for some j:

P(θ1(t) >
µ1 + µi

2
|Ht−1) = Q

(√
1 +M1(Tb(t))

σ

(µ1 + µi

2
−

S1(Tb(t))

1 +M1(Tb(t))

))
(116)

= Q

(√
1 +M1(Tb(τ̂1,j))

σ

(µ1 + µi

2
−

S1(Tb(τ̂1,j))

1 +M1(Tb(τ̂1,j))

))
(117)

where the fact that conditioned on Ht−1, θ1(t) ∼ N (
S1(Tb(t))

1+M1(Tb(t))
, σ2

1+M1(Tb(t))
) leads to (116). In

addition, each t that satisfies {At = 1, At−1 ̸= 1,M1(Tb(t)) < 32σ2 log(T)
∆2

i
} condition has to belong

to a different cycle and the index j can not be bigger than ⌈32ασ2 log(T)
∆2

i
⌉. So, in view of (115), (117)

32

leads to

E[
T∑

t=2

1(At = i, At−1 ̸= 1, θi(t) ≤
µ1 + µi

2
,M1(Tb(t)) < 32σ2 log(T)

∆2
i

)]

≤ E

[⌈32ασ2 log(T)

∆2
i

⌉∑
j=1

1(τ̂1,j <∞)
1

Q

(√
1+M1(Tb(τ̂1,j)

)

σ

(
µ1+µi

2 −
S1(Tb(τ̂1,j)

)

1+M1(Tb(τ̂1,j)
)

))
]

≤ C(1 + 32ασ2 log(T)

∆2
i

). (118)

Here the last inequality is the application of Proposition 7. However, this result finishes the proof of
(2) since the collection of bounds, (80), (81), (82), (83), (108), (118), prove that

E[Ni(T)] ≤ 6 + 64ασ2 log(T)

∆2
i

+ C(4 + 1120ασ2 log(T)

∆2
i

).

F Additional Experiments

(a) Y1,t ∼Bern(0.75), Y2,t ∼Bern(0.25) (b) Y1,t ∼Bern(0.75), Yi,t ∼Bern(0.25) 2 ≤ i ≤ 5

(c) Y1,t ∼ N (1, 1), Y2,t ∼ N (0, 1) (d) Y1,t ∼ N (1, 1), Yi,t ∼ N (0, 1) 2 ≤ i ≤ 5

Figure 2: Empirical Regret Performance of Batched and normal Thompson sampling

In addition to the figures in Section 5, here we provide experiments that showcase how Algorithm 1
that does not make use of all reward observations (shown as All Samples=N) performs compared
to the version that uses all the samples (shown as All Samples=Y). Additionally, instead of the
average batch count, we report the 95% percentile batch complexity required for each algorithm. As
can be seen from these figures, the version of Batched Thompson sampling using all the samples

33

significantly outperforms the version that does not make use of all the observations. On the other
hand, we note that the algorithm that does skip samples (All Samples=N) may require exponentially
fewer observations on average than the other version (All Samples=Y). For example, in Figure 2 (a),
Algorithm 1 (All Samples=N) uses around 400 samples on average for each of the two arms, while
the batched TS algorithm that uses all the samples (All Samples=Y) uses 5× 104 samples in total.
Overall, this indicates a trade-off between fewer samples and possibly lower computation time versus
better empirical regret performance.

34

	Introduction
	Problem Formulation
	Notations
	Batched Multi-Armed Bandit

	Batched Thompson Sampling
	Main Results
	Experiments
	Technical Analysis
	Proof of Theorem 1 when K=2, =2, and 2=1
	Proof of Theorem 2

	Conclusion
	Acknowledgements
	Outline
	Technical Tools
	Bounded Random Variable Moment-generating Function Bound
	Gaussian Tail Bounds
	Expectation of Non-negative Random Variables

	Proof of Lemma 3
	Results Related to Theorem 1
	Martingale Lemma
	Estimation Error Bound
	Bounds on Functions of Q

	Proof of Theorem 1
	Additional Experiments

