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Abstract

We provide the supplementary material for our paper “Unleashing the Power of Con-
trastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning" [?
], including proofs for the analysis of the contrastive loss (cf. Appendix A), the
pseudo-code of the proposed method (cf. Appendix B), more implementation
details (cf. Appendix C), and more empirical results and analysis (cf. Appendix D
and Appendix E).

A Proof of Theoretical Analysis

This appendix provides proofs for both Theorems 1 and 2.

A.1 Proof for Theorem 1

Theorem 1 Assuming the features are `2-normalized and the classes are balanced with equal data
number, minimizing the contrastive loss is equivalent to minimizing the class-conditional entropy
H(Z|Y ) and maximizing the feature entropyH(Z):

Lcon ∝ H(Z|Y ) − H(Z)

Proof We follow the notations in the main paper and further denote the sample set of the class
k by Zk. Moreover, we assume the classes of samples are balanced so that the sample number of
each class is constant |Zk| = n

K , where n denotes the total number of samples and K indicates the
number of classes. Let us start by splitting the contrastive loss into two terms.
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Let ck= 1
|Zk|

∑
z∈Zk z denote the hard mean of all features from the class k, and let the symbol c

=

indicate equality up to a multiplicative and/or additive constant. We first analyze the first term in
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Eq. (1) by connecting it to a tightness term of the center loss, i.e.,
∑
zi∈Zk ‖zi−ck‖

2 [55]:
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where we use the property of `2-normalized features that ‖zi‖2=‖zj‖2=1 and the definition of the
class hard mean ck= 1

|Zk|
∑
z∈Zk z.

By summing over all classes k, we obtain:
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Based on this equation, following [1], we can interpret the first term in Eq. (1) as a conditional
cross-entropy between Z and another random variable Z̄, whose conditional distribution given Y is a
standard Gaussian centered around cY :Z̄|Y∼N (cy, i):
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c
= H(Z; Z̄|Y ) = H(Z|Y )+DKL(Z||Z̄|Y ).

Based on this, we know that the first term in Eq. (1) is an upper bound on the conditional entropy of
features Z given labels Y :
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where the symbol
c
≥ indicates “larger than" up to a multiplicative and/or an additive constant. When

Z|Y∼N (cy, i), the bound is tight. As a result, minimizing the first term in Eq. (1) is equivalent to
minimizingH(Z|Y ):
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This concludes the proof for the relationship of the first term in Eq. (1).
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We then analyze the second term in Eq. (1), which has the following relationship:
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where we use Jensen’s inequality in the fourth line. The first term in Eq. (3) is close to the differential
entropy estimator of features Z provided by [? ]:
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where d is the dimension of features. Combining Eq. (3) and Eq. (4) leads to:
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The second term in the right side of Eq. (5) is essentially a redundant term with the first term in
Eq. (1), so we ignore it here. Then, we know that minimizing the second term in Eq. (1) is equivalent
to maximizingH(Z):
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Combining Eq. (2) and Eq. (6), we conclude the proof of Theorem 1. �

A.2 Proof for Theorem 2

Theorem 2 Assuming the features are `2-normalized and the classes are balanced, the contrastive
loss is positive proportional to the infimum of conditional cross-entropy H(Y ; Ŷ |Z), where the
infimum is taken over classifiers:

Lcon ∝ infH(Y ; Ŷ |Z)︸ ︷︷ ︸
Conditional CE

− H(Y )

Proof The mutual information between features Z and labels Y can be defined in two ways:

I(Z;Y ) = H(Y )−H(Y |Z) = H(Z)−H(Z|Y ). (7)

Based on Theorem 1, we know that:

Lcon ∝ H(Z|Y )−H(Z) = −I(Z;Y ). (8)

Combining Eq. (7) and Eq. (8), we have:

Lcon ∝ H(Y |Z)−H(Y ). (9)

3



Then, we relate the conditional entropyH(Y |Z) to the cross entropy loss:

H(Y ; Ŷ |Z) = H(Y |Z) +DKL(Y ‖Ŷ |Z). (10)

According to Eq. (10), when we minimize cross-entropyH(Y ; Ŷ |Z), we implicitly minimize both
H(Y |Z) and DKL(Y ‖Ŷ |Z). In fact, the optimization could be decoupled into 2 steps in a maximize-
minimize (or bound-optimization) way [1]. The first step fixes the parameters of the network
encoder and only minimizes Eq. (10) with respect to the parameters of the network classifier. As
this step, H(Y |Z) is fixed and the predictions Ŷ are adjusted to minimize DKL(Y ‖Ŷ |Z). Ideally,
DKL(Y ‖Ŷ |Z) would vanish at the end of this step [1]. In this sense, we know that:

H(Y |Z) = infH(Y ; Ŷ |Z). (11)

The second step fixes the classifier and minimizes Eq. (10) with respect to the encoder. By combining
Eq. (9) and Eq. (11), we conclude the proof of Theorem 2. �

B Pseudo-code of Core-tuning

We summarize the scheme of Core-tuning in Algorithm 1. Here, all hard pair generation is conducted
within each sample batch.

Algorithm 1 The training scheme of Core-tuning.
Require: Pre-trained encoder Ge; Loss factor η; Mixup factor α; Batch size B; Epoch number T .
Ensure: Classifier Gy; Projection head Gc.
1: for t=1,...,T do
2: Sample a batch of training data {(xi, yi)}Bi=1;
3: Obtain features zi = Ge(xi) for each sample;
4: for i=1,...,B do
5: Construct positive pair set Pi and full pair set Ai for zi;
6: Generate hard positive pair (z+i , y

+
i ) and add it to Pi, Ai;

7: Generate hard negative pair (z−i , y
−
i ) and add it to Ai;

8: end for
9: Obtain contrastive features vi = Gc(zi) for all features;

10: Compute the focal contrastive loss Lf
con;

11: Predict ŷi=Gy(zi) for the original and generated samples;
12: Compute the cross-entropy loss Lm

ce;
13: loss.backward(); // loss = Lm

ce + ηLf
con.

14: end for
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C More Experimental Details

C.1 Implementation Details of Feature Visualization

In the feature visualization, we train ResNet-18 on CIFAR10 with two kinds of losses, i.e., (1)
cross-entropy Lce; (2) cross-entropy and the contrastive loss Lce+Lcon. For better visualization,
following [? ], we add two fully connected layers before the classifier. The two layers first map the
512-dimensional features to a 3-dimensional feature sphere and then map back to the 10-dimensional
feature space for prediction. The contrastive loss Lcon is enforced on the 3-dimensional features.
After training, we visualize the 3-dimensional features learned by ResNet-18 in MATLAB.

C.2 More Details of Image Classification

Dataset details. Following [27], we test on 9 natural image datasets, including ImageNet20 (a
subset of ImageNet with 20 classes) [11], CIFAR10, CIFAR100 [29], Caltech-101 [15], DTD [10],
FGVC Aircraft [39], Standard Cars [28], Oxford-IIIT Pets [44] and Oxford 102 Flowers [42]. In
addition, considering real-world datasets may be class-imbalanced [67, 68? ? , 70], we also evaluate
Core-tuning on the iNaturalist18 dataset [50]. Most datasets are obtained from their official websites,
except ImageNet20 and Oxford 102 Flowers. The ImageNet20 dataset is obtained by combining
two open-source ImageNet subsets with 10 classes, i.e., ImaegNette and ImageWoof [21]. Moreover,
Oxford 102 Flowers is obtained from Kaggle2. These datasets cover a wide range of classification
tasks, including coarse-grained object classification (i.e., ImageNet20, CIFAR, Caltech-101), fine-
grained object classification (i.e., Cars, Aircraft, Pets) and texture classification (i.e., DTD). The
statistics of all datasets are reported in Table 1.

Table 1: Statistics of datasets.
DataSet #Classes # Training # Test

ImageNet20 [21, 11] 20 18,494 7,854
CIFAR10 [29] 10 50,000 10,000
CIFAR100 [29] 100 50,000 10,000
Caltech-101 [15] 102 3,060 6,084
Describable Textures (DTD) [10] 47 3,760 1,880
FGVG Aircraft [39] 100 6,667 3,333
Standard Cars [28] 196 8,144 8,041
Oxford-IIIT Pets [44] 37 3,680 3,369
Oxford 102 Flowers [42] 102 6,552 818

iNaturalist18 [50] 8,142 437,513 24,426

Implementation details. We implement all methods in PyTorch. All checkpoints of self-supervised
models are provided by the authors or by the PyContrast GitHub repository3. For most datasets,
following [6, 27], we preprocess images via random resized crops to 224×224 and flips. At the
test time, we resize images to 256×256 and then take a 224×224 center crop. In such a setting,
however, we find it difficult to reproduce the performance of some CSL models [6]. Therefore, for
some datasets (e.g., CIFAR10 and Aircraft), we resize images to different scales and use rotation
augmentations. Although the preprocessing of some datasets is slightly different from [6], the results
in this paper are obtained with the same preprocessing method w.r.t. each dataset and thus are fair.

Following [27], we initialize networks with the checkpoints of contrastive self-supervised models.
For most datasets, we fine-tune networks for 100 epochs using Nesterov momentum via the cosine
learning rate schedule. For ImageNet20, we fine-tune networks using stochastic gradient descent
via the linear learning rate decay. For iNaturalist18, we fine-tune networks for 160 epochs. For all
datasets, the momentum parameter is set to 0.9, while the factor of weight decay is set to 10−4. As
for Core-tuning, we set the clipping thresholds of hard negative generation to be λn=0.8 and the
temperature τ=0.07. The dimension of the contrastive features is 256 and the depth of non-linear
projection is 2 layers. Following [6], we perform hyper-parameter tuning for each dataset. Specifically,
we select the batch size from {64, 128, 256}, the initial learning rate from {0.01, 0.1} and η/α from
{0.1, 1, 10}. The experiments are conducted on 4 TITAN RTX 2080 GPUs for iNaturalist18, and 1
GPU for all other datasets. All results are averaged over 3 runs. We adopt the top-1 accuracy as the
metric. The statistics of the used hyper-parameters are provided in Table 2. For other baselines, we
use the same training setting for each dataset, and tune their hyper-parameters as best as possible.

2https://www.kaggle.com/c/oxford-102-flower-pytorch.
3https://github.com/HobbitLong/PyContrast
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Table 2: Statistics of the used hyper-parameters in Core-tuning.
Hyper-parameter ImageNet20 CIFAR10 CIFAR100 Caltech101 DTD Aircraft Cars Pets Flowers iNarutalist18
epochs 100 160
batch size 256 256 256 256 256 64 64 64 64 128
loss trade-off factor η 0.1 0.1 1 1 0.1 0.1 0.1 0.1 1 10
mixup factor α 1 1 0.1 0.1 1 0.1 0.1 1 0.1 1
learning rate (lr) 0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.1
lr schedule linear cosine decay
temperature τ 0.07
threshold λn 0.8
weight decay factor 10−4

momentum factor 0.9
projection dimension 256
projection depth 2 layers

C.3 More Details of Domain Generalization

Dataset details. We use 3 benchmark datasets, i.e., PACS [32], VLCS [14] and Office-Home [51].
The data statistics are shown in Table 3, where each dataset has 4 domains. In each setting, we
select 3 domains to fine-tune the networks and then test on the rest of the unseen domains. The key
challenge is the distribution discrepancies among domains, leading to poor performance of neural
networks on the target domain [? ? ? ? ? ].

Table 3: Statistics of datasets.
DataSet #Domains #Classes #Samples Size of images

PACS 4 7 9,991 (3,224,224)
VLCS 4 5 10,729 (3,224,224)
Office-Home 4 65 15,588 (3,224,224)

Implementation details. The overall scheme of Core-tuning for domain generalization is shown in
Figure 1. The experiments are implemented based on the DomainBed repository [? ] in PyTorch.
During fine-tuning, we preprocess images through random resized crops to 224×224, horizon flips,
color jitter and random gray scale. At the test time, we directly resize images to 224×224. We
initialize ResNet-50 with the weights of the MoCo-v2 pre-trained model, and fine-tune it for 20,000
steps at a batch size of 32 using the Adam optimizer on a single TITAN RTX 2080 GPU. We set
the initial learning rate to 5×10−5 and adjust it via the exponential learning rate decay. All other
hyper-parameters of Core-tuning are the same as image classification. Besides, we use Accuracy as
the metric in domain generalization.
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Figure 1: The overall scheme of Core-tuning in the setting of cross-domain generalization.

C.4 Implementation Details of Robustness Training

We conduct this experiment in PyTorch. We take Caltech-101, DTD, Pets, and CIFAR10 as datasets,
whose preprocessing are the same as the ones in image classification. We use MoCo-v2 pre-trained
ResNet-50 as the backbone, and use Projected Gradient Descent (PGD) [38] to generate adversarial
samples. During adversarial training (AT), we use both clean and adversarial samples for training
with various fine-tuning methods on a single TITAN RTX 2080 GPU. Other training schemes (e.g.,
the optimizer, the hyper-parameters, the learning rate scheme) are the same as image classification.
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D More Experimental Results

D.1 More Results on Domain Generalization

This appendix further reports the results of domain generalization on OfficeHome. The observations
from Table 4 are same to the main text. First, when fine-tuning with cross-entropy, the contrastive
self-supervised model performs worse than the supervised pre-trained model. This results from
the relatively worse discriminative abilities of the contrastive self-supervised model, which can
also be found in Table 1 of the main paper. Second, enforcing contrastive regularizer during
fine-tuning improves domain generalization performance, since the contrastive regularizer helps
to learn more discriminative features (cf. Theorem 1) and also helps to alleviate distribution shifts
among domains [24], hence leading to better performance. Last, Core-tuning further improves the
generalization performance of models on all datasets. This is because hard pair generation further
boosts contrastive learning, while smooth classifier learning also benefits model generalizability. We
thus conclude that Core-tuning improves model generalization on downstream tasks.

Table 4: Domain generalization accuracies of various fine-tuning methods for MoCo-v2 pre-trained
ResNet-50 the on Office-Home dataset. CE means cross-entropy; CE-Con enhances CE with the
contrastive loss. Here, A/C/P/R are four domains in Office-Home.

Pre-training Fine-tuning Office-Home

A C P R Avg.
Supervised CE 56.08 50.83 72.49 75.21 63.82

MoCo-v2
CE 50.31 48.91 64.72 68.76 58.18

CE-Con 55.87 50.23 71.51 74.99 63.15
ours 58.70 52.43 72.89 75.36 64.85

D.2 More Results on Adversarial Training

In the main paper, we apply Core-tuning to adversarial training on CIFAR10, while this appendix
further provides the results of adversarial training on three other natural image datasets, i.e., Caltech-
101, DTD and Pets. We draw several observations based on the results on 3 image datasets in
Table 5. First, despite good clean accuracy, standard fine-tuning with cross-entropy cannot defend
against adversarial attack, leading to poor robust accuracy. Second, AT with cross-entropy improves
the robust accuracy significantly, but it inevitably degrades the clean accuracy due to the accuracy-
robustness trade-off [49]. In contrast, the contrastive regularizer improves both robust and clean
accuracies. This is because contrastive learning helps to improve robustness generalization (i.e.,
alleviating the distribution shifts between clean samples and adversarial samples), thus leading to
better performance. Last, Core-tuning further boosts AT and, surprisingly, even achieves better
clean accuracy than the standard fine-tuning under the `2 attack. To our knowledge, this is quite
promising since even the most advanced AT methods [61, 65] find it difficult to conquer the accuracy-
robustness trade-off [63]. The improvement is mainly derived from that both contrastive learning and
smooth classifier learning boost the robustness generalization. We thus conclude that Core-tuning is
beneficial to model robustness. We also hope that Core-tuning can motivate people to rethink the
accuracy-robustness trade-off in adversarial training in the future.

Table 5: Adversarial training performance of MoCo-v2 pre-trained ResNet-50 under the attack
of PGD-10 in terms of robust and clean accuracies. CE indicates cross-entropy; AT-CE indicates
adversarial training (AT) with CE; AT-CE-Con enhances AT-CE with the contrastive loss; AT-ours
uses Core-tuning for AT.

Method
PGD - `2 attack (ε = 0.5) PGD - `∞ attack (ε = 4/255)

Caltech101 DTD Pets Caltech101 DTD Pets

Robust Clean Robust Clean Robust Clean Robust Clean Robust Clean Robust Clean
CE 55.69 91.87 42.25 71.68 30.94 89.05 27.03 91.87 18.37 71.68 4.63 89.05
AT-CE 87.35 91.61 61.93 68.81 78.67 86.25 78.61 90.65 47.27 67.13 63.59 84.21
AT-CE-Con 88.67 92.61 64.75 71.24 79.53 87.01 79.87 91.08 48.95 69.07 65.60 86.85
AT-ours 89.21 92.83 66.49 72.94 82.54 89.22 80.73 91.64 49.43 70.65 67.98 87.20
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D.3 More Results on Image Classification

The results with standard errors. In the main paper, we report the results of image classification
and ablations studies on 9 natural image datasets in terms of the average accuracy. To make the results
more complete, this appendix further reports the results with their standard errors (cf. Tables 6-7).

Table 6: Comparisons of various fine-tuning methods for MoCo-v2 pre-trained ResNet-50 on image
classification in terms of top-1 accuracy. Here, “Avg.” indicates the average accuracy over 9 datasets.
SL-CE-tuning denotes supervised pre-training on ImageNet and then fine-tuning with cross-entropy.

Algorithm ImageNet20 CIFAR10 CIFAR100 Caltech101 DTD
SL-CE-tuning 91.01+/-1.27 94.23+/-0.07 83.40+/-0.12 93.65+/-0.21 74.40+/-0.45

CE-tuning 88.28+/-0.47 94.70+/-0.39 80.27+/-0.60 91.87+/-0.18 71.68+/-0.53
L2SP [35] 88.49+/-0.40 95.14+/-0.22 81.43+/-0.22 91.98+/-0.07 72.18+/-0.61
M&M [62] 88.53+/-0.21 95.02+/-0.07 80.58+/-0.19 92.91+/-0.08 72.43+/-0.43
DELTA [33] 88.35+/-0.41 94.76+/-0.05 80.39+/-0.41 92.19+/-0.45 72.23+/-0.23
BSS [9] 88.34+/-0.62 94.84+/-0.21 80.40+/-0.30 91.95+/-0.12 72.22+/-0.17
RIFLE [34] 89.06+/-0.28 94.71+/-0.13 80.36+/-0.07 91.94+/-0.23 72.45+/-0.30
SCL [18] 89.29+/-0.07 95.33+/-0.09 81.49+/-0.27 92.84+/-0.03 72.73+/-0.31
Bi-tuning [71] 89.06+/-0.08 95.12+/-0.15 81.42+/-0.01 92.83+/-0.06 73.53+/-0.37
Core-tuning 92.73+/-0.17 97.31+/-0.10 84.13+/-0.27 93.46+/-0.06 75.37+/-0.37

Algorithm Aircraft Cars Pets Flowers Avg.
SL-CE-tuning 87.03+/-0.02 89.77+/-0.11 92.17+/-0.12 98.78+/-0.10 89.35

CE-tuning 86.87+/-0.18 88.61+/-0.43 89.05+/-0.01 98.49+/-0.06 87.76
L2SP [35] 86.55+/-0.30 89.00+/-0.23 89.43+/-0.27 98.66+/-0.20 88.10
M&M [62] 87.45+/-0.28 88.90+/-0.70 89.60+/-0.09 98.57+/-0.15 88.22
DELTA [33] 87.05+/-0.37 88.73+/-0.05 89.54+/-0.48 98.65+/-0.17 87.99
BSS [9] 87.18+/-0.71 88.50+/-0.02 89.50+/-0.42 98.57+/-0.15 87.94
RIFLE [34] 87.60+/-0.50 89.72+/-0.11 90.05+/-0.26 98.70+/-0.06 88.29
SCL [18] 87.44+/-0.31 89.37+/-0.13 89.71+/-0.20 98.65+/-0.10 88.54
Bi-tuning [71] 87.39+/-0.01 89.41+/-0.28 89.90+/-0.06 98.57+/-0.10 88.58
Core-tuning 89.48+/-0.17 90.17+/-0.03 92.36+/-0.14 99.18+/-0.15 90.47

Table 7: Ablation studies of Core-tuning (Row 5) for fine-tuning MoCo-v2 pre-trained ResNet-50
on 9 natural image datasets in terms of top-1 accuracy. Here, “Avg.” indicates the average accuracy
over the 9 datasets. Besides, Lcon is the original supervised contrastive loss, while Lfcon is our focal
contrastive loss. Moreover, “mix" denotes the manifold mix, while “mix-H" indicates the proposed
hardness-directed mixup strategy in our method.

Lce Lcon Lfcon mix mix-H ImageNet20 CIFAR10 CIFAR100 Caltech101 DTD√
88.28+/-0.47 94.70+/-0.39 80.27+/-0.60 91.87+/-0.18 71.68+/-0.53√ √
89.29+/-0.07 95.33+/-0.09 81.49+/-0.27 92.84+/-0.03 72.73+/-0.31√ √
90.67+/-0.09 95.43+/-0.20 81.03+/-0.11 92.68+/-0.06 73.31+/-0.40√ √ √
92.20+/-0.15 97.01+/-0.10 83.89+/-0.20 93.22+/-0.18 74.78+/-0.31√ √ √
92.73+/-0.17 97.31+/-0.10 84.13+/-0.27 93.46+/-0.06 75.37+/-0.37

Lce Lcon Lfcon mix mix-H Aircraft Cars Pets Flowers Avg.√
86.87+/-0.18 88.61+/-0.43 89.05+/-0.01 98.49+/-0.06 87.76√ √
87.44+/-0.31 89.37+/-0.13 89.71+/-0.20 98.65+/-0.10 88.54√ √
88.37+/-0.14 89.06+/-0.14 91.37+/-0.03 98.74+/-0.11 88.96√ √ √
88.88+/-0.34 89.79+/-0.12 91.95+/-0.33 98.94+/-0.12 90.07√ √ √
89.48+/-0.17 90.17+/-0.03 92.36+/-0.14 99.18+/-0.15 90.47

The fine-tuning results on ImageNet. Since ImageNet has rich labeled samples for fine-tuning and
the CSL models are also pre-trained on ImageNet, the performance gain of different fine-tuning
methods may not vary as significantly as on the small-scale target datasets. Even so, the results in
Table 8 also demonstrate the effectiveness of Core-tuning on very large-scale data.

Table 8: Fine-tuning results of the MoCo-v2 ResNet-50 fine-tuned by various methods, on ImageNet.

Pre-training Fine-tuning Top-1 accuracy
MoCo-v2 [8] CE-tuning 76.82
MoCo-v2 [8] CE-Contrastive-tuning 77.13
MoCo-v2 [8] Core-tuning (ours) 77.43
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More results on different pre-training methods. This appendix provides the fine-tuning results of
Core-tuning for the SimCLR pre-trained models. Since the official checkpoints of SimCLR-v1 [6]
and SimCLR-v2 [7] are based on Tensorflow, we convert them to the PyTorch and try to reproduce
cross-entropy tuning (CE-tuning) in our experimental settings. Note that although the reproduction
performance of CE-tuning is slightly worse than the original paper [6, 7], the results in this paper
are obtained with the same preprocessing method w.r.t. each dataset and thus are fair. As shown in
Table 9, Core-tuning consistently outperforms CE-tuning for SimCLR pre-trained models.

Table 9: Fine-tuning results of ResNet-50, pre-trained by various methods.

Pre-training Caltech101 DTD Pets

CE-tuning ours CE-tuning ours CE-tuning ours
SimCLR-v1 [6] 90.53+/-0.06 92.40+/-0.06 90.53+/-0.06 71.26+/-0.05 89.34+/-0.46 90.89+/-0.09
SimCLR-v2 [7] 92.44+/-0.18 93.46+/-0.02 71.26+/-0.26 74.75+/-0.41 88.28+/-0.26 90.64+/-0.31

The results on linear evaluation. This appendix provides linear evaluation for Core-tuning. Specifi-
cally, we first fine-tune the MoCo-v2 pre-trained ResNet-50 with Core-tuning and then train a linear
classifier for prediction. As shown in Table 10, Core-tuning performs better than CE-tuning.

Table 10: Results of linear evaluation for the ResNet-50 fine-tuned by various methods, on CIFAR10.

Pre-training Fine-tuning Top-1 accuracy
MoCo-v2 [8] CE-tuning 94.78+/-0.28
MoCo-v2 [8] Core-tuning (ours) 97.09+/-0.14

The results on KNN evaluation. This appendix provides the KNN evaluation for Core-tuning. To
be specific, we first fine-tune the MoCo-v2 pre-trained ResNet-50 with Core-tuning and then use
KNN for prediction. As shown in Table 11, Core-tuning also outperforms CE-tuning.

Table 11: Results of KNN evaluation for the ResNet-50 fine-tuned by various methods, on CIFAR10.

Pre-training Fine-tuning Top-1 accuracy
MoCo-v2 [8] CE-tuning 94.63+/-0.32
MoCo-v2 [8] Core-tuning (ours) 96.65+/-0.06

D.4 The Results with Standard Errors on Semantic Segmentation

In the main paper, we report the average results of semantic segmentation on PASCAL VOC. This
appendix further reports the results with their standard errors (cf. Table 12).

Table 12: Fine-tuning performance on PASCAL VOC semantic segmentation based on DeepLab-V3
with ResNet-50, pre-trained by various CSL methods. CE indicates cross-entropy.

Pre-training Fine-tuning MPA FWIoU MIoU
Supervised CE 87.10+/-0.20 89.12+/-0.17 76.52+/-0.34

InsDis [58] CE 83.64+/-0.12 88.23+/-0.08 74.14+/-0.21
ours 84.53+/-0.31 88.67+/-0.07 74.81+/-0.13

PIRL [41] CE 83.16+/-0.26 88.22+/-0.24 73.99+/-0.42
ours 85.30+/-0.24 88.95+/-0.08 75.49+/-0.36

MoCo-v1 [20] CE 84.71+/-0.56 88.75+/-0.04 74.94+/-0.12
ours 85.70+/-0.32 89.19+/-0.02 75.94+/-0.23

MoCo-v2 [8] CE 87.31+/-0.31 90.26+/-0.12 78.42+/-0.28
ours 88.76+/-0.34 90.75+/-0.04 79.62+/-0.12

SimCLR-v2 [7] CE 87.37+/-0.48 90.27+/-0.12 78.16+/-0.19
ours 87.95+/-0.20 90.71+/-0.13 79.15+/-0.33

InfoMin [47] CE 87.17+/-0.20 89.84+/-0.09 77.84+/-0.24
ours 88.92+/-0.36 90.65+/-0.09 79.48+/-0.30
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E More Analysis of Core-tuning

E.1 Analysis of Projection Dimension and Depth

In previous experiments, we use a 2-layer MLP to extract contrastive features with dimension 256.
Here, we further analyze how the dimension and the depth influence Core-tuning. The results on
ImageNet20 are reported in Figure 2, where the fine-tuning performance of Core-tuning can be
further improved by changing the feature dimension to 128 and the depth to 3. Note that the best
dimension and depth of the projection head may vary on different datasets, but the default setting
(i.e., dimension 256 and depth 2) is enough to obtain consistently good performance.
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Figure 2: Analysis of the projection dimension and the projection depth in Core-tuning on ImageNet20
based on MoCo-v2 pre-trained ResNet-50. Each run tests one parameter and fixes others. Best
viewed in color.

E.2 Analysis of Loss and Mixup Hyper-Parameters

This appendix discusses the influence of the loss trade-off parameter η and the mixup sampling factor
α on Core-tuning based on the ImageNet20 dataset. Each run tests one parameter and fixes others.
As shown in Figure 3, when η=0.1 and α=1, Core-tuning performs slightly better on ImageNet20.
Note that the best η and α can be different on diverse datasets.

E.3 Analysis of Temperature Factor

Following the implementation of the supervised contrastive loss [25], we set the temperature factor
τ to 0.07 for Core-tuning by default. In this section, we further analyze the influence of τ on Core-
tuning when fine-tuning MoCo-v2 pre-trained models on ImageNet20. As shown in Figure 3, when τ
is small (e.g., 0.01 or 0.07), Core-tuning performs slightly better on ImageNet20. The potential reason
is that a small temperature parameter implicitly helps the method to learn hard positive/negative
pairs [? ], which are more informative and beneficial to contrastive learning. Note that the best τ
can be different on different datasets, but the default setting (i.e., τ = 0.07) is enough to achieve
comparable performance.
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Figure 3: Analysis of η, α and the temperature factor in Core-tuning on ImageNet20 based on
MoCo-v2 pre-trained ResNet-50. Each run tests one factor and fixes others. Best viewed in color.
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E.4 Analysis of Hard Pair Thresholds

In our hardness-directed mixup strategy, to make the generated negative pairs closer to negative pairs,
we clip λ∼Beta(α, α) by λ≥λn when generating hard negative pairs. In our experiments, we set the
threshold λn = 0.8. In this appendix, we analyze the influences of the negative pair threshold λn.
Meanwhile, although we do not constrain hard positive generation, we also analyze the potential
positive pair threshold λp. The results on ImageNet20 are reported in Table 3. On the one hand, λn
satisfies our expectation that the generated hard negative pairs should be closer to negatives, i.e., a
larger λn can lead to better performance. On the other hand, we find when no crop is conducted for
hard positive generation (i.e., λp=0), the performance is slightly better. We conjecture that since the
generated hard positives are located in the borderline area between positives and negatives, allowing
the generated hard positives to close to negatives may have a margin effect on contrastive learning
and thus boosts performance. Despite this, Core-tuning with a large λp performs similarly well.

Table 13: Threshold analysis for hard pair generation in Core-tuning on ImageNet20 based on
MoCo-v2 pre-trained ResNet-50. Each run tests one parameter and fixes another one to 0.8.

Thresholds 0 0.2 0.4 0.6 0.8
Negative pair threshold λn 91.55 91.94 92.19 92.36 92.59
Positive pair threshold λp 92.73 92.68 92.64 92.60 92.59

E.5 Relationship Between Pre-Training and Fine-Tuning Accuracies

We further explore the relationship between ImageNet performance and Core-tuning fine-tuning
performance on Caltech-101 for various contrastive self-supervised models. Here, the ImageNet
performance of a contrastive self-supervised model is obtained by training a new linear classifier
on the frozen pre-trained representation and then evaluate the model on the ImageNet test set.
For convenience, we directly follow the ImageNet performance reported in the original paper of
the corresponding methods. As shown in Figure 4, the fine-tuning result of each contrastive self-
supervised model on Caltech-101 is highly correlated with the model result on ImageNet. This
implies that the ImageNet performance can be a good predictor for the fine-tuning performance
of contrastive self-supervised models. Such a finding is consistent with supervised pre-trained
models [27]. Even so, note that the correlation is not perfect, where a contrastive pre-trained model
with better ImageNet performance does not necessarily mean better fine-tuning performance, e.g.,
SimCLR-v2 vs MoCo-v2.

E.6 Effectiveness of Hard Pair Generation for Contrastive Fine-Tuning

In our proposed Core-tuning, we use all the generated positive sample pairs and the original samples
as positive pairs for contrastive fine-tuning. In this appendix, to better evaluate the effectiveness of
hard pair generation, we do not use original data as positive pairs but only use the generated hard
positive pairs for contrastive learning. As shown in Table 14, only using the generated hard positive
pairs for contrastive learning is enough to obtain comparable performance. Such results further verify
the effectiveness of our hardness-directed mixup strategy as well as the importance of hard positive
pairs for contrastive fine-tuning.

Table 14: Comparisons with only using the generating hard positive pairs for contrast on CIFAR10.

Pre-training Fine-tuning The used positive pairs for contrast? Top-1 accuracy
MoCo-v2 [8] CE-tuning × 94.70+/-0.39
MoCo-v2 [8] Core-tuning only the generated hard positive pairs 97.31+/-0.09
MoCo-v2 [8] Core-tuning all positive pairs 97.31+/-0.10
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figures/Caltech-Core-tuning4-eps-converted-to.pdf

Figure 4: The relationship between ImageNet performance and Core-tuning fine-tuning performance
on Caltech-101 for contrastive self-supervised ResNet-50 models. Better viewed in color.

E.7 Effectiveness of Smooth Classifier Learning

In Core-tuning, to better exploit the learned discriminative feature space by contrastive fine-tuning,
we use the mixed samples for classifier training, so that the classifier can be more smooth and far
away from the original training data. In this appendix, to better evaluate the effectiveness of smooth
classifier learning, we compare Core-tuning with a variant that does not use the mixed data for
classifier learning. As shown in Table 15, smooth classifier learning contributes to the fine-tuning
performance of contrastive self-supervised models on downstream tasks. The results demonstrate the
effectiveness of smooth classifier learning and also show its importance in Core-tuning.

Table 15: Influence of smooth classifier learning on CIFAR10.

Pre-training Fine-tuning Smooth classifier learning? Top-1 accuracy
MoCo-v2 [8] CE-tuning × 94.70+/-0.39
MoCo-v2 [8] CE-tuning

√
95.43+/-0.20

MoCo-v2 [8] Core-tuning × 96.13+/-0.11
MoCo-v2 [8] Core-tuning

√
97.31+/-0.10
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