A Additional Definitions

Definition A. 1 (zCDP [5]). A randomized algorithm \mathcal{A} is β-zCDP if for any pair of data sets D and D^{\prime} that different in one record, we have $D_{\alpha}\left(\mathcal{A}(D) \| \mathcal{A}\left(D^{\prime}\right)\right) \leq \beta \alpha$ for all $\alpha>1$, where D_{α} is the Rényi divergence of order α.

It is easy to see that β-zCDP is equivalent to $(\alpha, \beta \alpha)$-RDP for all order α.

B Missing Proofs from Section 4

B. 1 Proof of Lemma 4

Proof. We will show that $\boldsymbol{W}_{\text {priv }}$ and $\boldsymbol{b}_{\text {priv }}$ in Algorithm 2 guarantee differential privacy. As the $\arg \mathrm{min}$ can be computed given the two quantities, it will guarantee differential privacy by sequential composition.

For any j, denote $\boldsymbol{A}_{j}=\sum_{i \in[m / 4+1, m / 2]} \boldsymbol{W}_{i j} \boldsymbol{W}_{i j}^{\top}$ and $\boldsymbol{b}_{j}=\sum_{i \in[m / 4+1, m / 2]} \widetilde{y}_{i j} \boldsymbol{W}_{i j}$. For any iteration t, let $\boldsymbol{A}=\sum_{j \in \mathcal{S}_{t}} \boldsymbol{A}_{j}$ and $\boldsymbol{b}=\sum_{j \in \mathcal{S}_{t}} \boldsymbol{b}_{j}$. Considering neighboring datasets D and D^{\prime} such that user j 's data in D is replaced by user j^{*} 's. If $j \notin \mathcal{S}_{t}$ in iteration t, \boldsymbol{A} and \boldsymbol{b} will be the same. Otherwise, A would change by $\Delta \boldsymbol{A}=\boldsymbol{A}_{j^{*}}-\boldsymbol{A}_{j}$ and \boldsymbol{b} by $\Delta \boldsymbol{b}=\boldsymbol{b}_{j^{*}}-\boldsymbol{b}_{j}$. We will bound the two quantities.

- For $\Delta \boldsymbol{A}$: According to the definitions, we have $\left\|\boldsymbol{W}_{i j}\right\|_{2} \leq \eta$. Consider the Frobenius norm of matrix $\boldsymbol{W}_{i j} \boldsymbol{W}_{i j}^{\top}$. For any vector x, we have $\left\|\mathbf{x x}^{\top}\right\|_{F}=\sqrt{\sum_{p, q} x_{p}^{2} x_{q}^{2}}=$ $\sqrt{\sum_{p} x_{p}^{2} \sum_{q} x_{q}^{2}}=\|\mathbf{x}\|_{2}^{2}$. Therefore, we have $\left\|\boldsymbol{W}_{i j} \boldsymbol{W}_{i j}^{\top}\right\|_{F}=\left\|\boldsymbol{W}_{i j}\right\|_{2}^{2} \leq \eta^{2}$, and thus $\left\|\boldsymbol{A}_{j}\right\|_{F} \leq m \eta^{2} / 4$, and $\|\Delta \boldsymbol{A}\|_{F} \leq\left\|\boldsymbol{A}_{j}\right\|_{F}+\left\|\boldsymbol{A}_{j^{*}}\right\|_{F} \leq m \eta^{2} / 2$.
- For $\Delta \boldsymbol{b}$: Again according to definition, we have $\left|\widetilde{y}_{i j}\right| \leq \zeta$ for any j. Thus $\left\|\boldsymbol{b}_{j}\right\|_{2} \leq m \eta \zeta / 4$ for any j, and $\|\Delta \boldsymbol{b}\|_{2} \leq m \eta \zeta / 2$.
Applying Gaussian mechanism, adding noise $\mathcal{N}\left(0, m^{2} \eta^{2} \zeta^{2} \Delta_{(\varepsilon, \delta)}^{2} / 4\right)^{d k}$ to \boldsymbol{b} guarantees $\left(\alpha, \alpha /\left(2 \Delta_{(\varepsilon, \delta)}^{2}\right)\right)$-RDP. As for \boldsymbol{A}, adding $\mathcal{N}\left(0, m^{2} \eta^{4} \Delta_{(\varepsilon, \delta)}^{2} / 4\right)^{d k \times d k}$ to the vectorized version of \boldsymbol{A} guarantees $\left(\alpha, \alpha /\left(2 \Delta_{(\varepsilon, \delta)}^{2}\right)\right)$-RDP. We can reshape the vectorized \boldsymbol{A} to get the matrix version, which is a postprocessing step and does not affect the privacy guarantee. Notice that \boldsymbol{A} is a symmetric matrix. We can thus copy its upper triangle to the lower, which is equivalent to adding a symmetric Gaussian matrix to \boldsymbol{A} as stated in the algorithm.
By sequential composition, one run of Algorithm 2 guarantees $\left(\alpha, \alpha / \Delta_{(\varepsilon, \delta)}^{2}\right)$-RDP. Notice that Algorithm 1 calls Algorithm 2 for T times on disjoint sets of users. So by parallel composition, Algorithm 1 guarantees $\left(\alpha, \alpha / \Delta_{(\varepsilon, \delta)}^{2}\right)$-RDP, which translates to $\left(\frac{\alpha}{\Delta_{(\varepsilon, \delta)}^{2}}+\frac{\log (1 / \delta)}{\alpha-1}, \delta\right)$-DP for any ε, δ by standard conversion from RDP to approximate DP. Optimizing over α, we get $\left(\frac{1}{\Delta_{(\varepsilon, \delta)}^{2}}+\frac{2 \sqrt{\log (1 / \delta)}}{\Delta_{(\varepsilon, \delta)}}, \delta\right)$ DP. Solving $\Delta_{(\varepsilon, \delta)}$ from $\frac{1}{\Delta_{(\varepsilon, \delta)}^{2}}+\frac{2 \sqrt{\log (1 / \delta)}}{\Delta_{(\varepsilon, \delta)}} \leq \varepsilon$, we have $\Delta_{(\varepsilon, \delta)} \geq \frac{\sqrt{\log (1 / \delta)}+\sqrt{\log (1 / \delta)+\varepsilon}}{\varepsilon}$. Therefore, if $\varepsilon \leq \log (1 / \delta)$, it suffices to guarantee (ε, δ)-DP by setting $\Delta_{(\varepsilon, \delta)}=\frac{\sqrt{8 \log (1 / \delta)}}{\varepsilon}$.

B. 2 Proof of Lemma 4.5

Proof. We will show that publishing $\boldsymbol{M}^{\text {Noisy }}$ guarantees differential privacy. As $\boldsymbol{W}_{i j}$'s and $\boldsymbol{M}^{\text {Noisy }}$ are all symmetric, for privacy analysis, it suffices to consider the upper triangles of them. Let up (X) denote the upper triangle of matrix X flatten into a vector. Let $\boldsymbol{w}_{i j}=\operatorname{up}\left(\boldsymbol{W}_{i j}\right), \boldsymbol{w}=\sum_{i, j} \boldsymbol{w}_{i j}$, and $\widetilde{\boldsymbol{w}}=\sum_{i, j} \boldsymbol{w}_{i j}+\operatorname{up}\left(\mathcal{N}_{\text {sym }}\left(0, \Delta_{(\varepsilon, \delta \zeta}^{2} \zeta^{4} m^{2}\right)^{d^{2}}\right)$. It is easy to see that $\boldsymbol{M}^{\text {Noisy }}$ can be formed by postprocessing $\widetilde{\boldsymbol{w}}$. We will thus prove the privacy property of $\widetilde{\boldsymbol{w}}$, which directly translate to the privacy guarantee of $\boldsymbol{M}^{\text {Noisy }}$.
Consider neighboring datasets D and D^{\prime} such that user j 's data in D is replaced by user j^{*} 's data in D^{\prime}. Then the corresponding \boldsymbol{w} would differ by $\sum_{i} \boldsymbol{w}_{i j^{*}}-\sum_{i} \boldsymbol{w}_{i j}$. We will analyze its ℓ_{2} norm. For
any i and j, we have

$$
\begin{align*}
& \quad\left\|\frac{\mathbf{x}_{(2 i) j} \mathbf{x}_{(2 i+1) j}^{\top}}{\left\|\mathbf{x}_{(2 i) j}\right\|_{2} \cdot\left\|\mathbf{x}_{(2 i+1) j}\right\|_{2}} \cdot \operatorname{clip}\left(y_{(2 i) j} ; \zeta\right) \cdot \operatorname{clip}\left(y_{(2 i+1) j} ; \zeta\right)\right\|_{F} \\
& \leq \zeta^{2} \frac{\left\|\mathbf{x}_{(2 i) j} \mathbf{x}_{(2 i+1) j}^{\top}\right\|_{F}}{\left\|\mathbf{x}_{(2 i) j}\right\|_{2} \cdot\left\|\mathbf{x}_{(2 i+1) j}\right\|_{2}}=\zeta^{2} . \tag{3}
\end{align*}
$$

where $\|\cdot\|_{F}$ denotes the Frobenius norm. The inequality follows from the definition of the clipping operation, and the equality follows because for two vectors a, b, we have $\left\|a b^{\top}\right\|_{F}^{2}=\sum_{p, q}\left(a_{p} b_{q}\right)^{2}=$ $\sum_{p} a_{p}^{2} \cdot \sum_{q} b_{q}^{2}=\|a\|_{2}^{2}\|b\|_{2}^{2}$. Therefore, we have $\left\|\boldsymbol{w}_{i j}\right\|_{2} \leq \zeta^{2}$ for any i, j, which implies $\left\|\sum_{i} \boldsymbol{w}_{i j^{*}}-\sum_{i} \boldsymbol{w}_{i j}\right\|_{2} \leq \sum_{i}\left\|\boldsymbol{w}_{i j^{*}}\right\|_{2}+\sum_{i}\left\|\boldsymbol{w}_{i j}\right\|_{2} \leq m \zeta^{2}$ for any j, i.e., the ℓ_{2} sensitivity of \boldsymbol{w} is $m \zeta^{2}$.
Using Gaussian mechanism, adding noise $\mathcal{N}\left(0, m^{2} \zeta^{4} \Delta_{(\varepsilon, \delta)}^{2} \mathbb{I}\right)$ to \boldsymbol{w} guarantees $\left(\alpha, \alpha /\left(2 \Delta_{(\varepsilon, \delta)}^{2}\right)\right)$ RDP for any order $\alpha \geq 1$, which translates to $\left(\frac{\alpha}{2 \Delta_{(\varepsilon, \delta)}^{2}}+\frac{\log (1 / \delta)}{\alpha-1}, \delta\right)$-DP for any $\varepsilon, \delta>0$. Optimizing over α, it translates to $\left(\frac{1}{2 \Delta_{(\varepsilon, \delta)}^{2}}+\frac{\sqrt{2 \log (1 / \delta)}}{\Delta_{(\varepsilon, \delta)}}, \delta\right)$-DP. Solving $\frac{1}{2 \Delta_{(\varepsilon, \delta)}^{2}}+\frac{\sqrt{2 \log (1 / \delta)}}{\Delta_{(\varepsilon, \delta)}} \leq \varepsilon$, we get $\Delta_{(\varepsilon, \delta)} \geq \frac{\sqrt{\log (1 / \delta)}+\sqrt{\log (1 / \delta)+\varepsilon}}{\sqrt{2 \varepsilon}}$. Therefore, if $\varepsilon \leq \log (1 / \delta)$, it suffices to guarantee (ε, δ)-DP by setting $\Delta_{(\varepsilon, \delta)}=\frac{\sqrt{8 \log (1 / \delta)}}{\varepsilon}$.

B. 3 Proof of Lemma 4.6

Proof. Let $\boldsymbol{M}=\frac{2}{n m} \sum_{i \in[m / 2], j \in[n]} \boldsymbol{W}_{i j}$ and $\boldsymbol{U}^{\text {non-priv }}$ be the matrix with the top- k eigenvectors of \boldsymbol{M} as columns. Let $\Pi^{\text {priv }}=\boldsymbol{U}^{\text {priv }}\left(\boldsymbol{U}^{\text {priv }}\right)^{\top}$ and $\Pi^{*}=\boldsymbol{U}^{*}\left(\boldsymbol{U}^{*}\right)^{\top}$. Notice that $\left\|\Pi^{*}-\Pi^{\text {priv }}\right\|_{2} \leq\left\|\Pi^{*}-\Pi^{\text {non-priv }}\right\|_{2}+\left\|\Pi^{\text {non-priv }}-\Pi^{\text {priv }}\right\|_{2}$. We bound the first term via Lemma B. 1 below. In order to bound the second term, first notice that the k-th eigenvalue of \boldsymbol{M} (in Algorithm 3) (denoted by $\widehat{\lambda}_{k}$) is lower bounded as follows. This follows with high probability from (18) by choosing appropriate β in Lemma B.1, polynomial in n^{-1}.

$$
\begin{equation*}
\widehat{\lambda}_{k} \geq \frac{\lambda_{k}}{d}-O\left(\sqrt{\frac{\mu^{4} k^{2} \lambda_{k} \log (d n)}{d n m}}\right)=\Omega\left(\frac{\lambda_{k}}{d}\right) \tag{4}
\end{equation*}
$$

Now, we can use $\left[17\right.$, Theorem 7] to directly bound $\left\|\Pi^{\text {non-priv }}-\Pi^{\text {priv }}\right\|_{F}=$ $O\left(\frac{\Delta_{(\varepsilon, \delta)} d \sqrt{d k \log (d n)}}{n \cdot \lambda_{k}}\right)$, and correspondingly $\left\|\Pi^{\text {non-priv }}-\Pi^{\text {priv }}\right\|_{2}=O\left(\frac{\zeta^{2} \Delta_{(\varepsilon, \delta)} d \sqrt{d \log (d n)}}{n \cdot \lambda_{k}}\right)$. Setting ζ as in the lemma statement, and observing rotation invariant property of the norms, completes the proof.

Lemma B. 1 (Non-private subspace closeness). Let $\Pi^{\text {non-priv }}=\boldsymbol{U}^{\text {non-priv }}\left(\boldsymbol{U}^{\text {non-priv }}\right)^{\top}$, and $\Pi^{*}=\boldsymbol{U}^{*}\left(\boldsymbol{U}^{*}\right)^{\top}$. Following the assumption in Lemma 4.6, we have the following for Algorithm 3 (Algorithm $\mathcal{A}_{\text {Priv-init }}$) w.p. at least $1-\beta$ (over the randomness of data generation and the algorithm):

$$
\left\|\Pi^{*}-\Pi^{n o n-p r i v}\right\|_{2}=\widetilde{O}\left(\sqrt{\frac{d \zeta^{4} \log (d / \beta)}{\lambda_{k}^{2} n m}}\right)
$$

Proof. By Gaussian concentration we have w.p. at least $1-\beta / 2, \forall i \in[m], j \in[n],\left|\left\langle\mathbf{x}_{i j}, \boldsymbol{U}^{*} \cdot \boldsymbol{v}_{j}^{*}\right\rangle\right| \leq$ $\mu \sqrt{k \lambda_{k}} \cdot \sqrt{2 \ln (4 n m / \beta)}$ and $\left|\boldsymbol{z}_{i j}\right| \leq \sigma_{\mathrm{F}} \sqrt{2 \ln (4 n m / \beta)}$. Hence, if we set the clipping threshold for the response $y_{i j}$ to be $\zeta=\left(\mu \sqrt{k \lambda_{k}}+\sigma_{F}\right) \sqrt{2 \ln (4 n m / \beta)}$, then w.p. at least $1-\beta / 2$, clipping will not have any impact on the analysis. Call this event \mathcal{A}. We will perform the linear-algebra analysis
below without conditioning on this event, but our application of matrix Bernstein [50, Theorem 1.4] will rely on this bound.
We first note that for a Gaussian random vector \mathbf{x}, we have

$$
\begin{equation*}
\mathbb{E}\left[\frac{\mathbf{x}}{\|\mathbf{x}\|_{2}} \mathbf{x}^{\top}\right]=\mathbb{E}\left[\frac{\mathbf{x} \mathbf{x}^{\top}}{\mathbf{x}^{\top} \mathbf{x}}\|\mathbf{x}\|_{2}\right]=\frac{\mathbb{I}}{d} \cdot \mathbb{E}\left[\|\mathbf{x}\|_{2}\right]=\frac{\Gamma\left(\frac{d+1}{2}\right)}{d \sqrt{2} \Gamma\left(\frac{d}{2}\right)} \mathbb{I} \simeq \frac{1}{\sqrt{d}} \mathbb{I} \tag{5}
\end{equation*}
$$

This can be seen by first noting that the magnitude of a random Gaussian vector is independent of its direction (i.e., the Gaussian measure with identity covariance is a product measure in spherical coordinates, trivial from the fact that it is spherically symmetric), then explicitly evaluating the expected normalized outer product $\frac{\mathbf{x \mathbf { x } ^ { \top }}}{\mathbf{x} \cdot \mathbf{x}}$. Term-by-term, this evaluation reduces to $\mathbb{E}\left[\frac{\mathbf{x}[i] \mathbf{x}[j]}{\sum_{i=1}^{d} \mathbf{x}[i]^{2}}\right]$. Symmetry implies this expectation is 0 for $i \neq j$ and $\frac{1}{d}$ for $i=j$. Finally we apply a well-known formula for the expected Euclidean norm of a Gaussian random vector [45]. We now have (6) and (7) (as a measure of bias and variance) for any $i \in[m / 2], j \in[n]$. Here, $\left\|\boldsymbol{W}_{i j}\right\|_{2}$ is the operator norm of $\boldsymbol{W}_{i j}$.
$\mathbb{E}\left[\boldsymbol{W}_{i j}\right]=\mathbb{E}\left[\frac{\mathbf{x}_{(2 i) j}}{\left\|\mathbf{x}_{(2 i) j}\right\|_{2}} \mathbf{x}_{(2 i) j}^{\top}\left(\boldsymbol{U}^{*} \boldsymbol{v}_{j}^{*}\left(\boldsymbol{v}_{j}^{*}\right)^{\top}\left(\boldsymbol{U}^{*}\right)^{\top}\right) \cdot \frac{\mathbf{x}_{(2 i+1) j}}{\left\|\mathbf{x}_{(2 i+1) j}\right\|_{2}} \mathbf{x}_{(2 i+1) j}^{\top}\right] \simeq \frac{1}{d} \boldsymbol{U}^{*}\left(\boldsymbol{v}_{j}^{*}\left(\boldsymbol{v}_{j}^{*}\right)^{\top}\right)\left(\boldsymbol{U}^{*}\right)^{\top}$

$$
\begin{equation*}
\left\|\boldsymbol{W}_{i j}\right\|_{2} \leq \zeta^{2} \tag{6}
\end{equation*}
$$

Therefore, by (6) we have the following. Here, $\boldsymbol{V}^{*}=\left[\boldsymbol{v}_{1}^{*}|\cdots| \boldsymbol{v}_{n}^{*}\right]$.
$\boldsymbol{B}=\frac{4}{n m} \sum_{i \in[m / 4], j \in[n]} \mathbb{E}\left[\boldsymbol{W}_{i j}\right] \simeq \boldsymbol{U}^{*}\left(\frac{1}{d n} \sum_{j=1}^{n} \boldsymbol{v}_{j}^{*}\left(\boldsymbol{v}_{j}^{*}\right)^{\top}\right)\left(\boldsymbol{U}^{*}\right)^{\top}=\frac{1}{d n} \boldsymbol{U}^{*}\left(\boldsymbol{V}^{*}\left(\boldsymbol{V}^{*}\right)^{\top}\right)\left(\boldsymbol{U}^{*}\right)^{\top}$

We will now bound $\left\|\frac{4}{n m} \sum_{i \in[m / 4], j \in[n]} \boldsymbol{W}_{i j}-\boldsymbol{B}\right\|_{2}$ using Matrix Bernstein's inequality [49, Theorem
1.4]. Let $\boldsymbol{A}_{i j}=\boldsymbol{W}_{i j}-\frac{1}{d} \cdot \boldsymbol{U}^{*}\left(\boldsymbol{v}_{j}^{*}\left(\boldsymbol{v}_{j}^{*}\right)^{\top}\right)\left(\boldsymbol{U}^{*}\right)^{\top}$. Clearly, $\mathbb{E}\left[\boldsymbol{A}_{i j}\right]=0$, and $\left\|\boldsymbol{A}_{i j} \cdot 1_{\mathcal{A}}\right\|_{2} \leq \zeta^{2}+\frac{C^{2}}{d}$. Now, in the following we bound $\left\|\sum_{i \in[m / 4], j \in[n]} \mathbb{E}\left[\boldsymbol{A}_{i j}^{2}\right]\right\|_{2}$. Let Π_{j}^{*} be the projector onto the eigenspace of $\boldsymbol{U}^{*} \boldsymbol{v}_{j}^{*}\left(\boldsymbol{v}_{j}^{*}\right)^{\top}\left(\boldsymbol{U}^{*}\right)^{\top}$. We have the following in (9).

$$
\begin{align*}
\sum_{i \in[m / 4], j \in[n]} \mathbb{E}\left[\boldsymbol{A}_{i j}^{2}\right] & =\sum_{i \in[m / 4], j \in[n]} \mathbb{E}\left[\boldsymbol{W}_{i j}^{2}\right]-\frac{m}{4 d^{2}} \sum_{j \in[n]} \boldsymbol{U}^{*} \boldsymbol{v}_{j}^{*}\left(\boldsymbol{v}_{j}^{*}\right)^{\top}\left(\boldsymbol{U}^{*}\right)^{\top} \boldsymbol{U}^{*} \boldsymbol{v}_{j}^{*}\left(\boldsymbol{v}_{j}^{*}\right)^{\top}\left(\boldsymbol{U}^{*}\right)^{\top} \\
& =\sum_{i \in[m / 4], j \in[n]} \mathbb{E}\left[\boldsymbol{W}_{i j}^{2}\right]-\frac{m}{4 d^{2}} \sum_{j \in[n]}\left\|\boldsymbol{U}^{*} \boldsymbol{v}_{j}^{*}\right\|_{2}^{4} \cdot \Pi_{j}^{*} \tag{9}
\end{align*}
$$

We now bound $\mathbb{E}\left[\boldsymbol{W}_{i j}^{2}\right]$ the first term in (9). We have the following.

$$
\begin{align*}
\mathbb{E}\left[\boldsymbol{W}_{i j}^{2}\right] & =\mathbb{E}\left[\frac{\mathbf{x}_{(2 i) j} \mathbf{x}_{(2 i) j}^{\top}}{\left\|\mathbf{x}_{(2 i) j}\right\|_{2}} \boldsymbol{U}^{*}\left(\boldsymbol{v}_{j}^{*}\left(\boldsymbol{v}_{j}^{*}\right)^{\top}\right)\left(\boldsymbol{U}^{*}\right)^{\top} \frac{\mathbf{x}_{(2 i+1) j} \mathbf{x}_{(2 i+1) j}^{\top}}{\left\|\mathbf{x}_{(2 i+1) j}\right\|_{2}} \frac{\mathbf{x}_{(2 i+1) j} \mathbf{x}_{(2 i+1) j}^{\top}}{\left\|\mathbf{x}_{(2 i+1) j}\right\|_{2}} \boldsymbol{U}^{*}\left(\boldsymbol{v}_{j}^{*}\left(\boldsymbol{v}_{j}^{*}\right)^{\top}\right)\left(\boldsymbol{U}^{*}\right)^{\top} \frac{\mathbf{x}_{(2 i) j} \mathbf{x}_{(2 i) j}^{\top}}{\left\|\mathbf{x}_{(2 i) j}\right\|_{2}}\right] \\
& =\mathbb{E}\left[\frac{1}{\left\|\mathbf{x}_{(2 i) j}\right\|_{2}^{2}} \mathbf{x}_{(2 i) j} \mathbf{x}_{(2 i) j}^{\top} \cdot \boldsymbol{U}^{*}\left(\boldsymbol{v}_{j}^{*}\left(\boldsymbol{v}_{j}^{*}\right)^{\top}\right)\left(\boldsymbol{U}^{*}\right)^{\top} \mathbf{x}_{(2 i+1) j} \mathbf{x}_{(2 i+1) j}^{\top} \boldsymbol{U}^{*}\left(\boldsymbol{v}_{j}^{*}\left(\boldsymbol{v}_{j}^{*}\right)^{\top}\right)\left(\boldsymbol{U}^{*}\right)^{\top} \mathbf{x}_{(2 i) j} \mathbf{x}_{(2 i) j}^{\top}\right] \\
& =\mathbb{E}\left[\frac{1}{\left\|\mathbf{x}_{(2 i) j}\right\|_{2}^{2}} \mathbf{x}_{(2 i) j} \mathbf{x}_{(2 i) j}^{\top} \cdot \boldsymbol{U}^{*}\left(\boldsymbol{v}_{j}^{*}\left(\boldsymbol{v}_{j}^{*}\right)^{\top}\right)\left(\boldsymbol{U}^{*}\right)^{\top} \boldsymbol{U}^{*}\left(\boldsymbol{v}_{j}^{*}\left(\boldsymbol{v}_{j}^{*}\right)^{\top}\right)\left(\boldsymbol{U}^{*}\right)^{\top} \mathbf{x}_{(2 i) j} \mathbf{x}_{(2 i) j}^{\top}\right] \tag{10}
\end{align*}
$$

In the last equality, we have used independence to evaluate the outer product in the middle of the expression. This operation can be viewed as evaluating a chain of conditional expectations: $\mathbb{E}[\boldsymbol{A B} \boldsymbol{A}]=\mathbb{E}[\mathbb{E}[\boldsymbol{A B} \boldsymbol{A} \mid \boldsymbol{A}]]=\mathbb{E}[\boldsymbol{A} \cdot \mathbb{E}[\boldsymbol{B} \mid \boldsymbol{A}] \cdot \boldsymbol{A}]=\mathbb{E}[\boldsymbol{A} \cdot \mathbb{E}[\boldsymbol{B}] \cdot \boldsymbol{A}]$. Separating the norm of $\boldsymbol{U}^{*} \boldsymbol{v}_{j}^{*}\left(\boldsymbol{U}^{*} \boldsymbol{v}_{j}^{*}\right)^{\top}$ from projection onto its range, we see

$$
\begin{align*}
\mathbb{E}\left[\boldsymbol{W}_{i j}^{2}\right] & =\mathbb{E}\left[\frac{\left\|\boldsymbol{U}^{*} \boldsymbol{v}_{j}^{*}\right\|_{2}^{4}}{\left\|\mathbf{x}_{(2 i) j}\right\|_{2}^{2}} \mathbf{x}_{(2 i) j} \mathbf{x}_{(2 i) j}^{\top} \cdot \Pi_{j}^{*} \cdot \mathbf{x}_{(2 i) j} \mathbf{x}_{(2 i) j}^{\top}\right] \\
& =\mathbb{E}\left[\frac{\left\|\boldsymbol{U}^{*} \boldsymbol{v}_{j}^{*}\right\|_{2}^{4}}{\left\|\mathbf{x}_{(2 i) j}\right\|_{2}^{2}} \mathbf{x}_{(2 i) j} \mathbf{x}_{(2 i) j}^{\top} \cdot\left(\Pi_{j}^{*}\right)^{\top} \cdot \Pi_{j}^{*} \cdot \mathbf{x}_{(2 i) j} \mathbf{x}_{(2 i) j}^{\top}\right] \\
& =\left\|\boldsymbol{U}^{*} \boldsymbol{v}_{j}^{*}\right\|_{2}^{4} \cdot \mathbb{E}\left[\left\|\Pi_{j}^{*} \mathbf{x}_{(2 i) j}\right\|_{2}^{2} \cdot \frac{\mathbf{x}_{(2 i) j} \mathbf{x}_{(2 i) j}^{\top}}{\left\|\mathbf{x}_{(2 i) j}\right\|_{2}^{2}}\right] \tag{11}
\end{align*}
$$

To estimate the expectation on the right, we let $\boldsymbol{a}=\Pi_{j}^{*} \mathbf{x}_{(2 i) j}$ and $\boldsymbol{b}=\left(\mathbb{I}-\Pi_{j}^{*}\right) \mathbf{x}_{(2 i) j}$, and note that \boldsymbol{a} and \boldsymbol{b} are independent. So we are interested in evaluating

$$
\begin{equation*}
\mathbb{E}\left[\|\boldsymbol{a}\|_{2}^{2} \frac{(\boldsymbol{a}+\boldsymbol{b})(\boldsymbol{a}+\boldsymbol{b})^{\top}}{\|\boldsymbol{a}\|_{2}^{2}+\|\boldsymbol{b}\|_{2}^{2}}\right]=\mathbb{E}\left[\frac{\|\boldsymbol{a}\|_{2}^{2}}{\|\boldsymbol{a}\|_{2}^{2}+\|\boldsymbol{b}\|_{2}^{2}}\left(\boldsymbol{a} \boldsymbol{a}^{\top}+\boldsymbol{b} \boldsymbol{b}^{\top}\right)\right]+\mathbb{E}\left[\frac{\|\boldsymbol{a}\|_{2}^{2}}{\|\boldsymbol{a}\|_{2}^{2}+\|\boldsymbol{b}\|_{2}^{2}}\left(\boldsymbol{a} \boldsymbol{b}^{\top}+\boldsymbol{b} \boldsymbol{a}^{\top}\right)\right] \tag{12}
\end{equation*}
$$

The second expectation is 0 , as can be noted by symmetry. That is, conditioning on \boldsymbol{b} and $\|\boldsymbol{a}\|_{2}$ yields the integral of a spherically symmetric random variable. We can then bound:

$$
\begin{align*}
\mathbb{E}\left[\|\boldsymbol{a}\|_{2}^{2} \frac{(\boldsymbol{a}+\boldsymbol{b})(\boldsymbol{a}+\boldsymbol{b})^{\top}}{\|\boldsymbol{a}\|_{2}^{2}+\|\boldsymbol{b}\|_{2}^{2}}\right] & \preccurlyeq \mathbb{E}\left[\frac{\|\boldsymbol{a}\|_{2}^{2}}{\|\boldsymbol{b}\|_{2}^{2}} \boldsymbol{a} \boldsymbol{a}^{\top}\right]+\mathbb{E}\left[\|\boldsymbol{a}\|_{2}^{2}\right] \mathbb{E}\left[\frac{\boldsymbol{b} \boldsymbol{b}^{\top}}{\|\boldsymbol{b}\|_{2}^{2}}\right] \\
& =\mathbb{E}\left[\frac{1}{\|\boldsymbol{b}\|_{2}^{2}}\right] \mathbb{E}\left[\|\boldsymbol{a}\|_{2}^{4}\right] \Pi_{j}^{*}+\eta\left(\mathbb{I}-\Pi_{j}^{*}\right) \tag{13}
\end{align*}
$$

for some $\eta>0 . \mathbb{E}\left[\frac{1}{\|\boldsymbol{b}\|_{2}^{2}}\right]=O\left(\frac{1}{d}\right)$ and $\mathbb{E}\left[\|\boldsymbol{a}\|_{2}^{4}\right]=O(1)$, so the first term is on the order of $\frac{1}{d} \cdot \Pi_{j}^{*}$. We evaluate η by cyclically permuting the trace:

$$
\begin{equation*}
\eta(d-1)=\operatorname{tr}\left(\eta\left(\mathbb{I}-\Pi_{j}^{*}\right)\right)=\operatorname{tr}\left(\mathbb{E}\left[\frac{\boldsymbol{b} \boldsymbol{b}^{\top}}{\|\boldsymbol{b}\|_{2}^{2}}\right]\right)=\mathbb{E}\left[\operatorname{tr}\left(\frac{\boldsymbol{b} \boldsymbol{b}^{\top}}{\|\boldsymbol{b}\|_{2}^{2}}\right)\right]=\mathbb{E}\left[\operatorname{tr}\left(\frac{\boldsymbol{b}^{\top} \boldsymbol{b}}{\|\boldsymbol{b}\|_{2}^{2}}\right)\right]=1 \tag{14}
\end{equation*}
$$

so that $\eta=\frac{1}{d-1}=O\left(\frac{1}{d}\right)$.
Putting together (13) and (14) with (11), we see

$$
\begin{equation*}
\mathbb{E}\left[\boldsymbol{W}_{i j}^{2}\right] \preccurlyeq O\left(\frac{\left\|\boldsymbol{U}^{*} \boldsymbol{v}_{j}^{*}\right\|_{2}^{4}}{d}\right) \cdot \mathbb{I} \tag{15}
\end{equation*}
$$

From (9) and (15) we have the following.

$$
\begin{equation*}
\left\|\sum_{i \in[m / 2], j \in[n]} \mathbb{E}\left[\boldsymbol{A}_{i j}^{2}\right]\right\|_{2}=O\left(\frac{m}{d} \sum_{j \in[n]}\left\|\boldsymbol{U}^{*} \boldsymbol{v}_{j}^{*}\right\|_{2}^{4}\right)=O\left(\frac{m n \mu^{4} k^{2} \lambda_{k}^{2}}{d}\right) \tag{16}
\end{equation*}
$$

Therefore we may apply Matrix Bernstein's inequality [50, Theorem 1.4] by restricting nonzero values to the previously defined event \mathcal{A} where clipping plays no role, ensuring the pointwise bound
$\left\|\boldsymbol{A}_{i j} \cdot 1_{\mathcal{A}}\right\|_{2} \leq \zeta^{2}+\frac{\mu^{2} k \lambda_{k}}{d}$. Notice that this restriction can only strengthen the bound (16). So we have the following.
$\operatorname{Pr}\left[\left\|\frac{4}{n m} \sum_{i \in[m / 4], j \in[n]} \boldsymbol{A}_{i j} \cdot 1_{\mathcal{A}}\right\|_{2} \geq \frac{4 t}{n m}\right] \leq d \cdot \exp \left(-\frac{t^{2} / 2}{O\left(\frac{n m \mu^{4} k^{2} \lambda_{k}^{2}}{d}\right)+\left(\zeta^{2}+\frac{C^{2}}{d}\right) \cdot \frac{t}{3}}\right) \leq \frac{\beta}{2}$

Setting $t=\sqrt{\log (d / \beta)} \cdot \Omega\left(\max \left\{\sqrt{\frac{n m \mu^{4} k^{2} \lambda_{k}^{2}}{d}},\left(\zeta^{2}+\frac{\mu^{2} k \lambda_{k}}{d}\right) \sqrt{\log (d / \beta)}\right\}\right)$ in (17) suffices, by setting up and solving the associated quadratic. Therefore, since $\mathbb{P}\left[\mathcal{A}^{c}\right] \leq \frac{\beta}{2}$, w.p. at least $1-\beta$ we have:

$$
\begin{equation*}
\left\|\frac{4}{n m} \sum_{i \in[m / 4], j \in[n]} \boldsymbol{A}_{i j}\right\|_{2} \leq \sqrt{\log (d / \beta)} \cdot O\left(\max \left\{\frac{\mu^{2} k \lambda_{k}}{\sqrt{d n m}}, \frac{\left(\zeta^{2}+\mu^{2} k \lambda_{k} / d\right) \sqrt{\log (d / \beta)}}{n m}\right\}\right)=O\left(\sqrt{\frac{\zeta^{4} \cdot \log (d / \beta)}{d n m}}\right) \tag{18}
\end{equation*}
$$

The last equality in (18) follows from the assumption $m n=$ $\Omega\left(d\left(\zeta^{2}+\frac{\mu^{2} k \lambda_{k}}{d}\right)^{2} \cdot \log (d / \beta) /\left(\mu^{2} k \lambda_{k}\right)^{2}\right)$. With (18) in hand, we now use the DavisKahn Sin Θ-theorem [12] from matrix perturbation theory to bound $\left\|\Pi^{\text {non-priv }}-\Pi^{*}\right\|_{2}$. We use the following variant in Lemma B.2.

Lemma B. 2 (Sin Θ-Theorem [12]). Let \boldsymbol{G} and \boldsymbol{H} be two PSD matrices. Let $\Pi_{\boldsymbol{G}}^{(i)}$ be the projector onto the top-i eigenvectors of \boldsymbol{G}, and let $\operatorname{eig}^{(i)}(\boldsymbol{G})$ be the i-th largest eigenvalue of \boldsymbol{G}. Define these quantities correspondingly for \boldsymbol{H}. Then, the following is true.

$$
\left(\operatorname{eig}^{(i)}(\boldsymbol{G})-\operatorname{eig}^{(j+1)}(\boldsymbol{G})\right) \cdot\left(\left(\mathbb{I}-\Pi_{\boldsymbol{H}}^{(j)}\right) \Pi_{\boldsymbol{G}}^{(i)}\right) \leq\|\boldsymbol{G}-\boldsymbol{H}\|_{2}
$$

Let $\boldsymbol{G}=\frac{1}{d n} \boldsymbol{U}^{*}\left(\boldsymbol{V}^{*}\left(\boldsymbol{V}^{*}\right)^{\top}\right)\left(\boldsymbol{U}^{*}\right)^{\top}$ and $\boldsymbol{H}=\frac{4}{n m} \sum_{i \in[m / 4], j \in[n]} \boldsymbol{W}_{i j}$. Note that both \boldsymbol{G} and \boldsymbol{H} are PSD matrices. Furthermore, from (18) we have $\|\boldsymbol{G}-\boldsymbol{H}\|_{2}=O\left(\sqrt{\frac{\zeta^{4} \cdot \log (d / \beta)}{d n m}}\right)$ w.p. $\geq 1-\beta$. Recall that $\Pi^{\text {non-priv }}$ is the projector onto the rank- k approximation of \boldsymbol{H}. Following the notation of Lemma B.2, and by assumption $\sqrt{n m}=\Omega\left(\sqrt{d \zeta^{4} \log (d / \beta)} / \lambda_{k}\right)$, we have eig ${ }^{(k)}(\boldsymbol{G})=\frac{\lambda_{k}}{d}$, $\operatorname{eig}^{(k)}\left(\Pi^{\text {non-priv }}\right) \in\left[\frac{\operatorname{eig}^{(k)}(\boldsymbol{G})}{2}, 2 \cdot \operatorname{eig}^{(k)}(\boldsymbol{G})\right]$, and eig ${ }^{(k+1)}\left(\Pi^{\text {non-priv }}\right) \leq \frac{\operatorname{eig}^{(k)}(\boldsymbol{G})}{2}$. Here, λ_{k} is the k-th eigenvalue of $\boldsymbol{U}^{*}\left(\frac{1}{n} \boldsymbol{V}^{*}\left(\boldsymbol{V}^{*}\right)^{\top}\right)\left(\boldsymbol{U}^{*}\right)^{\top}$, which equals the k-th eigenvalue of $\frac{1}{n} \boldsymbol{V}^{*}\left(\boldsymbol{V}^{*}\right)^{\top}$. Also, notice that the projector onto G equals Π^{*} as long as $\lambda_{k}>0$, which is true by assumption.
Therefore, from Lemma B. 2 we have the following w.p. at least $1-\beta$.

$$
\left.\begin{array}{l}
\left\|\left(\mathbb{I}-\Pi^{*}\right) \Pi^{\text {non-priv }}\right\|_{2}=O\left(\frac{\sqrt{\frac{\zeta^{4} \cdot \log (d / \beta)}{d n m}}}{\operatorname{eig}^{(k)}(\boldsymbol{G})}\right.
\end{array}\right)
$$

Furthermore, notice that $\left\|\Pi^{*}-\Pi^{\text {non-priv }}\right\|_{2} \leq\left\|\left(\mathbb{I}-\Pi^{*}\right) \Pi^{\text {non-priv }}\right\|_{2}+\left\|\left(\mathbb{I}-\Pi^{\text {non-priv }}\right) \Pi^{*}\right\|_{2}$. Plugging in the value of $\operatorname{eig}^{(k)}(\boldsymbol{G})$ in (19) and (20) completes the proof.

B. 4 Proof of Theorem 4.2

Proof. Let $b=\left\langle\boldsymbol{a}, \boldsymbol{U}^{*} \boldsymbol{v}^{*}\right\rangle+\boldsymbol{w}$, where $\boldsymbol{a} \sim \mathcal{N}(0,1)^{d}, \boldsymbol{w} \sim \mathcal{N}\left(0, \sigma_{\mathrm{F}}^{2}\right), \boldsymbol{U}^{*} \in \mathbb{R}^{d \times k}$ is a matrix with orthonormal columns, and $\boldsymbol{v}^{*} \in \mathbb{R}^{k}$. Consider the loss function $\mathcal{L}(\boldsymbol{U}, \boldsymbol{v})=\mathbb{E}_{\boldsymbol{a}, \boldsymbol{w}}\left[(b-\langle\boldsymbol{a}, \boldsymbol{U} \boldsymbol{v}\rangle)^{2}\right]$, where $\boldsymbol{U} \in \mathbb{R}^{d \times k}$ is a matrix with orthonormal columns and $\boldsymbol{v} \in \mathbb{R}^{k}$. We have,

$$
\begin{align*}
\mathcal{L}(\boldsymbol{U}, \boldsymbol{v}) & =\mathbb{E}\left[\left(\boldsymbol{a}^{\top}\left(\boldsymbol{U}^{*} \boldsymbol{v}^{*}-\boldsymbol{U} \boldsymbol{v}\right)+\boldsymbol{w}\right)^{2}\right] \\
& =\left(\boldsymbol{U}^{*} \boldsymbol{v}^{*}-\boldsymbol{U} \boldsymbol{v}\right)^{\top} \mathbb{E}\left[\boldsymbol{a} \boldsymbol{a}^{\top}\right]\left(\boldsymbol{U}^{*} \boldsymbol{v}^{*}-\boldsymbol{U} \boldsymbol{v}\right)+\sigma_{\mathrm{F}}^{2} \\
& =\left\|\boldsymbol{U}^{*} \boldsymbol{v}^{*}-\boldsymbol{U} \boldsymbol{v}\right\|_{2}^{2}+\sigma_{\mathrm{F}}^{2} \tag{21}
\end{align*}
$$

We consider $\widehat{\boldsymbol{v}}=\underset{\boldsymbol{v}}{\arg \min }\left\|\boldsymbol{y}-\boldsymbol{X}^{\top} \widehat{\boldsymbol{U}} \boldsymbol{v}\right\|_{2}^{2}=\left(\widehat{\boldsymbol{U}}^{\top} \boldsymbol{X} \boldsymbol{X}^{\top} \widehat{\boldsymbol{U}}\right)^{-1} \widehat{\boldsymbol{U}}^{\top} \boldsymbol{X} \boldsymbol{y}$, where $\widehat{\boldsymbol{U}} \in \mathbb{R}^{d \times k}$ is some matrix with orthonormal columns, $\boldsymbol{X} \sim \mathcal{N}(0,1)^{d \times m}$ and $\boldsymbol{y}=\boldsymbol{X}^{\top} \boldsymbol{U}^{*} \boldsymbol{v}^{*}+\boldsymbol{w}\left(\right.$ with $\boldsymbol{w} \sim \mathcal{N}\left(0, \sigma_{\mathrm{F}}^{2}\right)^{m}$. Notice that the inverse exists w.p. at least $1-\frac{1}{m^{10}}$ as long as $m=\Omega(k)$.
In the following, we will bound $\mathcal{L}(\widehat{\boldsymbol{U}}, \widehat{\boldsymbol{v}})$. To do so, we will first bound $\left\|\boldsymbol{U}^{*} \boldsymbol{v}^{*}-\widehat{\boldsymbol{U}} \boldsymbol{v}\right\|_{2}^{2}$ in (21). Assume, $\widehat{\Pi}=\widehat{\boldsymbol{U}} \widehat{\boldsymbol{U}}^{\top}, \Pi^{*}=\boldsymbol{U}^{*}\left(\boldsymbol{U}^{*}\right)^{\top}, \Delta=\widehat{\Pi}-\Pi^{*}$, and $\|\Delta\|_{2} \leq \Gamma$. We have,

$$
\begin{align*}
\mathbb{E}\left[\left\|\boldsymbol{U}^{*} \boldsymbol{v}^{*}-\widehat{\boldsymbol{U}} \widehat{\boldsymbol{v}}\right\|_{2}^{2}\right] & =\mathbb{E}\left[\left\|\widehat{\boldsymbol{U}}\left(\widehat{\boldsymbol{U}}^{\top} \boldsymbol{X} \boldsymbol{X}^{\top} \widehat{\boldsymbol{U}}\right)^{-1} \widehat{\boldsymbol{U}}^{\top} \boldsymbol{X} \boldsymbol{y}-\boldsymbol{U}^{*} \boldsymbol{v}^{*}\right\|_{2}^{2}\right] \\
& =\mathbb{E}\left[\left\|\widehat{\boldsymbol{U}}\left(\widehat{\boldsymbol{U}}^{\top} \boldsymbol{X} \boldsymbol{X}^{\top} \widehat{\boldsymbol{U}}\right)^{-1} \widehat{\boldsymbol{U}}^{\top} \boldsymbol{X} \boldsymbol{X}^{\top} \boldsymbol{U}^{*} \boldsymbol{v}^{*}-\boldsymbol{U}^{*} \boldsymbol{v}^{*}+\widehat{\boldsymbol{U}}\left(\widehat{\boldsymbol{U}}^{\top} \boldsymbol{X} \boldsymbol{X}^{\top} \widehat{\boldsymbol{U}}\right)^{-1} \widehat{\boldsymbol{U}}^{\top} \boldsymbol{X} \boldsymbol{w}\right\|_{2}^{2}\right] \\
& =\mathbb{E}\left[\left\|\widehat{\boldsymbol{U}}\left(\widehat{\boldsymbol{U}}^{\top} \boldsymbol{X} \boldsymbol{X}^{\top} \widehat{\boldsymbol{U}}\right)^{-1} \widehat{\boldsymbol{U}}^{\top} \boldsymbol{X} \boldsymbol{X}^{\top} \boldsymbol{U}^{*} \boldsymbol{v}^{*}-\boldsymbol{U}^{*} \boldsymbol{v}^{*}\right\|_{2}^{2}\right]+\frac{k}{m} \sigma_{\mathrm{F}}^{2} \\
& =\mathbb{E}\left[\left\|\widehat{\boldsymbol{U}}\left(\widehat{\boldsymbol{U}}^{\top} \boldsymbol{X} \boldsymbol{X}^{\top} \widehat{\boldsymbol{U}}\right)^{-1} \widehat{\boldsymbol{U}}^{\top} \boldsymbol{X} \boldsymbol{X}^{\top}\left(\widehat{\boldsymbol{U}} \widehat{\boldsymbol{U}}^{\top} \cdot \boldsymbol{U}^{*} \boldsymbol{v}^{*}+\left(\mathbb{I}-\widehat{\boldsymbol{U}} \widehat{\boldsymbol{U}}^{\top}\right) \boldsymbol{U}^{*} \boldsymbol{v}^{*}\right)-\boldsymbol{U}^{*} \boldsymbol{v}^{*}\right\|_{2}^{2}\right]+\frac{k}{m} \sigma_{\mathrm{F}}^{2} \\
& =\mathbb{E}\left[\left\|\widehat{\boldsymbol{U}}\left(\widehat{\boldsymbol{U}}^{\top} \boldsymbol{X} \boldsymbol{X}^{\top} \widehat{\boldsymbol{U}}\right)^{-1} \widehat{\boldsymbol{U}}^{\top} \boldsymbol{X} \boldsymbol{X}^{\top} \widehat{\boldsymbol{U}} \widehat{\boldsymbol{U}}^{\top} \boldsymbol{U}^{*} \boldsymbol{v}^{*}-\boldsymbol{U}^{*} \boldsymbol{v}^{*}\right\|_{2}^{2}\right]+\frac{k}{m} \sigma_{\mathrm{F}}^{2} \\
& =\left\|\widehat{\boldsymbol{U}} \widehat{\boldsymbol{U}}^{\top} \boldsymbol{U}^{*} \boldsymbol{v}^{*}-\boldsymbol{U}^{*} \boldsymbol{v}^{*}\right\|_{2}^{2}+\frac{k}{m} \sigma_{\mathrm{F}}^{2} \\
& =\left\|\left(\Pi^{*}+\Delta\right) \boldsymbol{U}^{*} \boldsymbol{v}^{*}-\boldsymbol{U}^{*} \boldsymbol{v}^{*}\right\|_{2}^{2}+\frac{k}{m} \sigma_{\mathrm{F}}^{2} \\
& =\left\|\Delta \boldsymbol{U}^{*} \boldsymbol{v}^{*}\right\|_{2}^{2}+\frac{k}{m} \sigma_{\mathrm{F}}^{2} \\
& \leq \Gamma^{2}\left\|\boldsymbol{U}^{*} \boldsymbol{v}^{*}\right\|_{2}^{2}+\frac{k}{m} \sigma_{\mathrm{F}}^{2} \tag{22}
\end{align*}
$$

Therefore, by (22) and (21), we have the following.

$$
\begin{equation*}
\mathbb{E}[\mathcal{L}(\widehat{\boldsymbol{U}}, \widehat{\boldsymbol{v}})] \leq \Gamma^{2}\left\|\boldsymbol{U}^{*} \boldsymbol{v}^{*}\right\|_{2}^{2}+\left(\frac{k}{m}+1\right) \sigma_{\mathrm{F}}^{2} \tag{23}
\end{equation*}
$$

Let $\Pi^{\text {priv }}=\boldsymbol{U}^{\text {priv }}\left(\boldsymbol{U}^{\text {priv }}\right)^{\top}$. (23) immediately implies,

$$
\begin{equation*}
\operatorname{Risk}_{\text {Pop }}\left(\left(\boldsymbol{U}^{\text {priv }}, \boldsymbol{V}^{\text {priv }}\right) ;\left(\boldsymbol{U}^{*}, \boldsymbol{V}^{*}\right)\right) \leq\left\|\Pi^{\text {priv }}-\Pi^{*}\right\|_{2}^{2} \cdot \mu^{2} k \lambda_{k}+\left(\frac{k}{m}\right) \sigma_{\mathrm{F}}^{2} \tag{24}
\end{equation*}
$$

Plugging in the bounds from Lemma 4.4 (and instantiating via Lemma 4.6) completes the proof.

B.5 Proof of Lemma 4.4

Proof. Consider the t-th iteration of Algorithm 1. We first simplify the notation, i.e., let $\boldsymbol{U}=\boldsymbol{U}^{(t)}$ and $\boldsymbol{U}^{+}=\boldsymbol{U}^{(t+1)}, \boldsymbol{v}_{j}=\boldsymbol{v}_{j}^{(t)}$.

Now, the clipping parameters are set large enough so that under the data generation assumptions (Assumption 4.1), there is no "clipping". So the updates in the Algorithm 1 and Algorithm 2 reduce to:

$$
\begin{align*}
& \boldsymbol{v}_{j}=\left(\frac{2}{m} \sum_{i \in[m / 2]} \boldsymbol{U}^{\top} \mathbf{x}_{i j} \mathbf{x}_{i j}^{\top} \boldsymbol{U}\right)^{-1}\left(\frac{2}{m} \sum_{i \in[m / 2]} y_{i j} \cdot \boldsymbol{U}^{\top} \mathbf{x}_{i j}\right), \\
& \boldsymbol{H}^{(j)}=\frac{2}{m} \sum_{i \in[m / 2+1, m]} \mathbf{x}_{i j} \mathbf{x}_{i j}^{\top}, \\
& \boldsymbol{r}^{(t)}=\sum_{j \in \mathcal{S}_{t}}\left(\frac{2}{m} \sum_{i \in[m / 2+1, m]} \mathbf{x}_{i j} \boldsymbol{z}_{i j}\right) \boldsymbol{v}_{j}^{\top}+\boldsymbol{g}^{(t)}, \\
& \widehat{\boldsymbol{U}}=\widetilde{\mathcal{A}}^{-1}\left(\sum_{j \in \mathcal{S}_{t}} \boldsymbol{H}^{(j)} \boldsymbol{U}^{*} \boldsymbol{v}_{j}^{*} \boldsymbol{v}_{j}^{\top}+\boldsymbol{r}^{(t)}\right), \\
& \boldsymbol{U}^{+}=\widehat{\boldsymbol{U}} \boldsymbol{R}^{-1} \tag{25}
\end{align*}
$$

where \boldsymbol{U}^{+}and \boldsymbol{R} are obtained by QR decomposition of $\widehat{\boldsymbol{U}}$. Also, $\boldsymbol{g}^{(t)} \sim \eta \cdot \zeta \Delta_{(\varepsilon, \delta)} \cdot \mathcal{N}(0,1)^{d k}$, and $\widetilde{\mathcal{A}}: \mathbb{R}^{d \times k} \rightarrow \mathbb{R}^{d \times k}$ is defined as:

$$
\begin{aligned}
\widetilde{\mathcal{A}}(\boldsymbol{U}) & =\mathcal{A}(\boldsymbol{U})+\mathcal{G}(\boldsymbol{U}) \text { with } \\
\mathcal{A}(\boldsymbol{U}) & =\frac{2}{m} \sum_{i \in[m / 2+1, m]} \boldsymbol{H}^{(j)} \boldsymbol{U} \boldsymbol{v}_{j} \boldsymbol{v}_{j}^{\top}, \text { and } \mathcal{G}(\boldsymbol{U})=\sum_{a b}\left\langle\boldsymbol{G}_{a b}, \boldsymbol{U}\right\rangle \mathbf{e}_{a} \mathbf{e}_{b}^{\top},
\end{aligned}
$$

where \mathbf{e}_{a} is the a-th standard canonical basis vector, and for $\overrightarrow{\boldsymbol{G}_{a b}}$ being the vectorized version of $\boldsymbol{G}_{a b}, \overline{\boldsymbol{G}}=\left[\overrightarrow{\boldsymbol{G}_{11}} ; \overrightarrow{\boldsymbol{G}_{12}} ; \ldots ; \overrightarrow{\boldsymbol{G}_{a b}} ; \ldots \overrightarrow{\boldsymbol{G}_{d k}}\right] \sim \eta \zeta \Delta_{(\varepsilon, \delta)} \cdot \mathcal{N}_{\text {sym }}(0,1)^{d k \times d k}$. Note that \mathcal{A} and \mathcal{G}, and consequently $\widetilde{\mathcal{A}}$, are self-adjoint operator i.e. $\langle\widetilde{\mathcal{A}}(\boldsymbol{U}), \overline{\boldsymbol{U}}\rangle=\langle\boldsymbol{U}, \widetilde{\mathcal{A}}(\overline{\boldsymbol{U}})\rangle$ for all $\boldsymbol{U}, \overline{\boldsymbol{U}}$. Furthermore, let $\mathcal{W}(\boldsymbol{U})=\boldsymbol{U} \sum_{j} \boldsymbol{v}_{j} \boldsymbol{v}_{j}^{\top}$.
Note that the update for \boldsymbol{v}_{j} is same as the update in the non-private Alternating Minimization algorithm (similar to Algorithm 1 of [46]). Now, let $\boldsymbol{Q}=\left(\boldsymbol{U}^{*}\right)^{\top} \boldsymbol{U}$, and $\Delta \in \mathbb{R}^{d \times k}$ be such that $\Delta_{j}=\boldsymbol{v}_{j}-\boldsymbol{Q}^{-1} \boldsymbol{v}_{j}^{*}$. Using Lemma B.4, we get:

$$
\begin{align*}
& \left\|\boldsymbol{v}_{j}\right\|_{2} \leq \widetilde{O}\left(\frac{\mu^{2} k}{n} \lambda_{k}^{t}\right), \quad \lambda_{k} \leq 2 \lambda_{k}^{t} \\
& \max _{j}\left\|\Delta_{j}\right\|_{2} \leq \widetilde{O}\left(\left\|\left(\mathbb{I}-\boldsymbol{U}^{*}\left(\boldsymbol{U}^{*}\right)^{\top}\right) \boldsymbol{U}\right\|_{2} \cdot \mu \sqrt{k \lambda_{k}}\right)+\sigma_{\mathrm{F}} \sqrt{\frac{k \log n}{m}} \tag{26}
\end{align*}
$$

where λ_{i}^{t} is the i-th eigenvalue of $\frac{1}{n} \sum_{j} \boldsymbol{v}_{j} \boldsymbol{v}_{j}^{\top}$.
Now, using standard calculations, we get:

$$
\begin{align*}
& \widehat{\boldsymbol{U}}-\boldsymbol{U}^{*} \boldsymbol{Q} \tag{27}\\
= & \widetilde{\mathcal{A}}^{-1}\left(\sum_{j} \boldsymbol{H}^{(j)} \boldsymbol{U}^{*} \boldsymbol{Q}\left(\boldsymbol{Q}^{-1} \boldsymbol{v}_{j}^{*}-\boldsymbol{v}_{j}\right) \boldsymbol{v}_{j}^{\top}+\sum_{i j} \boldsymbol{z}_{i j} \mathbf{x}_{i j} \boldsymbol{v}_{j}^{\top}+\boldsymbol{g}^{(t)}-\mathcal{G}\left(\boldsymbol{U}^{*} \boldsymbol{Q}\right)\right) \\
= & \mathcal{W}^{-\frac{1}{2}}\left(\mathcal{W}^{\frac{1}{2}} \widetilde{\mathcal{A}}^{-1} \mathcal{W}^{\frac{1}{2}}\right) \mathcal{W}^{-\frac{1}{2}}\left(\sum_{j} \boldsymbol{H}^{(j)} \boldsymbol{U}^{*} \boldsymbol{Q}\left(\boldsymbol{Q}^{-1} \boldsymbol{v}_{j}^{*}-\boldsymbol{v}_{j}\right) \boldsymbol{v}_{j}^{\top}+\sum_{i j} \boldsymbol{z}_{i j} \mathbf{x}_{i j} \boldsymbol{v}_{j}^{\top}+\boldsymbol{g}^{(t)}-\mathcal{G}\left(\boldsymbol{U}^{*} \boldsymbol{Q}\right)\right) \\
= & \boldsymbol{U}^{*} \boldsymbol{Q} \sum_{j}\left(\boldsymbol{Q}^{-1} \boldsymbol{v}_{j}^{*}-\boldsymbol{v}_{j}\right) \boldsymbol{v}_{j}^{\top}\left(\sum_{j} \boldsymbol{v}_{j} \boldsymbol{v}_{j}^{\top}\right)^{-1}+\boldsymbol{F}+\widetilde{\boldsymbol{F}} \tag{28}
\end{align*}
$$

where for $\mathcal{E}=\mathcal{W}^{\frac{1}{2}} \widetilde{\mathcal{A}}^{-1} \mathcal{W}^{\frac{1}{2}}-I$,

$$
\begin{aligned}
\boldsymbol{F}= & \mathcal{W}^{-\frac{1}{2}} \mathcal{E} \mathcal{W}^{-\frac{1}{2}}\left(\boldsymbol{U}^{*} \boldsymbol{Q}\left(\boldsymbol{Q}^{-1} \boldsymbol{v}_{j}^{*}-\boldsymbol{v}_{j}\right) \boldsymbol{v}_{j}^{\top}\right) \\
& +\mathcal{W}^{-\frac{1}{2}}(\mathbb{I}+\mathcal{E}) \mathcal{W}^{-\frac{1}{2}}\left(\sum_{j}\left(\boldsymbol{H}^{(j)}-I\right) \boldsymbol{U}^{*} \boldsymbol{Q}\left(\boldsymbol{Q}^{-1} \boldsymbol{v}_{j}^{*}-\boldsymbol{v}_{j}\right) \boldsymbol{v}_{j}^{\top}+\sum_{i j} \boldsymbol{z}_{i j} \mathbf{x}_{i j} \boldsymbol{v}_{j}^{\top}\right), \\
\widetilde{\boldsymbol{F}}= & \mathcal{W}^{-\frac{1}{2}}(\mathbb{I}+\mathcal{E}) \mathcal{W}^{-\frac{1}{2}}\left(\boldsymbol{g}^{(t)}-\mathcal{G}\left(\boldsymbol{U}^{*} \boldsymbol{Q}\right)\right) .
\end{aligned}
$$

Using Lemma B. 3 and the assumption on $n, \Delta_{(\varepsilon, \delta)}$, we get:

$$
\begin{equation*}
\|\mathcal{E}\|_{F} \leq \frac{1}{32} \tag{29}
\end{equation*}
$$

Furthermore, using Lemma B.6, setting $\kappa=\lambda_{1} / \lambda_{k}$, we get w.p. $\geq 1-1 / n^{100}$,

$$
\begin{equation*}
\|\boldsymbol{F}\|_{F} \leq \widetilde{O}\left(\mu \log n \cdot \sqrt{\frac{\kappa d k^{2} T}{m n}}\left\|\left(\mathbb{I}-\boldsymbol{U}^{*}\left(\boldsymbol{U}^{*}\right)^{\top}\right) \boldsymbol{U}\right\|_{F}\right)+\sqrt{\frac{\mu^{2} d k T \log n}{m n}} \cdot \frac{\sigma_{F}}{\sqrt{\lambda_{k}}} \tag{30}
\end{equation*}
$$

Finally, using Lemma B.7, we get w.p. $\geq 1-1 / n^{100}$,

$$
\begin{equation*}
\|\widetilde{\boldsymbol{F}}\|_{F} \leq \widetilde{O}\left(\frac{\left(\sqrt{k} \eta^{2}+\eta \zeta\right) \Delta_{(\varepsilon, \delta)} \sqrt{d k}}{n \lambda_{k}}\right) \tag{31}
\end{equation*}
$$

That is, by setting $n=\widetilde{\Omega}\left(\frac{\lambda_{1}}{\lambda_{k}} \cdot \mu^{2} d k+\Delta_{(\varepsilon, \delta)} \cdot\left(\mathrm{NSR}^{2}+\mu^{2} k\right) d^{3 / 2}\right)$ and $m=$ $\widetilde{\Omega}\left((1+\mathrm{NSR}) \cdot k+k^{2}\right)$ (as per Assumption 4.1), we get:

$$
\|\boldsymbol{F}\|_{F} \leq \frac{1}{64},\|\widetilde{\boldsymbol{F}}\|_{F} \leq \frac{1}{64}
$$

Similarly, using n and m as specified in Assumption 4.1 and Lemma B.6, for $\boldsymbol{M}=$ $\boldsymbol{U}^{*} \boldsymbol{Q} \sum_{j}\left(\boldsymbol{Q}^{-1} \boldsymbol{v}_{j}^{*}-\boldsymbol{v}_{j}\right) \boldsymbol{v}_{j}^{\top}\left(\sum_{j} \boldsymbol{v}_{j} \boldsymbol{v}_{j}^{\top}\right)^{-1}$, we get

$$
\|\boldsymbol{M}\|_{F} \leq \frac{1}{64}
$$

Finally, due to the initialization condition, $\sigma_{\min }(\boldsymbol{Q}) \geq 1 / 2$. Thus, using standard calculations (for example, see Lemma A. 3 in [46]), we get:

$$
\left\|\boldsymbol{R}^{-1}\right\| \leq 4
$$

where $\widehat{\boldsymbol{U}}=\boldsymbol{U}^{+} \boldsymbol{R}$.
Note that $\boldsymbol{U}^{*} \boldsymbol{Q} \sum_{j}\left(\boldsymbol{Q}^{-1} \boldsymbol{v}_{j}^{*}-\boldsymbol{v}_{j}\right) \boldsymbol{v}_{j}^{\top}\left(\sum_{j} \boldsymbol{v}_{j} \boldsymbol{v}_{j}^{\top}\right)^{-1}$ lies along \boldsymbol{U}^{*}, so does not contribute to the error $\left\|\left(I-\boldsymbol{U}^{*}\left(\boldsymbol{U}^{*}\right)^{\top}\right) \boldsymbol{U}^{+}\right\|_{F}$. Hence,

$$
\left.\begin{array}{l}
\left\|\left(\mathbb{I}-\boldsymbol{U}^{*}\left(\boldsymbol{U}^{*}\right)^{\top}\right) \boldsymbol{U}^{+}\right\|_{F} \leq\|\boldsymbol{F}+\widetilde{\boldsymbol{F}}\|_{F}\left\|\boldsymbol{R}^{-1}\right\|_{F} \leq 4\|\boldsymbol{F}+\widetilde{\boldsymbol{F}}\|_{F} \\
\leq 4 \widetilde{O}\left(\mu \log n \cdot \sqrt{\frac{\kappa d k^{2} T}{m n}}\left\|\left(\mathbb{I}-\boldsymbol{U}^{*}\left(\boldsymbol{U}^{*}\right)^{\top}\right) \boldsymbol{U}\right\|_{F}+\sqrt{\frac{\mu^{2} d k T \log n}{m n}} \cdot \frac{\sigma_{F}}{\sqrt{\lambda_{k}}}+\frac{\left(\sqrt{k} \eta^{2}+\eta \zeta\right) \Delta_{(\varepsilon, \delta)} \sqrt{d k}}{n \lambda_{k}}\right.
\end{array}\right),
$$

The result now follows by applying the above bound for all t and by using: $\eta=\widetilde{O}\left(\mu \sqrt{\lambda_{k} d k}\right)$, $\zeta=\widetilde{O}\left(\sigma_{\mathrm{F}}+\mu \sqrt{k \lambda_{k}}\right)$, i.e., $\sqrt{k} \eta^{2}+\eta \zeta=\lambda_{k} \widetilde{O}\left(\left(\mathrm{NSR}+\mu \sqrt{d k^{2}}\right) \mu \sqrt{d k}\right)$.

Lemma B.3. Consider the setting of Lemma 4.4 and the notation introduced in the proof above. Let $\mathcal{E}=\mathcal{W}^{\frac{1}{2}} \widetilde{\mathcal{A}}^{-1} \mathcal{W}^{\frac{1}{2}}-I$. Then, w.p. $\geq 1-1 / n^{100}:\|\mathcal{E}\|_{F} \leq \frac{1}{32}$.

Proof. Using Lemma B. 5 and (26), we get: $\left\|\mathcal{W}^{-\frac{1}{2}} \mathcal{A} \mathcal{W}^{-\frac{1}{2}}-\mathcal{I}\right\|_{F} \leq 1 / 32$, where $\mathcal{I}(\boldsymbol{U})=\boldsymbol{U}$. Furthermore, $\left\|\mathcal{W}^{-\frac{1}{2}} \mathcal{G} \mathcal{W}^{-\frac{1}{2}}\right\|_{F} \leq 8 \Delta_{(\varepsilon, \delta)} \sqrt{k} \eta^{2} \sqrt{\frac{d k}{n \lambda_{k}}}$ by using the bound on λ_{k}^{t} given in (26). The result now follows by combining the above two given bounds.

Lemma B. 4 (Restatement of Lemma A. 1 of [46]). Consider the setting of Lemma 4.4 and the notation introduced in the proof above. Then, if $\left\|\left(I-\boldsymbol{U}^{*}\left(\boldsymbol{U}^{*}\right)^{\top}\right) \boldsymbol{U}\right\| \leq \widetilde{O}\left(\frac{\lambda_{k}}{\lambda_{1}}\right)$ and if $m \geq$ $\widetilde{\Omega}\left((1+N S R) \cdot k+k^{2}\right)$, we have w.p. $\geq 1-1 / n^{101}$:

$$
\begin{aligned}
& \left\|\boldsymbol{v}_{j}\right\|_{2} \leq \widetilde{O}\left(\frac{\mu^{2} k}{n} \lambda_{k}^{t}\right), \quad \lambda_{k} \leq 2 \lambda_{k}^{t}, \\
& \left.\max _{j}\left\|\Delta_{j}\right\|_{2} \leq \widetilde{O}\left(\|\left(I-\boldsymbol{U}^{*}\left(\boldsymbol{U}^{*}\right)^{\top}\right) \boldsymbol{U}\right) \|_{2} \cdot \mu \sqrt{k \lambda_{k}}\right)+\sigma_{F} \sqrt{\frac{k \log n}{m}}
\end{aligned}
$$

Lemma B. 5 (Restatement of Lemma A. 7 of [46]). Consider the setting of Lemma 4.4 and the notation introduced in the proof above. Let $m n \geq \widetilde{O}\left(\mu^{2} d k^{2}\right)$, then w.p. $\geq 1-1 / n^{100}$:

$$
\|\mathcal{E}\|_{F} \leq \widetilde{O}\left(\sqrt{\frac{\mu^{2} d k^{2}}{m n}}\right)
$$

Lemma B. 6 (Restatement of Lemma A. 2 of [46]). Consider the setting of Lemma 4.4 and the notation introduced in the proof above. Then, if $m n \geq \widetilde{O}\left(\mu^{2} d k^{2}\right)$, we have (w.p. $\geq 1-1 / n^{80}$):

$$
\begin{gathered}
\left\|\boldsymbol{U}^{*} \boldsymbol{Q} \sum_{j}\left(\boldsymbol{Q}^{-1} \boldsymbol{v}_{j}^{*}-\boldsymbol{v}_{j}\right) \boldsymbol{v}_{j}^{\top}\left(\sum_{j} \boldsymbol{v}_{j} \boldsymbol{v}_{j}^{\top}\right)^{-1}\right\|_{F} \leq \widetilde{O}\left(\sqrt{\kappa}\left\|\left(I-\boldsymbol{U}^{*}\left(\boldsymbol{U}^{*}\right)^{\top}\right) \boldsymbol{U}\right\|_{F}+\frac{\sigma_{F}}{\sqrt{\lambda_{k}}} \cdot \sqrt{\frac{k}{m}}\right), \\
\|\boldsymbol{F}\|_{F} \leq \widetilde{O}\left(\mu \log n \cdot \sqrt{\frac{\kappa d k^{2} T}{m n}}\left\|\left(I-\boldsymbol{U}^{*}\left(\boldsymbol{U}^{*}\right)^{\top}\right) \boldsymbol{U}\right\|_{F}\right)+\sqrt{\frac{\mu^{2} d k T \log n}{m n}} \cdot \frac{\sigma_{F}}{\sqrt{\lambda_{k}}} .
\end{gathered}
$$

Lemma B.7. Consider the setting of Lemma 4.4 and the notation introduced in the proof above. Let $\|\mathcal{E}\| \leq 1 / 2$. Then, w.p. $\geq 1-1 / n^{100}$:

$$
\|\widetilde{\boldsymbol{F}}\|_{F} \leq \widetilde{O}\left(\frac{\left(\sqrt{k} \eta^{2}+\eta \zeta\right) \Delta_{(\varepsilon, \delta)} \sqrt{d k}}{n \lambda_{k}}\right)
$$

Proof. Note that,

$$
\begin{align*}
\|\widetilde{\boldsymbol{F}}\|_{F} & \leq\left\|\mathcal{W}^{-\frac{1}{2}}(I+\mathcal{E}) \mathcal{W}^{-\frac{1}{2}}\right\|_{2} \cdot\left\|\boldsymbol{g}^{(t)}-\mathcal{G}\left(\boldsymbol{U}^{*} \boldsymbol{Q}\right)\right\|_{2} \leq \frac{2}{n \lambda_{k}}\left(\left\|\boldsymbol{g}^{(t)}\right\|_{2}+\left\|\mathcal{G}\left(\boldsymbol{U}^{*} \boldsymbol{Q}\right)\right\|_{F}\right) \\
& \leq \frac{2}{n \lambda_{k}}\left(\left\|\boldsymbol{g}^{(t)}\right\|_{2}+\sqrt{k}\|\boldsymbol{G}\|_{2}\right) . \tag{33}
\end{align*}
$$

The lemma now follows by using the fact that: $\left\|\boldsymbol{g}^{(t)}\right\|_{2} \leq \widetilde{O}(\eta \zeta \sqrt{d k})$ and $\|\boldsymbol{G}\|_{2} \leq \widetilde{O}\left(\eta^{2} \sqrt{d k}\right)$ with probability $1-1 / n^{100}$.

C Missing Proofs from Section 5

Proof of Theorem 5.1. We are going to proof that the sampling step in Algorithm 4 guarantees ε-DP. Let $S_{0}(D)=\sum_{j \in[n]} \frac{2}{m} \sum_{i \in[m / 2]} \ell\left(\left\langle\operatorname{clip}\left(\boldsymbol{U}_{0}^{\top} \mathbf{x}_{i j} ; L_{f}\right), \boldsymbol{v}_{0} ; y_{i j}\right\rangle\right)$, where \boldsymbol{U}_{0} is fixed rank- k matrix with orthonormal columns in $\mathbb{R}^{d \times k}$, and $\boldsymbol{v}_{0} \in \mathbb{R}^{k},\left\|\boldsymbol{v}_{0}\right\|_{2} \leq C$ is a fixed vector. The sampling step in Algorithm 4 is identical to the following

$$
\begin{equation*}
\operatorname{Pr}\left[\boldsymbol{U}^{\text {priv }}=\boldsymbol{U}\right] \propto \exp \left(-\frac{\varepsilon}{8 L_{f} C \xi} \cdot\left(\operatorname{score}(\boldsymbol{U})-S_{0}(D)\right)\right) . \tag{34}
\end{equation*}
$$

Let $\mathcal{L}(\boldsymbol{U} ; D)=$ score $(\boldsymbol{U})-S_{0}(D)$. Consider any neighboring data sets D and D^{\prime} such that user j in D is replace by user j^{\prime} in D^{\prime}. We now bound the sensitivity $\mathcal{L}(\boldsymbol{U} ; D)-\mathcal{L}\left(\boldsymbol{U} ; D^{\prime}\right)$. We have

$$
\begin{align*}
& \mathcal{L}(\boldsymbol{U} ; D)-\mathcal{L}\left(\boldsymbol{U} ; D^{\prime}\right) \\
= & {\left[\min _{\left\|\boldsymbol{v}_{j}\right\|_{2} \leq C} \frac{2}{m} \sum_{i} \ell\left(\left\langle\operatorname{clip}\left(\boldsymbol{U}^{\top} \mathbf{x}_{i j} ; L_{f}\right), \boldsymbol{v}_{j}\right\rangle ; y_{i j}\right)-\frac{2}{m} \sum_{i} \ell\left(\left\langle\operatorname{clip}\left(\boldsymbol{U}_{0}^{\top} \mathbf{x}_{i j} ; L_{f}\right), \boldsymbol{v}_{0}\right\rangle ; y_{i j}\right)\right] } \\
- & {\left[\min _{\left\|\boldsymbol{v}_{j^{\prime}}\right\|_{2} \leq C} \frac{2}{m} \sum_{i} \ell\left(\left\langle\operatorname{clip}\left(\boldsymbol{U}^{\top} \mathbf{x}_{i j^{\prime}} ; L_{f}\right), \boldsymbol{v}_{j^{\prime}}\right\rangle ; y_{i j^{\prime}}\right)-\frac{2}{m} \sum_{i} \ell\left(\left\langle\operatorname{clip}\left(\boldsymbol{U}_{0}^{\top} \mathbf{x}_{i j^{\prime}} ; L_{f}\right), \boldsymbol{v}_{0}\right\rangle ; y_{i j^{\prime}}\right)\right] } \tag{35}
\end{align*}
$$

Consider the first term. Let v_{j}^{*} be the minimizer of the first term. We have

$$
\begin{aligned}
& \frac{2}{m} \sum_{i}\left(\ell\left(\left\langle\operatorname{clip}\left(\boldsymbol{U}^{\top} \mathbf{x}_{i j} ; L_{f}\right), \boldsymbol{v}_{j}^{*}\right\rangle ; y_{i j}\right)-\ell\left(\left\langle\operatorname{clip}\left(\boldsymbol{U}_{0}^{\top} \mathbf{x}_{i j} ; L_{f}\right), \boldsymbol{v}_{0}\right\rangle ; y_{i j}\right)\right) \\
\leq & \frac{2}{m} \sum_{i} \xi\left|\left\langle\operatorname{clip}\left(\boldsymbol{U}^{\top} \mathbf{x}_{i j} ; L_{f}\right), \boldsymbol{v}_{j}^{*}\right\rangle-\left\langle\operatorname{clip}\left(\boldsymbol{U}_{0}^{\top} \mathbf{x}_{i j} ; L_{f}\right), \boldsymbol{v}_{0}\right\rangle\right| \\
\leq & \frac{2}{m} \sum_{i} \xi\left(\left\|\operatorname{clip}\left(\boldsymbol{U}^{\top} \mathbf{x}_{i j} ; L_{f}\right)\right\|_{2}\left\|\boldsymbol{v}_{j}^{*}\right\|_{2}+\left\|\operatorname{clip}\left(\boldsymbol{U}_{0}^{\top} \mathbf{x}_{i j} ; L_{f}\right)\right\|_{2}\left\|\boldsymbol{v}_{0}\right\|_{2}\right) \\
\leq & 2 \xi L_{f} C,
\end{aligned}
$$

where the first inequality follows because ℓ is ξ-Lipschitz in the first parameter, and the last inequality follows from the bound on the norm of \boldsymbol{v}. Similar can be shown for the second term of (35). Therefore, the sensitivity of the score function, i.e. (35), is upper bounded by $4 \xi L_{f} C$.

The rest of the proof follows from standard exponential mechanism argument [35].

Proof of Theorem 5.2. First, to bound the size of the net \mathcal{N}^{ϕ} we use classic covering number bound from [6, Lemma 3.1]. We have $\left|\mathcal{N}^{\phi}\right|=O\left(\left(\frac{9 \sqrt{k}}{\phi}\right)^{(2 d+1) \cdot k}\right)$, since $\|\cdot\|_{F}$ of the matrices, over which the net is built, is \sqrt{k}. Let $\boldsymbol{U}^{*}=\underset{\boldsymbol{U} \in \mathcal{K}}{\arg \min } \operatorname{score}(\boldsymbol{U})$.

First, we show that score $(\tilde{\boldsymbol{U}})-\operatorname{score}\left(\boldsymbol{U}^{*}\right)$ is small for any $\tilde{\boldsymbol{U}} \in \mathcal{N}^{\phi}$. For any $\tilde{\boldsymbol{U}}$, we have,

$$
\begin{align*}
\operatorname{score}(\widetilde{\boldsymbol{U}}) & \leq \operatorname{score}\left(\boldsymbol{U}^{*}\right)+\xi C \sum_{j \in[n]} \frac{2}{m} \sum_{i \in[m / 2]}\left\|\operatorname{clip}\left(\tilde{\boldsymbol{U}}^{\top} \mathbf{x}_{i j} ; L_{f}\right)-\operatorname{clip}\left(\left(\boldsymbol{U}^{*}\right)^{\top} \mathbf{x}_{i j} ; L_{f}\right)\right\|_{2} \\
& =\operatorname{score}\left(\boldsymbol{U}^{*}\right)+\xi C \sum_{j \in[n]} \frac{2}{m} \sum_{i \in[m / 2]}\left\|\left(\tilde{\boldsymbol{U}}-\boldsymbol{U}^{*}\right)^{\top} \mathbf{x}_{i j}\right\|_{2} \tag{36}
\end{align*}
$$

with probability $\geq 1-1 / n^{10}$. The first step follows from the Lipschitzness of ℓ and $\|\boldsymbol{v}\|_{2} \leq C$, and the second step follows because the choice of L_{f} will not introduce any effect due to clipping w.p. at least $1-\frac{1}{n^{10}}$. We will condition the rest of the analysis on this.

Let $\boldsymbol{M}=\widetilde{\boldsymbol{U}}-\boldsymbol{U}^{*}$ with columns $\left[\boldsymbol{m}_{a}: a \in[k]\right]$. By the definition of the net, we have $\sum_{a=1}^{k}\left\|\boldsymbol{m}_{a}\right\|_{2}^{2} \leq$ ϕ^{2}. Since the feature vectors are drawn i.i.d. from $\mathcal{N}(0,1)^{d}$, we have $\left\langle\boldsymbol{m}_{a}, \mathbf{x}_{i j}\right\rangle \sim \mathcal{N}\left(0,\left\|\boldsymbol{m}_{a}\right\|_{2}^{2}\right)$. Therefore, by standard Gaussian concentration and union bound, we have w.p. at least $1-\frac{1}{n^{10}}$, $\forall i \in[m / 2], j \in[n], a \in[k],\left|\left\langle\boldsymbol{m}_{a}, \mathbf{x}_{i j}\right\rangle\right| \leq\left\|\boldsymbol{m}_{a}\right\|_{2} \cdot \operatorname{polylog}(n)$. Therefore, $\left\|\boldsymbol{M}^{\top} \mathbf{x}_{i j}\right\|_{2} \leq$ $\phi \cdot \operatorname{polylog}(n)$. Substituting back to (36), we have

$$
\begin{equation*}
\operatorname{score}(\widetilde{\boldsymbol{U}}) \leq \operatorname{score}\left(\boldsymbol{U}^{*}\right)+\xi C n \phi \cdot \operatorname{polylog}(n) \tag{37}
\end{equation*}
$$

Second, we aim to show that $\boldsymbol{U}^{\text {priv }}$ and $\widetilde{\boldsymbol{U}}$ are close. For any γ, we have

$$
\begin{align*}
\operatorname{Pr}\left[\operatorname{score}\left(\boldsymbol{U}^{\text {priv }}\right)-\operatorname{score}(\widetilde{\boldsymbol{U}}) \geq \gamma\right] & \leq\left|\mathcal{N}^{\phi}\right| \cdot \frac{\exp \left(-\frac{\varepsilon}{8 \xi L_{f} C} \cdot(\operatorname{score}(\widetilde{\boldsymbol{U}})+\gamma)\right)}{\exp \left(-\frac{\varepsilon}{8 \xi L_{f} C} \cdot \operatorname{score}(\widetilde{\boldsymbol{U}})\right)} \\
& =\left|\mathcal{N}^{\phi}\right| \cdot \exp \left(-\frac{\varepsilon \gamma}{8 \xi L_{f} C}\right) \tag{38}
\end{align*}
$$

Setting γ appropriately, we have w.p. at least $1-\beta$,

$$
\begin{equation*}
\operatorname{score}\left(\boldsymbol{U}^{\text {priv }}\right)-\operatorname{score}(\widetilde{\boldsymbol{U}}) \leq \frac{8 \xi C L_{f} \log \left(\left|\mathcal{N}^{\phi}\right| / \beta\right)}{\varepsilon}=O\left(\frac{\xi C L_{f} d k}{\varepsilon} \log \left(\frac{k}{\phi \beta}\right)\right) \tag{39}
\end{equation*}
$$

Now we show a bound on the excess empirical risk. Combining (37) and (39), we have

$$
\operatorname{score}\left(\boldsymbol{U}^{\text {priv }}\right) \leq \operatorname{score}\left(\boldsymbol{U}^{*}\right)+O\left(\frac{\xi C L_{f} d k}{\varepsilon} \log \left(\frac{k}{\phi \beta}\right)+\xi C n \phi \cdot \operatorname{polylog}(n)\right)
$$

Let $\mathcal{L}_{\mathrm{ERM}}(\boldsymbol{U}, \boldsymbol{V})=\frac{2}{m n} \sum_{i \in[m / 2], j \in[n]} \ell\left(\left\langle\boldsymbol{U}^{\top} \mathbf{x}_{i j}, \boldsymbol{v}_{j}\right\rangle ; y_{i j}\right)$, and $\widehat{\boldsymbol{V}}=\min _{\boldsymbol{V}} \mathcal{L}_{\mathrm{ERM}}\left(\boldsymbol{U}^{\text {priv }}, \boldsymbol{V}\right)$, i.e., the minimizer for score $\left(\boldsymbol{U}^{\text {priv }}\right)$. The above inequality directly transfers to

$$
\begin{equation*}
\mathcal{L}_{\mathrm{ERM}}\left(\boldsymbol{U}^{\text {priv }}, \widehat{\boldsymbol{V}}\right) \leq \mathcal{L}_{\mathrm{ERM}}\left(\boldsymbol{U}^{*}, \boldsymbol{V}^{*}\right)+O\left(\frac{\xi C L_{f} \cdot d k}{\varepsilon n} \log \left(\frac{k}{\phi \beta}\right)+\xi C \phi \cdot \operatorname{polylog}(n)\right) \tag{40}
\end{equation*}
$$

Setting $\phi=\frac{1}{\varepsilon n}$ and plugging in $L_{f}=O(\sqrt{d} \log (n m))$, the above inequality becomes,

$$
\begin{equation*}
\mathcal{L}_{\mathrm{ERM}}\left(\boldsymbol{U}^{\text {priv }}, \widehat{\boldsymbol{V}}\right) \leq \mathcal{L}_{\mathrm{ERM}}\left(\boldsymbol{U}^{*}, \boldsymbol{V}^{*}\right)+O\left(\frac{\xi C \sqrt{k^{2} d^{3}}}{\varepsilon n}\right) \cdot \operatorname{polylog}(n) \tag{41}
\end{equation*}
$$

Finally, to complete the proof, we need to translate the excess empirical risk bound into excess population risk bound. Recall the following definition of population risk.

$$
\begin{equation*}
\mathcal{L}_{\mathrm{Pop}}(\boldsymbol{U} ; \boldsymbol{V})=\mathbb{E}_{(i, j) \sim_{u}[m / 2] \times[n],\left(\mathbf{x}_{i j}, y_{i j}\right) \sim \tau}\left[\ell\left(\left\langle\boldsymbol{U}^{\top} \mathbf{x}_{i j}, \boldsymbol{v}_{j}\right\rangle ; y_{i j}\right)\right] \tag{42}
\end{equation*}
$$

We have the following.

$$
\begin{align*}
& \mathcal{L}_{\mathrm{Pop}}\left(\boldsymbol{U}^{\text {priv }} ; \boldsymbol{V}^{\text {priv }}\right)-\mathcal{L}_{\mathrm{Pop}}\left(\boldsymbol{U}^{*}, \boldsymbol{V}^{*}\right) \\
= & \left(\mathcal{L}_{\text {Pop }}\left(\boldsymbol{U}^{\text {priv }} ; \boldsymbol{V}^{\text {priv }}\right)-\mathcal{L}_{\mathrm{Pop}}\left(\boldsymbol{U}^{\text {priv }}, \boldsymbol{V}^{*}\right)\right)+\left(\mathcal{L}_{\mathrm{Pop}}\left(\boldsymbol{U}^{\text {priv }}, \boldsymbol{V}^{*}\right)-\mathcal{L}_{\mathrm{Pop}}\left(\boldsymbol{U}^{*}, \boldsymbol{V}^{*}\right)\right) \tag{43}
\end{align*}
$$

We will bound the two terms separately. For the first term $\mathcal{L}_{\text {pop }}\left(\boldsymbol{U}^{\text {priv }}, \boldsymbol{V}^{\text {priv }}\right)-\mathcal{L}_{\text {pop }}\left(\boldsymbol{U}^{\text {priv }}, \boldsymbol{V}^{*}\right)$, notice that $\boldsymbol{U}^{\text {priv }}$ and $\boldsymbol{V}^{\text {priv }}$ are independent as they are trained on disjoint data. This implies $\forall i \in$ $\{m / 2+1, \cdots, m\}, j \in[n]$, w.p. at least $1-\frac{1}{\min \{d, n\}^{10}},\left\|\left(\boldsymbol{U}^{\text {priv }}\right)^{\top} \mathbf{x}_{i j}\right\|_{2} \leq \sqrt{k} \cdot \operatorname{polylog}(d, n)$. Since the loss functions have the form $\ell\left(\left\langle\left(\boldsymbol{U}^{\text {priv }}\right)^{\top} \mathbf{x}, \boldsymbol{v}\right\rangle ; y\right)$, by standard uniform convergence bound [2], we have the following.

$$
\begin{equation*}
\mathcal{L}_{\text {Pop }}\left(\boldsymbol{U}^{\text {priv }}, \boldsymbol{V}^{\text {priv }}\right)-\mathcal{L}_{\text {Pop }}\left(\boldsymbol{U}^{\text {priv }}, \boldsymbol{V}^{*}\right)=O\left(\xi C \sqrt{\frac{k}{m}}\right) \cdot \operatorname{polylog}(d, n) \tag{44}
\end{equation*}
$$

Then we bound the second term $\mathcal{L}_{\text {Pop }}\left(\boldsymbol{U}^{\text {priv }}, \boldsymbol{V}^{*}\right)-\mathcal{L}_{\text {Pop }}\left(\boldsymbol{U}^{*}, \boldsymbol{V}^{*}\right)$ in (43). We can write the inner product $\left\langle\boldsymbol{U}^{\top} \mathbf{x}, \boldsymbol{v}\right\rangle$ as $\left\langle\boldsymbol{U}, \mathbf{x} \boldsymbol{v}^{\top}\right\rangle$. Therefore, if we vectorize \boldsymbol{U} by concatenating its the columns as $\overrightarrow{\boldsymbol{U}}$, and vectorize $\mathbf{x} \boldsymbol{v}^{\top}$ by concatenating its columns as $\overrightarrow{\boldsymbol{z}}$, the inner product equals to $\langle\boldsymbol{z}, \overrightarrow{\boldsymbol{U}}\rangle$. The loss function can be written as $\ell\left(\left\langle\boldsymbol{U}^{\top} \mathbf{x}, \boldsymbol{v}\right\rangle ; y\right)=\ell(\langle\boldsymbol{z}, \overrightarrow{\boldsymbol{U}}\rangle ; y)$. We define $\boldsymbol{z}_{i j}$ as the vectorized version of $\mathbf{x}_{i j}\left(\boldsymbol{v}_{j}^{*}\right)^{\top}$. With probability at least $1-\frac{1}{\min \{d, n\}^{10}}, \forall i \in[m / 2], j \in[n],\left\|\boldsymbol{z}_{i j}\right\|_{2} \leq$
$C \sqrt{d} \cdot$ polylog (d, n). By standard uniform convergence bound [2] and the bound on the empirical Rademacher complexity below, we have

$$
\begin{align*}
& \mathcal{L}_{\mathrm{Pop}}\left(\boldsymbol{U}^{\text {priv }}, \boldsymbol{V}^{*}\right)-\mathcal{L}_{\mathrm{Pop}}\left(\boldsymbol{U}^{*}, \boldsymbol{V}^{*}\right) \\
& \leq \mathcal{L}_{\mathrm{ERM}}\left(\boldsymbol{U}^{\text {priv }}, \widehat{\boldsymbol{V}}\right)-\mathcal{L}_{\mathrm{ERM}}\left(\boldsymbol{U}^{*}, \boldsymbol{V}^{*}\right)+O\left(\xi C \sqrt{\frac{d}{n m}}\right) \cdot \operatorname{polylog}(d, n) . \tag{45}
\end{align*}
$$

Combining (41), (45), (44) into (43) and translating the high-probability to expectation statement completes the proof.

Bound on Rademacher complexity: We aim to compute the Rademacher complexity of $\left\langle\boldsymbol{U}, \sum_{i j} \mathbf{x}_{i j} \boldsymbol{v}_{j}^{\top}\right\rangle=\sum_{i j}\left\langle\mathbf{x}_{i j}, \boldsymbol{U} \boldsymbol{v}_{j}\right\rangle$. We will follow [33, Theorem 11] with small modification in the Cauchy-Schwartz step.

Let θ be a vector of length $n d$ that is formed by concatenating $\boldsymbol{U} \boldsymbol{v}_{j}$ for all j. For any i, j, let $\widetilde{\mathbf{x}}_{i j}$ be a vector of length $d n$, such that the j-th "block" (of length d) is $\mathbf{x}_{i j}$ and the rest of the entries are 0 . So we can express $\left\langle\mathbf{x}_{i j}, \boldsymbol{U} \boldsymbol{v}_{j}\right\rangle$ as $\left\langle\widetilde{\mathbf{x}}_{i j}, \theta\right\rangle$. We have

$$
\left\langle\widetilde{\mathbf{x}}_{i j}, \theta\right\rangle=\left\langle\mathbf{x}_{i j}, \boldsymbol{U} \boldsymbol{v}_{j}\right\rangle \leq\left\|\mathbf{x}_{i j}\right\|_{2}\left\|\boldsymbol{U} \boldsymbol{v}_{j}\right\|_{2} \leq C\left\|\mathbf{x}_{i j}\right\|_{2}
$$

where the last step follows because \boldsymbol{U} is orthonormal and $\left\|\boldsymbol{v}_{j}\right\|_{2} \leq C$. Also, because the data is drawn from a normal distribution, we have $\mathbb{E}\left[\left\|\widetilde{\mathbf{x}}_{i j}\right\|_{2}^{2}\right]=\mathbb{E}\left[\left\|\mathbf{x}_{i j}\right\|_{2}^{2}\right]=d$. The Rademacher complexity is $\frac{C \sqrt{d}}{\sqrt{m n}}$ following the same argument as [33, Theorem 11].

