
Supplementary Material (Appendix)

PCA Initialization for Approximate Message Passing
in Rotationally Invariant Models

A Free Probability Background

A.1 Symmetric Square Matrices

LetX be a random variable of finite moments of all orders, and denote its moments bymk = E{Xk}.
In this paper,X represents either the empirical eigenvalue distribution of the noise matrixW ∈ Rn×n,
or its limit law Λ (in the latter case, the moments and free cumulants are denoted by {m∞k }k≥1 and
{κ∞k }k≥1, respectively). For the model (1.1), note that the empirical eigenvalue distribution ofW
coincides with the empirical eigenvalue distribution ofX after excluding the largest eigenvalue of
X , since we consider the case α > αs. The free cumulants {κk}k≥1 of X are defined recursively by
the moment-cumulant relations

mk =
∑

π∈NC(k)

∏
S∈π

κ|S|, (A.1)

where NC(k) is the set of all non-crossing partitions of {1, . . . , k}, and |S| denotes the cardinality
of S. Furthermore, by exploiting the connection between the formal power series with coefficients
{mk}k≥1 and {κk}k≥1, each free cumulant κk can be computed from m1, . . . ,mk and κ1, . . . , κk−1

as [47, Section 2.5]

κk = mk − [zk]

k−1∑
j=1

κj
(
z +m1z

2 +m2z
3 + · · ·+mk−1z

k
)j
, (A.2)

where [zk](q(z)) denotes the coefficient of zk in the polynomial q(z).

Consider now the random variable Λ representing the limiting spectral distribution ofW , and recall
that b <∞ denotes the supremum of the support of Λ. Then, for z > b, the Cauchy transform G(z)
of Λ is given by

G(z) = E
{

1

z − Λ

}
. (A.3)

Another transform that will be useful in our analysis is the R-transform R(z) of Λ, which can be
defined by the convergent series:

R(z) =

∞∑
i=0

κ∞i+1z
i, (A.4)

where {κ∞k }k≥1 are the free cumulants of Λ. The derivative of the R-transform is denoted by R′(z)
and given by

R′(z) =

∞∑
i=0

(i+ 1)κ∞i+2z
i =

∞∑
j=0

∞∑
k=0

κj+k+2z
j+k, (A.5)

where the second equality follows from a double-counting argument. The series in (A.4) and (A.5)
are well-defined and converge to a finite value for z < 1/αs, where αs = 1/G(b+) is the spectral
threshold [10]. The R-transform can also be expressed in terms of the Cauchy transform, see e.g.
Theorem 12.7 of [46]:

R(z) = G−1(z)− 1

z
. (A.6)

By taking the derivative on both sides of (A.5), we have

R′(z) =
1

G′(G−1(z))
+

1

z2
. (A.7)

If W follows a Marcenko-Pastur distribution (i.e., W = 1
nGnG

T
n ∈ Rn×n, where the entries of

Gn ∈ Rn×p are i.i.d. standard Gaussian), then it is well known that κ∞k = c , p/n for k ≥ 1, see
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e.g. [40, Chap. 2, Exercise 11]. This corresponds to the setting (a) in the numerical results of Section
4. If the eigenvalues of W are i.i.d. and uniformly distributed in the interval [−1/2, 1/2], the free
cumulants κ∞k have also a simple form. In fact, by explicitly computing the expectation in (A.3), we
have that

G(z) = log
2z + 1

2z − 1
. (A.8)

Thus, by applying (A.6), we deduce that

R(z) =
1

2
coth

(z
2

)
− 1

z
. (A.9)

By comparing the series expansion (A.4) with that of the hyperbolic cotangent, we conclude that

κk =


0, if k is odd,

Bk
k!
, if k is even,

(A.10)

where Bk denotes the k-th Bernoulli number. This corresponds to the setting (b) in the numerical
results of Section 4.

A.2 Rectangular Matrices

Let X be a random variable of finite moments of all orders, and denote its even moments by
m2k = E{X2k}. In this paper, X2 represents either the empirical eigenvalue distribution of
WW T ∈ Rm×m, or its limit law Λ2 (in the latter case, the moments and rectangular free cumulants
are denoted by {m∞2k}k≥1 and {κ∞2k}k≥1, respectively). For the model (1.2), note that the empirical
eigenvalue distribution ofWW T coincides with the empirical eigenvalue distribution ofXXT after
excluding the largest eigenvalue ofXXT, since we consider the case α̃ > α̃s. The rectangular free
cumulants {κ2k}k≥1 of X are defined recursively by the moment-cumulant relations [9, Section 3]

m2k = γ
∑

π∈NC′(2k)

∏
S∈π

minS is odd

κ|S|
∏
S∈π

minS is even

κ|S|, (A.11)

where NC′(2k) is the set of non-crossing partitions π of {1, . . . , 2k} such that each set S ∈ π has
even cardinality. Furthermore, by exploiting the connection between the formal power series with
coefficients {m2k}k≥1 and {κ2k}k≥1, each rectangular free cumulant κ2k can be computed from
m2, . . . ,m2k and κ2, . . . , κ2(k−1) as [9, Lemma 3.4]

κ2k = m2k − [zk]

k−1∑
j=1

κ2j (z(γM(z) + 1)(M(z) + 1))
j
, (A.12)

where M(z) =
∑∞
k=1m2kz

k and [zk](q(z)) denotes again the coefficient of zk in the polynomial
q(z).

Consider now the random variable Λ representing the limiting distribution of the singular values
of W , and recall that b < ∞ denotes the supremum of the support of Λ. Then, for z > b, the
D-transform D(z) of Λ is given by

D(z) = φ(z) · φ̄(z), (A.13)

where

φ(z) = E
{

z

z2 − Λ2

}
, φ̄(z) = γφ(z) +

1− γ
z

. (A.14)

Another transform that will be useful in our analysis is the rectangular R-transform R(z) of Λ, which
can be defined by the convergent series:

R(z) =

∞∑
i=1

κ∞2i z
i, (A.15)
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where {κ∞2k}k≥1 are the rectangular free cumulants of Λ. The derivative of the rectangular R-
transform is denoted by R′(z) and given by

R′(z) =

∞∑
i=0

(i+ 1)κ∞2(i+1)z
i =

∞∑
j=0

∞∑
k=0

κ2(j+k+1)z
j+k, (A.16)

where the second equality follows from a double-counting argument. By combining (A.15) and
(A.16), we also obtain the useful identities

∞∑
j=0

∞∑
k=0

κ2(j+k+2)z
j+k+2 = zR′(z)−R(z), (A.17)

∞∑
i=0

(i+ 1)κ∞2(i+2)z
i = z−1R′(z)− z−2R(z). (A.18)

The series in (A.15)-(A.18) are well-defined and converge to a finite value for z < 1/(α̃s)
2, where

α̃s = 1/
√
D(b+) is the spectral threshold [11]. The rectangular R-transform can also be expressed

in terms of the D-transform, see e.g. [11, Section 2.5]:
γR2(z) + (γ + 1)R(z) + 1 = z(D−1(z))2. (A.19)

B Proof of Theorem 1

This appendix is organized as follows. In Appendix B.1, we present the state evolution recursion
associated to the artificial AMP iteration defined in (5.1) and (5.3). In Appendix B.2, we prove that
the first phase of this state evolution admits a unique fixed point. Using this fact, in Appendix B.3, we
prove that the artificial AMP iterate at the end of the first phase approaches the PCA estimator. Then,
in Appendix B.4, we show that (i) the iterates in the second phase of the artificial AMP are close to
the true AMP iterates, and (ii) the related state evolution parameters also remain close. Finally, in
Appendix B.5, we give the proof of Theorem 1.

B.1 State Evolution for the Artificial AMP

Consider the artificial AMP iteration defined in (5.1) and (5.3), with initialization

ũ1 = ραu
∗ +

√
1− ρ2

αn, f̃
1

= Xũ1 − κ1ũ
1. (B.1)

Then, its associated state evolution recursion is expressed in terms of a sequence of mean vectors
µ̃K = (µ̃t)t∈[0,K] and covariance matrices Σ̃K = (σ̃s,t)s,t∈[0,K] defined recursively as follows. We
initialize with

µ̃0 = αρα, σ̃0,0 = α2(1− ρ2
α), σ̃0,t = σ̃t,0 = 0, for t ≥ 1. (B.2)

Given µ̃K and Σ̃K , let

(F̃0, . . . , F̃K) = µ̃KU∗ + (Z̃0, . . . , Z̃K), where (Z̃0, . . . , Z̃K) ∼ N (0, Σ̃K), and

Ũt = ũt(F̃t−1), where ũt(x) =

{
x/α, 1 ≤ t ≤ T + 1,

ut−T (x), t ≥ T + 2.
(B.3)

Then, the entries of µ̃K+1 are given by µ̃t = αE{ŨtU∗} (for t ∈ [1,K + 1]), and the entries of
Σ̃K+1 (for s, t ∈ [1,K + 1]) are given by

σ̃s,t =

s−1∑
j=0

t−1∑
k=0

κ∞j+k+2

 s∏
i=s−j+1

E{ũ′i(F̃i−1)}

( t∏
i=t−k+1

E{ũ′i(F̃i−1)}

)
E{Ũs−jŨt−k}. (B.4)

Proposition B.1 (State evolution for artificial AMP – symmetric square matrices). Consider the
setting of Theorem 1, the artificial AMP iteration described in (5.1) and (5.3) with the initialization
given in (B.1), and the corresponding state evolution parameters defined in (B.2)-(B.4). Then, for
t ≥ 1 and any PL(2) function ψ : R2t+2 → R, the following holds almost surely:

lim
n→∞

1

n

n∑
i=1

ψ(u∗i , ũ
1
i , . . . , ũ

t+1
i , f̃1

i , . . . f̃
t
i ) = E

{
ψ(U∗, Ũ1, . . . , Ũt+1, F̃1, . . . , F̃t)

}
. (B.5)
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The proposition follows directly from Theorem 1.1 in [20] since the initialization ũ1 of the artificial
AMP is independent ofW .

B.2 Fixed Point of State Evolution for the First Phase

From (B.2)-(B.4), we note that the state evolution recursion for the first phase (t ∈ [1, T + 1]) has
the following form:

µ̃t = αρα, for t ∈ [1, T + 1],

σ̃s,t =

s−1∑
j=0

t−1∑
k=0

κ∞j+k+2

(
1

α

)j+k+2 (
(αρα)2 + σ̃s−j−1,t−k−1

)
, for s, t ∈ [1, T + 1].

(B.6)

In this section, we prove the following result concerning the fixed point of the recursion (B.6).
Lemma B.2 (Fixed point of state evolution for first phase – Square matrices). Consider the state
evolution recursion for the first phase given by (B.6), initialized according to (B.2). Assume that
κ∞i ≥ 0 for all i ≥ 2, and that α > αs. Pick any ξ < 1 such that αξ > αs. Then,

lim
T→∞

max
s,t∈[0,T ]

ξmax(s,t)|σ̃T+1−s,T+1−t − α2(1− ρ2
α)| = 0. (B.7)

To prove the claim, we consider the space of infinite matrices x = (xs,t : s, t ≤ 0) indexed by the
non-positive integers and equipped with the weighted `∞-norm:

‖x‖ξ = sup
s,t≤0

ξmax(|s|,|t|)|xs,t|. (B.8)

We define X = {x : ‖x‖ξ < ∞}, and note that X is complete under ‖ · ‖ξ. For any compact set
I ⊂ R, we also define

XI = {x : xs,t ∈ I for all s, t ≤ 0} ⊂ X . (B.9)

Then, XI is closed in X and therefore it is also complete under ‖ · ‖ξ. We embed the matrix Σ̃T̄ as
an element x ∈ X with the following coordinate identification:

σ̃s,t = xs−T̄ ,t−T̄ ,

xs,t = 0, if s < −T̄ or t < −T̄ .

The idea is to approximate the map Σ̃T̄−1 7→ Σ̃T̄ with the limit map hΣ defined as

hΣ
s,t(x) =

∞∑
j=0

∞∑
k=0

κ∞j+k+2

(
1

α

)j+k+2 (
(αρα)2 + xs−j,t−k

)
. (B.10)

The map hΣ has a similar structure to the embedding of the map Σ̃T̄−1 7→ Σ̃T̄ into X . However,
comparing (B.6) and (B.10), we highlight two important differences. First, the indices of xs−j,t−k
are shifted with respect to the indices of σ̃s−j−1,t−k−1. This difference is purely technical and
it simplifies the proof of the subsequent Lemma B.6, which shows that hΣ is close to the map
Σ̃T̄−1 7→ Σ̃T̄ . Second, the map hΣ is fixed, in the sense that it does not depend on s, t. In fact, note
that the sums over j and k run from 0 to∞ in (B.10). This is in contrast with (B.6) where the two
sums run until j = s− 1 and k = t− 1.

The approach of approximating the state evolution map with a fixed limit map was first developed
in [20]. The key difference is that, in [20], it is assumed that α is sufficiently large, which allows to
simplify the analysis. On the contrary, our result holds for all α > αs, αs being the spectral threshold
for PCA. This is because of two main reasons. First, the expressions for the state evolution recursion
are simplified by considering linear denoisers in the first phase of the artificial AMP. Second, we
crucially exploit the form (and the strict positivity) of the correlation between the signal and the PCA
estimate, in order to prove that the limit map (B.10) is a contraction (cf. (B.14) in Lemma B.5).

First, we show that hΣ(XI∗) ⊆ XI∗ for a suitably defined compact set I∗.
Lemma B.3 (Image of limit map – Square matrices). Consider the map hΣ defined in (B.10). Assume
that κ∞i ≥ 0 for all i ≥ 2, and that α > αs. Then, there exists I∗ = [−a∗, a∗] such that, if x ∈ XI∗ ,
then hΣ(x) ∈ XI∗ .
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Proof. Let x ∈ XI∗ . Then, the following chain of inequalities holds:

|hΣ
s,t(x)| (a)

=

∣∣∣∣∣∣ρ2
αR
′
(

1

α

)
+

∞∑
j=0

∞∑
k=0

κ∞j+k+2

(
1

α

)j+k+2

xs−j,t−k

∣∣∣∣∣∣
(b)
≤ ρ2

α

∣∣∣∣R′( 1

α

)∣∣∣∣+

∞∑
j=0

∞∑
k=0

κ∞j+k+2

(
1

α

)j+k+2

|xs−j,t−k|

(c)
≤ ρ2

α

∣∣∣∣R′( 1

α

)∣∣∣∣+ a∗R′
(

1

α

)(
1

α

)2

.

Here, (a) follows from (B.10) and (A.5); (b) follows from the hypothesis that κ∞i ≥ 0 for i ≥ 2; and
(c) uses again (A.5) and the fact that x ∈ XI∗ .
Now, recall from (2.2) that above the spectral threshold, namely, when α > αs, the PCA estimator
uPCA has strictly positive correlation with the signal u∗:

〈uPCA,u
∗〉2

n

a.s.−→ ρ2
α =

−1

α2G′(G−1(1/α))
,

which immediately implies that
1

α2G′(G−1
(

1
α

)
)
< 0. (B.11)

Thus, by combining (B.11) with (A.7), we deduce that

R′
(

1

α

)(
1

α

)2

< 1. (B.12)

Hence, as R′
(

1
α

)
<∞, there exists an a∗ such that

ρ2
α

∣∣∣∣R′( 1

α

)∣∣∣∣+ a∗R′
(

1

α

)(
1

α

)2

≤ a∗,

which implies the desired claim.

Next, we compute a fixed point of hΣ.
Lemma B.4 (Fixed point of limit map – Square matrices). Consider the map hΣ defined in (B.10),
and let x∗ = (x∗s,t : s, t ≤ 0) with x∗s,t = α2(1 − ρ2

α). Assume that α > αs. Then, x∗ is a fixed
point of hΣ.

Proof. Note that, for x = 1/α, the power series expansion (A.5) of R′ converges to a finite limit as
α > αs. Hence, by using the definition (B.10), we have that

hΣ
s,t(x

∗) = R′
(

1

α

)
.

Then, the claim follows from (A.7) and the definition ρα =
√

−1
α2G′(G−1(1/α)) , which together show

that R′
(

1
α

)
= α2(1− ρ2

α).

Let I∗ be such that hΣ : XI∗ → XI∗ (the existence of such a set I∗ is guaranteed by Lemma B.3).
Then, the next step is to show that hΣ : XI∗ → XI∗ is a contraction. We remark that, by the Banach
fixed point theorem, this result implies that the fixed point x∗ defined in Lemma B.4 is unique.
Lemma B.5 (Limit map is a contraction). Consider the map hΣ : XI∗ → XI∗ defined in (B.10) and
where I∗ is given by Lemma B.3. Assume that κ∞i ≥ 0 for all i ≥ 2, and let ξ < 1 be such that
αξ > αs. Then, for any x,y ∈ XI∗ ,

‖hΣ(x)− hΣ(y)‖ξ ≤ R′
(

1

ξα

)(
1

ξα

)2

‖x− y‖ξ, (B.13)

where

R′
(

1

ξα

)(
1

ξα

)2

< 1. (B.14)
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Proof. First of all, for any s, t ≤ 0, we have that

|hΣ
s,t(x)− hΣ

s,t(y)| (a)
=

∣∣∣∣∣∣
∞∑
j=0

∞∑
k=0

κ∞j+k+2

(
1

α

)j+k+2

(xs−j,t−k − ys−j,t−k)

∣∣∣∣∣∣
(b)
≤
∞∑
j=0

∞∑
k=0

κ∞j+k+2

(
1

α

)j+k+2

|xs−j,t−k − ys−j,t−k|.

(B.15)

Here, (a) follows from (B.10), and (b) follows from the hypothesis that κ∞i ≥ 0 for i ≥ 2. Further-
more, we have that

|xs−j,t−k − ys−j,t−k| ≤ ‖x− y‖ξξ−max(|s−j|,|t−k|). (B.16)

Thus, by using (B.15) and (B.16), we obtain

‖hΣ(x)− hΣ(y)‖ξ = sup
s,t≤0

ξmax(|s|,|t|)|hΣ
s,t(x)− hΣ

s,t(y)|

≤ sup
s,t≤0

ξmax(|s|,|t|)‖x− y‖ξ
∞∑
j=0

∞∑
k=0

κ∞j+k+2

(
1

α

)j+k+2

ξ−max(|s−j|,|t−k|).

(B.17)

Note that, as ξ < 1,
ξ−max(|s−j|,|t−k|) ≤ ξ−max(|s|,|t|)−j−k−2,

which implies that the RHS of (B.17) is bounded above by

‖x− y‖ξ
∞∑
j=0

∞∑
k=0

κ∞j+k+2

(
1

ξα

)j+k+2

= R′
(

1

ξα

)(
1

ξα

)2

‖x− y‖ξ, (B.18)

where the equality follows from (A.5). This shows that (B.13) holds. The proof of (B.14) follows the
same argument as (B.12), since ξα > αs.

At this point, we show that the state evolution of Σ̃T̄ can be approximated via the fixed map hΣ.

Lemma B.6 (Limit map approximates state evolution map – Square matrices). Consider the map
hΣ : XI∗ → XI∗ defined in (B.10), where I∗ is given by Lemma B.3. Assume that κ∞i ≥ 0 for all
i ≥ 2, and let ξ < 1 be such that αξ > αs. Then, for any x ∈ XI∗ ,

‖Σ̃T̄ − hΣ(x)‖ξ ≤ R′
(

1

ξα

)(
1

ξα

)2

‖Σ̃T̄−1 − x‖ξ + F (T̄ ), (B.19)

where
lim
T̄→∞

F (T̄ ) = 0. (B.20)

Proof. Throughout the proof, we consider Σ̃T̄ , Σ̃T̄−1 as embedded in X . First, we write

‖Σ̃T̄ − hΣ(x)‖ξ = sup
s,t≤0

ξmax(|s|,|t|)|(Σ̃T̄ )s,t − hΣ
s,t(x)|

= max

(
sup
s,t≤0

max(|s|,|t|)<T̄

ξmax(|s|,|t|)|(Σ̃T̄ )s,t − hΣ
s,t(x)|,

sup
s,t≤0

max(|s|,|t|)≥T̄

ξmax(|s|,|t|)|(Σ̃T̄ )s,t − hΣ
s,t(x)|

)
,

(B.21)

where (Σ̃T̄ )s,t = σ̃s+T̄ ,t+T̄ if s ≥ −T̄ and t ≥ −T̄ , and (Σ̃T̄ )s,t = 0 otherwise.
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Let us look at the case max(|s|, |t|) < T̄ , and define I1 = {(j, k) : j ≥ s+ T̄ or k ≥ t+ T̄}. Then,

|(Σ̃T̄ )s,t − hΣ
s,t(x)| =

∣∣∣∣ s+T̄−1∑
j=0

t+T̄−1∑
k=0

κ∞j+k+2

(
1

α

)j+k+2 (
α2ρ2

α + σ̃s−j+T̄−1,t−k+T̄−1

)
−
∞∑
j=0

∞∑
k=0

κ∞j+k+2

(
1

α

)j+k+2 (
α2ρ2

α + xs−j,t−k
) ∣∣∣∣

≤

∣∣∣∣∣∣
s+T̄−1∑
j=0

t+T̄−1∑
k=0

κ∞j+k+2

(
1

α

)j+k+2 (
σ̃s−j+T̄−1,t−k+T̄−1 − xs−j,t−k

)∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
j,k∈I1

κ∞j+k+2

(
1

α

)j+k+2 (
α2ρ2

α + xs−j,t−k
)∣∣∣∣∣∣ := T1 + T2.

(B.22)

The term T1 can be upper bounded as follows:

T1

(a)
≤
s+T̄−1∑
j=0

t+T̄−1∑
k=0

κ∞j+k+2

(
1

α

)j+k+2 ∣∣σ̃s−j+T̄−1,t−k+T̄−1 − xs−j,t−k
∣∣

≤
s+T̄−1∑
j=0

t+T̄−1∑
k=0

κ∞j+k+2

(
1

α

)j+k+2

‖Σ̃T̄−1 − x‖ξξ−max(|s−j|,|t−k|)

(b)
≤
s+T̄−1∑
j=0

t+T̄−1∑
k=0

κ∞j+k+2

(
1

ξα

)j+k+2

‖Σ̃T̄−1 − x‖ξξ−max(|s|,|t|)

(c)
≤
∞∑
j=0

∞∑
k=0

κ∞j+k+2

(
1

ξα

)j+k+2

‖Σ̃T̄−1 − x‖ξξ−max(|s|,|t|)

(d)
= R′

(
1

ξα

)(
1

ξα

)2

‖Σ̃T̄−1 − x‖ξξ−max(|s|,|t|).

(B.23)

Here, (a) and (c) follows from the hypothesis that κ∞i ≥ 0 for i ≥ 2; (b) uses that ξ < 1; and (d) uses
(A.5). The term T2 can be upper bounded as follows:

T2 ≤
(
α2ρ2

α + a∗
) ∑
j,k∈I1

κ∞j+k+2

(
1

α

)j+k+2

≤ α2ρ2
α + a∗

α2

∞∑
i=−max(|s|,|t|)+T̄

κ∞i+2(i+ 1)

(
1

α

)i
,

(B.24)

where the first inequality uses that x ∈ XI∗ and the second inequality uses that, if (j, k) ∈ I1, then
j + k ≥ −max(|s|, |t|) + T̄ . By combining (B.22), (B.23) and (B.24), we obtain that

sup
s,t≤0

max(|s|,|t|)<T̄

ξmax(|s|,|t|)|(Σ̃T̄ )s,t − hΣ
s,t(x)|

≤ R′
(

1

ξα

)(
1

ξα

)2

‖Σ̃T̄−1 − x‖ξ +
α2ρ2

α + a∗

α2
sup

0≤t≤T̄
ξt

∞∑
i=T̄−t

κ∞i+2(i+ 1)

(
1

α

)i
.

(B.25)

Let us now look at the case max(|s|, |t|) ≥ T̄ . Recall that |hΣ
s,t(x)| ≤ a∗, σ̃0,0 = (1 − ρ2

α)α2 and
σ̃0,t = 0 for t ∈ [1, T̄ ]. Thus,

|(Σ̃T̄ )s,t − hΣ
s,t(x)| ≤ c1,
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where c1 is a constant independent of s, t, T̄ . This immediately implies that

sup
s,t≤0

max(|s|,|t|)≥T̄

ξmax(|s|,|t|)|(Σ̃T̄ )s,t − hΣ
s,t(x)| ≤ c1ξT̄ ,

which combined with (B.25) allows us to conclude that

‖Σ̃T̄ − hΣ(x)‖ξ ≤ R′
(

1

ξα

)(
1

ξα

)2

‖Σ̃T̄−1 − x‖ξ

+
α2ρ2

α + a∗

α2
sup

0≤t≤T̄
ξt

∞∑
i=T̄−t

κ∞i+2(i+ 1)

(
1

α

)i
+ c1ξ

T̄ .

(B.26)

As α > αs and the series in (A.5) is convergent for z < 1/αs, one readily verifies that

lim
T̄→∞

sup
0≤t≤T̄

ξt
∞∑

i=T̄−t

κ∞i+2(i+ 1)

(
1

α

)i
= 0, (B.27)

which concludes the proof.

Finally, we can put everything together and prove Lemma B.2.

Proof of Lemma B.2. Fix ε > 0 and denote by
(
hΣ
)T0 the T0-fold composition of hΣ. Recall from

Lemmas B.4 and B.5 that x∗ is the unique fixed point of hΣ : XI∗ → XI∗ . Then, for any x ∈ XI∗ ,

‖
(
hΣ
)T0

(x)− x∗‖ξ = ‖
(
hΣ
)T0

(x)−
(
hΣ
)T0

(x∗)‖ξ ≤

(
R′
(

1

ξα

)(
1

ξα

)2
)T0

‖x− x∗‖ξ,

(B.28)

where the inequality follows from Lemma B.5. Note that R′
(

1
ξα

)(
1
ξα

)2

< 1 (see (B.14)) and that
x,x∗ ∈ XI∗ . Thus, we can make the RHS of (B.28) smaller than ε/2 by choosing a sufficiently large
T0. Furthermore, an application of Lemma B.6 gives that, for all sufficiently large T̄ ,

‖ΣT̄+T0
−
(
hΣ
)T0

(x)‖ξ ≤

(
R′
(

1

ξα

)(
1

ξα

)2
)T0

‖ΣT̄ − x‖ξ +
ε

4
. (B.29)

Note that x ∈ XI∗ implies that ‖x‖ξ ≤ a∗. In addition, by following the same argument as in Lemma
B.3, one can show that |σ̃s,t| ≤ a∗ for all s, t, which in turn implies that ‖ΣT̄ ‖ξ ≤ a∗. As a result,
we can make the RHS of (B.29) is smaller than ε/2 by choosing sufficiently large T0. As the RHS of
both (B.28) and (B.29) can be made smaller than ε/2, an application of the triangle inequality gives
that

lim sup
T̄→∞

‖ΣT̄ − x∗‖ξ ≤ ε, (B.30)

which, after setting T̄ = T + 1, implies the desired result.

B.3 Convergence to PCA Estimator for the First Phase

In this section, we prove that the artificial AMP iterate at the end of the first phase converges to the
PCA estimator in normalized `2-norm.

Lemma B.7 (Convergence to PCA estimator – Square matrices). Consider the setting of Theorem 1,
and the first phase of the artificial AMP iteration described in (5.1), with the initialization given in
(B.1). Assume that κ∞i ≥ 0 for all i ≥ 2, and that α > αs. Then,

lim
T→∞

lim
n→∞

1√
n
‖ũT+1 −

√
nuPCA‖ = 0 almost surely. (B.31)
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Proof. Consider the following decomposition of ũT+1:

ũT+1 = ζT+1uPCA + rT+1, (B.32)

where ζT+1 = 〈ũT+1,uPCA〉 and 〈rT+1,uPCA〉 = 0. Define

eT+1 =

(
X −G−1

(
1

α

)
In

)
ũT+1, (B.33)

where G−1 is the inverse of the Cauchy transform of Λ. Then, using (B.32), (B.33) can be rewritten
as (

X −G−1

(
1

α

)
In

)
rT+1 = eT+1 −

(
X −G−1

(
1

α

)
In

)
ζT+1uPCA. (B.34)

First, we will show that ∥∥∥∥(X −G−1

(
1

α

)
In

)
rT+1

∥∥∥∥ ≥ c‖rT+1‖, (B.35)

where c > 0 is a constant (independent of n, T ). We start by observing that the matrix X −
G−1

(
1
α

)
In is symmetric, hence it can be written in the form QΛ̃QT, with Q orthogonal and Λ̃

diagonal. Furthermore, the columns ofQ are the eigenvectors ofX −G−1
(

1
α

)
In and the diagonal

entries of Λ̃ are the corresponding eigenvalues. As rT+1 is orthogonal to uPCA, we can write(
X −G−1

(
1

α

)
In

)
rT+1 = QΛ̃

′
QTrT+1, (B.36)

where Λ̃
′

is obtained from Λ̃ by changing the entry corresponding to λ1(X)−G−1
(

1
α

)
to any other

value. For our purposes, it suffices to substitute λ1(X)−G−1
(

1
α

)
with λ2(X)−G−1

(
1
α

)
. Note

that

‖QΛ̃
′
QTrT+1‖2 ≥ ‖rT+1‖2 min

s:‖s‖=1
‖QΛ̃

′
QTs‖2

= ‖rT+1‖2 min
s:‖s‖=1

〈s,Q
(
Λ̃
′)2

QTs〉

= ‖rT+1‖2 λmin(Q
(
Λ̃
′)2

QT),

(B.37)

where λmin(Q
(
Λ̃
′)2

QT) denotes the smallest eigenvalue of Q
(
Λ̃
′)2

QT and the last equality
follows from the variational characterization of the smallest eigenvalue of a symmetric matrix. Note
that

λmin(Q
(
Λ̃
′)2

QT) = λmin

(
(Λ̃
′
)2
)

= min
i∈{2,...,n}

((
G−1

(
1

α

)
− λi(X)

)2
)
. (B.38)

Recall that, for α > αs, λ1(X)
a.s.−→ G−1(1/α) and λ2(X)

a.s.−→ b < G−1(1/α), see [10, Theorem
2.1]. Thus, the RHS of (B.38) is lower bounded by a constant independent of n, T . By combining
this result with (B.36) and (B.37), we deduce that (B.35) holds.

Next, we prove that a.s.

lim
T→∞

lim
n→∞

1√
n

∥∥∥∥eT+1 −
(
X −G−1

(
1

α

)
In

)
ζT+1uPCA

∥∥∥∥ = 0. (B.39)

An application of the triangle inequality gives that∥∥∥∥eT+1 −
(
X −G−1

(
1

α

)
In

)
ζT+1uPCA

∥∥∥∥ ≤ ∥∥eT+1
∥∥+

∥∥∥∥(X −G−1

(
1

α

)
In

)
ζT+1uPCA

∥∥∥∥ .
(B.40)

The second term on the RHS of (B.40) is equal to

|ζT+1|
∣∣∣∣λ1(X)−G−1

(
1

α

)∣∣∣∣ . (B.41)
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By using Theorem 2.1 of [10], we have that, for α > αs, almost surely,

lim
n→∞

∣∣∣∣λ1(X)−G−1

(
1

α

)∣∣∣∣ = 0. (B.42)

Furthermore,
1√
n
|ζT+1| ≤

1√
n
‖ũT+1‖ =

1

α
√
n
‖f̃

T
‖.

By Proposition B.1, we have that

lim
n→∞

1

α
√
n
‖f̃

T
‖ =

1

α

√
µ̃2
T + σ̃T,T ,

which, for sufficiently large T , is upper bounded by a constant independent of n, T , as µ̃T = αρα
and σ̃T,T converges to α2(1− ρ2

α) as T →∞ by Lemma B.2. By combining this result with (B.42),
we deduce that

lim
T→∞

lim
n→∞

1√
n

∥∥∥∥(X −G−1

(
1

α

)
In

)
ζT+1uPCA

∥∥∥∥ = 0. (B.43)

To bound the first term on the RHS of (B.40), we proceed as follows:

lim
n→∞

1

n
‖eT+1‖2 = lim

n→∞

1

n

∥∥∥∥(X −G−1

(
1

α

)
In

)
ũT+1

∥∥∥∥2

(a)
= lim
n→∞

1

n

∥∥∥∥∥f̃T+1
+

T+1∑
i=1

κT−i+2

(
1

α

)T−i+1

ũi −G−1

(
1

α

)
ũT+1

∥∥∥∥∥
2

(b)
= lim
n→∞

1

n

∥∥∥∥∥f̃T+1
+

T+1∑
i=1

κ∞T−i+2

(
1

α

)T−i+1

ũi −G−1

(
1

α

)
ũT+1

∥∥∥∥∥
2

(c)
= E


(
F̃T+1 +

T+1∑
i=1

κ∞T−i+2

(
1

α

)T−i+1

Ũi −G−1

(
1

α

)
ŨT+1

)2
 .

(B.44)

Here, (a) uses the iteration (5.1) of the first phase of the artificial AMP, and (c) follows from
Proposition B.1, where Ũt for t ∈ [1, T + 1] and F̃T+1 are defined in (B.3). To obtain (b), we write

lim
n→∞

1

n

∥∥∥ T+1∑
i=1

(κT−i+2 − κ∞T−i+2)

(
1

α

)T−i+1

ũi
∥∥∥2

= lim
n→∞

T+1∑
i,j=1

(κT−i+2 − κ∞T−i+2)(κT−j+2 − κ∞T−j+2)

(
1

α

)2T−i−j+2 〈ũi, ũj〉
n

.

(B.45)

Using the state evolution result of Proposition B.1 and (B.3), we almost surely have

lim
n→∞

〈ũi, ũj〉
n

=
1

α2
(α2ρ2

α + σ̃i,j) < 1, (B.46)

where the last inequality uses σ̃i,j < σ̃0,0 = α2(1− ρ2
α). (This can be deduced from the recursion

(B.6) using the formula (2.2) for ρ2
α, and the relations (A.5) and (A.7).) Therefore, since κi

n→∞−→ κ∞i
for i ∈ [1, T + 1] (by the model assumptions), we almost surely have that (b) holds.

Next, by the triangle inequality, (B.44) is upper bounded by

3·E


(
α−G−1

(
1

α

)
+

T+1∑
i=1

κ∞T−i+2

(
1

α

)T−i+1
)2

Ũ2
T+1


+ 3 · E


(
T+1∑
i=1

κ∞T−i+2

(
1

α

)T−i+1

(Ũi − ŨT+1)

)2


+ 3 · E
{

(F̃T+1 − αŨT+1)2
}

:= S1 + S2 + S3.

(B.47)
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The term S3 can be expressed as

S3 = 3 · E
{

(F̃T+1 − F̃T )2
}

= 3(σ̃T+1,T+1 − 2σ̃T+1,T + σ̃T,T ).

Thus, by Lemma B.2, we have that
lim
T→∞

S3 = 0. (B.48)

The term S1 can be expressed as

S1 = 3 ·

(
α−G−1

(
1

α

)
+

T+1∑
i=1

κ∞T−i+2

(
1

α

)T−i+1
)2

α2ρ2
α + σ̃T,T
α2

.

By Lemma B.2, we have limT→∞ σ̃T,T = α2(1− ρα2), and hence

lim
T→∞

S1 = 3 ·

(
α−G−1

(
1

α

)
+

∞∑
i=0

κ∞i+1

(
1

α

)i)2

= 0, (B.49)

where the last equality follows from (A.4) and (A.6). Finally, consider the term S2, which after
expanding the square and some manipulations, can be expressed as

S2 =
3

α2

T∑
i,j=0

κ∞i+1κ
∞
j+1

(
1

α

)i+j
(σ̃T−j,T−i + σ̃T,T − σ̃T,T−i − σ̃T,T−j) . (B.50)

The expression above can be bounded above as

S2 ≤
3

α2

T∑
i,j=0

κ∞i+1κ
∞
j+1

(
1

α

)i+j (
|σ̃T−j,T−i − α2(1− ρ2

α)|+ |σ̃T,T − α2(1− ρ2
α)|

+ |σ̃T,T−i − α2(1− ρ2
α)|+ |σ̃T,T−j − α2(1− ρ2

α)|
)
.

(B.51)

We now apply Lemma B.2 to bound each of the four absolute values on the RHS of (B.51). Fix any
ξ ∈ (αs

α , 1). Then, by Lemma B.2, for any ε > 0 there exists T ∗(ε) such that for T > T ∗(ε), we
have

S2 ≤ ε ·
3

α2

T∑
i,j=0

κ∞i+1κ
∞
j+1

(
1

α

)i+j
·
(
ξ−max(i,j) + 1 + ξ−i + ξ−j

)
(a)
≤ ε · 12

α2

T∑
i,j=0

κ∞i+1κ
∞
j+1

(
1

ξα

)i+j
(b)
≤ ε · 12

α2

∞∑
i,j=0

κ∞i+1κ
∞
j+1

(
1

ξα

)i+j
(c)
≤ ε · 12

α2

(
R

(
1

ξα

))2

.

(B.52)

Here, (a) uses that ξ < 1, (b) uses that κ∞i ≥ 0 for i ≥ 2, and (c) uses the power series expansion
(A.4) of R(·), which converges to a finite limit as ξα > αs. Since ε can be arbitrarily small, we have

lim
T→∞

S2 = 0. (B.53)

By combining (B.44), (B.47), (B.48), (B.49) and (B.53), we have that

lim
T→∞

lim
n→∞

1√
n

∥∥eT+1
∥∥ = 0, (B.54)

which, combined with (B.43), gives (B.39). Finally, by using (B.35) and (B.39), we have that

lim
T→∞

lim
n→∞

1√
n

∥∥rT+1
∥∥ = 0. (B.55)

Thus, from the decomposition (B.32), we conclude that, as n→∞ and T →∞, ũT+1 is aligned
with uPCA. Furthermore, from another application of Proposition B.1, we obtain

lim
T→∞

lim
n→∞

1√
n
‖ũT+1‖ = lim

T→∞

1

α

√
µ̃2
T + σ̃T,T = 1, (B.56)

which implies that limT→∞ limn→∞ ζT+1 = 1 and concludes the proof.
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B.4 Analysis for the Second Phase

We first define a modified version of the true AMP algorithm, in which the memory coefficients
{bt,i}i∈[1,t] in (3.1)-(3.2) are replaced by deterministic values obtained from state evolution. The
iterates of the modified AMP, denoted by ût, are given by:

û1 =
√
nuPCA, f̂

1
= Xû1 − b̄1,1û

1, (B.57)

ût = ut(f̂
t−1

), f̂
t

= Xût −
t∑
i=1

b̄t,iû
i, t ≥ 2, (B.58)

where

b̄1,1 =

∞∑
i=0

κ∞i+1α
−i,

b̄t,t = κ∞1 , b̄t,1 =

∞∑
i=0

κ∞i+tα
−i

t∏
`=2

E{u′`(F`−1)},

b̄t,t−j = κ∞j+1

t∏
i=t−j+1

E{u′i(Fi−1)}, for (t− j) ∈ [2, t− 1].

(B.59)

We recall that {κ∞i } are the free cumulants of the limiting spectral distribution Λ, and the random
variables {Fi} are given by (3.4).

The following lemma shows that, as T grows, the iterates of the second phase of the artificial AMP
approach those of the modified AMP algorithm above, as do the corresponding state evolution
parameters.
Lemma B.8. Consider the setting of Theorem 1. Assume that κ∞i ≥ 0 for all i ≥ 2, and that α > αs.
Consider the modified version of the true AMP in (B.57)-(B.58), and the artificial AMP in (5.1)-(5.3)
along with its state evolution recursion given by (B.2)-(B.4). Then, the following results hold for
s, t ≥ 1:

1.

lim
T→∞

µ̃T+t = µt, lim
T→∞

σ̃T+s,T+t = σs,t. (B.60)

2. For any PL(2) function ψ : R2t+2 → R, we have

lim
T→∞

lim
n→∞

∣∣∣∣ 1n
n∑
i=1

ψ(u∗i , ũ
T+1
i , . . . , ũT+t+1

i , f̃T+1
i , . . . f̃T+t

i )

− 1

n

n∑
i=1

ψ(u∗i , û
1
i , . . . , û

t+1
i , f̂1

i , . . . f̂
t
i )

∣∣∣∣ = 0 almost surely.

(B.61)

Proof. Proof of (B.60). We prove by induction. Consider the base case t = 1. The formula in
(B.6) for µ̃t shows that µ̃t = αρα = µ1 for t ∈ [1, T + 1]. Furthermore, Lemma B.2 shows that
limT→∞ σ̃T+1,T+1 = α2(1− ρ2

α), which equals σ11 (defined right before (3.4)).

For t ≥ 2, assume towards induction that limT→∞ µ̃T+` = µ` and σT+k,T+` = σk,`, for k, ` ∈
[1, t− 1]. From (B.3)-(B.4), we have

µ̃T+t = αE{ut(µ̃T+t−1U∗ + Z̃T+t−1)U∗}. (B.62)

Recalling that Z̃T+t−1 ∼ N (0, σ̃T+t−1,T+t−1) and Zt−1 ∼ N (0, σt−1,t−1), by the induction
hypothesis and the continuous mapping theorem, the sequence of random variables {ut(µ̃T+t−1U∗ +

Z̃T+t−1)U∗} converges in distribution as T →∞ to ut(µt−1U∗ + Zt−1)U∗. We now claim that the
sequence {ut(µ̃T+t−1U∗ + Z̃T+t−1)U∗} is uniformly integrable, from which it follows that [12]

lim
T→∞

µ̃T+t = αE{ut(µt−1U∗ + Zt−1)U∗} = µt. (B.63)
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We show uniform integrability by showing that supT E{|ut(µ̃T+t−1U∗ + Z̃T+t−1)U∗|1+ε/2} is
bounded, where we recall that ε > 0 is any constant such that E{U2+ε

∗ } exists. Using Lt ≥ 1 to
denote a Lipschitz constant of ut, we have

E{|ut(µ̃T+t−1U∗ + Z̃T+t−1)U∗|1+ε/2}

≤ L1+ε/2
t E

{∣∣∣|µ̃T+t−1|U2
∗ + |Z̃T+t−1U∗|+ |ut(0)U∗|

∣∣∣1+ε/2
}

(a)
≤ (3Lt)

1+ε/2

(
|µ̃T+t−1|1+ε/2 E{|U∗|2+ε} +

(
E{|Z̃T+t−1|1+ε/2}+ |ut(0)|1+ε/2

)
E{|U∗|1+ε/2}

)
(b)
<∞, (B.64)

where (a) is obtained using Hölder’s inequality, and (b) holds because µ̃T+t−1 → µt−1 and
σ̃T+t−1,T+t−1 → σt−1,t−1 by the induction hypothesis.

Next, consider σ̃T+s,T+t for s ∈ [1, t]. From (B.4),

σ̃T+s,T+t =

T+s−1∑
j=0

T+t−1∑
k=0

κ∞j+k+2

 T+s∏
i=T+s−j+1

E{ũ′i(F̃i−1)}


·

(
T+t∏

i=T+t−k+1

E{ũ′i(F̃i−1)}

)
E{ŨT+s−jŨT+t−k}

:= A1 +A2 +A3 +A4, (B.65)
where the four terms correspond to the sum over different subsets of the indices (j, k). By using the
definition of ũi(·) in (B.3), those terms can be written as

A1 =

s−2∑
j=0

t−2∑
k=0

κ∞j+k+2

 s∏
i=s−j+1

E{u′i(F̃T+i−1)}

( t∏
i=t+1−k

E{u′i(F̃T+i−1)}

)
· E{ŨT+s−jŨT+t−k}, (B.66)

A2 =

s−2∑
j=0

T+t−1∑
k=t−1

( 1

α

)(k−t+1)

κ∞j+k+2

 s∏
i=s−j+1

E{u′i(F̃T+i−1)}

( t∏
i=2

E{u′i(F̃T+i−1)}

)
· E{ŨT+s−jŨT+t−k}, (B.67)

A3 =

T+s−1∑
j=s−1

t−2∑
k=0

( 1

α

)(j−s+1)

κ∞j+k+2

(
s∏
i=2

E{u′i(F̃T+i−1)}

)(
t∏

i=k−t+1

E{u′i(F̃T+i−1)}

)
· E{ŨT+s−jŨT+t−k}, (B.68)

A4 =

T+s−1∑
j=s−1

T+t−1∑
k=t−1

( 1

α

)(j+k−s−t+2)

κ∞j+k+2

(
s∏
i=2

E{u′i(F̃T+i−1)}

)(
t∏
i=2

E{u′i(F̃T+i−1)}

)
· E{ŨT+s−jŨT+t−k}. (B.69)

For i ∈ [2, t], the induction hypothesis implies that F̃T+i−1 = µ̃T+i−1U∗ + Z̃T+i−1
d→ Fi−1 =

µi−1U∗ + Zi−1. Since ui is Lipschitz and continuously differentiable, Lemma D.1 implies that

lim
T→∞

E{u′i(F̃T+i−1)} = E{u′i(Fi−1)}, i ∈ [2, t]. (B.70)

Next, note that

ŨT+s−j =

{
us−j(F̃T+s−j−1), 0 ≤ j ≤ s− 2,

F̃T+s−j−1/α, s− 1 ≤ j ≤ T + s− 1,

ŨT+t−k =

{
ut−k(F̃T+t−k−1), 0 ≤ k ≤ t− 2,

F̃T+t−k−1/α, t− 1 ≤ k ≤ T + t− 1.

(B.71)
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We separately consider E{ŨT+s−jŨT+t−k} for the four cases of (j, k), corresponding to
A1, A2, A3, A4. First, for j ∈ [0, t− 2], k ∈ [0, s− 2], we have

E{ŨT+s−jŨT+t−k} = E{us−j(F̃T+s−j−1) ut−k(F̃T+t−k−1)}. (B.72)

By the induction hypothesis and the continuous mapping theorem, the sequence
{us−j(F̃T+s−j−1)ut−k(F̃T+t−k−1)} converges in distribution to us−j(Fs−j−1)ut−k(Ft−k−1)
as T → ∞. From an argument similar to (B.64), we also deduce that
{us−j(F̃T+s−j−1)ut−k(F̃T+t−k−1)} is uniformly integrable, from which it follows that

lim
T→∞

E{us−j(F̃T+s−j−1)ut−k(F̃T+t−k−1)} = E{us−j(Fs−j−1)ut−k(Ft−k−1)},

j ∈ [0, t− 2], k ∈ [0, s− 2].
(B.73)

Eqs. (B.70) and (B.73) imply that

lim
T→∞

A1 =

s−2∑
j=0

t−2∑
k=0

κ∞j+k+2

 s∏
i=s−j+1

E{u′i(Fi−1)}

( t∏
i=t+1−k

E{u′i(Fi−1)}

)
E{Us−jUt−k}.

(B.74)

Next consider the case where j ∈ [s− 1, T + s− 1] and k ∈ [t− 1, T + t− 1]. Here,

E{ŨT+s−jŨT+t−k} =
1

α2
E{F̃T−(j+1−s)F̃T−(k+1−t)} = ρ2

α +
1

α2
σ̃T−(j+1−s),T−(k+1−t).

(B.75)
From Lemma B.2, for any δ > 0, for sufficiently large T , we have

|σ̃T−(j+1−s),T−(k+1−t) − α2(1− ρ2
α)| < δξ−max(j+1−s, k+1−t), (B.76)

for some ξ > 0 such that ξα > αs. Combining (B.75)-(B.76) and noting from (3.4) that
E{Us−jUt−k} = 1

α2E{F 2
1 } = 1, we obtain, for sufficiently large T :

|E{ŨT+s−jŨT+t−k}−E{Us−jUt−k}| <
δ

α2
ξ−max(j+1−s, k+1−t), for j ≥ (s−1), k ≥ (t−1).

(B.77)
Now we write A4 in (B.69) as

A4 =

(
s∏
i=2

E{u′i(F̃T+i−1)}

)(
t∏
i=2

E{u′i(F̃T+i−1)}

)

·

T+s−1∑
j=s−1

T+t−1∑
k=t−1

( 1

α

)(j+k−s−t+2)

κ∞j+k+2 E{Us−jUt−k} + ∆4

 , (B.78)

where

∆4 =

T+s−1∑
j=s−1

T+t−1∑
k=t−1

( 1

α

)(j+k−s−t+2)

κ∞j+k+2 [E{ŨT+s−jŨT+t−k} − E{Us−jUt−k}]. (B.79)

Using (B.77), for sufficiently large T we have

|∆4| <
δ

α2

T+s−1∑
j=s−1

T+t−1∑
k=t−1

(
1

ξα

)(j+k−s−t+2)

κ∞j+k+2

=
δ

α2
(ξα)s+t

T∑
j=0

T∑
k=0

(
1

ξα

)(j+k+s+t)

κ∞j+k+s+t

< Cs,tδ,

(B.80)
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for a positive constant Cs,t since the double sum is bounded for ξα > αs (see (A.5)). Since δ > 0 is
arbitrary, this shows that ∆4 → 0 as T →∞. Using this in (B.78) along with (B.70), we obtain

lim
T→∞

A4 =

(
s∏
i=2

E{u′i(Fi−1)}

)(
t∏
i=2

E{u′i(Fi−1)}

)

·
∞∑

j=s−1

∞∑
k=t−1

( 1

α

)(j+k−s−t+2)

κ∞j+k+2 E{Us−jUt−k}.
(B.81)

Next consider j ∈ [0, s− 2], k ∈ [t− 1, T + t− 1]. Here

E{ŨT+s−jŨT+t−k} =
1

α
E{us−j(F̃T+s−j−1)F̃T−(k+1−t)}

=
1

α
E{us−j(F̃T+s−j−1)F̃T+1}+

1

α
E{us−j(F̃T+s−j−1)(F̃T+1 − F̃T−(k+1−t))}. (B.82)

By the induction hypothesis and the uniform integrability of {us−j(F̃T+s−j−1)}, we have

lim
T→∞

1

α
E{us−j(F̃T+s−j−1)F̃T+1} =

1

α
E{us−j(Fs−j−1)F1} = E{Us−jUt−k}. (B.83)

The second term in (B.82) can be bounded as follows, using the Cauchy-Schwarz inequality:

|E{us−j(F̃T+s−j−1)(F̃T+1 − F̃T−(k+1−t))}|

≤ Lt(µ̃2
T+s−j−1 + σ̃T+s−j−1,T+s−j−1 + C)1/2

(
E{(F̃T+1 − F̃T−(k+1−t))

2}
)1/2

. (B.84)
Using Lemma B.2, for any δ > 0 and T sufficiently large, we have

E{(F̃T+1 − F̃T−(k+1−t))
2} ≤ |σT+1,T+1 − α2(1− ρ2

α)|
+ |σT−(k+1−t),T−(k+1−t) − α2(1− ρ2

α)| + 2|σT−(k+1−t),T+1 − α2(1− ρ2
α)|

< δξ−(k+1−t). (B.85)
Combining (B.82)-(B.84), we deduce that for any δ > 0, the following holds for sufficiently large T :

|E{ŨT+s−jŨT+t−k} − E{Us−jUt−k}| < δξ−(k+1−t), for j ∈ [0, s− 2], k ∈ [t− 1, T + t− 1].
(B.86)

We write A2 in (B.67) as

A2 =

(
t∏
i=2

E{u′i(F̃T+i−1)}

)
s−2∑
j=0

 s∏
i=s−j+1

E{u′i(F̃T+i−1)}


·

[
T+t−1∑
k=t−1

( 1

α

)(k−t+1)

κ∞j+k+2 E{Us−jUt−k}+ ∆2,j

]
, (B.87)

where

∆2,j =

T+t−1∑
k=t−1

( 1

α

)(k−t+1)

κ∞j+k+2 (E{ŨT+s−jŨT+t−k} − E{Us−jUt−k)}). (B.88)

From (B.86), for any δ > 0 and sufficiently large T we have

|∆2,j | < δ(ξα)j+t+1
T+1∑
k=1

(
1

ξα

)j+k+t

κ∞j+k+t < Cs,jδ, (B.89)

for a positive constant Cs,j since the sum over k is bounded (see (A.4)). Using this in (B.87) along
with (B.70), we obtain

lim
T→∞

A2 =

s−2∑
j=0

∞∑
k=t−1

( 1

α

)(k−t+1)

κ∞j+k+2 E{Us−jUt−k}

 s∏
i=s−j+1

E{u′i(Fi−1)}


·

(
t∏
i=2

E{u′i(Fi−1)}

)
. (B.90)
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Using a similar argument, we also have

lim
T→∞

A3 =

∞∑
j=s−1

t−2∑
k=0

( 1

α

)(j−s+1)

κ∞j+k+2 E{Us−jUt−k}

(
s∏
i=2

E{u′i(Fi−1)}

)

·

(
t∏

i=t−k+1

E{u′i(Fi−1)}

)
. (B.91)

Noting that the sum of the limits in (B.74), (B.81), (B.90) and (B.91) equals σs,t (defined in (3.6)),
we have shown that limT→∞ σ̃T+s,T+t = σs,t.

Proof of (B.61). Since ψ ∈ PL(2), for some universal constant C > 0 we have∣∣∣∣∣ 1n
n∑
i=1

ψ(u∗i , ũ
T+1
i , . . . , ũT+t+1

i , f̃T+1
i , . . . f̃T+t

i ) − 1

n

n∑
i=1

ψ(u∗i , û
1
i , . . . , û

t+1
i , f̂1

i , . . . f̂
t
i )

∣∣∣∣∣
≤ C

n

n∑
i=1

(
1 + |u∗i |+

t+1∑
`=1

(
|ũT+`
i |+ |û`i |

)
+

t∑
`=1

(
|f̃T+`
i |+ |f̂ `i |

))

·
(

(ũT+1
i − û1

i )
2 + . . .+ (ũT+t+1

i − ût+1
i )2 + (f̃T+1

i − f̂1
i )2 + . . .+ (f̃T+t

i − f̂ ti )2
) 1

2

≤ 2C(t+ 2)

[
1 +
‖u∗‖2

n
+

t+1∑
`=1

(‖ũT+`‖2

n
+
‖û`‖2

n

)
+

t∑
`=1

(‖f̃T+`
‖2

n
+
‖f̂

`
‖2

n

)] 1
2

·

(
‖ũT+1 − û1‖2

n
+ . . .+

‖ũT+t+1 − ût+1‖2

n
+
‖f̃

T+1
− f̂

1
‖2

n
+ . . .+

‖f̃
T+t
− f̂

t
‖2

n

) 1
2

,

(B.92)

where the last inequality is obtained by using Cauchy-Schwarz inequality (twice).

We will inductively show that in the limit T, n → ∞ (with the limit in n taken first): i) the terms
‖ũT+1−û1‖2

n , . . . , ‖f̃
T+1−f̂1‖2

n , . . ., ‖f̃
T+t−f̂t‖2

n all converge to 0 almost surely, and ii) each of the
terms within the square brackets in (B.92) converges to a finite deterministic value.

Base case: t = 1. From Lemma B.7, we have

lim
T→∞

lim
n→∞

‖ũT+1 − û1‖2

n
= 0. (B.93)

From the definitions of f̃
T+1

and f̂
1

in (5.1) and (B.57), we have

‖f̃
T+1
− f̂

1
‖2 =

∥∥∥X(ũT+1 − û1)−
( T+1∑
i=1

b̃T+1,iũ
i − b̄1,1û

1)∥∥∥2

≤ 2‖X‖2op‖ũT+1 − û1‖2 +
∥∥∥ T+1∑
i=1

b̃T+1,iũ
i − b̄1,1û

1
∥∥∥2

.

(B.94)

From [10, Theorem 2.1], we know that the ‖X‖op = |λ1(X)| n→∞→ |G−1(1/α)| almost surely.
Therefore, from (B.93), we almost surely have

lim
T→∞

lim
n→∞

‖X‖2op

‖ũT+1 − û1‖2

n
= 0. (B.95)
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For the second term in (B.94), recalling that b̃T+1,T+1−j = κj+1α
−j for j ∈ [0, T ] (see (5.1)), and

b̄1,1 =
∑∞
j=0 κ

∞
j+1α

−j (see (B.57)), we write

T+1∑
i=1

b̃T+1,iũ
i − b̄1,1û

1

=

T∑
j=0

(κj+1 − κ∞j+1)α−jũT+1−j +

T∑
j=0

κ∞j+1α
−j(ũT+1−j − ũT+1)

+

T∑
j=0

κ∞j+1α
−j(ũT+1 − û1)−

∞∑
j=T+1

κ∞j+1α
−jû1. (B.96)

Hence,

1

n

∥∥∥ T+1∑
i=1

b̃T+1,iũ
i − b̄1,1û

1
∥∥∥2

≤ 4

n

∥∥∥ T∑
j=0

(κj+1 − κ∞j+1)α−jũT+1−j
∥∥∥2

+
4

n

∥∥∥ T∑
j=0

κ∞j+1α
−j(ũT+1−j − ũT+1)

∥∥∥2

+
4

n

∥∥∥ T∑
j=0

κ∞j+1α
−j(ũT+1 − û1)

∥∥∥2

+
4

n

∥∥∥ ∞∑
j=T+1

κ∞j+1α
−jû1

∥∥∥2

:= R1 +R2 +R3 +R4. (B.97)

First, by using passages analogous to (B.45)-(B.46), we almost surely have limT→∞ limn→∞R1 = 0.
Considering R2 next, Proposition B.1 implies that almost surely

lim
n→∞

1

n

∥∥∥ T∑
j=0

κ∞j+1α
−j(ũT+1−j − ũT+1)

∥∥∥2

=
( T∑
j=0

κ∞j+1α
−jE{ŨT+1−j − ŨT+1}

)2

=

T∑
i=0

T∑
j=0

κ∞i+1κ
∞
j+1α

−(i+j) 1

n
E{(ŨT+1−i − ŨT+1)(ŨT+1−j − ŨT+1)}

(a)
=

T∑
i=0

T∑
j=0

κ∞i+1κ
∞
j+1α

−(i+j)(σ̃T−j,T−i + σ̃T,T − σ̃T−i,T − σ̃T−j,T ). (B.98)

Here, (a) is obtained from the definition Ũ` = F̃`−1/α from (B.3), for ` ∈ [1, T + 1]. As T →∞, it
was shown in (B.50)-(B.53) that the sum on the RHS of (B.98) converges to 0. Therefore

lim
T→∞

lim
n→∞

1

n

∥∥∥ T∑
j=0

κ∞j+1α
−j(ũT+1−j − ũT+1)

∥∥∥2

= 0 almost surely. (B.99)

For the third term in (B.97), recalling that û1 =
√
nuPCA, we almost surely have

lim
T→∞

( T∑
j=0

κ∞j+1α
−j
)2

lim
T→∞

lim
n→∞

‖ũT+1 − û1‖2

n
= 0, (B.100)

where we use Lemma B.7 and the fact that
∑∞
j=0 κ

∞
j+1α

−j = R(1/α) is convergent (see (A.4)). The
convergence of this series also implies that limT→∞

∑∞
j=T+1 κj+1α

−j = 0, and hence the fourth
term in (B.97) goes to 0. We have therefore shown that

lim
T→∞

lim
n→∞

1

n

∥∥∥ T+1∑
i=1

b̃T+1,iũ
i − b̄1,1û

1
∥∥∥2

= 0, (B.101)

almost surely. Using (B.95) and (B.101) in (B.94) shows that almost surely

lim
T→∞

lim
n→∞

1

n
‖f̃

T+1
− f̂

1
‖2 = 0. (B.102)
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Recalling that ũT+2 = u2(ũT+1), û2 = u2(f̂
1
) and that u2 is Lipschitz, we have ‖ũT+2 − û2‖ ≤

L2‖f̃
T+1
− f̂

1
‖, where L2 is the Lipschitz constant. Eq. (B.102) therefore implies

lim
T→∞

lim
n→∞

1

n
‖ũT+2 − û2‖2 = 0 almost surely. (B.103)

By the triangle inequality, we have for t ≥ 1:

‖ũT+t‖ − ‖ũT+t − ût‖ ≤ ‖ût‖ ≤ ‖ũT+t‖+ ‖ũT+t − ût‖. (B.104)

Therefore, from (B.93), Proposition B.1, (3.4) and (3.5), we almost surely have

lim
n→∞

‖û1‖2

n
= lim
T→∞

lim
n→∞

‖ũT+1‖2

n
= lim
T→∞

1

α2
(µ̃2
T+1 + σ̃T+1,T+1)

(a)
=

1

α2
(µ2

1 + σ1,1) = 1,

(B.105)
where (a) is due to (B.60). Similarly using (B.102), (B.103), Proposition B.1, and (3.5), we almost
surely have

lim
n→∞

‖û2‖2

n
= lim
T→∞

lim
n→∞

‖ũT+2‖2

n
= E{u2(µ2U∗ + Z2)2},

lim
n→∞

‖f̂
1
‖2

n
= lim
T→∞

lim
n→∞

‖f̃
T+1
‖2

n
= µ2

1 + σ1,1 = α2.

(B.106)

Using (B.93), (B.102), (B.103), (B.105), and (B.106) in (B.92), we conclude∣∣∣∣∣ 1n
n∑
i=1

ψ(u∗i , ũ
T+1
i , ũT+2

i , f̃T+1
i ) − 1

n

n∑
i=1

ψ(u∗i , û
1
i , û

2
i , f̂

1
i )

∣∣∣∣∣ = 0 almost surely. (B.107)

Induction step: For t ≥ 2, assume towards induction that almost surely

lim
T→∞

lim
n→∞

1

n
‖f̃

T+`−1
− f̂

`−1
‖2 = 0, lim

T→∞
lim
n→∞

1

n
‖ũT+` − û`‖2 = 0, for 2 ≤ ` ≤ t,

lim
T→∞

lim
n→∞

∣∣∣∣ 1n
n∑
i=1

ψ(u∗i , ũ
T+1
i , . . . , ũT+`

i , f̃T+1
i , . . . f̃T+`−1

i )

− 1

n

n∑
i=1

ψ(u∗i , û
1
i , . . . , û

`
i , f̂

1
i , . . . f̂

`−1
i )

∣∣∣∣ = 0, for 2 ≤ ` ≤ t.

(B.108)

Using the definitions of f̃
T+t

and f̂
t

in (5.3) and (B.58) and applying the Cauchy-Schwarz inequality,
we have

1

n
‖f̃

T+t
− f̂

t
‖2 ≤ (t+ 1)

n

(
‖X(ũT+t − ût)‖2 +

t∑
`=2

‖b̃T+t,T+`ũ
T+` − b̄t,`û

`‖2

+
∥∥∥ T+1∑
i=1

b̃T+t,iũ
i − b̄t,1û

1
∥∥∥2
)
. (B.109)

For the first term on the right, we have ‖X(ũT+t− ût)‖2 ≤ ‖X‖2op‖ũT+t− ût‖2. Since ‖X‖op →
|G−1(1/α)|, using the induction hypothesis we obtain

lim
T→∞

lim
n→∞

1

n
‖X(ũT+t − ût)‖2 = 0 almost surely. (B.110)

Next consider 1
n‖b̃T+t,T+`ũ

T+` − b̄t,`û
`‖2, which, for ` ∈ [2, t] can be bounded as

1

n
‖b̃T+t,T+`ũ

T+`− b̄t,`û`‖2 ≤ 2b̃T+t,T+`
‖ũT+` − û`‖2

n
+2
‖û`‖2

n
(b̃T+t,T+`− b̄t,`)2. (B.111)
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By the induction hypothesis, we almost surely have

lim
T→∞

lim
n→∞

‖ũT+` − û`‖2

n
= 0, and (B.112)

lim
n→∞

‖û`‖2

n
= lim
T→∞

lim
n→∞

‖ũT+`‖2

n
= lim
T→∞

(µ̃2
T+` + σ̃T+`,T+`) = µ2

` + σ`,`, (B.113)

where the last equality is due to (B.60). Furthermore, b̃T+t,T+t = κ1 → κ∞1 = b̄t,t as n → ∞.

For ` ∈ [2, t − 1], from (5.4) we have b̃T+t,T+` = κt−`+1

∏t
i=`+1〈u′i(f̃

T+i−1
)〉. Proposition B.1

implies that the empirical distribution of f̃
T+i−1

converges almost surely in Wasserstein-2 distance
to the law of F̃T+i−1 ≡ µ̃T+i−1U∗ + Z̃T+i−1. Therefore, applying Lemma D.1, we almost surely
have

lim
n→∞

b̃T+t,T+` = κ∞t−`+1

t∏
i=`+1

E{u′i(F̃T+i−1)}. (B.114)

Since F̃T+i−1 converges in distribution to Fi−1 ≡ µi−1U∗ +Zi−1 as T →∞, applying Lemma D.1
once again, we obtain

lim
T→∞

lim
n→∞

b̃T+t,T+` = κ∞t−`+1

t∏
i=`+1

E{u′i(Fi−1)}. (B.115)

Using (B.112), (B.113) and (B.115) in (B.111), we obtain

lim
T→∞

lim
n→∞

1

n
‖b̃T+t,T+`ũ

T+` − b̄t,`û
`‖2 = 0 almost surely for ` ∈ [2, t]. (B.116)

To bound the last term in (B.109), we write it as∥∥∥ T+1∑
i=1

b̃T+t,iũ
i − b̄t,1u

1
∥∥∥2

=
∥∥∥ T∑
j=0

b̃T+t,T+1−jũ
T+1−j − b̄t,1û

1
∥∥∥2

, (B.117)

where from (5.4) we have

b̃T+t,T+1−j = κt+jα
−j

t∏
i=2

〈u′i(f̃
T+i−1

)〉, 0 ≤ j ≤ T. (B.118)

Using this together with the formula for b̄t,1 in (B.59), we have

1

n

∥∥∥ T+1∑
i=1

b̃T+t,iũ
i − b̄t,1û

1
∥∥∥2

=
1

n

∥∥∥ t∏
`=2

〈u′`(f̃
T+`−1

)〉
T∑
j=0

κt+jα
−j ũT+1−j −

t∏
`=2

E{u′`(F`−1)}
∞∑
i=0

κ∞t+iα
−iû1

∥∥∥2

≤ 3

(
1

n

∥∥∥ t∏
`=2

〈u′`(f̃
T+`−1

)〉
T∑
j=0

κt+jα
−j ũT+1−j −

t∏
`=2

E{u′`(F`−1)}
T∑
j=0

κ∞t+jα
−j ũT+1−j

∥∥∥2

+
1

n

∥∥∥ t∏
`=2

E{u′`(F`−1)}
T∑
j=0

κ∞t+jα
−j (ũT+1−j − û1)

∥∥∥2

+

+
1

n

∥∥∥ t∏
`=2

E{u′`(F`−1)}
∞∑

i=T+1

κ∞t+iα
−iû1

∥∥∥2
)

:= 3(S1 + S2 + S3). (B.119)

Considering the second term S2 first, we have

1

n

∥∥∥ T∑
j=0

κ∞t+jα
−j (ũT+1−j − û1)

∥∥∥2

≤ 2

(
1

n

∥∥∥ T∑
j=0

κ∞t+jα
−j (ũT+1−j − ũT+1)

∥∥∥2

+
( T∑
j=0

κ∞t+jα
−j
)2 ‖ũT+1 − û1‖2

n

)
. (B.120)

33



By an argument similar to (B.98)-(B.99), we have

lim
T→∞

lim
n→∞

1

n

∥∥∥ T∑
j=0

κ∞t+jα
−j (ũT+1−j − ũT+1)

∥∥∥2

= 0 almost surely. (B.121)

Moreover, since R(1/α) <∞, from (A.4) we have

lim
T→∞

T∑
j=0

κ∞t+jα
−j = αt−1

(
R(1/α)−

t−2∑
i=0

κ∞i+1α
−i
)
.

Combining this with (B.93), we have that almost surely
lim
T→∞

lim
n→∞

S2 = 0. (B.122)

Next consider S3. Since the series
∑∞
j=0 κ

∞
t+jα

−j converges, limT→0

∑∞
i=T+1 κ

∞
t+iα

−i = 0.
Furthermore, by (B.105), ‖û1‖2/n converges almost surely to a finite value. Therefore

lim
T→∞

lim
n→∞

S3 = 0. (B.123)

Finally, we consider the term S1 in (B.119). We have

S1 ≤ 2
( t∏
`=2

〈u′`(f̃
T+`−1

)〉
)2 1

n

∥∥∥ T∑
j=0

(κt+j − κ∞t+j)α−j ũT+1−j
∥∥∥2

+ 2
( t∏
`=2

〈u′`(f̃
T+`−1

)〉 −
t∏
`=2

E{u′`(F`−1)}
)2 1

n

∥∥∥ T∑
j=0

κ∞t+jα
−j ũT+1−j

∥∥∥2

. (B.124)

Proposition B.1 implies that for ` ∈ [2, t], the empirical distribution of f̃
T+`−1

converges almost
surely in Wasserstein-2 distance to the law of F̃T+`−1, which converges in distribution to F`−1 (due
to (B.60)). Therefore, applying Lemma D.1 twice (as in (B.114)-(B.115)) we almost surely have

t∏
`=2

〈u′`(f̃T+`−1)〉 =

t∏
`=2

E{u′`(F`−1)}. (B.125)

Next, we have already shown that limT→∞ limn→∞
1
n‖
∑T
j=0(κt+j − κ∞t+j)α−j ũ

T+1−j‖2 = 0
almost surely. (See (B.45)-(B.46) and the subsequent argument.) This, together with (B.125) implies
that that limT→∞ limn→∞ S1 = 0 almost surely. Thus, using (B.122) and (B.123) in (B.119), we
have

lim
T→∞

lim
n→∞

1

n

∥∥∥ T+1∑
i=1

b̃T+t,iũ
i − b̄t,1û

1
∥∥∥2

= 0 almost surely. (B.126)

Using (B.110), (B.116), and (B.119) in (B.109), we conclude

lim
T→∞

lim
n→∞

1

n
‖f̃

T+t
− f̂

t
‖2 = 0 almost surely . (B.127)

Since ũT+t+1 = ut+1(f̃
T+t

) and ût+1 = ut+1(f̂
t
), with ut+1 Lipschitz, (B.127) implies that

lim
T→∞

lim
n→∞

1

n
‖ũT+t+1 − ût+1‖2 = 0 almost surely . (B.128)

Using the arguments in (B.104)-(B.106), we also have almost surely:

lim
T→∞

lim
n→∞

‖f̃
t+T
‖2

n
= lim
n→∞

‖f̂
t
‖2

n
= E{F 2

t },

lim
T→∞

lim
n→∞

‖ũT+t+1‖2

n
= lim
n→∞

‖ût+1‖2

n
= E{ut+1(Ft)

2}.
(B.129)

Using these together with the induction hypothesis (B.108) in (B.92) completes the proof that∣∣∣∣∣ 1n
n∑
i=1

ψ(u∗i , ũ
T+1
i , . . . , ũT+t+1

i , f̃T+1
i , . . . f̃T+t

i ) − 1

n

n∑
i=1

ψ(u∗i , û
1
i , . . . , û

t+1
i , f̂1

i , . . . f̂
t
i )

∣∣∣∣∣
= 0 almost surely.

(B.130)
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B.5 Proof of Theorem 1

We will first use Lemma B.8 to prove that the state evolution result holds for the iterates of the
modified AMP, i.e., for ψ ∈ PL(2):

lim
n→∞

1

n

n∑
i=1

ψ(u∗i , û
1
i , . . . , û

t+1
i , f̂1

i , . . . , f̂
t
i ) = E{ψ(U∗, U1, . . . , Ut+1, F1, . . . , Ft)}. (B.131)

Using the triangle inequality, for T > 0 we have the bound∣∣∣∣∣ 1n
n∑
i=1

ψ(u∗i , û
1
i , . . . , û

t+1
i , f̂1

i , . . . , f̂
t
i )− E{ψ(U∗, U1, . . . , Ut+1, F1, . . . , Ft)}

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

ψ(u∗i , û
1
i , . . . , û

t+1
i , f̂1

i , . . . , f̂
t
i )−

1

n

n∑
i=1

ψ(u∗i , ũ
T+1
i , . . . , ũT+t+1

i , f̃T+1
i , . . . , f̃T+t

i )

∣∣∣∣∣
+

∣∣∣∣ 1n
n∑
i=1

ψ(u∗i , ũ
T+1
i , . . . , ũT+t+1

i , f̃T+1
i , . . . , f̃T+t

i )

− E{ψ(U∗, ŨT+1, . . . , ŨT+t+1, F̃T+1, . . . , F̃T+t)}
∣∣∣∣

+
∣∣∣E{ψ(U∗, ŨT+1, . . . , ŨT+t+1, F̃T+1, . . . , F̃T+t)} − E{ψ(U∗, U1, . . . , Ut+1, F1, . . . , Ft)}

∣∣∣
:= S1 + S2 + S3.

(B.132)

First consider S3. From (B.60), (U∗, ŨT+1, . . . , ŨT+t+1, F̃T+1, . . . , F̃T+t)) converges in distribu-
tion to the the law of (U∗, U1, . . . , ut+1, F1, . . . , Ft) as T → ∞. By Skorokhod’s representation
theorem [12], to compute the expectations in S3, we can take the sequence of random vectors
(U∗, ŨT+1, . . . , ŨT+t+1, F̃T+1, . . . , F̃T+t) to be such that they belong to the same probability space
and converge almost surely to (U∗, U1, . . . , Ut+1, F1, . . . , Ft) as T →∞. Then, using the pseudo-
Lipschitz property of ψ and using Cauchy-Schwarz inequality (twice, as in (B.92)), we obtain

S3 ≤ 2C(t+ 2)

(
2 +

t+1∑
`=1

(E{Ũ2
T+`}+ E{U2

` }) +

t∑
`=1

(E{F̃ 2
T+`}+ E{F 2

` })

)1/2

·

(
t+1∑
`=1

E
{

(ŨT+` − U`)2
}

+

t∑
`=1

E
{

(F̃T+` − F`)2
})1/2

.

(B.133)

From Lemma B.8, we have limT→∞ E{F̃ 2
T+`} = E{F 2

` } and limT→∞ E{Ũ2
T+`} = E{U2

` }. More-
over, since for each `,

E
{

(F̃T+` − F`)2
}
≤ 2E

{
F̃ 2
T+`}+ 2E

{
F 2
` } <∞ ∀T, (B.134)

by dominated convergence we have limT→∞ E{(ŨT+` − U`)2} = limT→∞ E{(F̃T+` − F`)2} = 0.
Therefore limT→∞ S3 = 0. Furthermore, by Lemma B.8 and Proposition B.1, we also have
limT∞ limn→∞ S1 = limT→∞ limn→∞ S2 = 0 almost surely. This proves the state evolution result
(B.131) for the modified AMP.

We now prove the result of Theorem 1 by showing that for t ≥ 1, almost surely:

lim
n→∞

∣∣∣∣∣ 1n
n∑
i=1

ψ(u∗i , u
1
i , . . . , u

t+1
i , f1

i , . . . , f
t
i )−

1

n

n∑
i=1

ψ(u∗i , û
1
i , . . . , û

t+1
i , f̂1

i , . . . , f̂
t
i )

∣∣∣∣∣ = 0,

(B.135)

lim
n→∞

‖f t − f̂
t
‖2

n
= 0, lim

n→∞

‖ut+1 − ût+1‖2

n
= 0. (B.136)
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The proof of (B.135)-(B.136) is by induction and similar to that of (B.61). Noting that u1 = û1 =√
nuPCA, assume towards induction that (B.135)-(B.136) hold with t replaced by t − 1. Since

ψ ∈ PL(2), by the same arguments as in (B.92) we have∣∣∣∣∣ 1n
n∑
i=1

ψ(u∗i , u
1
i , . . . , u

t+1
i , f1

i , . . . f
t
i ) −

1

n

n∑
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ψ(u∗i , û
1
i , . . . , û

t+1
i , f̂1

i , . . . f̂
t
i )

∣∣∣∣∣
≤ 2C(t+ 2)

[
1 +
‖u∗‖2

n
+

t+1∑
`=1

(‖u`‖2
n

+
‖û`‖2

n

)
+

t∑
`=1

(‖f `‖2
n

+
‖f̂

`
‖2

n

)] 1
2

·

(
‖û1 − u1‖2

n
+ . . .+

‖ut+1 − ût+1‖2

n
+
‖f1 − f̂

1
‖2

n
+ . . .+

‖f t − f̂
t
‖2

n

) 1
2

. (B.137)

Using the definitions of f t and f̂
t

in (3.2) and (B.58), and applying the Cauchy-Schwarz inequality,
we have

1

n
‖f t − f̂

t
‖2 ≤ (t+ 1)

n

(
‖X(ut − ût)‖2 +

t∑
`=1

‖bt,`u` − b̄t,`û
`‖2
)

≤ (t+ 1)
(
‖X‖2op

1

n
‖ut − ût‖2 +

t∑
`=1

2

n
‖bt,`u` − b̄t,`u

`‖2 +
2

n
‖b̄t,`u` − b̄t,`û

`‖2
)
. (B.138)

Recall that ‖X‖op converges almost surely to |G−1(1/α)| and by the induction hypothesis, 1
n‖u

` −
û`‖2 → 0, for ` ∈ [1, t]. Next, we note that bt,t = κ1 → κ∞1 = b̄t,t as n→∞. For ` ∈ [2, t−1], we
have bt,` = κt−`+1

∏t
i=`+1〈u′i(f

i−1)〉. The induction hypothesis (B.135) implies that the empirical
distribution of f i−1 converges almost surely in Wasserstein-2 distance to the law of Fi−1 for i ∈ [1, t].
Therefore, applying Lemma D.1 we almost surely have

lim
n→∞

bt,` = κ∞t−`+1

t∏
i=`+1

E{u′i(Fi−1)}. (B.139)

This shows that limn→∞
1
n‖f

t − f̂
t
‖2 = 0 almost surely. Since ut+1 = ut+1(f t) with ut+1

Lipschitz, we also have limn→∞
1
n‖u

t+1 − ût+1‖2 = 0 almost surely. Moreover using a triangle
inequality argument similar to (B.104), for ` ∈ [1, t], we almost surely have

lim
n→∞

‖f `‖2

n
= lim
n→∞

‖f̂
`
‖2

n
= E{F 2

` }, lim
n→∞

‖u`+1‖2

n
= lim
n→∞

‖û`+1‖2

n
= E{u`+1(F`)

2}.
(B.140)

Using this in (B.137), we conclude that

lim
n→∞

∣∣∣∣∣ 1n
n∑
i=1

ψ(u∗i , u
1
i , . . . , u

t+1
i , f1

i , . . . f
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1

n

n∑
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ψ(u∗i , û
1
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t+1
i , f̂1

i , . . . f̂
t
i )

∣∣∣∣∣ = 0,

(B.141)
which combined with (B.131) completes the proof of the theorem.

C Proof of Theorem 2

This appendix is organized as follows. In Appendix C.1, we present the artificial AMP for the
rectangular model (1.2), and provide a sketch of the proof. In Appendix C.2, we present the state
evolution recursion associated with the artificial AMP iteration. In Appendix C.3, we prove that the
first phase of this state evolution admits a unique fixed point. Using this fact, in Appendix C.4, we
prove that the artificial AMP iterate at the end of the first phase approaches the left singular vector
produced by PCA. Then, in Appendix C.5, we show that (i) the iterates in the second phase of the
artificial AMP are close to the true AMP iterates, and (ii) the related state evolutions also remain
close. Finally, in Appendix C.6, we give the proof of Theorem 2.
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C.1 Proof Sketch

First phase. We consider the following artificial AMP algorithm. We initialize with

ũ1 =
√

∆PCAu
∗ +

√
1−∆PCAn, g̃1 = XTũ1, ṽ1 =

γ

α
g̃1, f̃

1
= Xṽ1 − κ2

γ

α
ũ1.

(C.1)

Here, n has i.i.d. standard Gaussian components and ∆PCA is the (limiting) normalized squared
correlation of the left PCA estimate, given in (2.3). As in the square case, the initialization of the
artificial AMP is impractical. However, this is not a problem, as the artificial AMP is only used as a
proof technique. Then, for 2 ≤ t ≤ T + 1, the artificial AMP iterates are

ũt =
1

α
f̃
t−1

, g̃t = XTũt −
t−1∑
i=1

b̃t,iṽ
i,

ṽt =
γ

α
g̃t, f̃

t
= Xṽt −

t∑
i=1

ãt,iũ
i,

(C.2)

where b̃t,t−j = κ2j
γ
α

(
γ
α2

)j−1
for j ∈ [1, t − 1], and ãt,t−j = κ2(j+1)

γ
α

(
γ
α2

)j
for j ∈ [0, t − 1].

We claim that, for sufficiently large T , ũT+1 approaches the left PCA estimate uPCA, that is,
limT→∞ limn→∞

1√
m
‖ũT+1 −

√
muPCA‖ = 0. This result is proved in Lemma C.8 in Appendix

C.4. Here we give a heuristic sanity check. Assume that the iterates ũT+1 and ṽT+1 converge to
the limits ũ∞ and ṽ∞, respectively, in the sense that limT→∞ limn→∞

1√
m
‖ũT+1 − ũ∞‖ = 0 and

limT→∞ limn→∞
1√
n
‖ṽT+1 − ṽ∞‖ = 0. Then, from (C.2), the limits ũ∞ and ṽ∞ satisfy

ũ∞ =
1

α
Xṽ∞ −

∞∑
i=1

κ2i

( γ
α2

)i
ũ∞,

ṽ∞ =
γ

α
XTũ∞ − γ

∞∑
i=1

κ2i

( γ
α2

)i
ṽ∞.

(C.3)

By using (A.15), we can re-write (C.3) as(
1 +R

( γ
α2

))
ũ∞ =

1

α
Xṽ∞,(

1 + γR
( γ
α2

))
ṽ∞ =

γ

α
XTũ∞,

(C.4)

which leads to (
1 + γR

( γ
α2

))(
1 +R

( γ
α2

))
ũ∞ =

γ

α2
XXTũ∞. (C.5)

As a result, ũ∞ is an eigenvector of XXT. Furthermore, by using (A.19), the eigenvalue
α2

γ

(
1 + γR

(
γ
α2

)) (
1 +R

(
γ
α2

))
can be re-written as

(
D−1

(
γ
α2

))2
. Recall that, for α̃ > α̃s, X

exhibits a spectral gap and its largest singular value converges to D−1
(
γ
α2

)
. Thus, u∞ must be

aligned with the left principal singular vector ofX , as desired.

A key step in our analysis is to show that, as T →∞, the state evolution of the artificial AMP in the
first phase has a unique fixed point. This is established in Lemma C.2, proved in Appendix C.3. As
for the square case, we follow the approach of [20, Section 7]. The crucial difference with [20] is
that we provide a result for all α̃ > α̃s, while the analysis of [20] requires that α̃ is sufficiently large.
To achieve this goal, we exploit the expression (2.3) of the limit correlation between uPCA and u∗,
and show that, as soon as the left PCA estimate is correlated with the signal u∗, state evolution is
close to a limit map which is a contraction. For this approach to work, we need the rectangular free
cumulants to be non-negative.
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Second phase. The second phase is designed so that the iterates (g̃T+k, f̃
T+k

) are close to
(gk,fk), for k ≥ 2. For t ≥ (T + 2), the artificial AMP computes

ũt = ut−T (f̃
t−1

), g̃t = XTũt −
t−1∑
i=1

b̃t,iṽ
i,

ṽt = vt−T (g̃t), f̃
t

= Xṽt −
t∑
i=1

ãt,iũ
t.

(C.6)

Here, the functions {vk, uk}k≥2 are the ones used in the true AMP (3.10). Additionally, letting
u1(x) = x/α and v1(x) = γx/α, the coefficients {ãt,i} and {b̃t,i} are given by:

ãt,t−j = κ2(j+1)〈v′t−T (g̃t)〉
( γ
α2

)(T+1−(t−j))+
t∏

i=max{t−j+1, T+2}

〈u′i−T (f̃
i−1

)〉〈v′i−1−T (g̃i−1)〉,

(t− j) ∈ [1, t], (C.7)

b̃t,t−j = γκ2j〈u′t−T (f̃
t−1

)〉
( γ
α2

)(T−(t−j))+
t−1∏

i=max{t−j+1, T+1}

〈v′i−T (g̃i)〉〈u′i−T (f̃
i−1

)〉,

(t− j) ∈ [1, t− 1]. (C.8)

Since the artificial AMP is initialized with ũ1 that is correlated with u∗ and independent of the noise
matrixW , a state evolution result for it can be obtained directly from [20, Theorem 1.4]. We then
show in Lemma C.9 in Appendix C.5 that the second phase iterates in (C.6) are close to the true AMP
iterates in (3.10), and that their state evolution parameters are also close. This result yields Theorem
2, as shown in Appendix C.6.

C.2 State Evolution for the Artificial AMP

Consider the artificial AMP iteration defined in (C.2) and (C.6), with initialization ũ1 =
√

∆PCAu
∗+√

1−∆PCAn. Then, its associated state evolution recursion is expressed in terms of a sequence of
mean vectors µ̃K = (µ̃t)t∈[0,K], ν̃K = (ν̃t)t∈[1,K] and covariance matrices Σ̃K = (σ̃s,t)s,t∈[0,K],
Ω̃K = (Ω̃s,t)s,t∈[1,K] defined recursively as follows. We initialize with

µ̃0 = α
√

∆PCA, σ̃0,0 = α2(1−∆PCA), σ̃0,t = σ̃t,0 = 0, for t ≥ 1. (C.9)

Given µ̃K , Σ̃K , ν̃K , Ω̃K , let

(F̃0, . . . , F̃K) = µ̃KU∗ + (Ỹ0, . . . , ỸK), where (Ỹ0, . . . , ỸK) ∼ N (0, Σ̃K), (C.10)

Ũt = ũt(F̃t−1) where ũt(x) =

{
x/α, 1 ≤ t ≤ (T + 1),

ut−T (x), t ≥ T + 2,
(C.11)

(G̃1, . . . , G̃K) = ν̃KV∗ + (Z̃1, . . . , Z̃K), where (Z̃1, . . . , Z̃K) ∼ N (0, Ω̃K), (C.12)

Ṽt = ṽt(G̃t) where ṽt(x) =

{
γx/α, 1 ≤ t ≤ T + 1,

vt−T (x), t ≥ T + 2.
(C.13)

Given µ̃K and Σ̃K , the entries of ν̃K+1 are given by ν̃t = αE{ŨtU∗} (for t ∈ [1,K + 1]), and the
entries of Ω̃K+1 (for s+ 1, t+ 1 ∈ [1,K + 1]) are given by

ω̃s+1,t+1 = γ

s∑
j=0

t∑
k=0

( s+1∏
i=s−j+2

E{ũ′i(F̃i−1)}E{ṽ′i−1(G̃i−1)}
)( t+1∏
i=t−k+2

E{ũ′i(F̃i−1)}E{ṽ′i−1(G̃i−1)}
)

[
κ∞2(j+k+1)E{Ũs+1−jŨt+1−k}+ κ∞2(j+k+2)E{ũ

′
s+1−j(F̃s−j)}E{ũ′t+1−k(F̃t−k)}E{Ṽs−j Ṽt−k}

]
.

(C.14)

(We use the convention that Ṽ0 = 0.) Next, given ν̃K+1 and Ω̃K+1 for some K ≥ 1, the entries
of µ̃K+1 are given by µ̃t = α

γE{ṼtV∗} (for t ∈ [0,K + 1]), and the entries of Σ̃K+1 (for s, t ∈
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[0,K + 1]) are given by

σ̃s,t =

s−1∑
j=0

t−1∑
k=0

( s∏
i=s−j+1

E{ũ′i(F̃i−1)}E{ṽ′i(G̃i)}
)( t∏

i=t−k+1

E{ũ′i(F̃i−1)}E{ṽ′i(G̃i)}
)

·
[
κ∞2(j+k+1)E{Ṽs−j Ṽt−k}+ κ∞2(j+k+2)E{ṽ

′
s−j(G̃s−j)}E{ṽ′t−k(G̃t−k)}E{Ũs−jŨt−k}

]
.

(C.15)

Proposition C.1 (State evolution for artificial AMP). Consider the setting of Theorem 2, the artificial
AMP iteration described in (C.2) and (C.6), with initialization given by (C.1), and the corresponding
state evolution parameters defined in (C.9)-(C.15).

Then, for t ≥ 1 and any PL(2) functions ψ : R2t+2 → R and ϕ : R2t+1 → R, the following hold
almost surely:

lim
m→∞

1

m

m∑
i=1

ψ(u∗i , ũ
1
i , . . . , ũ

t+1
i , f̃1

i , . . . f̃
t
i ) = E

{
ψ(U∗, Ũ1, . . . , Ũt+1, F̃1, . . . , F̃t)

}
, (C.16)

lim
n→∞

1

n

n∑
i=1

ϕ(v∗i , ṽ
1
i , . . . , ṽ

t
i , g̃

1
i , . . . g̃

t
i) = E

{
ϕ(V∗, Ṽ1, . . . , Ṽt, G̃1, . . . , G̃t)

}
. (C.17)

The proposition follows directly from Theorem 1.4 in [20] since the initialization ũ1 of the artificial
AMP is independent ofW .

C.3 Fixed Point of State Evolution for the First Phase

From (C.9)-(C.15), we note that the state evolution recursion for the first phase (t ∈ [1, T + 1]) has
the following form:

µ̃t = ν̃t = α
√

∆PCA, for t ∈ [1, T + 1],

σ̃s,t =

s−1∑
j=0

t−1∑
k=0

( γ
α2

)j+k (
κ∞2(j+k+1)

(γ
α

)2

(α2∆PCA + ω̃s−j,t−k)

+ κ∞2(j+k+2)

( γ
α2

)2

(α2∆PCA + σ̃s−j−1,t−k−1)

)
, for s, t ∈ [1, T + 1].

ω̃s,t = γ

s−1∑
j=0

t−1∑
k=0

( γ
α2

)j+k (
κ∞2(j+k+1)

1

α2
(α2∆PCA + σ̃s−j−1,t−k−1)

+ κ∞2(j+k+2)

( γ
α2

)2

(α2∆PCA + ω̃s−j−1,t−k−1)

)
, for s, t ∈ [1, T + 1].

(C.18)

In this section, we prove the following result characterizing the fixed point of state evolution for the
first phase in the rectangular setting.
Lemma C.2 (Fixed point of state evolution for first phase – Rectangular matrices). Consider the
setting of Theorem 2, and the state evolution recursion for the first phase given by (C.18). Assume
that κ∞2i ≥ 0 for all i ≥ 2, and that α̃ > α̃s. Pick any ξ < 1 such that α̃

√
ξ > α̃s. Then,

lim
T→∞

max
s,t∈[0,T ]

ξmax(s,t)|σ̃T+1−s,T+1−t − a∗| = 0,

lim
T→∞

max
s,t∈[0,T ]

ξmax(s,t)|ω̃T+1−s,T+1−t − b∗| = 0,
(C.19)

where

a∗ = α2(1−∆PCA),

b∗ =
∆PCAγα

2(xR′(x)−R(x)) + γR′(x)

1 + γR(x)− γxR′(x)
, with x =

γ

α2
.

(C.20)
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As for the case of square matrices, we consider the space of infinite matrices x = (xs,t : s, t ≤ 0)
equipped with the weighted `∞-norm defined in (B.8). Let X = {x : ‖x‖ξ < ∞} and, for any
compact set I ⊂ R, define XI as in (B.9). Recall that both X and XI are complete under ‖ · ‖ξ. We
embed the matrices Σ̃T̄ , Ω̃T̄ as elements x,y ∈ X with the following coordinate identification:

σ̃s,t = xs−T̄ ,t−T̄ , ω̃s,t = ys−T̄ ,t−T̄ ,

xs,t = 0, ys,t = 0, if s < −T̄ or t < −T̄
The idea is to approximate the maps (Σ̃T̄−1, Ω̃T̄−1) 7→ Ω̃T̄ and (Σ̃T̄−1, Ω̃T̄ ) 7→ Σ̃T̄ with the fixed
limit maps hΣ and hΩ, respectively, which are defined as

hΩ
s,t(x,y) = γ

∞∑
j=0

∞∑
k=0

( γ
α2

)j+k (
κ∞2(j+k+1)

1

α2
(α2∆PCA + xs−j,t−k)

+ κ∞2(j+k+2)

( γ
α2

)2

(α2∆PCA + ys−j,t−k)

)
,

hΣ
s,t(x,y) =

∞∑
j=0

∞∑
k=0

( γ
α2

)j+k (
κ∞2(j+k+1)

(γ
α

)2

(α2∆PCA + ys−j,t−k)

+ κ∞2(j+k+2)

( γ
α2

)2

(α2∆PCA + xs−j,t−k)

)
.

(C.21)

First, we show that (hΩ(XI∗Σ ,XI∗Ω), hΣ(XI∗Σ ,XI∗Ω)) ⊆ (XI∗Ω ,XI∗Σ) for suitably defined compact sets
I∗Ω, I

∗
Σ.

Lemma C.3 (Image of limit maps – Rectangular matrices). Consider the maps hΩ, hΣ defined in
(C.21). Assume that κ∞2i ≥ 0 for all i ≥ 1, and that α̃ > α̃s. Then, there exist I∗Ω = [−aΩ, aΩ] and
I∗Σ = [−aΣ, aΣ] such that, if (x,y) ∈ XI∗Σ ×XI∗Ω , then (hΩ(x,y), hΣ(x,y)) ∈ XI∗Ω ×XI∗Σ .

Proof. Let (x,y) ∈ XI∗Σ ×XI∗Ω . Then, the following chain of inequalities holds:

|hΩ
s,t(x,y)|

(a)
≤ γ

∞∑
j=0

∞∑
k=0

( γ
α2

)j+k (
κ∞2(j+k+1)

1

α2
(α2∆PCA + |xs−j,t−k|)

+ κ∞2(j+k+2)

( γ
α2

)2

(α2∆PCA + |ys−j,t−k|)
)

(b)
≤ γ

∞∑
j=0

∞∑
k=0

( γ
α2

)j+k (
κ∞2(j+k+1)

1

α2
(α2∆PCA + aΣ)

+ κ∞2(j+k+2)

( γ
α2

)2

(α2∆PCA + aΩ)

)
(c)
= γ

((
∆PCA +

aΣ

α2

)
R′
( γ
α2

)
+ (α2∆PCA + aΩ)

( γ
α2
R′
( γ
α2

)
−R

( γ
α2

)))
.

(C.22)

Here, (a) follows from the hypothesis that κ∞i ≥ 0 for i ≥ 2; (b) holds since (x,y) ∈ XI∗Σ × XI∗Ω ;
and (c) uses (A.16)-(A.17). With similar passages, we also obtain that

|hΣ
s,t(x,y)| ≤

(
γ2∆PCA +

γ2aΩ

α2

)
R′
( γ
α2

)
+ (α2∆PCA + aΣ)

( γ
α2
R′
( γ
α2

)
−R

( γ
α2

))
.

(C.23)
Set x = γ/α2. Then, by using (C.22) and (C.23), we obtain that the desired result holds if the
following pair of inequalities is satisfied:

∆PCA(γR′(x) + γα2(xR′(x)−R(x))) + aΣxR
′(x) + aΩγ(xR′(x)−R(x)) ≤ aΩ,

∆PCA(γ2R′(x) + α2(xR′(x)−R(x))) + aΣ(xR′(x)−R(x)) + aΩγxR
′(x) ≤ aΣ.

(C.24)

Set β = aΣ/aΩ. Then, (C.24) can be rewritten as

∆PCA(γR′(x) + γα2(xR′(x)−R(x))) + aΩ (βxR′(x) + γ(xR′(x)−R(x))) ≤ aΩ,

∆PCA(γ2R′(x) + α2(xR′(x)−R(x))) + aΩ (β(xR′(x)−R(x)) + γxR′(x)) ≤ βaΩ.
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This pair of inequalities holds for a sufficiently large aΩ if

βxR′(x) + γ(xR′(x)−R(x)) < 1,

β(xR′(x)−R(x)) + γxR′(x) < β.
(C.25)

Recall that, above the spectral threshold, namely, when α̃ > α̃s, the PCA estimator uPCA has strictly
positive correlation with the signal u∗:

〈uPCA,u
∗〉2

n

a.s.−→ ∆PCA > 0.

Furthermore, from [20, Eq. (7.32)], we have that ∆PCA can be expressed as

∆PCA =
T (R(x))− xT ′(R(x))R′(x)

1 + γR(x)
,

where T (z) = (1 + z)(1 + γz). We therefore obtain that

T (R(x))− xT ′(R(x))R′(x) > 0. (C.26)

By using (C.26), one can readily verify that 1 − xR′(x) + R(x) > 0. Furthermore, we have that
xR′(x) > 0, as x > 0 and the rectangular free cumulants are non-negative. Since xR′(x) > 0 and
1− xR′(x) +R(x) > 0, (C.25) can be rewritten as

γxR′(x)

1− xR′(x) +R(x)
< β <

1− γxR′(x) + γR(x)

xR′(x)
.

These above inequalities can be simultaneously satisfied for some value of β if

γxR′(x)

1− xR′(x) +R(x)
<

1− γxR′(x) + γR(x)

xR′(x)
. (C.27)

By using again that xR′(x) > 0 and 1− xR′(x) +R(x) > 0, (C.27) can be rewritten as

1− (1 + γ)(xR′(x)−R(x)) + γ(xR′(x)−R(x))2 > γ(xR′(x))2. (C.28)

The inequality (C.28) can be readily obtained from (C.26), and the proof is complete.

Next, we compute a fixed point of (hΣ, hΩ).

Lemma C.4 (Fixed point of limit maps – Rectangular matrices). Consider the maps hΩ, hΣ defined
in (C.21). Let x∗ = (x∗s,t : s, t ≤ 0) and y∗ = (y∗s,t : s, t ≤ 0) with x∗s,t = a∗ and y∗s,t = b∗, where
a∗ and b∗ are defined in (C.20). Assume that α̃ > α̃s. Then, (x∗,y∗) is a fixed point of (hΣ, hΩ).

Proof. Note that, for z = γ/α2, the power series expansion (A.16) of R′ converges to a finite limit
as α̃ > α̃s. Hence, by using the definition (C.21), we have that

hΩ
s,t(x

∗,y∗) = γ

((
∆PCA +

a∗

α2

)
R′
( γ
α2

)
+ (α2∆PCA + b∗)

( γ
α2
R′
( γ
α2

)
−R

( γ
α2

)))
,

hΣ
s,t(x

∗,y∗) =

(
γ2∆PCA +

γ2b∗

α2

)
R′
( γ
α2

)
+ (α2∆PCA + a∗)

( γ
α2
R′
( γ
α2

)
−R

( γ
α2

))
.

(C.29)

Since a fixed point should satisfy hΩ
s,t(x

∗,y∗) = b∗ and hΣ
s,t(x

∗,y∗) = a∗, writing x = γ/α2,
(C.29) becomes{

γ∆PCA(R′(x) + α2(xR′(x)−R(x))) + a∗xR′(x) + b∗γ(xR′(x)−R(x)) = b∗,
∆PCA(γ2R′(x) + α2(xR′(x)−R(x))) + a∗(xR′(x)−R(x)) + b∗γxR′(x) = a∗.

(C.30)

Solving (C.30) for a∗ and b∗, and using the expression for ∆PCA given in [20, Eq. (7.32)], we obtain
the formulas for (a∗, b∗) given in (C.20).

The next step is to show Lipschitz bounds on the maps hΣ, hΩ.
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Lemma C.5 (Lipschitz bounds on limit maps). Consider the map (hΩ(x,y), hΣ(x,y)) : XI∗Ω ×
XI∗Σ → XI∗Ω×XI∗Σ defined in (C.21) and where I∗Ω, I∗Σ are given by Lemma C.3. Assume that κ∞2i ≥ 0

for all i ≥ 1, and let ξ < 1 be such that α̃
√
ξ > α̃s. Then, for any (x,y) ∈ XI∗Σ ×XI∗Ω ,

‖hΩ(x,y)− hΩ(x′,y′)‖ξ ≤ x̃R′(x̃)‖x− x′‖ξ + γ (x̃R′(x̃)−R(x̃)) ‖y − y′‖ξ, (C.31)

‖hΣ(x,y)− hΣ(x′,y′)‖ξ ≤ γx̃R′(x̃)‖y − y′‖ξ + (x̃R′(x̃)−R(x̃)) ‖x− x′‖ξ, (C.32)

where we have set x̃ = γ/(ξα2).

Proof. Since κ∞2i ≥ 0 for i ≥ 1, we have

|hΩ
s,t(x,y)− hΩ

s,t(x
′,y′)| ≤ γ

∞∑
j=0

∞∑
k=0

( γ
α2

)j+k (
κ∞2(j+k+1)

1

α2
|xs−j,t−k − x′s−j,t−k|

+ κ∞2(j+k+2)

γ2

α4
|ys−j,t−k − y′s−j,t−k|

)
.

(C.33)

Note that

|xs−j,t−k − x′s−j,t−k| ≤ ‖x− x′‖ξξ−max(|s−j|,|t−k|) ≤ ‖x− x′‖ξξ−max(|s|,|t|)−j−k,

|ys−j,t−k − y′s−j,t−k| ≤ ‖y − y′‖ξξ−max(|s−j|,|t−k|) ≤ ‖y − y′‖ξξ−max(|s|,|t|)−j−k.
(C.34)

Thus, by combining (C.33) and (C.34), we have

‖hΩ(x,y)−hΩ(x′,y′)‖ξ ≤
γ

α2

∞∑
j=0

∞∑
k=0

(
γ

ξα2

)j+k(
κ∞2(j+k+1)‖x−x

′‖ξ+κ∞2(j+k+2)

γ2

α2
‖y−y′‖ξ

)
.

(C.35)
By using (A.16) and (A.17) to compute the sums in (C.35), we deduce that

‖hΩ(x,y)− hΩ(x′,y′)‖ξ ≤
γ

α2
R′
(

γ

ξα2

)
‖x− x′‖ξ

+ ξ2γ

(
γ

ξα2
R′
(

γ

ξα2

)
−R

(
γ

ξα2

))
‖y − y′‖ξ.

(C.36)

Recall that ξ < 1 and note from (A.17) that x̃R′(x̃) ≥ R(x̃) ≥ 0 with x̃ = γ/(ξα2). Thus, the claim
(C.31) readily follows from (C.36).

The proof of (C.32) is analogous. First, we use that κ∞2i ≥ 0 for i ≥ 1 and obtain

|hΣ
s,t(x,y)− hΣ

s,t(x
′,y′)| ≤

∞∑
j=0

∞∑
k=0

( γ
α2

)j+k (
κ∞2(j+k+1)

γ2

α2
|ys−j,t−k − y′s−j,t−k|

+ κ∞2(j+k+2)

γ2

α4
|xs−j,t−k − x′s−j,t−k|

)
.

(C.37)

Thus, by using (C.34), we have

‖hΣ(x,y)−hΣ(x′,y′)‖ξ ≤
∞∑
j=0

∞∑
k=0

(
γ

ξα2

)j+k (
κ∞2(j+k+1)

γ2

α2
‖y−y′‖ξ+κ∞2(j+k+2)

γ2

α4
‖x−x′‖ξ

)
.

(C.38)
Finally, by using (A.16) and (A.17) to compute the sums in (C.38), we deduce that

‖hΣ(x,y)− hΣ(x′,y′)‖ξ ≤
γ2

α2
R′
(

γ

ξα2

)
‖y − y′‖ξ

+ ξ2

(
γ

ξα2
R′
(

γ

ξα2

)
−R

(
γ

ξα2

))
‖x− x′‖ξ,

(C.39)

which readily leads to (C.32).
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Let us consider the map GΩ,Σ obtained by the successive composition of (x,y) 7→ (x, hΩ(x,y))
and (x,y) 7→ (hΣ(x,y),y), i.e.,

GΩ,Σ(x,y) = (GΩ,Σ
x (x,y), GΩ,Σ

y (x,y)) =
(
hΣ(x, hΩ(x,y)), hΩ(x,y)

)
. (C.40)

Given β > 0, define the norm ‖ · ‖ξ,β as

‖(x,y)‖ξ,β = ‖x‖ξ + β‖y‖ξ. (C.41)

We now use the Lipschitz bounds of Lemma C.5 to prove that GΩ,Σ is a contraction for a certain
value of β.
Lemma C.6 (Composition of limit maps is a contraction). Consider the map GΩ,Σ defined in (C.40),
and let I∗Ω, I∗Σ be the sets given by Lemma C.3. Assume that κ∞2i ≥ 0 for all i ≥ 1, and let ξ < 1
be such that α̃

√
ξ > α̃s. Then, if (x,y) ∈ XI∗Σ × XI∗Ω , we have that GΩ,Σ(x,y) ∈ XI∗Ω × XI∗Σ .

Furthermore, there exists β∗ > 0 and τ < 1 such that, for any (x,y) ∈ XI∗Σ ×XI∗Ω ,

‖GΩ,Σ(x,y)−GΩ,Σ(x′,y′)‖ξ,β∗ ≤ τ‖(x,y)− (x′,y′)‖ξ,β∗ . (C.42)

Proof. The claim that GΩ,Σ : XI∗Ω ×XI∗Σ → XI∗Ω ×XI∗Σ follows directly from Lemma C.3. We now
show that (C.42) holds. By using the definition (C.40) and the Lipschitz bounds (C.31)-(C.32) of
Lemma C.5, we obtain that

‖GΩ,Σ(x,y)−GΩ,Σ(x′,y′)‖ξ,β ≤ ‖x− x′‖ξ
(
x̃R′(x̃)−R(x̃) + γ(x̃R′(x̃))2 + βx̃R′(x̃)

)
+ ‖y − y′‖ξ

(
γ2(x̃R′(x̃))2 − γ2x̃R′(x̃)R(x̃) + βγ(x̃R′(x̃)−R(x̃))

)
,

(C.43)

where we have set x̃ = γ/(ξα2). Hence, the claim of the lemma holds if there exists β∗ > 0 and
τ < 1 such that

β∗x̃R′(x̃) + γ(x̃R′(x̃))2 −R(x̃) + x̃R′(x̃) ≤ τ,
β∗γ(x̃R′(x̃)−R(x̃)) + γ2(x̃R′(x̃))2 − γ2x̃R(x̃)R′(x̃) ≤ τβ∗.

(C.44)

We note that, as α̃
√
ξ > α̃s, (C.26) holds with x̃ in place of x. Hence, one readily verifies that

1− γx̃R′(x̃) +R(x̃) > 0. Furthermore, we have that x̃R′(x̃) > 0, as x̃ > 0 and the rectangular free
cumulants are non-negative. Thus, the two inequalities in (C.44) can be satisfied simultaneously if
there exists β∗ > 0 such that

γ2(x̃R′(x̃))2 − γ2x̃R(x̃)R′(x̃)

1− γx̃R′(x̃) + γR(x̃)
< β∗ <

1− γ(x̃R′(x̃))2 − x̃R′(x̃) +R(x)

x̃R′(x̃)
.

These last two inequalities can be satisfied simultaneously if

γ2(x̃R′(x̃))2 − γ2x̃R(x̃)R′(x̃)

1− γx̃R′(x̃) + γR(x̃)
<

1− γ(x̃R′(x̃))2 − x̃R′(x̃) +R(x)

x̃R′(x̃)
. (C.45)

By using again that 1− γx̃R′(x̃) +R(x̃) > 0 and x̃R′(x̃) > 0, (C.45) can be rewritten as(
1− γ(x̃R′(x̃))2 − x̃R′(x̃) +R(x)

)
(1− γx̃R′(x̃) + γR(x̃))

> x̃R′(x̃)
(
γ2(x̃R′(x̃))2 − γ2x̃R(x̃)R′(x̃)

)
,

which again follows from (C.26) with x̃ in place of x. Thus, there exists β∗ > 0 and τ < 1 such that
(C.44) is satisfied, completing the proof.

At this point, we show that the state evolution of Σ̃T̄ , Ω̃T̄ can be approximated via the fixed maps
hΣ, hΩ.
Lemma C.7 (Limit maps approximate SE maps – Rectangular matrices). Consider the map
(hΩ(x,y), hΣ(x,y)) : XI∗Ω × XI∗Σ → XI∗Ω × XI∗Σ defined in (C.21), where I∗Ω, I∗Σ are given by
Lemma C.3. Assume that κ∞2i ≥ 0 for all i ≥ 1, and let ξ < 1 be such that α̃

√
ξ > α̃s. Then, for any

(x,y) ∈ XI∗Σ ×XI∗Ω ,

‖Ω̃T̄ − hΩ(x,y)‖ξ ≤ x̃R′(x̃)‖Σ̃T̄−1 − x‖ξ + γ(x̃R′(x̃)−R(x̃))‖Ω̃T̄−1 − y‖ξ + F1(T̄ ),
(C.46)
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‖Σ̃T̄ − hΣ(x,y)‖ξ ≤ γx̃R′(x̃)‖Ω̃T̄−1 − y‖ξ + (x̃R′(x̃)−R(x̃))‖Σ̃T̄−1 − x‖ξ + F2(T̄ ),
(C.47)

where x̃ = γ/(ξα2) and
lim
T̄→∞

F1(T̄ ) = 0, lim
T̄→∞

F2(T̄ ) = 0. (C.48)

Proof. First, we write
‖Ω̃T̄ − hΩ(x,y)‖ξ = sup

s,t≤0
ξmax(|s|,|t|)|(Ω̃T̄ )s,t − hΩ

s,t(x,y)|

= max

(
sup
s,t≤0

max(|s|,|t|)<T̄

ξmax(|s|,|t|)|(Ω̃T̄ )s,t − hΩ
s,t(x,y)|,

sup
s,t≤0

max(|s|,|t|)≥T̄

ξmax(|s|,|t|)|(Ω̃T̄ )s,t − hΩ
s,t(x,y)|

)
,

where (Ω̃T̄ )s,t = ω̃s+T̄ ,t+T̄ if s ≥ −T̄ and t ≥ −T̄ , and (Ω̃T̄ )s,t = 0 otherwise.

Let us look at the case max(|s|, |t|) < T̄ , and define I1 = {(j, k) : j ≥ s+ T̄ or k ≥ t+ T̄}. Then,

|(Ω̃T̄ )s,t − hΩ
s,t(x,y)|

=

∣∣∣∣γ s+T̄−1∑
j=0

t+T̄−1∑
k=0

( γ
α2

)j+k (
κ∞2(j+k+1)

1

α2

(
α2∆PCA + σ̃s−j+T̄−1,t−k+T̄−1

)
+ κ∞2(j+k+2)

γ2

α4

(
α2∆PCA + ω̃s−j+T̄−1,t−k+T̄−1

))
− γ

∞∑
j=0

∞∑
k=0

( γ
α2

)j+k (
κ∞2(j+k+1)

1

α2

(
α2∆PCA + xs−j,t−k

)
+ κ∞2(j+k+2)

γ2

α4

(
α2∆PCA + ys−j,t−k

))∣∣∣∣
≤
∣∣∣∣γ s+T̄−1∑

j=0

t+T̄−1∑
k=0

( γ
α2

)j+k (
κ∞2(j+k+1)

1

α2

(
xs−j,t−k − σ̃s−j+T̄−1,t−k+T̄−1

)
+ κ∞2(j+k+2)

γ2

α4

(
ys−j,t−k − ω̃s−j+T̄−1,t−k+T̄−1

))∣∣∣∣
+

∣∣∣∣γ ∑
j,k∈I1

( γ
α2

)j+k (
κ∞2(j+k+1)

1

α2

(
α2∆PCA + xs−j,t−k

)
+ κ∞2(j+k+2)

γ2

α4

(
α2∆PCA + ys−j,t−k

))∣∣∣∣ := T1 + T2.

(C.49)

The term T1 can be upper bounded as follows:

T1

(a)
≤ γ

s+T̄−1∑
j=0

t+T̄−1∑
k=0

( γ
α2

)j+k (
κ∞2(j+k+1)

1

α2

∣∣xs−j,t−k − σ̃s−j+T̄−1,t−k+T̄−1

∣∣
+ κ∞2(j+k+2)

γ2

α4

∣∣ys−j,t−k − ω̃s−j+T̄−1,t−k+T̄−1

∣∣ )

≤ ‖Σ̃T̄−1 − x‖ξξ−max(|s|,|t|)γ

s+T̄−1∑
j=0

t+T̄−1∑
k=0

(
γ

ξα2

)j+k
κ∞2(j+k+1)

1

α2

+ ‖Ω̃T̄−1 − y‖ξξ−max(|s|,|t|)γ

s+T̄−1∑
j=0

t+T̄−1∑
k=0

(
γ

ξα2

)j+k
κ∞2(j+k+2)

γ

α4
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(b)
≤ ‖Σ̃T̄−1 − x‖ξξ−max(|s|,|t|)γ

∞∑
j=0

∞∑
k=0

(
γ

ξα2

)j+k
κ∞2(j+k+1)

1

α2

+ ‖Ω̃T̄−1 − y‖ξξ−max(|s|,|t|)γ

∞∑
j=0

∞∑
k=0

(
γ

ξα2

)j+k
κ∞2(j+k+2)

γ

α4

(c)
≤ ‖Σ̃T̄−1 − x‖ξξ−max(|s|,|t|)x̃R′(x̃) + ‖Ω̃T̄−1 − y‖ξξ−max(|s|,|t|)γ(x̃R′(x̃)−R(x̃)),

(C.50)

where x̃ = γ/(ξα2). Here, (a) and (b) follow from the hypothesis that κ∞2i ≥ 0 for i ≥ 1, (c) uses
(A.16), (A.17) and that ξ ≤ 1. By using that (x,y) ∈ XI∗Σ ×XI∗Ω , the term T2 can be upper bounded
as follows:

T2 ≤ C1

∑
j,k∈I1

( γ
α2

)j+k
(κ∞2(j+k+1) + κ∞2(j+k+2)), (C.51)

where C1 is a constant independent of s, t, T̄ . Note that, if (j, k) ∈ I1, then j+k ≥ −max(|s|, |t|)+
T̄ . Consequently, the RHS of (C.51) can upper bounded by

C2

∞∑
i=T̄−max(|s|,|t|)

( γ
α2

)i
(i+ 1)κ∞2(i+1), (C.52)

where C2 is a constant independent of s, t, T̄ . By combining (C.49), (C.50), (C.51) and (C.52), we
obtain that

sup
s,t≤0

max(|s|,|t|)<T̄

ξmax(|s|,|t|)|(Ω̃T̄ )s,t − hΩ
s,t(x,y)| ≤ ‖Σ̃T̄−1 − x‖ξx̃R′(x̃)

+ ‖Ω̃T̄−1 − y‖ξγ(x̃R′(x̃)−R(x̃)) + C2 sup
0≤t≤T̄

ξt
∞∑

i=T̄−t

( γ
α2

)i
(i+ 1)κ∞2(i+1).

(C.53)

Let us now look at the case max(|s|, |t|) ≥ T̄ . Recall that |hΩ
s,t(x,y)| ≤ aΩ, σ̃0,0 = (1−∆PCA)α2

and σ̃0,t = 0 for t ∈ [1, T̄ ]. Thus,

|(Ω̃T̄ )s,t − hΩ
s,t(x,y)| ≤ C3,

where C3 is a constant independent of s, t, T̄ . This immediately implies that

sup
s,t≤0

max(|s|,|t|)≥T̄

ξmax(|s|,|t|)|(Ω̃T̄ )s,t − hΩ
s,t(x,y)| ≤ C3ξ

T̄ ,

which combined with (C.53) allows us to conclude that

‖Ω̃T̄ − hΩ(x,y)‖ξ ≤ ‖Σ̃T̄−1 − x‖ξx̃R′(x̃)

+ ‖Ω̃T̄−1 − y‖ξγ(x̃R′(x̃)−R(x̃)) + C2 sup
0≤t≤T̄

ξt
∞∑

i=T̄−t

( γ
α2

)i
(i+ 1)κ∞2(i+1) + C3ξ

T̄ .

(C.54)

As α̃ > α̃s and the series in (A.16) is convergent for z < 1/(α̃s)
2, one readily verifies that

lim
T̄→∞

sup
0≤t≤T̄

ξt
∞∑

i=T̄−t

( γ
α2

)i
(i+ 1)κ∞2(i+1) = 0, (C.55)

which concludes the proof of (C.46).
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The proof of (C.47) follows similar passages, and we outline them below. First, we write

‖Σ̃T̄ − hΣ(x,y)‖ξ = sup
s,t≤0

ξmax(|s|,|t|)|(Σ̃T̄ )s,t − hΣ
s,t(x,y)|

= max

(
sup
s,t≤0

max(|s|,|t|)<T̄

ξmax(|s|,|t|)|(Σ̃T̄ )s,t − hΣ
s,t(x,y)|,

sup
s,t≤0

max(|s|,|t|)≥T̄

ξmax(|s|,|t|)|(Σ̃T̄ )s,t − hΣ
s,t(x,y)|

)
,

where (Σ̃T̄ )s,t = σ̃s+T̄ ,t+T̄ if s ≥ −T̄ and t ≥ −T̄ , and (Σ̃T̄ )s,t = 0 otherwise. For the case
max(|s|, |t|) < T̄ , we have

|(Σ̃T̄ )s,t − hΣ
s,t(x,y)|

≤
∣∣∣∣ s+T̄−1∑

j=0

t+T̄−1∑
k=0

( γ
α2

)j+k (
κ∞2(j+k+1)

γ2

α2

(
ys−j,t−k − ω̃s−j+T̄ ,t−k+T̄

)
+ κ∞2(j+k+2)

γ2

α4

(
xs−j,t−k − σ̃s−j+T̄−1,t−k+T̄−1

))∣∣∣∣
+

∣∣∣∣ ∑
j,k∈I1

( γ
α2

)j+k (
κ∞2(j+k+1)

γ2

α2

(
α2∆PCA + ys−j,t−k

)
+ κ∞2(j+k+2)

γ2

α4

(
α2∆PCA + xs−j,t−k

))∣∣∣∣ := T3 + T4.

(C.56)

By using (A.16), (A.17) and the non-negativity of the rectangular free cumulants, the term T3 can be
upper bounded as follows:

T3 ≤ ‖Ω̃T̄ − y‖ξξ−max(|s|,|t|)γx̃R′(x̃) + ‖Σ̃T̄−1 − x‖ξξ−max(|s|,|t|)(x̃R′(x̃)−R(x̃)). (C.57)

Furthermore, the term T4 can be upper bounded as

T4 ≤ C4

∞∑
i=T̄−max(|s|,|t|)

( γ
α2

)i
(i+ 1)κ∞2(i+1), (C.58)

where C4 is a constant independent of s, t, T̄ . For the case max(|s|, |t|) ≥ T̄ , we have

sup
s,t≤0

max(|s|,|t|)≥T̄

ξmax(|s|,|t|)|(Σ̃T̄ )s,t − hΣ
s,t(x,y)| ≤ C5ξ

T̄ , (C.59)

where C5 is a constant independent of s, t, T̄ . By combining (C.56), (C.57), (C.58) and (C.59), we
conclude that

‖Σ̃T̄ − hΣ(x,y)‖ξ ≤ ‖Ω̃T̄ − y‖ξγx̃R′(x̃)

+ ‖Σ̃T̄−1 − x‖ξ(x̃R′(x̃)−R(x̃)) + C4 sup
0≤t≤T̄

ξt
∞∑

i=T̄−t

( γ
α2

)i
(i+ 1)κ∞2(i+1) + C5ξ

T̄ ,

which, together with (C.55), concludes the proof of (C.47).

Finally, we can put everything together and prove Lemma C.2.

Proof of Lemma C.2. Fix ε > 0 and denote by
(
GΩ,Σ

)T0 the T0-fold composition of the map GΩ,Σ

defined in (C.40). Note that Lemma C.4 implies that (x∗,y∗) is a fixed point of GΩ,Σ, and Lemma
C.6 implies that this fixed point is unique. Then, for any (x,y) ∈ XI∗Σ ×XI∗Ω ,

‖
(
GΩ,Σ

)T0
(x,y)− (x∗,y∗)‖ξ,β∗ = ‖

(
GΩ,Σ

)T0
(x,y)−

(
GΩ,Σ

)T0
(x∗,y∗)‖ξ,β∗

≤ τT0‖(x,y)− (x∗,y∗)‖ξ,β∗ ,
(C.60)
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where the inequality follows from Lemma C.6. Note that τ < 1 and XI∗Ω × XI∗Σ is bounded under
‖ · ‖ξ,β∗ . Hence, we can make the RHS of (C.60) smaller than ε/2 by choosing a sufficiently large
T0. Furthermore, an application of Lemma C.7 gives that

‖(Σ̃T̄ , Ω̃T̄ )−GΩ,Σ(x,y)‖ξ,β∗ ≤ ‖Σ̃T̄−1 − x‖ξ
(
x̃R′(x̃)−R(x̃) + γ(x̃R′(x̃))2 + β∗x̃R′(x̃)

)
+ ‖Ω̃T̄−1 − y‖ξ

(
γ2(x̃R′(x̃))2 − γ2x̃R′(x̃)R(x̃) + β∗γ(x̃R′(x̃)−R(x̃))

)
+H(T̄ )

≤ τ‖(Σ̃T̄−1, Ω̃T̄−1)− (x,y)‖ξ,β∗ +H(T̄ ),
(C.61)

where limT̄→∞H(T̄ ) = 0 and the inequality follows from (C.44). Therefore, for all sufficiently
large T̄ ,

‖(Σ̃T̄+T0
, Ω̃T̄+T0

)−
(
GΩ,Σ

)T0
(x,y)‖ξ,β∗ ≤ τT0‖(Σ̃T̄ , Ω̃T̄ )− (x,y)‖ξ,β∗ +

ε

4
. (C.62)

Note that (x,y) ∈ XI∗Σ × XI∗Ω implies that ‖x‖ξ ≤ aΣ and ‖y‖ξ ≤ aΩ. In addition, by following
the same argument as in Lemma C.3, one can show that |ω̃s,t| ≤ aΩ and |σ̃s,t| ≤ aΣ, which in turn
implies that ‖Ω̃T̄ ‖ξ ≤ aΩ and ‖Σ̃T̄ ‖ξ ≤ aΣ. As a result, we can make the RHS of (C.62) smaller
than ε/2 by choosing a sufficiently large T0. As the RHS of both (C.60) and (C.62) can be made
smaller than ε/2, an application of the triangle inequality gives that

lim sup
T̄→∞

‖(Σ̃T̄ , Ω̃T̄ )− (x∗,y∗)‖ξ,β∗ ≤ ε, (C.63)

which, after setting T̄ = T + 1, implies the desired result.

C.4 Convergence to PCA Estimator for the First Phase

In this section, we prove that the artificial AMP iterate at the end of the first phase converges in
normalized `2-norm to the left singular vector produced by PCA.
Lemma C.8 (Convergence to PCA estimator – Rectangular matrices). Consider the setting of
Theorem 2, and the first phase of the artificial AMP iteration described in (C.2), with initialization
given by (C.1). Assume that κ∞2i ≥ 0 for all i ≥ 1, and that α̃ > α̃s. Then,

lim
T→∞

lim
n→∞

1√
m
‖ũT+1 −

√
muPCA‖ = 0 a.s. (C.64)

Proof. Consider the following decomposition of ũT+1:

ũT+1 = ζT+1uPCA + rT+1, (C.65)

where ζT+1 = 〈ũT+1,uPCA〉 and 〈rT+1,uPCA〉 = 0. Define

eT+1 =
(
XXT −

(
D−1

(
1/α̃2

))2
Im

)
ũT+1, (C.66)

where D−1 is the inverse of the D-transform of Λ. Then, by using (C.65), (C.66) can be rewritten as(
XXT −

(
D−1

(
1/α̃2

))2
Im

)
rT+1 = eT+1 −

(
XXT −

(
D−1

(
1/α̃2

))2
Im

)
ζT+1uPCA.

(C.67)
Note thatX (and consequentlyXXT) has a spectral gap, in the sense that, almost surely, σ1(X)→
D−1(1/α̃2) and σ2(X) → b < D−1(1/α̃2). Furthermore, rT+1 is orthogonal to the left singular
vector associated to the singular value σ1(X). Thus, by following passages analogous to (B.36),
(B.37) and (B.38), we obtain that∥∥∥(XXT −

(
D−1

(
1/α̃2

))2
Im

)
rT+1

∥∥∥ ≥ c‖rT+1‖, (C.68)

where c > 0 is a constant (independent of n,m, T ).

Next, we prove that almost surely

lim
T→∞

lim
n→∞

1√
m

∥∥∥eT+1 −
(
XXT −

(
D−1

(
1/α̃2

))2
Im

)
ζT+1uPCA

∥∥∥ = 0. (C.69)
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An application of the triangle inequality gives that∥∥∥eT+1 −
(
XXT −

(
D−1

(
1/α̃2

))2
Im

)
ζT+1uPCA

∥∥∥
≤
∥∥eT+1

∥∥+
∥∥∥(XXT −

(
D−1

(
1/α̃2

))2
Im

)
ζT+1uPCA

∥∥∥ . (C.70)

The second term on the RHS of (C.70) is equal to

|ζT+1|
∣∣∣λ1(XXT)−

(
D−1

(
1/α̃2

))2∣∣∣ . (C.71)

By using Theorem 2.8 of [11], we have that, for α̃ > α̃s, almost surely,

lim
m→∞

∣∣∣λ1(XXT)−
(
D−1

(
1/α̃2

))2∣∣∣ = 0. (C.72)

Furthermore,
1√
m
|ζT+1| ≤

1√
m
‖ũT+1‖ =

1

α
√
m
‖f̃

T
‖.

By Proposition C.1, we have that

lim
m→∞

1

α
√
m
‖f̃

T
‖ =

1

α

√
µ̃2
T + σ̃T,T ,

which, for sufficiently large T , is upper bounded by a constant independent of n,m, T , as µ̃T =
α
√

∆PCA and σ̃T,T converges to α2(1 − ∆PCA) as T → ∞ by Lemma C.2. By combining this
result with (C.72), we deduce that

lim
T→∞

lim
m→∞

1√
m

∥∥∥(XXT −
(
D−1

(
1/α̃2

))2
Im

)
ζT+1uPCA

∥∥∥ = 0. (C.73)

In order to bound the first term on the RHS of (C.70), we proceed as follows:

lim
m→∞

1

m
‖eT+1‖2 = lim

m→∞

1

m

∥∥∥(XXT −
(
D−1

(
1/α̃2

))2
Im

)
ũT+1

∥∥∥2

(a)
= lim
m→∞

1

m

∥∥∥∥α̃2

(
1

α
f̃
T+1

+
1

α̃2

T+1∑
i=1

κ2(T−i+2)

(
1

α̃2

)T−i+1

ũi +
γ

α̃2

T∑
i=1

κ2(T−i+1)

(
1

α̃2

)T−i

·
(
ũi+1 +

1

α̃2

i∑
j=1

κ2(i−j+1)

(
1

α̃2

)i−j
ũj
))
−
(
D−1

(
1/α̃2

))2
ũT+1

∥∥∥∥2

(b)
= lim
m→∞

1

m

∥∥∥∥α̃2

(
1

α
f̃
T+1

+
1

α̃2

T+1∑
i=1

κ∞2(T−i+2)

(
1

α̃2

)T−i+1

ũi +
γ

α̃2

T∑
i=1

κ∞2(T−i+1)

(
1

α̃2

)T−i

·
(
ũi+1 +

1

α̃2

i∑
j=1

κ∞2(i−j+1)

(
1

α̃2

)i−j
ũj
))
−
(
D−1

(
1/α̃2

))2
ũT+1

∥∥∥∥2

(c)
= E

{∣∣∣∣α̃2

(
1

α
F̃T+1 +

1

α̃2

T+1∑
i=1

κ∞2(T−i+2)

(
1

α̃2

)T−i+1

Ũi +
γ

α̃2

T∑
i=1

κ∞2(T−i+1)

(
1

α̃2

)T−i

·
(
Ũi+1 +

1

α̃2

i∑
j=1

κ∞2(i−j+1)

(
1

α̃2

)i−j
Ũj

))
−
(
D−1

(
1/α̃2

))2
ŨT+1

∣∣∣∣2
}
.

(C.74)

Here, (a) uses the iteration (C.2) of the first phase of the artificial AMP; (b) uses that, for all i,
κ2i → κ∞2i as n → ∞, as well as an argument similar to (B.45)-(B.46); and (c) follows from
Proposition C.1, where Ũt for t ∈ [1, T + 1] and F̃T+1 are defined in (C.10) and (C.11). After some
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manipulations we can upper bound the RHS of (C.74) by triangle inequality as

5·E

{(
α̃2 +

T∑
i=0

κ∞2(i+1)

(
1

α̃2

)i
+ γ

T−1∑
i=0

κ∞2(i+1)

(
1

α̃2

)i
+ γ

T∑
i=1

T−i∑
j=0

κ∞2iκ
∞
2(j+1)

(
1

α̃2

)i+j

−
(
D−1

(
1/α̃2

))2)2

Ũ2
T+1

}

+ 5 · E


γ T∑

i=1

T−i∑
j=0

κ∞2iκ
∞
2(j+1)

(
1

α̃2

)i+j
(ŨT−i−j+1 − ŨT+1)

2


+ 5 · E


(
γ

T−1∑
i=0

κ∞2(i+1)

(
1

α̃2

)i
(ŨT−i+1 − ŨT+1)

)2


+ 5 · E


(

T∑
i=0

κ∞2(i+1)

(
1

α̃2

)i
(ŨT−i+1 − ŨT+1)

)2


+ 5 · E

{
α̃4

(
1

α
F̃T+1 − ŨT+1

)2
}

:= S1 + S2 + S3 + S4 + S5.

(C.75)

The term S5 can be expressed as

S5 = 5
α2

γ2
(σ̃T+1,T+1 − 2σ̃T+1,T + σ̃T,T ).

Thus, by Lemma C.2, we have that
lim
T→∞

S5 = 0. (C.76)

The term S1 can be expressed as

S1 = 5
µ̃2
T + σ̃T,T
α2

·
(
α̃2 +

T∑
i=0

κ∞2(i+1)

(
1

α̃2

)i
+ γ

T−1∑
i=0

κ∞2(i+1)

(
1

α̃2

)i

+ γ

T∑
i=1

T−i∑
j=0

κ∞2iκ
∞
2(j+1)

(
1

α̃2

)i+j
−
(
D−1

(
1/α̃2

))2)2

.

Thus, by Lemma C.2, we have that

lim
T→∞

S1 = 5 ·
(
α̃2 +

∞∑
i=0

κ∞2(i+1)

(
1

α̃2

)i
+ γ

∞∑
i=0

κ∞2(i+1)

(
1

α̃2

)i
+ γ

∞∑
i=1

∞∑
j=0

κ∞2iκ
∞
2(j+1)

(
1

α̃2

)i+j
−
(
D−1

(
1/α̃2

))2)2

= 0,

(C.77)

where the last equality follows from (A.15) and (A.19). The term S4 can be expressed as

S4 =
5

α2

T∑
i,j=0

κ∞2(i+1)κ
∞
2(j+1)

(
1

α̃2

)i+j (
σ̃T−j,T−i + σ̃T,T − σ̃T,T−i − σ̃T,T−j

)
,

which can upper bounded by

5

α2

T∑
i,j=0

κ∞2(i+1)κ
∞
2(j+1)

(
1

α̃2

)i+j
(
|σ̃T−j,T−i − α2(1−∆PCA)|+ |σ̃T,T − α2(1−∆PCA)|

+ |σ̃T,T−i − α2(1−∆PCA)|+ |σ̃T,T−j − α2(1−∆PCA)|
)
.

(C.78)
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By Lemma C.2, for any ε > 0, there exists T ∗(ε) such that for all T > T ∗(ε), the quantity in (C.78)
is upper bounded by

ε · 5

α2

T∑
i,j=0

κ∞2(i+1)κ
∞
2(j+1)

(
1

α̃2

)i+j
·
(
ξ−max(i,j) + 1 + ξ−i + ξ−j

)
(a)
≤ ε · 20

α2

T∑
i,j=0

κ∞2(i+1)κ
∞
2(j+1)

(
1

ξα̃2

)i+j
(b)
≤ ε · 20

α2

∞∑
i,j=0

κ∞2(i+1)κ
∞
2(j+1)

(
1

ξα̃2

)i+j
(c)
≤ ε · 20

α2

(
R

(
1

ξα̃2

))2

.

Here, (a) uses that ξ < 1, (b) uses that κ2i ≥ 0 for i ≥ 1, and (c) uses the power series expansion
(A.15) of R, which converges to a finite limit as

√
ξα̃ > α̃s. Since ε can be taken arbitrarily small,

we deduce that
lim
T→∞

S4 = 0. (C.79)

By using the same argument, we also have that
lim
T→∞

S3 = 0. (C.80)

Finally, the term S2 is upper bounded by

5γ2

α2

T∑
i=1

T−i∑
j=0

T∑
k=1

T−k∑
`=0

κ∞2iκ
∞
2kκ
∞
2(j+1)κ

∞
2(`+1)

(
1

α̃2

)i+j+k+`

·
(
|σT,T − α2(1−∆PCA)|+ |σT,T−i−j − α2(1−∆PCA)|

+ |σT,T−k−` − α2(1−∆PCA)|+ |σT−i−j,T−k−` − α2(1−∆PCA)|
)
.

(C.81)

By Lemma C.2, for any ε > 0, there exists T ∗(ε) such that for all T > T ∗(ε), the quantity in (C.81)
is upper bounded by

ε · 20γ2

α2

T∑
i=1

T−i∑
j=0

T∑
k=1

T−k∑
`=0

κ∞2iκ
∞
2kκ
∞
2(j+1)κ

∞
2(`+1)

(
1

ξα̃2

)i+j+k+`

≤ ε · 20γ2

α2

∞∑
i=1

∞∑
j=0

∞∑
k=1

∞∑
`=0

κ∞2iκ
∞
2kκ
∞
2(j+1)κ

∞
2(`+1)

(
1

ξα̃2

)i+j+k+`

≤ ε · 20γ2

α2

(
R

(
1

ξα̃2

))4

,

where we use again that κ2i ≥ 0 for i ≥ 1 and the power series expansion (A.15) of R. Since ε can
be taken arbitrarily small, we deduce that

lim
T→∞

S2 = 0. (C.82)

By combining (C.74), (C.75), (C.76), (C.77), (C.79), (C.80) and (C.82), we conclude that

lim
T→∞

lim
m→∞

1√
m

∥∥eT+1
∥∥ = 0, (C.83)

which, combined with (C.73), gives (C.69). Finally, by using (C.68) and (C.69), we have that

lim
T→∞

lim
m→∞

1√
m

∥∥rT+1
∥∥ = 0. (C.84)

Thus, from the decomposition (C.65), we conclude that, as m→∞ and T →∞, ũT+1 is aligned
with uPCA. Furthermore, from another application of Proposition C.1, we obtain

lim
T→∞

lim
m→∞

1√
m
‖ũT+1‖ = lim

T→∞

1

α

√
µ̃2
T + σ̃T,T = 1, (C.85)

which implies that limT→∞ limm→∞ ζT+1 = 1 and concludes the proof.
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C.5 Analysis for the Second Phase

As in the proof of the square case, we define a modified version of the true AMP algorithm, in which
the memory coefficients {at,i, bt+1,i}i∈[1,t] are replaced by deterministic values obtained from state
evolution. This modified AMP is initialized with

û1 =
√
muPCA, ĝ1 =

(
1 + γ

∞∑
i=1

κ∞2i

( γ
α2

)i)−1

XTû1, v̂1 = v1(ĝ1) =
γ

α
ĝ1. (C.86)

Then, for t ≥ 1, we iteratively compute:

f̂
t
=Xv̂t−

t∑
i=1

āt,iû
i, ût+1 =ut+1(f̂

t
), ĝt+1 =Xût+1−

t∑
i=1

b̄t+1,iv̂
i, v̂t+1 =vt+1(ĝt+1).

(C.87)

The deterministic memory coefficients are: ā1,1 = α
∑∞
i=1 κ

∞
2i

(
γ
α2

)i
, and for t ≥ 2:

āt,1 = E{v′t(Gt)}
t∏
i=2

E{u′i(Fi−1)}E{v′i−1(Gi−1)}

( ∞∑
i=0

κ∞2(i+t)

( γ
α2

)i)
, (C.88)

āt,t−j = E{v′t(Gt)}
t∏

i=t−j+1

E{u′i(Fi−1)}E{v′i−1(Gi−1)}κ∞2(j+1), for (t− j) ∈ [2, t].

(C.89)

Furthermore, for t ≥ 1,

b̄t+1,1 = γE{u′t+1(Ft)}
t∏
i=2

E{v′i(Gi)}E{u′i(Fi−1)}

(
κ∞2t +

∞∑
i=1

κ∞2(i+t)

( γ
α2

)i)
, (C.90)

b̄t+1,t+1−j = γE{u′t+1(Ft)}
t∏

i=t+2−j
E{v′i(Gi)}E{u′i(Fi−1)}κ∞2j , for (t+ 1− j) ∈ [2, t].

(C.91)

We recall that {κ∞2i } are the rectangular free cumulants of the limiting singular value distribution Λ,
and the random variables {Fi, Gi} are given by (3.15)-(3.17). The following lemma shows that, as
T grows, the iterates of the second phase of the artificial AMP (described in Section C.1) approach
those of the modified AMP algorithm above, as do the corresponding state evolution parameters.
Lemma C.9. Consider the setting of Theorem 2. Assume that κ∞2i ≥ 0 for all i ≥ 1, and that α̃ > α̃s.
Consider the modified version of the true AMP in (C.86)-(C.87), and the artificial AMP in (C.1),
(C.2), and (C.6) along with its state evolution recursion given by (C.9)-(C.15). Then, the following
results hold for s, t ≥ 1:

1.

lim
T→∞

µ̃T+t = µt, lim
T→∞

σ̃T+s,T+t = σs,t, (C.92)

lim
T→∞

ν̃T+t = νt, lim
T→∞

ω̃T+s,T+t = ωs,t, (C.93)

2. For any PL(2) functions ψ : R2t+2 → R and ϕ : R2t+1 → R, we almost surely have:

lim
T→∞

lim
n→∞

∣∣∣∣ 1

m

m∑
i=1

ψ(u∗i , ũ
T+1
i , . . . , ũT+t+1

i , f̃T+1
i , . . . f̃T+t

i )

− 1

m

m∑
i=1

ψ(u∗i , û
1
i , . . . , û

t+1
i , f̂1

i , . . . f̂
t
i )

∣∣∣∣ = 0,

(C.94)

lim
T→∞

lim
n→∞

∣∣∣∣ 1n
n∑
i=1

ϕ(v∗i , ṽ
T+1
i , . . . , ṽT+t

i , g̃T+1
i , . . . g̃T+t

i )

− 1

n

n∑
i=1

ϕ(v∗i , v̂
1
i , . . . , v̂

t
i , ĝ

1
i , . . . ĝ

t
i)

∣∣∣∣ = 0.

(C.95)
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Proof. Proof of (C.92)- (C.93). For t ∈ [1, T + 1], from (C.18) we have µ̃t = ν̃t = α
√

∆PCA =
µ1 = ν1. Next, Lemma C.4 shows that limT→∞ σ̃T+1,T+1 = a∗ and limT→∞ ω̃T+1,T+1 = b∗,
where a∗, b∗ are defined in (C.20). We now verify that σ11 = a∗ and ω11 = b∗. Setting s = t = 0 in
(3.19) and solving for ω11, we obtain:

ω1,1 = b∗ =
∆PCAγα

2(xR′(x)−R(x)) + γR′(x)

1 + γR(x)− γxR′(x)
, where x =

γ

α2
. (C.96)

Here, we have used (A.16) and (A.17) to express the double sums in terms of R(x) and R′(x).
Similarly, from (3.20), we obtain

σ1,1 = γxR′(x)(α2∆PCA + ω1,1) + γR′(x)− α2R(x), where x = γ/α2. (C.97)
Using the formula for ∆PCA in [20, Eq. (7.32)], it can be verified that the above expression for σ1,1

reduces to a∗ = α2(1−∆PCA), as required.

Assume towards induction that the following holds for 1 ≤ k, ` ≤ t:
lim
T→∞

µ̃T+` = µ`, lim
T→∞

σ̃T+k,T+` = σk,`, lim
T→∞

ν̃T+` = ν`, lim
T→∞

ω̃T+k,T+` = ωk,`.

(C.98)
Consider ν̃T+t+1 = αE{ŨT+t+1U∗} = αE{ut+1(F̃T+t)U∗}. By the induction hypothesis F̃T+t =

µ̃T+tU∗ + ỸT+t converges in distribution to Ft = µtU∗ + Yt, and by arguments similar to (B.64),
the sequence of random variables {ut+1(F̃T+t)U∗} is uniformly integrable. Hence,

lim
T→∞

ν̃T+t+1 = αE{ut+1(Ft)U∗} = νt+1. (C.99)

Next, for s ≤ t, consider ω̃T+s+1,T+t+1 which is defined via (C.14). We write ω̃T+s+1,T+t+1 =
O1 +O2 +O3 +O4 , where

O1 = γ

s−1∑
j=0

t−1∑
k=0

( s+1∏
i=s−j+2

E{u′i(F̃T+i−1)}E{v′i−1(G̃T+i−1)}
)

( t+1∏
i=t−k+2

E{u′i(F̃T+i−1)}E{v′i−1(G̃T+i−1)}
)
·
[
κ∞2(j+k+1)E{ŨT+s+1−jŨT+t+1−k}

+ κ∞2(j+k+2)E{u
′
s+1−j(F̃T+s−j)}E{u′t+1−k(F̃T+t−k)}E{ṼT+s−j ṼT+t−k}

]
, (C.100)

O2 = γ

s−1∑
j=0

T+t∑
k=t

( γ
α2

)k−t ( s+1∏
i=s−j+2

E{u′i(F̃T+i−1)}E{v′i−1(G̃T+i−1)}
)

( t+1∏
i=2

E{u′i(F̃T+i−1)}E{v′i−1(G̃T+i−1)}
)
·
[
κ∞2(j+k+1)E{ŨT+s+1−jŨT+t+1−k}

+ κ∞2(j+k+2)

1

α
E{u′s+1−j(F̃T+s−j)}E{ṼT+s−j ṼT+t−k}

]
, (C.101)

O3 = γ

T+s∑
j=s

t−1∑
k=0

( γ
α2

)j−s ( s+1∏
i=2

E{u′i(F̃T+i−1)}E{v′i−1(G̃T+i−1)}
)

( t+1∏
i=t−k+2

E{u′i(F̃T+i−1)}E{v′i−1(G̃T+i−1)}
)
·
[
κ∞2(j+k+1)E{ŨT+s+1−jŨT+t+1−k}

+ κ∞2(j+k+2)

1

α
E{u′t+1−k(F̃T+t−k)}E{ṼT+s−j ṼT+t−k}

]
, (C.102)

O4 = γ

T+s∑
j=s

T+t∑
k=t

( γ
α2

)j+k−s−t ( s+1∏
i=2

E{u′i(F̃T+i−1)}E{v′i−1(G̃T+i−1)}
)

( t+1∏
i=2

E{u′i(F̃T+i−1)}E{v′i−1(G̃T+i−1)}
)
·
[
κ∞2(j+k+1)E{ŨT+s+1−jŨT+t+1−k}

+ κ∞2(j+k+2)

1

α2
E{ṼT+s−j ṼT+t−k}

]
. (C.103)
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By the induction hypothesis, for i ∈ [2, t + 1], we have F̃T+i−1
d→ Fi−1 and G̃T+i−1

d→ Gi−1.
Since ui and vi−1 are Lipschitz and continuously differentiable, Lemma D.1 implies

lim
T→∞

E{u′i(F̃T+i−1)} = E{u′i(Fi−1)}, lim
T→∞

E{v′i−1(G̃T+i−1)} = E{v′i−1(Gi−1)},

for i ∈ [2, t+ 1].
(C.104)

Next, note that

(ŨT+s+1−j , ṼT+s−j) =


(us+1−j(F̃T+s−j), vs−j(G̃T+s−j)), 0 ≤ j ≤ s− 1,

(F̃T+s−j/α, G̃T+s−jγ/α), s ≤ j ≤ T + s− 1,

(F̃0/α, 0), j = T + s.

(C.105)

An analogous set of expressions holds for the pair (ŨT+t+1−k, ṼT+t−k). For j ∈ [0, s − 1] and
k ∈ [0, t− 1], using an argument similar to that used to obtain (B.73), we deduce that the sequences
{us+1−j(F̃T+s−j)ut+1−k(F̃T+t−k)} and {vs−j(G̃T+s−j)vt−k(G̃T+t−k)} are each uniformly inte-
grable. This, together with the induction hypothesis, implies that

lim
T→∞

O1 = γ

s−1∑
j=0

t−1∑
k=0

( s+1∏
i=s−j+2

E{u′i(Fi−1)}E{v′i−1(Gi−1)}
)

( t+1∏
i=t−k+2

E{u′i(Fi−1)}E{v′i−1(Gi−1)}
)
·
[
κ∞2(j+k+1)E{Us+1−jUt+1−k}

+ κ∞2(j+k+2)E{u
′
s+1−j(Fs−j)}E{u′t+1−k(Ft−k)}E{Vs−jVt−k}

]
.

(C.106)

Next consider the term O4. In this case, for j ∈ [s, T + s− 1] and k ∈ [t, T + t− 1]:

E{ŨT+s+1−jŨT+t+1−k} =
1

α2
E{F̃T+s−jF̃T+t−k} = ∆PCA +

1

α2
σ̃T−(j−s), T−(k−t),

E{ṼT+s−j ṼT+t−k} =
γ2

α2
E{G̃T+s−jG̃T+t−k} =

γ2

α2
(α2∆PCA + ω̃T−(j−s), T−(k−t)).

(C.107)

When j = T + s or k = T + t, the formula above for E{ŨT+s+1−jŨT+t+1−k} still holds, while the
one for E{ṼT+s−j ṼT+t−k} becomes 0 as Ṽ0 = 0. From Lemma C.2, for any δ > 0, for sufficiently
large T we have

|σ̃T+s−j,T+t−k − a∗| < δξ−max{j+1−s,k+1−t},

|ω̃T+s−j,T+t−k − b∗| < δξ−max{j+1−s,k+1−t}, j ∈ [s, T + s], k ∈ [t, T + t],
(C.108)

for some ξ > 0 such that α̃
√
ξ > α̃s. From (3.15)-(3.18), we note that E{Us−jUt−k} = 1

α2E{F 2
0 } =

1 and E{Vs−jVt−k} = γ2

α2E{G2
1} = γ2

α2 (α2∆PCA + b∗). Combining this with (C.107) and (C.108),
we have for sufficiently large T :

|E{ŨT+1+s−jŨT+1+t−k} − E{Us−jUt−k}| <
δ

α2
ξ−max{j+1−s,k+1−t},

|E{ṼT+s−j ṼT+t−k} − E{Vs−jVt−k}| <
γ2δ

α2
ξ−max{j+1−s,k+1−t}, for j ≥ s, k ≥ t.

(C.109)

We now write O4 in (C.103) as

O4 = γ
( s+1∏
i=2

E{u′i(F̃T+i−1)}E{v′i−1(G̃T+i−1)}
)( t+1∏

i=2

E{u′i(F̃T+i−1)}E{v′i−1(G̃T+i−1)}
)

[
T+s∑
j=s

T+t∑
k=t

( γ
α2

)j+k−s−t [
κ∞2(j+k+1)E{Us+1−jUt+1−k}+ κ∞2(j+k+2)

1

α2
E{Vs−jVt−k}

]

+ ∆4U + ∆4V

]
, (C.110)
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where

∆4U =

T+s∑
j=s

T+t∑
k=t

( γ
α2

)j+k−s−t
κ∞2(j+k+1)[E{ŨT+1+s−jŨT+1+t−k} − E{Us+1−jUt+1−k}],

∆4V =
1

α2

T+s∑
j=s

T+t∑
k=t

( γ
α2

)j+k−s−t
κ∞2(j+k+2)[E{ṼT+s−j ṼT+t−k} − E{Vs−jVt−k}].

(C.111)
Using (C.109), for sufficiently large T we have

|∆4U | <
δ

α2

T∑
j=0

T∑
k=0

(
γ

ξα2

)j+k
κ∞2(j+k+s+t+1) < δCs,t,

|∆4V | <
γ2δ

α2

T∑
j=0

T∑
k=0

(
γ

ξα2

)j+k
κ∞2(j+k+s+t+2) < δCs,t,

(C.112)

for a positive constant Cs,t, since each of the double sums in (C.112) is bounded as T → ∞, for
ξα̃2 := ξα2/γ > α̃2

s . Therefore, ∆4U ,∆4V both tend to 0 as T →∞. Using this in (C.110) along
with (C.104), we obtain

lim
T→∞

O4 = γ

s+1∏
i=2

E{u′i(Fi−1)}E{v′i−1(Gi−1)}
t+1∏
i=2

E{u′i(Fi−1)}E{v′i−1(Gi−1)}

∞∑
j=s

∞∑
k=t

( γ
α2

)j+k−s−t [
κ∞2(j+k+1)E{Us+1−jUt+1−k}+ κ∞2(j+k+2)

1

α2
E{Vs−jVt−k}

]
.

(C.113)

Next, consider O2 in (C.101), which we write as

O2 = γ
( t+1∏
i=2

E{u′i(F̃T+i−1)}E{v′i−1(G̃T+i−1)}
) s−1∑
j=0

s+1∏
i=s−j+2

E{u′i(F̃T+i−1)}E{v′i−1(G̃T+i−1)}

[
T+t∑
k=t

( γ
α2

)k−t [
κ∞2(j+k+1)E{Us+1−jUt+1−k}+

κ∞2(j+k+2)

α
E{u′s+1−j(F̃T+s−j)}E{Vs−jVt−k}

]
∆3U,j + ∆3V,j

]
,

(C.114)
where

∆3U,j =

T+t∑
k=t

( γ
α2

)k−t
κ∞2(j+k+1)[E{ŨT+s+1−jŨT+t+1−k} − E{Us+1−jUt+1−k}],

∆3V,j =
1

α
E{u′s+1−j(F̃T+s−j)}

T+t∑
k=t

( γ
α2

)k−t
κ∞2(j+k+2) [E{ṼT+s−j ṼT+t−k} − E{Vs−jVt−k}].

(C.115)
From (C.105), we recall that for j ∈ [0, s− 1], k ∈ [t, T + t]:

E{ŨT+s+1−jŨT+t+1−k} =
1

α
E{us+1−j(F̃T+s−j)F̃T−(k−t)},

E{ṼT+s−j ṼT+t−k} =
γ

α
E{vs−j(G̃T+s−j)G̃T−(k−t)}.

(C.116)

Using the induction hypothesis and arguments similar to (B.82)-(B.86), for any δ > 0 and sufficiently
large T we have

|E{ŨT+s+1−jŨT+t+1−k} − E{Us+1−jUt+1−k}| <
δ

α
ξ−(k−t),

|E{ṼT+s−j ṼT+t−k} − E{Vs−jVt−k}| <
γδ

α
ξ−(k−t), j ∈ [0, s− 1], k ∈ [t, T + t].

(C.117)
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Using this in (C.115), following steps similar to (B.88) and (B.89), and noting the convergence of the
power series defining R(γ/ξα2), we have limT→∞∆3U,j = limT→∞∆3V,j = 0 for j ∈ [0, s− 1].
Using this in (C.114) along with (C.104), we have

lim
T→∞

O2 = γ
( t+1∏
i=2

E{u′i(Fi−1)}E{v′i−1(Gi−1)}
) s−1∑
j=0

s+1∏
i=s−j+2

E{u′i(Fi−1)}E{v′i−1(Gi−1)}

∞∑
k=t

( γ
α2

)k−t [
κ∞2(j+k+1)E{Us+1−jUt+1−k}+ κ∞2(j+k+2)

1

α
E{u′s+1−j(Fs−j)}E{Vs−jVt−k}

]
.

(C.118)

Using a similar sequence of steps, we also have

lim
T→∞

O3 = γ
( s+1∏
i=2

E{u′i(Fi−1)}E{v′i−1(Gi−1)}
) t−1∑
k=0

t+1∏
i=t−k+2

E{u′i(Fi−1)}E{v′i−1(Gi−1)}

∞∑
j=s

( γ
α2

)j−s [
κ∞2(j+k+1)E{Us+1−jUt+1−k}+ κ∞2(j+k+2)

1

α
E{u′t+1−k(Ft−k)}E{Vs−jVt−k}

]
.

(C.119)

Noting that the sums of the limits in (C.106), (C.113), (C.118) and (C.119) equals ωs+1,t+1 (defined
in (3.19)), we have shown that limT→∞ ω̃T+s+1,T+t+1 = ωs+1,t+1. The sequence of steps to show
that limT→∞ σ̃T+s+1,T+t+1 = σs+1,t+1 is very similar, and is omitted to avoid repetition.

Proof of (C.94)-(C.95). Since ψ,ϕ ∈ PL(2), using the Cauchy-Schwarz inequality (as in (B.92)),
for a universal constant C > 0 we have∣∣∣∣ 1

m

m∑
i=1

ψ(u∗i , ũ
T+1
i , . . . , ũT+t+1

i , f̃T+1
i , . . . f̃T+t

i )− 1

m

m∑
i=1

ψ(u∗i , û
1
i , . . . , û

t+1
i , f̂1

i , . . . f̂
t
i )

∣∣∣∣
≤ 2C(t+ 2)

[
1 +
‖u∗‖2

m
+

t+1∑
`=1

(‖ũT+`‖2

m
+
‖û`‖2

m

)
+

t∑
`=1

(‖f̃T+`
‖2

m
+
‖f̂

`
‖2

m

)] 1
2

·

(
‖ũT+1 − û1‖2

m
+ . . .+

‖ũT+t+1 − ût+1‖2

m
+
‖f̃

T+1
− f̂

1
‖2

m
+ . . .+

‖f̃
T+t
− f̂

t
‖2

m

) 1
2

,

(C.120)

∣∣∣∣ 1n
n∑
i=1

ϕ(v∗i , ṽ
T+1
i , . . . , ṽT+t

i , g̃T+1
i , . . . g̃T+t

i )− 1

n

n∑
i=1

ϕ(v∗i , v̂
1
i , . . . , v̂

t
i , ĝ

1
i , . . . ĝ

t
i)

∣∣∣∣
≤ 2C(t+ 2)

[
1 +
‖v∗‖2

n
+

t∑
`=1

(‖ṽT+`‖2

n
+
‖v̂`‖2

n

)
+

t∑
`=1

(‖g̃T+`‖2

n
+
‖ĝ`‖2

n

)] 1
2

·

(
‖ṽT+1 − v̂1‖2

n
+ . . .+

‖ṽT+t − v̂t‖2

n
+
‖g̃T+1 − ĝ1‖2

n
+ . . .+

‖g̃T+t − ĝt‖2

n

) 1
2

.

(C.121)

The proof strategy is similar to the square case. We inductively show that in the limit T, n → ∞
(with the limit in n taken first): i) the terms in the last line of (C.120) and (C.121) all converge to 0
almost surely, and ii) each of the terms within the square brackets in (C.120) and (C.121) converges
to a finite deterministic value.

Base case t = 1: Recalling that û1 =
√
muPCA, from Lemma C.8, we have

lim
T→∞

lim
m→∞

‖ũT+1 − û1‖2

m
= 0. (C.122)
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Writing x = γ/α2 for brevity, recall that
∑∞
i=1 κ

∞
2ix

i = R(x). From the definitions of g̃T+1 and ĝ1

in (C.2) and (C.86) and we have

g̃T+1 − ĝ1 =
1

1 + γR(x)
XT(ũT+1 − û1) +

[
γR(x)

1 + γR(x)
XTũT+1 − α

T∑
j=1

κ2jx
j ṽT+1−j

]
,

where we have used b̃T+1,T+1−j = ακ2jx
j for j ∈ [1, T ]. Therefore

‖g̃T+1 − ĝ1‖2

n
≤ 2

(1 + γR(x))2
‖X‖2op

‖ũT+1 − û1‖2

n

+
2

n

∥∥∥∥∥ γR(x)

1 + γR(x)
XTũT+1 − α

T∑
j=1

κ2jx
j ṽT+1−j

∥∥∥∥∥
2

=: 2(S1 + S2).

(C.123)

Since ‖X‖op
n→∞−→ D−1(x), from (C.122) we have limT,n→∞ S1 = 0. (Here and in the remainder

of the proof, limT,n→∞ denotes the limit n → ∞ taken first and then T → ∞.) Next, using the
definition of g̃T+1 in (C.2), we write the second term S2 as

S2 =
1

n

∥∥∥∥∥ γR(x)

1 + γR(x)
g̃T+1 − α

1 + γR(x)

T∑
j=1

κ2jx
j ṽT+1−j

∥∥∥∥∥
2

≤ 2

n

∥∥∥∥∥ γR(x)

1 + γR(x)
g̃T+1 − α

1 + γR(x)

T∑
j=1

κ∞2j x
j ṽT+1−j

∥∥∥∥∥
2

+
2α2

(1 + γR(x))2
∆S2 , (C.124)

where

∆S2
:=

1

n

∥∥∥ T∑
j=1

(κ∞2j −κ2j)x
j ṽT+1−j

∥∥∥2

=
1

n

T∑
i,j=1

(κ∞2i −κ2i)(κ
∞
2j −κ2j)x

i+j 〈ṽ
T+1−i, ṽT+1−j〉

n
.

(C.125)
Using the state evolution result of Proposition C.1, we almost surely have

lim
n→∞

〈ṽT+1−i, ṽT+1−j〉
n

= E{ṼT+1−iṼT+1−j}

=
γ2

α2
(α2∆PCA + ω̃T+1−i,T+1−j) < C,

(C.126)

for some universal constant C > 0. Here, ω̃T+1−i,T+1−j is defined in (C.14), and we recall from
(C.12)-(C.13) that

ṼT+1−j =
γ

α
G̃T+1−j with G̃T+1−j = α

√
∆PCAV∗ + Z̃T+1−j , for j ∈ [0, T ]. (C.127)

Since κ2i → κ∞2i as n→∞, for i ∈ [1, T ] (by the model assumptions), using (C.126) in (C.125),

lim
T→∞

lim
n→∞

∆S2
= 0 almost surely. (C.128)

Next, using Proposition C.1, for any T > 0, the first term in (C.124) has the following almost sure
limit as n→∞:

lim
n→∞

1

n

∥∥∥∥∥ γR(x)

1 + γR(x)
g̃T+1 − α

1 + γR(x)

T∑
j=1

κ∞2jx
j ṽT+1−j

∥∥∥∥∥
2

= E

{(
γR(x)

1 + γR(x)
G̃T+1 −

α

1 + γR(x)

T∑
j=1

κ∞2jx
j ṼT+1−j

)2}

(a)
=

γ2

(1 + γR(x))2
E

{((
R(x)−

T∑
j=1

κ∞2jx
j
)
G̃T+1 +

T∑
j=1

κ∞2jx
j(G̃T+1 − G̃T+1−j)

)2}
,

(C.129)
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where (a) is obtained using (C.127). From (A.15), we have limT→∞
∑T
j=1 κ

∞
2jx

j = R(x). Further-
more, using (C.127) we have

E

{(
T∑
j=1

κ∞2jx
j(G̃T+1 − G̃T+1−j)

)2}

=

T∑
i,j=1

κ∞2iκ
∞
2j x

i+j (ω̃T+1,T+1 − ω̃T+1,T+1−i − ω̃T+1,T+1−j + ω̃T+1−i,T+1−j)

−→ 0 as T →∞, (C.130)

where the T → ∞ limit is obtained using Lemma C.2 and steps similar to (B.50)-(B.53). Using
(C.128)-(C.130) in (C.124), we have

lim
T→∞

lim
n→∞

S2 = 0 almost surely. (C.131)

Hence using (C.123), we have shown that limT,n→∞
1
n‖g̃

T+1 − ĝ1‖2 = 0 almost surely.

The proof that limT,n→∞
1
n‖f̃

T+1
− f̂

1
‖2 = 0 uses similar steps: from the definitions of f̃

T+1
and

f̂
1

in (C.2) and (C.87), we have

f̃
T+1
− f̂

1
=
γ

α
X(g̃T+1 − ĝ1) + ā1,1û

1 −
T∑
j=0

ãT+1,T+1−jũ
T+1−j , (C.132)

where ā1,1 = α
∑∞
j=0 κ

∞
2(j+1)x

j+1 and ãT+1,T+1−j = ακ2(j+1)x
j+1 for j ∈ [0, T ]. Therefore,

‖f̃
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− f̂

1
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n
≤ 5γ2
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+
5

n

∥∥∥∥∥α
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j=0

κ∞2(j+1)x
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2

+ 5α2
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+
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T∑
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(κ∞2(j+1) − κ2(j+1))x
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∥∥∥∥∥
2

.

(C.133)

We have shown limT,n→∞
1
n‖g̃

T+1 − ĝ1‖2 = 0 and limT,n→∞
1
n‖ũ

T+1 − û1‖2, hence the first
two terms in (C.133) converge to 0. For the third term in (C.133), we first apply Proposition C.1 to
express the n → ∞ limit in terms of state evolution parameters of the artificial AMP, which can
then be shown to converge to 0 as T → ∞ using Lemma C.2 and steps similar to (B.50)-(B.53).
Since the power series

∑∞
j=0 κ

∞
2(j+1)x

j+1 = R(x) converges, and ‖û1‖2/n = m/n = γ, the fourth
term converges to 0 as T, n → ∞. As κ2(j+1) → κ∞2(j+1) as n → ∞, by arguments similar to
(B.45)-(B.46), the final term in (C.133) also converges to 0.

Recalling that ṽT+1 − v̂1 = γ
α (g̃T+1 − ĝ1), it follows that limT,n→∞

1
n‖ṽ

T+1 − v̂1‖2 = 0 almost
surely. Finally, a triangle inequality sandwiching argument like the one used in (B.104)-(B.105)
yields

lim
T→∞

lim
n→∞

‖ṽT+1‖2

n
= lim
T→∞

lim
n→∞

‖v̂1‖2

n
=
γ2

α2
(α2∆PCA + ω1,1),

lim
T→∞

lim
n→∞

‖ũT+1‖2

m
= lim
T→∞

lim
n→∞

‖û1‖2

m
= 1.

(C.134)

This completes the proof of (C.94)-(C.95) for t = 1.

Induction step: For t ≥ 1, assume that the following hold almost surely for ` ∈ [1, t]:

lim
T→∞

lim
n→∞

‖û` − ũT+`‖2

m
= lim

T→∞
lim
n→∞

‖ĝ` − g̃T+`‖2

n
= lim

T→∞
lim
n→∞

‖v̂` − ṽT+`‖2

n
= 0.

(C.135)
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We now show that limT,n→∞
1
n‖f̃

T+t
− f̂

t
‖2 = 0. We have already shown this for t = 1 above.

For t ≥ 2, using the definitions f̃
T+t

and f̂
t

in (C.2) and (C.87), and applying the Cauchy-Schwarz
inequality, we have

1

n
‖f̃

T+t
− f̂

t
‖2 ≤ (t+ 1)

n

(
‖X(ṽT+t − v̂t)‖2 +

t∑
`=2

‖ãT+t,T+`ũ
T+` − āt,`û

`‖2

+
∥∥∥ T+1∑
i=1

ãT+t,iũ
i − āt,1û

1
∥∥∥2
)
.

(C.136)

The decomposition and the analysis of the three terms in (C.136) is similar to that in (B.109) for the
square case. Using arguments similar to (B.110)-(B.127), we obtain limT,n→∞

1
n‖f̃

T+t
− f̂

t
‖2 = 0.

Recalling that ût+1 = ut+1(f̂
t
) and ũT+t+1 = ut+1(f̃

T+t
) with ut+1 Lipschitz, we also have

limT,n→∞
1
n‖ũ

T+t+1−ût+1‖2 = 0 almost surely. The proof that limT,n→∞
1
n‖g̃

T+t+1−ĝt+1‖2 =

0 uses a decomposition similar to (C.136) and is along the same lines. Since v̂t+1 = vt+1(ĝt+1) and
ṽT+t+1 = vt+1(g̃T+t+1) with vt+1 Lipschitz, it follows that limT,n→∞

1
n‖ṽ

T+t+1 − v̂t+1‖2 = 0
almost surely.

Using these results together with a triangle inequality sandwich argument similar to (B.104)-
(B.105), we have limn→∞

1
n‖û

t+1‖2 = limT,n→∞ ‖ũT+t+1‖2 = E{ut+1(Ft)
2}. Similarly,

limn→∞
1
n‖v̂

t+1‖2 = limT,n→∞
1
n‖ṽ

T+t+1‖2 = E{vt+1(Gt+1)2}. Using these results in (C.120)
and (C.121) completes the inductive proof of (C.94)-(C.95).

C.6 Proof of Theorem 2

The proof is along the same lines as that for the square case in Section B.5; to avoid repetition, we
only sketch the main steps. The first step is to show using Lemma C.9 that the state evolution result
holds for the the modified AMP. That is, the following almost sure limits hold for t ≥ 1:

lim
m→∞

1

m

m∑
i=1

ψ(u∗i , û
1
i , . . . , û

t+1
i , f̂1

i , . . . f̂
t
i ) = E {ψ(U∗, U1, . . . , Ut+1, F1, . . . , Ft)} , (C.137)

lim
n→∞

1

n

n∑
i=1

ϕ(v̂∗i , v̂
1
i , . . . , v̂

t
i , ĝ

1
i , . . . g

t
i) = E {ϕ(V∗, V1, . . . , Vt, G1, . . . , Gt)} . (C.138)

For each of (C.137) and (C.138), we use a three-term decomposition as in (B.132). Using arguments
similar to those used to analyze (B.132), we can show that each of the terms goes to 0 as T, n→∞.

The second part of the proof is to inductively show that the following statements hold almost surely
for t ≥ 1:

lim
m→∞

∣∣∣∣∣ 1
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(C.139)

lim
m→∞
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= 0, (C.140)
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∣∣∣∣∣ = 0, (C.141)

lim
n→∞

‖gt − ĝt‖2

n
= 0, lim

n→∞

‖vt − v̂t‖2

n
= 0. (C.142)
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Since ψ ∈ PL(2), by the same arguments as in (B.137), we have∣∣∣∣∣ 1
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. (C.143)

Using ϕ ∈ PL(2), an analogous bound holds for the term in (C.141).

We then argue that limn→∞
1
m‖f

t − f̂
t
‖2 = 0; this follows from a bound similar to (B.138) and the

induction hypothesis. (In the argument, ût,ut, {bt,`, b̄t,`}`∈[1,t] in (B.138) are replaced by v̂t,vt,

{at,`, āt,`}`∈[1,t], respectively.) Then, recalling ût+1 = ut+1(f̂
t
) and ut+1 = ut+1(f t), since ut+1

Lipschitz, it follows that limn→∞
1
m‖u

t+1− ût+1‖2 = 0. Using the triangle inequality sandwiching

argument in (B.104), the terms 1
m‖f

t‖2, 1
m‖f̂

t
‖2, 1

m‖u
t‖2, and 1

m‖û
t‖2 converge to deterministic

limits (analogous to (B.140)). This leads to (C.139) via (C.143). The results (C.141)-(C.142) are
obtained using a similar sequence of steps.

Combining (C.139) with (C.137) and (C.141) with (C.138) yields the result of Theorem 2.

D An auxiliary lemma

The following result is proved in [7, Lemma 6].
Lemma D.1. Let F : R→ R be a Lipschitz function, with derivative F ′ that is continuous almost
everywhere in the first argument. Let Um be a sequence of random variables in R converging in
distribution to the random variable U as m→∞. Furthermore, assume that the distribution of U is
absolutely continuous with respect to the Lebesgue measure. Then,

lim
m→∞

E{F ′(Um)} = E{F ′(U)}.
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