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A Bootstrap Confidence Intervals1

Here, we provide additional information about the confidence intervals presented in the main text in2

Figure 4a, and additionally include bootstrap CIs. We used the nonparametric multiplier bootstrap3

[Praestgaard, 1990], where in each bootstrap sample, the MLE is refit with each example weighted4

by an iid Poisson distribution with rate parameter λ = 1. This very closely approximates the5

nonparametric bootstrap with sampling with replacement. For each test prediction, the 1− δ CIs are6

calculated using the δ/2 and 1− δ/2 quantiles of the bootstrap estimates, known as the percentile7

bootstrap [Efron and Tibshirani, 1993].8
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Figure 1. Same setting as main Figure 4a, including bootstrapped CIs. Notice that the bootstrap CIs do
not have proper coverage.
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Figure 2. Same setting as main Figure 4a, but compares the width of the confidence intervals. Notice
the large bootstrap CIs, especially when they approach or exceed nominal coverage.
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Figure 3. Same setting as main Figure 4a, but compares the magnitude of the logits of the predictions
relative to the magnitude of the true logit, for any test example with |x>β| > 0.01. For the bootstrap,
this is calculated from the median estimate over bootstrap samples, throwing out any where the data
were separable and so the estimate is at ±∞.

B Proofs12

Throughout the proofs, we will use C > 0 as a generic constant that could always be made larger13

without invalidating a statement, and c > 0 a generic constant that could always be made smaller14

without invalidating a statement. This way, we can avoid reducing the readability due to onerous15

constant accounting.16

Proof of Theorem 1 First, we show that without loss of generality, we can consider the case where17

Σ = Ip, the p× p-dimensional identity matrix. To see that this is sufficient, we apply Proposition 2.118

of Zhao et al. [2020], which states the following.19

Proposition 1 (Proposition 2.1, Zhao et al. [2020]). Fix any matrix L obeying Σ = LL>, and20

consider the vectors21

θ̂ = L>β̂, and θ = L>β.

Then, θ̂ is the MLE in a logistic model with regression coefficient θ and covariates drawn i.i.d. from22

N(0, Ip).23

With this in mind, we can prove everything in this rotated setting, and as long as L> is full rank,24

the results (up to appropriate scaling) will hold for β̂, as well. Choosing L> to be a Cholesky25

decomposition, it will satisfy LL> = Σ, and will be full rank with a bounded operator norm for L26

and its inverse L−1, because of the assumption that the condition number of Σ is bounded.27

Now, we prove the result under the assumption that Σ = Ip in three steps. The first is to show that28

‖β̂‖22
p→ η. The second is to show that the leave-one-out estimators are close enough in norm to β̂29

such that30

1

n

n∑
i=1

‖β̂−i‖22 − ‖β̂‖22
p→ 0.

The third is to show that the estimator η̂2
LOO, which incorporates an empirical estimate of Σ, concen-31

trates around η̄2 = 1
n

∑n
i=1 ‖β̂−i‖22.32

The first step is a direct application of Theorem 2 of Sur and Candès [2019], which we restate here33

using our problem scaling.34

Theorem 2 (Theorem 2, Sur and Candès [2019]). Assume the dimensionality and signal strength35

parameters κ and γ are such that γ < gMLE(κ) (the region where the MLE exists asymptotically and36

is shown in Sur and Candès [2019, Fig. 6]). Assume the logistic model described where the empirical37

distribution of {
√
nβj} converges weakly to a distribution Π with finite second moment. Suppose38

further that the second moment converges in the sense that as n→∞, Avej(nβ2
j )→ E[β2], β ∼ Π.39
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Then for any pseudo-Lipschitz function ψ of order 2, the marginal distribution of the MLE coordinates40

obeys41

1

p

p∑
j=1

ψ(
√
n(β̂j − α?βj , βj)

a.s.→ E[ψ(σ?Z, β)], Z ∼ N(0, 1),

where β ∼ Π, independent of Z.42

The first step follows from this theorem using ψ(t, u) = (t + α?u)2, because γ2 = Var(β>X) =43

‖β‖22 = EΠ[β2].44

The second step involves showing that the difference in norms between β̂ and β̂−i is small with high45

probability. To do so, we use the following lemma. In this lemma, and throughout the proofs, we will46

use sequences Kn and Hn, satisfying the following conditions: for any cH , cK , ε > 0,47

Kn = o(nε), Hn = o(nε), n8 exp(−cHH2
n) = o(1), and n7 exp(−cKK2

n) = o(1). (B.1)

Taking Hn = Kn = log n, for example, would satisfy these conditions.48

Lemma 1. Let β̂ be the MLE and β̂−i be the MLE excluding the i-th example. Let Kn and Hn be49

sequences satisfying (B.1). Then, there exists universal constants C, c > 0 such that50

P

(∥∥∥β̂−i − β̂∥∥∥ > C

(
C
Kn√
n

+
K2
nHn

n

))
≤ exp(−Ω(n)) + C exp(−cK2

n)

+ Cn exp(−cH2
n) + C exp(−cn(1 + o(1))).

A similar bound holds for ‖β̂−i − β̂−ik‖, where β̂−ik is the MLE with the i-th and k-th example51

excluded.52

See Section C for proof. Taking a union bound over the probabilities bounded in Lemma 1 for each53

i gives that the event G =
{

supi

∥∥∥β̂−i − β̂∥∥∥ ≤ C1

(
Kn√
n

+
K2

nHn√
n

)}
is bounded with probability54

1− o(1) using the conditions (B.1). Therefore, conditional on G, we can write55 ∣∣∣∣∣ 1n
n∑
i=1

‖β̂−i‖22 − ‖β̂‖22

∣∣∣∣∣ ≤ 1

n

n∑
i=1

C2
1K

4
nH

2
n

n
=
C2

1K
4
nH

2
n

n
→ 0,

with probability converging to 1.56

Our strategy for the third step is to show that E[η̂2 − η̄2] = 0, and then apply Chebyshev’s inequality57

and bound the variance. The challenge is that the terms in η̂2
LOO are not independent, and therefore,58

we will need to show that the covariances are asymptotically negligible. To do so, we will employ a59

leave-two-out argument, inspired by the proof techniques of El Karoui [2018] and Sur and Candès60

[2019].61

First, write η̂2
LOO − η̄2 as62

1

n

n∑
i=1

β̂>−i
(
XiX

>
i − I

)
β̂−i.

Using that β̂−i is independent of Xi, we immediately can conclude that E[η̂2 − η̄2] = 0.63

Next, we will use Chebyshev’s inequality to bound the probability using the variance. To show that64

the variance goes to zero, we will need to show that, for i 6= k, the covariance between terms65

β̂>−i(XiX
>
i − I)β̂−i and β̂>−k(XkX

>
k − I)β̂−k

converges to zero. The challenge in doing so is that the MLE in one term is dependent on the covariate66

X in the other term. We solve this challenge by showing the estimated coefficients β̂−i and β̂−k are67

close enough (for our purposes) to β̂−ik, the MLE with both the i-th and k-th predictor excluded.68

Consider the following sequence of events,69

En =

{
sup
i

sup
k 6=i
|X>i (β̂−ik − β̂−i)| ≤

CK2
nHn√
n

, sup
i
|X>i β̂−i| ≤ C

}
. (B.2)

The following lemma show that this sequence of events has probability approaching 1.70
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Lemma 2. Let β̂−i be the MLE with the i-th example held out, and β̂−ij be the MLE with the i-th71

and j-th examples held out. Then, there exists universal constants C, c > 0 such that72

P

(
sup
i

sup
k 6=i
|X>i (β̂−ik − β̂−i)| ≤

CK2
nHn√
n

)
≥ 1− Cn2 exp(−cH2

n)

−Cn exp(−cK2
n)− Cn exp(−cn(1 + o(1))),

and73

P

(
sup
i
|X>i β̂−i| ≤ C

)
≥ 1− Cn2 exp(−cH2

n)

−Cn exp(−cK2
n)− Cn exp(−cn(1 + o(1)))− Cn exp(−Ω(n)),

As before, the proof of this lemma is in Section C.74

Additionally, we will need to control the norm of the difference between the leave-one-out and75

leave-two-out estimators. Let76

Bn =

{
sup
i
‖β̂−i‖2 ≤ C, sup

i
sup
k 6=i
‖β̂−ik − β̂−i‖2 ≤

C(Kn +K2
nHn)√

n

}
.

Writing this as the intersection of the eventsBik = {‖β̂−i‖2 ≤ C, ‖β̂−ik− β̂−i‖2 ≤ C(Kn+K2
nHn)√

n
},77

a union bound over the complements BCn =
⋃
i 6=j B

C
ij , along with the control on the probability78

P (BCij) implied by Sur et al. [2019, Theorem 4] and Lemma 1, respectively, shows that this sequence79

of event (Bn)∞n=1 has probability approaching 1.80

Now, we proceed with bounding the probability that η̂ is far from η̄. Let ε > 0.81

P
(
|η̂2

LOO − η̄2| > ε
)
≤ P

(
|η̂2

LOO − η̄2| > ε | Bn ∩ En
)

+ P (ECn ∪BCn ).

Lemma 2 shows that limn→∞ P (ECn ) = 0. Above, we showed that limn→∞ P (BCn ) = 0, and so82

limn→∞ P (ECn ∪BCn ) = 0. Therefore, what remains is to control P
(
|η̂2

LOO − η̄2| > ε | Bn ∩ En
)
.83

For notational convenience, denote84

P̃(·) := P (· | Bn ∩ En),

Ẽ[·] := E[· | Bn ∩ En], and

Ṽar(·) := Var(· | Bn ∩ En).

Applying Chebyshev’s inequality,85

P̃
(
|η̂2

LOO − η̄2| > ε
)
≤

Ṽar
(

1
n

∑n
i=1 β̂

>
−i
(
XiX

>
i − I

)
β̂−i

)
ε2

.

Showing that Ṽar
(

1
n

∑n
i=1 β̂

>
−i
(
XiX

>
i − I

)
β̂−i

)
→ 0 completes the proof. To do so, expand the86

sum as87

Ṽar

(
1

n

n∑
i=1

β̂>−i
(
XiX

>
i − I

)
β̂−i

)

=
1

n2

(
n∑
i=1

Ṽar(β̂>−i
(
XiX

>
i − I

)
β̂−i)

+
∑
i 6=k

Ẽ
[
β̂>−i(XiX

>
i − I)β̂−iβ̂

>
−k(XkX

>
k − I)β̂−k

]

5



On Bn, β̂−i all have bounded norm. The known normal distribution of the Xi allows us to conclude88

that the n variance terms Ṽar(β̂>−i
(
XiX

>
i − I

)
β̂−i) will be bounded by some fixed constant. What89

remains is to control the n(n− 1) covariance terms.90

Consider the i-th and k-th covariance term,91

Ẽ
[
β̂>−i(XiX

>
i − I)β̂−i · β̂>−k(XkX

>
k − I)β̂−k

]
.

The challenge is that β̂−i is not independent of Xk, which prevents us from splitting these terms into92

the product of their expectations. With this in mind, we imagine instead that the first quadratic form93

was β̂>−ik(XiX
>
i − I)β̂−ik, which would be independent of Xk, and then study the remainder terms.94

For notational convenience, denote95

Zi = XiX
>
i − I.

Writing β̂−i = β̂−ik + β̂−i − β̂−ik, the above covariance expands as96

Ẽ
[
(β̂−ik + β̂−i − β̂−ik)>Zi(β̂−ik + β̂−i − β̂−ik)β̂>−kZkβ̂−k

]
= Ẽ

[(
β̂>−ikZiβ̂−ik + 2(β̂−i − β̂−ik)Ziβ̂−ik + (β̂−i − β̂−ik)>Zi(β̂−i − β̂−ik)

)
β̂>−kZkβ̂−k

]
= Ẽ

[
β̂>−ikZiβ̂−ikβ̂

>
−kZkβ̂−k

]
(B.3)

+ Ẽ
[(

2(β̂−i − β̂−ik)>Ziβ̂−ik + (β̂−i − β̂−ik)>Zi(β̂−i − β̂−ik)
)
β̂>−kZkβ̂−k

]
Because E[Zk | {(Xi, Yi)}i 6=k] = 0, we expect that the first term of (B.3) should be nearly 0, as97

well, except that we have conditioned on Bn ∩ En, which might change the distribution of Zk. The98

following lemma controls the difference between E[Zk | {Xi, Yi)}i6=k] and Ẽ[Zk | {Xi, Yi)}i 6=k],99

showing that it vanishes asymptotically.100

Lemma 3. Let En be defined as in (B.2) and Bn as in (B). Under the conditions of Theorem 1,101 ∣∣∣Ẽ [β̂>−ikZiβ̂−ikβ̂>−kZkβ̂−k]∣∣∣ = o

(
1

n

)
. (B.4)

102

We bound the remaining terms by using the properties of the events Bn and En, on which we’ve103

conditioned.104 ∣∣∣(2(β̂−i − β̂−ik)Ziβ̂−ik + (β̂−i − β̂−ik)>Zi(β̂−i − β̂−ik)
)
β̂>−kZkβ̂−k

∣∣∣
=
∣∣∣2(β̂−i − β̂−ik)>Ziβ̂−ik + (β̂−i − β̂−ik)>Zi(β̂−i − β̂−ik)

∣∣∣ · |β̂>−kZkβ̂−k|
The second term is bounded on the event Bn, using the bounded norm of β̂−k and the fact that Xi is105

normally distributed with variance Ip. Conditional on the set En ∩Bn, the first term is bounded by106 √
C3K4

nH
2
n

n +
CK4

nH
2
n

n , for some universal constant C > 0.107

Plugging all of these into the expression for the variance, we see that108

Ṽar

(
1

n

n∑
i=1

β̂>−i
(
XiX

>
i − I

)
β̂−i

)
.
K2
nHn√
n

+
1

n
,

which shows that109

lim
n→∞

P (|η̂2 − η̄2| > ε) = 0,

concluding the proof of Theorem 1.110

111
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B.1 Approximation Error of Taylor Expansion112

Proof of Proposition 2 First, we derive the remainder between β̂−i and β̂ + H−1
−iXi(Yi −113

g(β̂>Xi)). Then, we show that these remainder terms in the difference between η̂SLOE and η̂LOO114

vanish.115

Starting from Eq. (3.5), we apply a Taylor expansion with the remainder given by the Mean Value116

Theorem,117

Xi(Yi − g(β̂>Xi)) +
∑
j∈I−i

Xjg
′(β̂>Xj)X

>
j (β̂−i − β̂) +

∑
j∈I−i

Xj
1

2
g′′(β◦−i

>Xj)(X
>
j (β̂−i − β̂))2 = 0,

for β◦−i = tβ̂+(1−t)β̂−i for some t ∈ [0, 1]. LetRn =
∑
j∈I−i

Xj
1
2g
′′(β◦−i

>Xj)(X
>
j (β̂−i− β̂))2118

be the remainder term that leaves only linear terms. By showing that its norm is growing much more119

slowly than the other terms in the above equality, we show that it is asymptotically negligible. To do120

so, for any 0 < ε < 1/2, let Vn = n−εRn. Then, we have121

Xi(Yi − g(β̂>Xi)) + nεVn +
∑
j∈I−i

Xjg
′(β̂>Xj)X

>
j (β̂(−i) − β̂) = 0,

Lemma 17 from Sur et al. [2019] shows that for Kn and Hn satisfying (B.1), supi 6=j |X>j (β̂(−i) −122

β̂)| ≤ CK2
nHn/

√
n with probability 1 − δn for δn = Cn exp(−cH2

n) − C exp(−cK2
n) −123

exp(−cn(1 + o(1))). Using the condition (B.1) with ε = ε/3, we know that n−εK2
nHn = o(1).124

Therefore, the above observation along with the fact that g′′(s) ≤ 1 for all s, implies that Vn ∈ Rd125

satisfies126

‖L−1Vn‖22 ≤
C2

n

∥∥∥∥∥∥ 1√
n

∑
j∈I−i

L−1Xj

∥∥∥∥∥∥
2

2

with probability at least 1 − δn, for L a full rank triangular matrix satisfying LL> = Σ. Using127

that L−1Xi is an isotropic Gaussian, and applying standard concentration bounds for multivariate128

Gaussians, we get that with probability at least 1− 2n exp(−(
√
p− 1)2/2),129

C2

n

∥∥∥∥∥∥ 1√
n

∑
j∈I−i

L−1Xj

∥∥∥∥∥∥
2

2

≤ 2C2κ.

Altogether, ‖L−1Vn‖22 ≤ 2C2κ with probability at least 1− δn − 2n exp(−(
√
p− 1)2/2).130

Using this fact about the remainder, we proceed with bounding the difference between η̂2
LOO and131

η̂2
SLOE. For notational convenience, define β̃−i = β̂ +H−1

−iXi(Yi − g(β̂>Xi)). Then,132 ∣∣∣∣∣ 1n
n∑
i=1

(X>i β̂−i)
2 − (X>i β̃−i)

2

∣∣∣∣∣ ≤ 1

n

n∑
i=1

(X>i n
εH−1
−i Vn)2 ≤ 1

n

n∑
i=1

‖Xi‖22n2ε‖H−1
−i Vn‖

2
2 (B.5)

Standard results for multivariate Gaussians show that supi=1,...,n ‖Xi‖22 < 4p with probability133

1− o(1). Therefore, what remains is to bound ‖H−1
−i Vn‖22.134

To do so, we take advantage of Lemma 7 from Sur et al. [2019], proved in the setting where135

Xi ∼ N(0, Id). Therefore, we start by showing that we can convert our problem into one in this136

setting. Specifically, let Zi = L−1Xi, so that Zi ∼ N(0, Id). Let G−i = 1
n

∑n
i=1 Zig

′(Z>i L
>β)Zi.137

Noting that ‖L>β‖22 = β>LL>β = β>Σβ = γ2, applying Lemma 7 of Sur et al. [2019] gives that138

P (λmin(G−i) > λlb) ≥ 1− C exp(−cn), for some λlb > 0.139

Noting that the bounded condition number of Σ implies that the operator norm of L−> is bounded,140

we have that with probability converging to 1,141

‖H−1
−i Vn‖

2
2 = ‖ 1

n
L−>G−1

−iL
−1Vn‖22 ≤

2C2κ

n2λ2
lb

.
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All of the above results hold with exponentially high probability, such that we can union bound over142

the n remainder terms, for each i and still have the probability converge to 1.143

Plugging all of these high probability bounds into the RHS of (B.5) gives144

1

n

n∑
i=1

‖Xi‖22n2ε‖H−1
−i Vn‖

2
2 ≤ 4p

2C2κn2ε

n2λ2
lb

=
8C2κ2n2ε

nλ2
lb

with probability converging to 1. Similar derivation shows that145 ∣∣∣∣∣∣
(

1

n

n∑
i=1

X>i β̂−i

)2

−

(
1

n

n∑
i=1

X>i β̃−i

)2
∣∣∣∣∣∣ ≤ 2κC

nε√
n
,

also with probability going to 1, and so η̂SLOE = η̂2
LOO + oP (1).146

147

C Proofs of Lemmas148

Proof of Lemma 1 We use the following result from Lemma 18 from Sur et al. [2019]. There,149

they define150

qi =
1

n
X>i H

−1
−iXi,

b̂ = β̂−i −
1

n
H−1
−iXi

(
g(proxqiG(X>i β̂−i))

)
,

and show that151

P

(
‖β̂ − b̂‖2 ≤ C

K2
nHn

n

)
≥ 1− Cn exp(−cH2

n)− C exp(−cK2
n)− exp(−cn(1 + o(1))).

Additionally, in the proof (Eq. (165) and (172), respectively), they show that152

P
(
‖H−1
−iXi‖22 ≤ Cn

)
≥ 1− exp(−Ω(n)).

and153

P
(
g(proxqiG(X>i β̂−i)) ≤ CKn

)
≥ 1− C exp(−C3K

2
n)− C exp(−cn).

Together, these show that154

P

(
‖b̂− β̂−i‖2 ≥

C2Kn√
n

)
= P

(
1

n
‖H−1
−iXig(proxqiG(X>i β̂−i))‖2 ≤ CKn

C√
n

)
≥ 1− exp(−Ω(n))− C exp(−cK2

n)− C exp(−cn).

With this in mind, observe that155 ∥∥∥β̂ − β̂−i∥∥∥
2

=
∥∥∥β̂ − b̂+ b̂− β̂−i

∥∥∥
2

≤
∥∥∥β̂ − b̂∥∥∥

2
+
∥∥∥b̂− β̂−i∥∥∥

2

≤ C1
K2
nHn

n
+
C2Kn√

n

with probability at least156

1− exp(−Ω(n))− C exp(−cK2
n)− Cn exp(−cH2

n)− C exp(−cn(1 + o(1))),

for some C, c > 0, as claimed.157

158
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Proof of Lemma 2 To prove the first statement, we will simply take a union bound over the159

n(n− 1) events for each pair of i, k that160

Eik =

{
|X>i (β̂−ik − β̂−i)| ≥

CK2
nHn√
n

}
.

Lemma 11 from the Supplementary Materials of Sur and Candès [2019] essentially shows that161

P (Eik) = o(1). We reproduce their Lemma 11 here for completeness. In this context, they assume162

that the j-th predictor is null, βj = 0.163

Lemma 4 (Lemma 11, Sur and Candès [2019]). For any pair (i, k) ∈ [n], let β̂−i,−j , β̂−k,−j denote164

the MLEs obtained on dropping the i-th and k-th observations respectively, and, in addition, removing165

the j-th predictor. Further, denore β̂−ik,−j to be the MLE obtained on dropping both the i-th, k-th166

observations and the j-th predictor. Then the following relation holds167

P
(

max
{∣∣∣X>i,−j (β̂−i,−j − β̂−ik,−j)∣∣∣ , ∣∣∣X>k,−j (β̂−k,−j − β̂−ik,−j)∣∣∣} . n−1/2+o(1)

)
= 1−o(1).

While they do not precisely track the rates of the lower order terms on the event or it’s probability,168

inspecting their proof, which uses a slight modification of Lemma 17 and 18 from Sur et al. [2019],169

shows that the following precise bound holds: Let Kn and Hn satisfy the conditions in (B.1). Then,170

there exists universal constants C1, C2, C3, C4, c2, c3 > 0 such that171

P

(
max

{∣∣∣X>i,−j (β̂−i,−j − β̂−ik,−j)∣∣∣ , ∣∣∣X>k,−j (β̂−k,−j − β̂−ik,−j)∣∣∣} ≤ C1K
2
nHn√
n

)
≥ 1− C2n exp(−c2H2

n)− C3 exp(−c3K2
n)− exp(−C4n(1 + o(1))).

A null predictor left out of fitting the MLE has no effect on the problem, so we can ignore the172

dependence on j, to get P (Eik) ≤ Cn exp(−cH2
n) + C exp(−cK2

n) + exp(−cn(1 + o(1))).173

Taking a union bound over the n(n− 1) events Eik proves the result of Lemma 2, which will be o(1)174

under the conditions on Kn and Hn that n4 exp(−c1H2
n) = o(1), and n3 exp(−c2K2

n) = o(1), for175

any c1, c2 > 0 made in condition (B.1).176

To prove the second statement, note that Sur et al. [2019, Theorem 4] implies that ‖β̂‖2 > C with177

probability less than C exp(−cn). Lemma 1 shows that β̂i is in a Kn/
√
n-neighborhood of β̂ with178

high probability. Together, these imply that ‖β̂−i‖2 > C with probability at most179

exp(−Ω(n)) + C exp(−cK2
n) + Cn exp(−cH2

n) + C exp(−cn(1 + o(1))).

Then, using that Xi is independent of β̂−i, we have180

P (|X>i β̂−i| > C2Kn) ≤ P (|X>i β̂−i| > C2 | ‖β̂−i‖2 ≤ C) + P (‖β̂−i‖2 > C)

= E
[
P (|X>i β̂−i| > C2Kn | β̂−i) | ‖β̂−i‖2 ≤ C

]
+ P (‖β̂−i‖2 > C)

= E
[
P (|X>i β̂−i| > C2Kn | β̂−i) | ‖β̂−i‖2 ≤ C

]
+ P (‖β̂−i‖2 > C)

≤ E
[
C exp(−cK2

n) | ‖β̂−i‖2 ≤ C
]

+ P (‖β̂−i‖2 > C)

= C exp(−cK2
n) + P (‖β̂−i‖2 > C)

where the last inequality follows from the fact that conditional on β̂−i, X>i β̂−i ∼ N(0, ‖β̂−i‖22), and181

uses the standard tail bound of a Gaussian distribution. Taking a union bound over i ∈ {1, . . . , n}182

gives that complement of the statement in the Lemma occurs with probability less than183

n(C exp(−cK2
n) + exp(−Ω(n)) + C exp(−cK2

n) + Cn exp(−cH2
n) + C exp(−cn(1 + o(1)))).

184

185

Proof of Lemma 3 We know that E[Zk] = 0, however, to control the expectation in (B.4), we186

need to deal with two issues. The first is that we need to ensure that all of the quantities in the187
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expectation are absolutely integrable, so that all expectations are well-defined and finite. Then,188

the second is that the events En and Bn on which Ẽ[·] = E[· | En ∩ Bn] is conditioned are not189

independent of Zk, so we must check that conditioning does not change the expectation too much.190

To address the first issue, we will condition on the event that the leave-one-out MLE β̂−k and all of191

the leave-two-out MLEs leaving out k, {β̂−ik}i6=k, are bounded:192

Vk = {‖β̂−k‖2 ≤ C, sup
i 6=k
‖β̂−ik‖2 ≤ C},

where C is chosen so that Vk ⊃ Bn (that is, Bn implies Vk) for all n, k. Notice that Vk is independent193

of Zk, and ensures that all of the quantities in (B.4) are sufficiently bounded or integrable, so that194

E[β̂>−ikZiβ̂−ikβ̂
>
−kZkβ̂−k | Vk] = 0.

Now, we relate Ẽ[β̂>−ikZiβ̂−ikβ̂
>
−kZkβ̂−k] to E[β̂>−ikZiβ̂−ikβ̂

>
−kZkβ̂−k | Vk] by splitting up the195

latter into parts conditional on En ∪Bn and (En ∩Bn)C . Indeed,196

E[β̂>−ikZiβ̂−ikβ̂
>
−kZkβ̂−k | Vk] = E[β̂>−ikZiβ̂−ikβ̂

>
−kZkβ̂−k1 {En ∩Bn} | Vk]

+ E[β̂>−ikZiβ̂−ikβ̂
>
−kZkβ̂−k1

{
(En ∩Bn)C

}
| Vk],

and recalling that Vk ⊃ (En ∩Bn), we know that197

E[β̂>−ikZiβ̂−ikβ̂
>
−kZkβ̂−k1 {En ∩Bn} | Vk] = E[β̂>−ikZiβ̂−ikβ̂

>
−kZkβ̂−k | En∩Bn]P (En∩Bn | Vk).

Using that E[β̂>−ikZiβ̂−ikβ̂
>
−kZkβ̂−k | Vk] = 0,198 ∣∣∣E[β̂>−ikZiβ̂−ikβ̂

>
−kZkβ̂−k | En ∩Bn]P (En ∩Bn | Vk)

∣∣∣ =
∣∣∣E[β̂>−ikZiβ̂−ikβ̂

>
−kZkβ̂−k1

{
(En ∩Bn)C

}
| Vk]

∣∣∣
∣∣∣E[β̂>−ikZiβ̂−ikβ̂

>
−kZkβ̂−k | En ∩Bn]

∣∣∣ =

∣∣∣E[β̂>−ikZiβ̂−ikβ̂
>
−kZkβ̂−k1

{
(En ∩Bn)C

}
| Vk]

∣∣∣
P (En ∩Bn | Vk)

Now, in the proof of Theorem 1, we showed that Lemma 2 and Lemma 1 imply that P (En∩Bn)→ 1,199

and because Vk ⊃ (En ∩Bn), this implies that P (En ∩Bn | Vk)→ 1, as well. What remains is to200

control the numerator of the previous display.201

Applying the Cauchy-Schwarz inequality gives202 ∣∣∣E[β̂>−ikZiβ̂−ikβ̂
>
−kZkβ̂−k1

{
(En ∩Bn)C

}
| Vk]

∣∣∣ ≤√E
[(
β̂>−ikZiβ̂−ikβ̂

>
−kZkβ̂−k

)2

| Vk
]
P ((En ∩Bn)C | Vk).

A very loose bound on the first term, using that ‖Xi‖22 . p with high probability, β̂−ik ≤ C on Vk,203

and similar expressions hold for the terms involving β̂−k and Xk gives204

E
[(
β̂>−ikZiβ̂−ikβ̂

>
−kZkβ̂−k

)2

| Vk
]
. p4.

Because Vk ⊃ (En ∩ Bn), we know that P ((En ∩ Bn)C | Vk) ≤ P ((En ∩ Bn)C) .205

n2 exp(−c2H2
n) + n exp(−c3K2

n) + n exp(−C4n(1 + o(1))) + exp(−Σ(n)). Altogether, we have206

n
∣∣∣E[β̂>−ikZiβ̂−ikβ̂

>
−kZkβ̂−k1

{
(En ∩Bn)C

}
| Vk]

∣∣∣
.
√
n2p4 (n2 exp(−c2H2

n) + n exp(−c3K2
n) + n exp(−C4n(1 + o(1))) + exp(−Σ(n))).

Using the conditions on Kn and Hn from (B.1), we know that this bound goes to 0, completing the207

proof.208

209

D Genomics210

Variants known to be associated with glaucoma, in the form “(chromosome)-(position)-(allele1)-211

(allele2)” using coordinates from the GRCh37 human genome build. 127 in total.212
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1-8495590-A-G 1-36612955-C-A 1-38076621-C-T 1-54123873-G-T 1-68837169-A-C
1-88213014-T-C 1-92077097-G-A 1-101095202-A-G 1-103379918-G-A 1-113242122-T-G

1-162679145-G-A 1-165737704-C-G 1-171605478-G-A 1-219215137-G-A 2-12951321-C-T
2-28365914-G-A 2-45878760-G-T 2-55933014-C-T 2-59523041-T-C 2-66537344-G-T
2-69411517-A-C 2-71651939-T-A 2-111638775-C-T 2-153364527-A-G 2-213760746-AT-A
3-24510794-A-C 3-25581798-C-T 3-56876596-T-C 3-85172364-G-C 3-105073472-A-C
3-150065280-C-T 3-169239578-A-G 3-171821356-A-G 3-186128816-A-G 3-188066953-T-G
4-7904363-G-A 4-54027595-A-G 4-89752276-G-A 4-111963719-C-T 4-184779187-G-T

5-14814883-A-G 5-55783678-G-A 6-1548369-A-G 6-29806901-C-G 6-36570366-T-C
6-45919758-G-A 6-51414922-C-T 6-122645298-A-C 6-134372150-C-G 6-136462744-T-G
6-158971266-A-G 6-170454915-A-G 7-11679113-A-G 7-28401455-C-G 7-35961137-C-T
7-39077397-C-T 7-80845529-G-GA 7-82949529-T-G 7-103624813-A-G 7-116162306-A-T

7-117636111-C-G 7-134520521-C-A 7-151505698-C-T 8-6377141-C-G 8-30454209-CA-C
8-108273318-T-G 8-124554317-A-T 9-22051670-G-C 9-107695539-T-C 9-113312231-G-C
9-129390800-C-T 9-136131188-C-T 10-10840849-A-C 10-60326910-G-A 10-78282063-T-C
10-94929116-C-T 10-96023077-T-C 10-115546535-A-G 10-126278648-T-C 11-17011176-C-A
11-47469439-A-G 11-65337251-A-T 11-86368106-T-C 11-102064834-C-A 11-115039683-G-A

11-120198093-G-A 11-128380742-C-A 11-130282078-T-C 12-28203245-T-A 12-83948055-T-C
12-107219308-A-G 12-111932800-C-T 13-22673870-A-G 13-73639371-G-A 13-76258720-A-G
13-110777939-C-G 14-53960089-A-G 14-60976537-C-A 14-75084829-G-A 14-76371658-G-C
14-95956875-T-C 15-57553832-A-T 15-61947280-C-G 15-67025403-C-T 15-74221298-C-T
15-92331707-A-G 16-51601948-C-T 16-59995564-A-G 16-65067443-C-T 16-77661732-C-T
17-2201944-A-G 17-10031183-A-G 17-44025888-C-A 17-45695242-AT-A 17-59239221-A-G
20-6470094-G-A 20-38074218-T-C 20-45534053-A-G 21-27216839-T-A 21-40406630-G-A
22-19870147-C-T 22-29108229-A-G 22-38176979-T-G X-3329593-C-T X-13954397-C-T
X-43940827-T-C X-109786110-C-A

213

E German Credit Data214

To provide an example applying SLOE to real data analysis, we consider the German Credit Data215

from the UCI Machine Learning Repository [Dua and Graff, 2017]. The outcome is whether the216

customer has good or bad credit, and the features represent a variety of qualitative and quantitative217

features with n = 1000 observations. The qualitative features were converted to numeric features218

using one-hot encoding. Therefore, while the original data only have 20 features, the model has 48219

features. Then, we normalized the features to have mean zero and unit variance, so that the confidence220

intervals of the features would be on the same scale.221

The regression coefficients from this model represent the association between each feature and the222

customer’s credit, however they may not be causal, as no explicit consideration has been made for223

confounding factors. In this sense, the effect size represents the effect of the feature along with the224

effect of confounding variables associated with that feature.225

We split the data in half, and used half to train a logistic regression model, using both the MLE and226

the MLE corrected with SLOE. The estimated corrupted signal strength was η̂2 = 3.596, and when227

the equations are solved, the estimated standard error was κσ̂2 = 0.979 and the bias inflation factor228

was α̂ = 1.150. This suggests that the signal strength was quite small, γ2 ≈ (η̂2 − κσ̂2)/α̂ = 2.27,229

as was the aspect ratio, κ = 0.096, suggesting that the effect of the high dimensionality correction230

will be small. Figure 4 shows the confidence intervals. As expected, the confidence intervals from231

the MLE and from correction with SLOE are fairly similar. This suggests that using the correction232

from SLOE, even when not in particularly high dimensions, does not come at a cost. However, one233

can observe that many of the confidence intervals for the MLE exclude 0, suggesting a statistically234

significant association, while the confidence intervals with SLOE include zero, suggesting that the235

association might be spurious.236
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Figure 4. Confidence intervals for coefficients from the German Credit Data from the UCI Machine
Learning Repository.
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