
A Proofs

In this section, we provide proofs of the main theorems presented in the paper. We also provide a
brief overview of the proof of Theorem 2 from [19, 22], since the bound decomposition strategy will
also be used in the new theorems of the paper.

A.1 Brief Proof of Theorem 2 [19, 22]

Given a task environment T and a set of n observed tasks (Di,mi) ∼ T , let P be a fixed hyper-prior
and λ > 0, β > 0, with probability at least 1− δ over samples S1 ∈ Dm1

1 , . . . , Sn ∈ Dmn
n , we have

for all base learner Q and all hyper-posterior Q,

R(Q, T ) ≤R̂(Q, Sni=1) + ξ̃DKL(Q‖P)

+
1

nβ

n∑
i=1

EP∼Q [DKL(Q(Si, P )‖P )] + C(δ, λ, β, n,mi),

where ξ̃ = 1
λ + 1

nβ .

Proof The bound in Theorem 2 was proved by decomposing it into two components:

• "Task specific generalization bound", that bounds the generalization error averaged over all
observed tasks τi:

EP∼Q[
1

n

n∑
i=1

L(Q(Si, P ), Di)]

≤R̂(Q, Sni=1) +
1

nβ
DKL(Q‖P) +

1

nβ

n∑
i=1

EP∼Q [DKL(Q(Si, P )‖P )]

+
1

nβ
log

1

δ
+

1

n

n∑
i=1

mi

β
Ψ1(

β

mi
) (15)

where

R̂(Q, Sni=1) = EP∼Q[
1

n

n∑
i=1

L̂(Q(Si, P ), Si)],

Ψ1(β) = logEP∼P Eh∼P Ezij∼Di
[
eβ(Ezi∼Di [l(hi,zi)]−l(hi,zij))

]
.

• "Task environment generalization bound", that bounds the transfer error from the observed
tasks to the new target tasks:

R(Q, T ) ≤ 1

n

n∑
i=1

EP∼Q [L(Q(Si, P ), Di)]

+
1

λ

(
DKL(Q‖P) + log

1

δ

)
+
n

λ
Ψ2(

λ

n
). (16)

where

Ψ2(λ) = logEP∼P EDi∼T,Si∼Dmii
[
e
λ(E

Di∼T,Si∼D
mi
i

[RSi (P )]−RSi (P ))
]
.

Detailed proofs of these two generalization bounds can be found in the appendices of [19, 22].
Subsequently, combining Eq.(15) with Eq.(16), it is straightforward to get Eq.(4), with

C(δ, λ, β, n,mi) = ξ̃ log
1

δ
+

1

n

n∑
i=1

mi

β
Ψ1(

β

mi
) +

n

λ
Ψ2(

λ

n
). (17)
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A.2 Proof of Theorem 3

For a target task environment T and an observed task environment T̃ where ET̃ [D] = ET [D] and
ET̃ [m] ≥ ET [m], let P be a fixed hyper-prior and λ > 0, β > 0, then with probability at least 1− δ
over samples S1 ∈ Dm1

1 , . . . , Sn ∈ Dmn
n where (Di,mi) ∼ T̃ , we have, for all base learners Q and

hyper-posterior Q,

R(Q, T ) ≤R̂(Q, Sni=1) + ξ̃DKL(Q‖P) +
1

nβ

n∑
i=1

EP∼Q [DKL(Q(Si, P )‖P )]

+ C(δ, λ, β, n,mi) + ∆λ(P, T, T̃ ),

where ∆λ(P, T, T̃ ) = 1
λ logEP∈P eλ(R(P,T )−R(P,T̃ )), and ξ̃ = 1

λ + 1
nβ .

Proof The "task specific generalization bound" has the same form as Eq.(15).

For the "task environment generalization bound", define the "meta-training" generalization error of a
given prior P on the observed task (D1,m1), . . . , (Dn,mn) ∼ T̃ as

RST̃ (P ) ,
1

n

n∑
i=1

L(Q(Si, P ), Di)

=
1

n

n∑
i=1

Ezi∼Di Ehi∼Q(hi|P,Si)[L(hi, zi)],

where Si ∼ Dmi
i and ST̃ = {S1, . . . , Sn}. Similarly, the generalization error on the target task

environment T is

R(P, T ) = E(D,m)∼T ES∼Dm Ez∈D Eh∼Q(h|P,S)[L(h, z)].

Using the Markov Inequality, with at least 1− δ probability,

EP∼P
[
e
λ(R(P,T )−RS

T̃
(P ))

]
≤1

δ
EP∼P Ei=1,...,n

Di∼T,Si∼D
mi
i

[
e
λ(R(P,T )−RS

T̃
(P ))

]
.

The left-hand side can be lower bounded by,

logEP∼P
[
e
λ(R(P,T )−RS

T̃
(P ))

]
= logEP∼Q

P(P )

Q(P )
e
λ(R(P,T )−RS

T̃
(P ))

≥EP∼Q log
P(P )

Q(P )
+ λEP∼Q[R(P, T )−RST̃ (P )]

=−DKL(Q‖P) + λ(R(Q, T )− EP∼Q[RST̃ (P )]).

The right-hand side is upper bounded by

log
1

δ
EP∼P Ei=1,...,n

Di∼T,Si∼D
mi
i

[
e
λ(R(P,T )−RS

T̃
(P ))

]
= log

1

δ
+ logEP∼P Ei=1,...,n

Di∼T,Si∼D
mi
i

[
e
λ(R(P,T )−RS

T̃
(P ))

]
= log

1

δ
+ logEP∼P

[
e
λ(R(P,T )−ES

T̃
∼T̃ [RS

T̃
(P )])

]
+ logEP∼P Ei=1,...,n

Di∼T,Si∼D
mi
i

[
e
λ(ES

T̃
[RS

T̃
(P )]−RS

T̃
(P ))

]
≤ log

1

δ
+ logEP∼P

[
e
λ(R(P,T )−ES

T̃
[RS

T̃
(P )])

]
+ nΨ2(

λ

n
), (18)
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where,

EST̃ [RST̃ (P )]

,Ei=1,...,n

(Di,mi)∼T̃ ,Si∼D
mi
i

[RST̃ (P )]

=
1

n

n∑
i=1

E(Di,mi)∼T̃ ESi∼Dmii Ezi∈Di Ehi∼Q(hi|P,Si)[L(hi, zi)]

=E(D,m)∼T̃ ES∼Dm Ez∈D Eh∼Q(h|P,S)[L(h, z)]

=R(P, T̃ ).

Combining the left-hand and right-hand bounds together, we have with at least probability 1− δ,

R(Q, T ) ≤ 1

n

n∑
i=1

EP∼Q [L(Q(Si, P ), Di)]

+
1

λ

(
DKL(Q‖P) + log

1

δ
+ nΨ2(

λ

n
)

)
+

1

λ
logEP∈P eλ(R(P,T )−R(P,T̃ )). (19)

Lastly, combining Eq.(19) with Eq.(15) yields Eq.(5).

Furthermore, from Theorem 3, it is straightforward to obtain the following corollary.

Corollary 5 For a target task environment T and an observed task environment T̃ where ET̃ [D] =
ET [D] and ET̃ [m] ≥ ET [m], let P be a fixed hyper-prior and λ > 0, β > 0, then with probability
at least 1− δ over samples S1 ∈ Dm1

1 , . . . , Sn ∈ Dmn
n where (Di,mi) ∼ T̃ , we have, for all base

learners Q and hyper-posterior Q,

R(Q, T ) ≤R̂(Q, Sni=1) + ξ̃DKL(Q‖P) +
1

nβ

n∑
i=1

EP∼Q [DKL(Q(Si, P )‖P )]

+ C(δ, λ, β, n,mi) + ∆λ(P,Q, T, T̃ ), (20)

where ∆λ(P,Q, T, T̃ ) = min
{

1
λ logEP∈P eλ(R(P,T )−R(P,T̃ )), R(Q, T )−R(Q, T̃ )

}
, and ξ̃ =

1
λ + 1

nβ .

Proof Similar to (16), we have

R(Q, T̃ ) ≤ 1

n

n∑
i=1

EP∼Q [L(Q(Si, P ), Di)]

+
1

λ

(
DKL(Q‖P) + log

1

δ
+ nΨ2(

λ

n
)

)
.

A simple reorganization of the terms leads to,

R(Q, T ) ≤ 1

n

n∑
i=1

EP∼Q [L(Q(Si, P ), Di)]

+
1

λ

(
DKL(Q‖P) + log

1

δ
+ nΨ2(

λ

n
)

)
+ (R(Q, T )−R(Q, T̃ )). (21)

Combining Eq.(21) with Eq.(19) and Eq.(15) gives the bound in Eq.(20).

Note that although Eq.(20) gives a potentially tighter bound than Eq.(5), empirically it makes little
difference because R(Q, T )−R(Q, T̃ ) is inestimable in practice and cannot be directly optimized as
a function of Q. We will only numerically estimate its value in synthetic datasets in order to estimate
the bound.
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A.3 Proof of Theorem 4

For a target task environment T and an observed task environment T̃ where ET̃ [D] = ET [D]
and ET̃ [m] ≥ ET [m], let P be a fixed hyper-prior and λ > 0, β > 0, then with probability
at least 1 − δ over samples S1 ∈ Dm1

1 , . . . , Sn ∈ Dmn
n where (Di,mi) ∼ T̃ , and subsamples

S′1 ∈ D
m′1
1 ⊂ S1, . . . , S

′
n ∈ D

m′n
n ⊂ Sn, where E[m′i] = ET [m], we have, for all base learner Q and

all hyper-posterior Q,

R(Q, T ) ≤EP∼Q

[
1

n

n∑
i=1

L̂(Q(S′i, P ), Si)

]
+ ξ̃DKL(Q‖P) +

1

nβ

n∑
i=1

EP∼Q
[
DKL(Q(S′i, P )‖P )

]
+ C(δ, λ, β, n,mi),

where ξ̃ = 1
λ + 1

nβ .

Proof The "task environment generalization bound" is the same as the one in Theorem 2, because
the base-learner in observed and target task have the same task environment T . Therefore, we have

R(Q, T ) ≤ 1

n

n∑
i=1

EP∼Q [L(Q(S′i, P ), Di)] +
1

λ

(
DKL(Q‖P) + log

1

δ

)
+
n

λ
Ψ2(

λ

n
). (22)

As for the "task-specific generalization bound", define,

L̂(h) =
1

n

n∑
i=1

1

mi

mi∑
j=1

l(hi, zij), L(h) =
1

n

n∑
i=1

Ezi∼Di l(hi, zi),

where zij ∈ Si which is sampled from Di. According to the Markov inequality, with at least 1− δ
probability, we have

EP∼P Eh∼Pn
[
enβ(L(h)−L̂(h))

]
≤ 1

δ
EP∼P Eh∼Pn ES∼Dm

[
enβ(L(h)−L̂(h))

]
Now take the logarithm of both sides, and transform the expectation over P, P to Q, Q, where we
use base-learner Q(S′i, P ) with S′i ∈ D

m′i
i . Then the LHS becomes

logEP∼P Eh∼Pn
[
enβ(L(h)−L̂(h))

]
= logEP∼Q Eh∼Q(S′,P )[

P(P )
∏n
i=1 P (hi)

Q(P )
∏n
i=1Qi(hi|S′i, P )

enβ(L(h)−L̂(h))]

≥−DKL(Q‖P)−
n∑
i=1

EP∼Q [DKL(Q(S′i, P )‖P )]

+ β EP∼Q[

n∑
i=1

L(Q(S′i, P ), Di)]− β EP∼Q[

n∑
i=1

L̂(Q(S′i, P ), Si)].

The first equation uses the fact that the hyper-prior P and hyper-posterior Q as well as the prior P
are shared across all n observed tasks. The inequality uses Jensen’s inequality to move the logarithm
inside expectation.

The RHS is

log
1

δ
+ logEP∼P Eh∼Pn ES∼Dm

[
enβ(L(h)−L̂(h))

]
= log

1

δ
+ logEP∼P Eh∼Pn

n∏
i=1

mi∏
j=1

Ezij∼Di
[
e
β
mi

(Ezi∼Di [l(hi,zi)]−l(hi,zij))
]

= log
1

δ
+

n∑
i=1

miΨ1(
β

mi
).
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Now, combining the LHS and RHS together, we get that with at least 1− δ probability,

EP∼Q[
1

n

n∑
i=1

L(Q(S′i, P ), Di)]

≤EP∼Q

[
1

n

n∑
i=1

L(Q(S′i, P ), Si)

]
+

1

nβ
DKL(Q‖P) +

1

nβ

n∑
i=1

EP∼Q [DKL(Q(S′i, P )‖P )]

+
1

nβ
log

1

δ
+

1

n

n∑
i=1

mi

β
Ψ1(

β

mi
). (23)

Combining Eq.(22) with Eq.(23) immediately yields Eq.(6).

B Derivations of MAML and Reptile

In this section, we derive a couple of meta-learning algorithms based on the MAP estimation of
PAC-Bayesian bounds. To this end, we assume that the distribution families of the hyper-posterior
Q(P ) and posterior Qi(h) are from delta functions. In addition, we use the isotrophic Gaussian
priors for the hyper-prior P(P ) and the prior P (h) on all model parameters,

P(P ) = N (p |0, σ2
0)

Q(P ) = δ(p = p0)

P (h) = N (h |p, σ2)

Qi(h) = δ(h = qi) ∀i = 1, . . . , n.

This way we have a closed form solution for the two KL terms, which are (up to a constant)

DKL(Q‖P) =

∫
dp δ(p = p0) ·

(
‖p ‖2

2σ2
0

+
k

2
log(2πσ2

0) + log δ(p = p0)

)
=
‖p0 ‖2

2σ2
0

+
k

2
log(2πσ2

0) + c,

where k is the dimension of p and c is a constant. Similarly,

EP∼Q[DKL(Qi|P )]

=

∫
dp δ(p = p0)

∫
dh δ(h = qi) ·

(
‖h−p ‖2

2σ2
+
k

2
log(2πσ2) + log δ(h = qi)

)
=

∫
dp δ(p = p0) · ‖p−qi ‖2

2σ2
+
k

2
log(2πσ2) + c

=
‖p0−qi ‖2

2σ2
+
k

2
log(2πσ2) + c.

Plugging in the above results, the PAC-Bayesian bound (PacB) in Eq.(5) and Eq.(6) are both of the
form of,

PacB =
1

n

n∑
i=1

L(qi, Si) +
ξ̃‖p0 ‖2

2σ2
0

+
1

nβ

n∑
i=1

‖p0−qi ‖2

2σ2
+ C ′,

where the constant C ′ corresponding to Eq.(5) and Eq.(6) are different by ∆λ. The only free variable
of PacB is p0. The base-learner qi can be any function of p0 and Si for Eq.(5) or S′i for Eq.(6).
One could find the MAP estimation of PacB by gradient descent with respect to p0.

Note that in Eq.(5), for a given p0 and Si, there exists an optimal base-learner q∗i in the form of,

q∗i = argmin
qi

(PacB) = argmin
qi

[
L(qi, Si) +

‖p0−qi ‖2

2βσ2

]
.
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Given the optimal q∗i , the full derivative of PacB with respect to p0 is substantially simpler,

d(PacB)

dp0

=
∂(PacB)

∂ p0

+

〈
∂ q∗i
∂ p0

,
∂(PacB)

∂ q∗i

〉
=
∂(PacB)

∂ p0

=
ξ̃ p0

σ2
0

+
1

n

n∑
i=1

p0−q∗i
βσ2

, (24)

where the 2nd equation is because ∂(PacB)
∂ q∗i

= 0 for the optimal base-leaner q∗i . Eq.(24) is the
equivalent to the meta-update of the Reptile algorithm [16], except that Reptile does not solve for the
optimal base learner q∗i .

From the optimal condition, the base-learner q∗i satisfies,

p0−q∗i
βσ2

= ∇q∗i
L(q∗i , Si).

Therefore, we can rewrite Eq.(24) in the form of the implicit gradient,

d(PacB)

dp0

=
ξ̃ p0

σ2
0

+
1

n

n∑
i=1

∇q∗i
L(q∗i , Si).

In contrast, the standard multi-task objective uses the explicit gradient, where qi = p0 and

d(PacB)

dp0

=
ξ̃ p0

σ2
0

+
1

n

n∑
i=1

∇p0
L(p0, Si).

C Derivations of PACMAML

For Theorem 4, we use the following posterior as the base-learner for observed task τi,

Qi(S
′
i, P )(h) =

P (h) exp(−αL̂(h, S′i))

Zα(S′i, P )
.

Plugging this Qi into Eq.(6), we have

R(Q, T )

≤EP∼Q

[
1

n

n∑
i=1

L̂(Qi, Si)

]
+ ξ̃DKL(Q‖P) +

1

nβ

n∑
i=1

EP∼Q [DKL(Qi‖P )] + C

=
1

n

n∑
i=1

EP∼Q
[
L̂(Qi, Si) +

1

β
DKL(Qi‖P )

]
+ ξ̃DKL(Q‖P) + C

=
1

n

n∑
i=1

EP∼Q Eh∼Qi
[
L̂(h, Si) +

1

β
logQi(h)− 1

β
logP (h)

]
+ ξ̃DKL(Q‖P) + C

=
1

n

n∑
i=1

EP∼Q Eh∼Qi
[
L̂(h, Si)−

α

β
L̂(h, S′i)−

1

β
logZα(S′i, P ))

]
+ ξ̃DKL(Q‖P) + C

=
1

n

n∑
i=1

EP∼Q[− 1

β
logZα(S′i, P ) + L̂(Qi, Si)−

α

β
L̂(Qi, S

′
i)] + ξ̃DKL(Q‖P) + C.

where C = ξ̃ log 2
δ + n

λΨ(λn ) + 1
n

∑n
i=1

mi
β Ψ( β

mi
).

C.1 The Gradient Estimator of PACOH and PACMAML

Assuming that the model hypothesis h is parameterized by v such that L̂(h, Si) , L̂(v, Si), and v
has prior P (v) = N (v |p, σ2) with meta-parameter p, then

logZβ(Si,p) = log

∫
N (v |p, σ2) exp(−βL̂(v, Si))dv .
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Note that the parameter p appears in the probability distribution of the expectation, and the naive
Monte-Carlo gradient estimator of such gradient is known to exhibit high variance. To reduce the
variance, we apply the reparameterization trick [13] and rewrite v = p+w with w ∼ N (w |0, σ2),
then

logZβ(Si,p) = log

∫
N (w |0, σ2) exp(−βL̂(p+w, Si))dw .

This leads to the gradient of W1 in the following form,

d

dp
W1 = − 1

β

d

dp
logZβ(Si,p) =

∫
Qβi (w;Si)

∂L̂(p+w, Si)

∂ p
dw,

where, Qβi (w;Si) ∝ N (w |0, σ2) exp(−βL̂(p+w, Si)).

As for W2, the first term is simlar to W1, but we also need to evaluate the gradient of L̂∆
α
β

(Qαi , Si, S
′
i),

which is

d

dp
L̂∆
α
β

(Qαi , Si, S
′
i) =

∫
Qαi (w;S′i)

∂L̂∆
α
β

(p+w, Si, S
′
i)

∂ p
dw+

∫
∂Qαi (w;S′i)

∂ p
L̂∆
α
β

(p+w, Si, S
′
i)dw .

(25)

The second term of Eq.(25) is equivalent to,∫
∂Qαi (w;S′i)

∂ p
L̂∆
α
β

(p+w, Si, S
′
i)dw

=− 1

β

∂

∂ p

∫
Qαi (w;S′i)stop_grad

(
−βL̂∆

α
β

(p+w, Si, S
′
i)
)
dw .

The Monte-Carlo gradient estimator of this has the same high-variance problem as in the policy
gradient method, which causes unreliable inference without warm-start. Instead, we apply the
cold-start policy gradient method by approximating the loss with the one from the softmax value
function [8] as follows,

− 1

β

∫
Qαi (w;S′i)stop_grad

(
−βL̂∆

α
β

(p+w, Si, S
′
i)
)
dw

≥− 1

β
log

∫
Qαi (w;S′i) exp

(
stop_grad

(
−βL̂∆

α
β

(p+w, Si, S
′
i)
))

dw .

Then we take the gradient of the softmax value function,

− 1

β

∂

∂ p
log

∫
Qαi (w;S′i) exp

(
stop_grad

(
−βL̂∆

α
β

(p+w, Si, S
′
i)
))

dw

=− 1

β

∫ ∂Qαi (w;S′i)
∂ p exp

(
stop_grad

(
−βL̂∆

α
β

(p+w, Si, S
′
i)
))

dw∫
Qαi (w;S′i) exp

(
stop_grad

(
−βL̂∆

α
β

(p+w, Si, S′i)
))

dw

=− 1

β

∫ ∂ logQαi (w;S′i)
∂ p Qαi (w;S′i) exp

(
stop_grad

(
−βL̂∆

α
β

(p+w, Si, S
′
i)
))

dw∫
Qαi (w;S′i) exp

(
stop_grad

(
−βL̂∆

α
β

(p+w, Si, S′i)
))

dw

=− 1

β

∫ ∂ logQαi (w;S′i)
∂ p N (w |0, σ2) exp(−βL̂(p+w, Si))dw∫
N (w |0, σ2) exp(−βL̂(p+w, Si))dw

=− 1

β

∫
Qβi (w;Si)

∂ logQαi (w;S′i)

∂ p
dw

=
α

β

∫ (
Qβi (w;Si)−Qαi (w;S′i)

) ∂L̂(p+w, S′i)

∂ p
dw .
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This yields the overall gradient of W2 to be,

d

dp
W2 '

α

β

∫
Qαi (w;S′i)

∂L̂(p+w, S′i)

∂ p
dw+

∫
Qαi (w;S′i)

∂L̂∆
α
β

(p+w, Si, S
′
i)

∂ p
dw

+
α

β

∫ (
Qβi (w;Si)−Qαi (w;S′i)

) ∂L̂(p+w, S′i)

∂ p
dw

=
α

β

∫
Qβi (w;Si)

∂L̂(p+w;S′i)

∂ p
dw+

∫
Qαi (w;S′i)

∂L̂∆
α
β

(p+w, Si, S
′
i)

∂ p
dw

=

∫
Qαi (w;S′i)

∂L̂(p+w;Si)

∂ p
dw+

α

β

∫ (
Qβi (w;Si)−Qαi (w;S′i)

) ∂L̂(p+w;S′i)

∂ p
dw .

The Pseudocode of PACMAML is shown in Algorithm 1.

Algorithm 1 Pseudocode of PACMAML with approximate gradient estimation. Every posterior is
approximated by 1 sample of SVGD, which reduces to SGD. For notation simplicity, we also assume
both inner and outer loop uses a gradient decent with fixed learning rate.

Input: σ, η, λ, α, β, N , K.
Initialize: p0.
for i = 0, . . . , N − 1 do

wα
i,0 = 0,wβ

i,0 = 0
for k = 0, . . . ,K − 1 do

wα
i,k+1 = wα

i,k −η
(

logN (wi,k |0, σ2)− βL̂(pi +wi,k, S
′
i)
)

wβ
i,k+1 = wβ

i,k −η
(

logN (wi,k |0, σ2)− αL̂(pi +wi,k, Si)
)

end for
pi+1 = pi−λ∇p

(
L̂(pi +wα

i,K , Si)− α
β L̂(pi +wα

i,K , S
′
i) + α

β L̂(pi +wβ
i,K , Si)

)
end for
Output: pN .

D Experiment Details of the Regression Problem

D.1 Gaussian Process Model Details

We use the Gaussian process prior, where Pθ(h) = GP(h|mθ(x), kθ(x, x
′)) and kθ(x, x

′) =
1
2 exp (−‖φθ(x)− φθ(x′)‖2). Both mθ(x) and φθ(x) are instantiated to be neural networks. The
networks are composed of an input layer of size 1× 32, a hidden layer of size 32× 32. mθ and φθ
has an output layer of size 32× 1 and 32× 2, respectively.

We focused on regression problems where for every example zj = (xj , yj) and a hypothesis h, the
l2-loss function is used so that l(h, zj) = ‖h(xj)−yj‖22. This leads to a Gaussian likelihood function.
Assuming there are m examples in the dataset, we have

P (y|h, x) =N (h,
m

2α
I)

=
1

(πm/α)m/2
exp

− α
m

m∑
j=1

(h(xj)− yj)2

 .

As a result, the partition function Zα(S, P ) is,

Zα(S, P ) = (πm/α)m/2
∫
h

dhP (y|h, x)Pθ(h)

= (πm/α)m/2N (y|mθ(x), kθ(x, x
′) +

m

2α
I),

19



We apply the GP base-learner Q on the the observed data Si of task τi. For notation simplicity, let us
denote Qi(hi|Si, P ) = N (µi,Ki), where hi denotes the model hypothesis (predictions) of the mi

examples in Si. Then we have,

L̂(Qi, Si) =
1

mi

∫
Qi(h

i)(yi − hi)>(yi − hi)dhi

=
1

mi

(
yi>yi − 2µ>i y

i + µ>i µi + tr(Ki)
)
,

where yi denotes the labels of the mi examples in Si.

The hyper-prior P(Pθ) := P(θ) = N (θ|0, σ2
0I) is an isotropic Gaussian defined over the network

parameters θ, where we take σ2
0 = 3 in our numerical experiments. The MAP approximated hyper-

posterior takes the form of a delta function, where Qθ0(Pθ) := Qθ0(θ) = δ(θ = θ0). As a result, we
have

DKL(Qθ0 ‖P)

=

∫
dθδ(θ = θ0)

(
‖θ‖2

2σ2
0

+
k

2
log(2πσ2

0) + log δ(θ = θ0)

)
=
‖θ0‖2

2σ2
0

+
k

2
log(2πσ2

0) + c,

which combined with ξ̃ becomes the regularizer on the parameters θ0.

D.2 Experiment Details

In the Sinusoid experiment, the number of available examples per observed task mi ∈
{5, 10, 30, 50, 100}. Under the setting of PACOH (Theorem 3), for each different mi, we did a
grid search on β/mi ∈ {10, 30, 100}. Under the setting of PACMAML (Theorem 4), for each
different mi, we did a grid search on β/mi ∈ {10, 30, 100} and α/β ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}.
We use a subsect S′i ⊂ Si with m′i = m to train the base-learner in PACMAML. For each hyperpa-
rameter setting β (and α), we trained 40 models. Each model is trained on 1 of the 8 pre-sampled
meta-training sets (each containing n = 20 observed tasks) and each set is run with 5 random seeds of
network initialization. The ultimate result for each β (and α) is the averaged result across all models
of that setting. The hyperparameters ξ̃ and σ2

0 in the hyper-prior (P(θ) = N (θ|0, σ2
0I)) are chosen to

be ξ̃ = 1/(nβ) and σ2
0 = 3. To find the optimal model parameter θ0, we used the ADAM optimizer

with learning rate 3× 10−3. The number of tasks per batch is fixed to 5 across all experiments. We
run 8000 iterations for each experiment.

The experiments ran in parallel on several 56-core Intel CLX processors and each experiment runs
on a single core. Each iteration in the PACOH and PACMAML setting takes about 0.03-0.06s and
0.07-0.14s to run, respectively, with the exact run-time varying for different number of tasks n and
number of examples mi.

D.3 Additional Results

We performed the 4-fold cross validation over the 20 target tasks to determine the optimal β for
PACOH (Theorem 3) or the optimal α and β for PACMAML (Theorem 4). For the selected α and β
form validation, we report the lowest test error the corresponding models can achieve. The results are
plotted in Figure 3. For each setting, both the validation and test errors show the same trend, where
the error with PACOH setting saturates earlier than that with PACMAML setting.

mi 5 10 30 50 100
β/mi 100 100 30 30 100

Table 3: Optimal β under the setting of PACOH, based on the results of a 4-fold cross validation.

In Table 3 and Table 4, we provide the optimal β (and α) for PACOH and PACMAML, respectively.
In Fig. 4, we plotted the validation error for three different values of β we used. We see that for both
PACOH and PACMAML, the error is large for a small β/mi = 10. The error with β/mi = 30 and
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Figure 3: The validation and test error (error bars corresponding to standard errors) on the Sinusoid
dataset under the settings of PACOH and PACMAML.
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Figure 4: Left: β-dependence of the RMSE validation error under the PACOH (Theorem 3) setting.
Middle and Right: β- and α-dependence of the RMSE validation error under the PACMAML
(Theorem 4) setting. α is chosen as the optimal α in the middle plot. β = 30 ∗mi in the right plot.

mi 10 30 50 100
α/β 0.2 0.2 0.2 0.1
β/mi 100 100 100 100

Table 4: Optimal α and β values under the setting of PACMAML, based on the results of a 4-fold
cross validation.

β/mi = 100 are similar for PACOH. For PACMAML, the error with β/mi = 100 is slightly and
consistently better than the error with β/mi = 30. From the right figure of Fig. 4 we see that for
PACMAML, given β/mi = 30, α/β around 0.2 achieves lowest validation error.

D.4 Generalization Bound of PACMAML

When β/mi is held as a constant, the Ψ1 and Ψ2 terms of C(δ, λ, β, n,mi) in Eq.(17) becomes the
same across all mi and both PACOH (Eq. (10)) and PACMAML (Eq. (11)). Thus, we exclulde
the Ψ1 and Ψ2 terms when comparing the bound values for different mi and different setups
PACOH and PACMAML. In Fig. 5 and 6 we show the value of each term and the total bound for
PACOH and PACMAML obtained from the same set of experiments for Fig. 2-4. For both PACOH
and PACMAML, all three terms W , ξ̃DKL and ξ̃ log(1/δ) tend to decrease with larger mi. For
PACOH, with the extra term ∆λ that panalizes larger mi, the total bound either always increases
with mi or first increases then saturates. For PACMAML, without the ∆λ term, the total bound
W2 + ξ̃DKL + ξ̃ log(1/δ) monotonically decreases vs. mi.

In Fig. 7, we show the comparison between the total bound of PACOH and PACMAML. We see that
for all mi > 5, PACMAML has lower bound for all choices of β.

D.5 Experiment for Reptile and MAML

We also experimented with meta-learning algorithms that use Dirac-measure base-learners, by
implementing the Reptile (with optimal q∗) and the MAML algorithms following the equations of
Section 3.2.
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Figure 5: Values of W1, ξ̃DKL and ∆ terms in the PACOH bound and the total value of the bound
for β/mi ∈ {10, 30, 100}.

20 40 60 80 100
mi

0.005

0.010

0.015

0.020

0.025

0.030

W
2

= 10 * mi

= 30 * mi

= 100 * mi

20 40 60 80 100
mi

0.000

0.002

0.004

0.006

0.008

0.010
*D

KL
= 10 * mi

= 30 * mi

= 100 * mi

20 40 60 80 100
mi

0.000

0.002

0.004

0.006

1 n
lo

g1

= 10 * mi

= 30 * mi

= 100 * mi

20 40 60 80 100
mi

0.01

0.02

0.03

P
A

C
M

A
M

L 
to

ta
l b

ou
nd

= 10 * mi

= 30 * mi

= 100 * mi

Figure 6: Values of W2 and ξ̃DKL terms in the PACMAML bound and the total value of the bound
for β/mi ∈ {10, 30, 100}. α for each mi is set to the optimal value according to Fig. 4.

Reptile follows the same experiment setting as PACOH. MAML follows the same experiment setting
as PACMAML where S′i ⊂ Si, m′i = m. In order to compute the optimal q∗i for Reptile, we use an
L-BFGS optimizer in the inner loop with lr = 5e-3, history_size = 10, max_iter
=10. Other experiment setting and hyperparameter selection procedure are the same as those in
Section D.3.

The results of the 4-fold cross validation are plotted in Fig. 8. The errors of Reptile and MAML follow
a very similar trend to the ones with non-Dirac measure base-learners under PACOH and PACMAML
setting, respectively (Fig. 3). However, the models with non-Dirac measure base-learners appear to
have lower generalization errors than the ones with Dirac measure base-learners (i.e. Reptile and
MAML).
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Figure 7: Comparison of the values of PACOH and PACMAML bound for β/mi ∈ {10, 30, 100}. α
for each mi for PACMAML is set to the optimal value according to Fig. 4.
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Figure 8: Mean and standard error of the validation and the test result for Reptile and MAML on
Sinusoid. The results are obtained from cross-validation. The error bars in the figures represent the
standard errors.

E Experiment Details of Image Classification

For most hyperparameters, we followed the same default values as in [9]. In Table 5, we listed the
hyperparameters that we did grid search, and their chosen value based on the meta-validation per-
formance. For the inner learning rate, the search space was {0.1, 0.03, 0.001, 0.003} for FOMAML,
MAML, and PACMAML; the search space was {0.1, 0.03, 0.001, 0.003, 0.001, 0.0003, 0.0001} for
BMAML and PACOH. For the meta-learning rate, we used the default 0.001 for FOMAML, MAML
and PACMAML; and searched over {0.001, 0.0003, 0.0001, 0.00003} for BMAML and PACOH. For
α, we searched over {10, 1.0, 0.1} for BMAML, PACOH, PACMAML. We also tried two gradient
descent methods in the inner loop: Vanilla GD and ADAGRAD . We found that FOMAML and
MAML worked better with Vanilla GD; while BMAML, PACOH and PACMAML worked better
with ADAGRAD. σ2 was fixed to 1 for PACOH and PACMAML. The number of task per batch was
4 and the network filter size was 64. The total number of meta-training iterations was 60000 for all
algorithms. We ran these tasks with 1 NVIDIA P100 GPU per job and each job takes about 2-3 hours
to finish.
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mi Hyper-parameter FOMAML MAML BMAML PACOH PACMAML
outer learning rate 0.001 0.001 0.0001 0.0001 0.001

10 inner learning rate 0.1 0.1 0.003 0.01 0.03
α - - 1.0 10 1.0

outer learning rate 0.001 0.001 0.0001 0.0001 0.001
20 inner learning rate 0.03 0.1 0.003 0.003 0.01

α - - 0.1 1.0 1.0
outer learning rate 0.001 0.001 0.0001 0.0001 0.001

40 inner learning rate 0.03 0.03 0.003 0.003 0.01
α - - 0.1 1.0 10

outer learning rate 0.001 0.001 0.0001 0.0001 0.001
80 inner learning rate 0.03 0.03 0.0003 0.003 0.01

α - - 0.1 1.0 1.0
Table 5: The final hyper-parameters of the algorithms in the Mini-imagenet task.

F Experiment Details of Natural Language Inference

We fixed σ2 = 0.0004, which equals to the variance of the BERT parameter initialization. The
hyper-parameter α is decided by a grid search over

{
102, 103, 104, 105, 106, 107

}
based on the

performance on the meta-validation dataset. The inner loop learning rate is 0.001 for all algorithms.
We used 50-step Adagrad optimizer in the inner-loop because it has automatic adaptive learning rate
for individual variables which is beneficial for training large models. For the outer-loop optimization,
we used the ADAM optimizer with learning rate 10−5. The final hyperparameters are reported in
Table 6. In the few-shot learning phase, we ran the ADAM optimizer for 200 steps with learning rate
10−5 on the adaptable layers. We ran the tasks with 16 TPUs(v2) per job.

Hyper-parameter MAML BMAML PACOH PACMAML
inner learning rate 0.001 0.001 0.001 0.001

v 12 12 12 11
m′i 32 64 256 64
mi 256 256 256 256
α - 103 104 104

tasks per batch 1 1 1 1
meta-training iteration 10000 10000 10000 10000

Table 6: The final hyper-parameters in the NLI tasks.

In Table 7 we report the detailed classification accuracy on the 12 NLI tasks with their standard errors.
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Task name N k MAML BMAML PACOH PACMAML
4 63.0±1.4 61±2.3 62.1±2.2 68.8±1.6

CoNLL 4 8 74.1±1.8 68±1.9 74.9±1.2 79.5±1.1
16 81.6±0.6 77.9±1.4 83±0.7 84.5±0.6
4 51.3±1.8 47.5±1.9 55.9±1.6 60.6±1

MITR 8 8 69.1±2.1 64.2±1.3 71.8±0.8 70.9±1
16 78.7±1.1 72.2±1.3 78.1±0.6 80±0.6
4 60.1±2.0 53±2.7 60.1±3.1 60.5±1.9

Airline 3 8 64.7±2.7 67.4±2.2 65±1.5 65.4±1.7
16 68.4±2.2 66.7±2.6 69.6±1.3 69.9±1.1
4 56.3±0.5 58.7±3.1 58.7±2.6 63.3±1.3

Disaster 2 8 61.5±0.7 64.1±2.3 64.1±2.4 63.9±2.9
16 67.7±0.4 69.4±2.0 71.3±1.7 71.1±1.6
4 13.7±2.1 13.9±0.5 13.8±0.5 13.7±0.7

Emotion 13 8 15.8±1.9 14.6±1.1 15±0.6 15.8±0.6
16 16.7±0.9 15.6±0.7 17.2±0.7 16.8±0.5
4 58±2.1 58±2.0 58.8±2.6 59.9±2.1

Political Bias 2 8 60.7±1.9 61±1.9 62.1±1.5 62±1.9
16 64.6±0.9 63.5±1.2 63.8±1.2 66±1
4 52.2±0.9 54.9±0.7 53.1±0.9 53.4±1.3

Political Audience 2 8 56.1±1.5 55.9±1.1 56±1.3 56±1.2
16 56.5±1.2 56.9±1.3 60±0.9 59.6±1
4 18.9±0.8 17.4±0.6 19.2±0.7 19.3±0.6

Political Message 9 8 22.3±0.7 19.3±0.8 22.3±0.6 22.6±0.5
16 24.3±0.8 21.6±0.4 24.9±0.4 25.5±0.8
4 58.7±2.1 56.2±2.8 59±2.3 56.8±3

Rating Books 3 8 61.3±2.7 55.1±2.7 64.2±2 61.6±1.5
16 62±1.3 66.6±2.1 63±2.1 60.4±2.7
4 49.5±3.0 53.7±2.7 53.7±2.1 52.4±1.5

Rating DVD 3 8 53.2±1.6 51.8±2.4 54.7±2 56±2
16 54.7±1.2 57.2±1.5 55.4±1.3 60±1.4
4 46.9±3.1 44.6±1.9 53.3±1.7 52.4±2

Rating Electronics 3 8 52.5±1.6 54.1±1.6 55.6±2 56.1±1.3
16 54.7±1.8 56.6±1.8 57.5±1.5 58.2±0.7
4 49.9±2.4 48.3±2.1 57.9±1.3 57.8±2

Rating kitchen 3 8 50.9±2.8 49.5±3.1 52.3±2.2 58.3±1.5
16 58.7±1.5 54.2±1.8 54.8±1.8 58.1±2.5
4 48.21 47.27 50.47 51.58

Overall average - 8 53.52 52.08 54.83 55.68
16 57.38 56.53 58.22 59.18

Table 7: Classification accuracy and standard error on the 12 NLI tasks.
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