A Proofs

In this section, we provide proofs of the main theorems presented in the paper. We also provide a brief overview of the proof of Theorem 2 from [19, 22], since the bound decomposition strategy will also be used in the new theorems of the paper.

A. 1 Brief Proof of Theorem 2] [19, 22]

Given a task environment T and a set of n observed tasks $\left(D_{i}, m_{i}\right) \sim T$, let \mathcal{P} be a fixed hyper-prior and $\lambda>0, \beta>0$, with probability at least $1-\delta$ over samples $S_{1} \in D_{1}^{m_{1}}, \ldots, S_{n} \in D_{n}^{m_{n}}$, we have for all base learner Q and all hyper-posterior \mathcal{Q},

$$
\begin{aligned}
R(\mathcal{Q}, T) \leq & \hat{R}\left(\mathcal{Q}, S_{i=1}^{n}\right)+\tilde{\xi} D_{K L}(\mathcal{Q} \| \mathcal{P}) \\
& +\frac{1}{n \beta} \sum_{i=1}^{n} \mathbb{E}_{P \sim \mathcal{Q}}\left[D_{K L}\left(Q\left(S_{i}, P\right) \| P\right)\right]+C\left(\delta, \lambda, \beta, n, m_{i}\right)
\end{aligned}
$$

where $\tilde{\xi}=\frac{1}{\lambda}+\frac{1}{n \beta}$.
Proof The bound in Theorem 2 was proved by decomposing it into two components:

- "Task specific generalization bound", that bounds the generalization error averaged over all observed tasks τ_{i} :

$$
\begin{align*}
& \mathbb{E}_{P \sim \mathcal{Q}}\left[\frac{1}{n} \sum_{i=1}^{n} L\left(Q\left(S_{i}, P\right), D_{i}\right)\right] \\
\leq & \hat{R}\left(\mathcal{Q}, S_{i=1}^{n}\right)+\frac{1}{n \beta} D_{K L}(\mathcal{Q} \| \mathcal{P})+\frac{1}{n \beta} \sum_{i=1}^{n} \mathbb{E}_{P \sim \mathcal{Q}}\left[D_{K L}\left(Q\left(S_{i}, P\right) \| P\right)\right] \\
& +\frac{1}{n \beta} \log \frac{1}{\delta}+\frac{1}{n} \sum_{i=1}^{n} \frac{m_{i}}{\beta} \Psi_{1}\left(\frac{\beta}{m_{i}}\right) \tag{15}
\end{align*}
$$

where

$$
\begin{aligned}
\hat{R}\left(\mathcal{Q}, S_{i=1}^{n}\right) & =\mathbb{E}_{P \sim \mathcal{Q}}\left[\frac{1}{n} \sum_{i=1}^{n} \hat{L}\left(Q\left(S_{i}, P\right), S_{i}\right)\right] \\
\Psi_{1}(\beta) & =\log \mathbb{E}_{P \sim \mathcal{P}} \mathbb{E}_{\mathbf{h} \sim P} \mathbb{E}_{z_{i j} \sim D_{i}}\left[e^{\beta\left(\mathbb{E}_{z_{i} \sim D_{i}}\left[l\left(h_{i}, z_{i}\right)\right]-l\left(h_{i}, z_{i j}\right)\right)}\right]
\end{aligned}
$$

- "Task environment generalization bound", that bounds the transfer error from the observed tasks to the new target tasks:

$$
\begin{align*}
R(\mathcal{Q}, T) \leq & \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{P \sim \mathcal{Q}}\left[L\left(Q\left(S_{i}, P\right), D_{i}\right)\right] \\
& +\frac{1}{\lambda}\left(D_{K L}(\mathcal{Q} \| \mathcal{P})+\log \frac{1}{\delta}\right)+\frac{n}{\lambda} \Psi_{2}\left(\frac{\lambda}{n}\right) \tag{16}
\end{align*}
$$

where

$$
\Psi_{2}(\lambda)=\log \mathbb{E}_{P \sim \mathcal{P}} \mathbb{E}_{D_{i} \sim T, S_{i} \sim D_{i}^{m_{i}}}\left[e^{\lambda\left(\mathbb{E}_{D_{i} \sim T, S_{i} \sim D_{i}^{m_{i}}}\left[R_{S_{i}}(P)\right]-R_{S_{i}}(P)\right)}\right]
$$

Detailed proofs of these two generalization bounds can be found in the appendices of [19, 22]. Subsequently, combining Eq.(15) with Eq.(16), it is straightforward to get Eq.(4), with

$$
\begin{equation*}
C\left(\delta, \lambda, \beta, n, m_{i}\right)=\tilde{\xi} \log \frac{1}{\delta}+\frac{1}{n} \sum_{i=1}^{n} \frac{m_{i}}{\beta} \Psi_{1}\left(\frac{\beta}{m_{i}}\right)+\frac{n}{\lambda} \Psi_{2}\left(\frac{\lambda}{n}\right) . \tag{17}
\end{equation*}
$$

A. 2 Proof of Theorem 3

For a target task environment T and an observed task environment \tilde{T} where $\mathbb{E}_{\tilde{T}}[D]=\mathbb{E}_{T}[D]$ and $\mathbb{E}_{\tilde{T}}[m] \geq \mathbb{E}_{T}[m]$, let \mathcal{P} be a fixed hyper-prior and $\lambda>0, \beta>0$, then with probability at least $1-\delta$ over samples $S_{1} \in D_{1}^{m_{1}}, \ldots, S_{n} \in D_{n}^{m_{n}}$ where $\left(D_{i}, m_{i}\right) \sim \tilde{T}$, we have, for all base learners Q and hyper-posterior \mathcal{Q},

$$
\begin{aligned}
R(\mathcal{Q}, T) \leq & \hat{R}\left(\mathcal{Q}, S_{i=1}^{n}\right)+\tilde{\xi} D_{K L}(\mathcal{Q} \| \mathcal{P})+\frac{1}{n \beta} \sum_{i=1}^{n} \mathbb{E}_{P \sim \mathcal{Q}}\left[D_{K L}\left(Q\left(S_{i}, P\right) \| P\right)\right] \\
& +C\left(\delta, \lambda, \beta, n, m_{i}\right)+\Delta_{\lambda}(\mathcal{P}, T, \tilde{T})
\end{aligned}
$$

where $\Delta_{\lambda}(\mathcal{P}, T, \tilde{T})=\frac{1}{\lambda} \log \mathbb{E}_{P \in \mathcal{P}} e^{\lambda(R(P, T)-R(P, \tilde{T}))}$, and $\tilde{\xi}=\frac{1}{\lambda}+\frac{1}{n \beta}$.
Proof The "task specific generalization bound" has the same form as Eq. (15].
For the "task environment generalization bound", define the "meta-training" generalization error of a given prior P on the observed task $\left(D_{1}, m_{1}\right), \ldots,\left(D_{n}, m_{n}\right) \sim \tilde{T}$ as

$$
\begin{aligned}
R_{S_{\tilde{T}}}(P) & \triangleq \frac{1}{n} \sum_{i=1}^{n} L\left(Q\left(S_{i}, P\right), D_{i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{z_{i} \sim D_{i}} \mathbb{E}_{h_{i} \sim Q\left(h_{i} \mid P, S_{i}\right)}\left[L\left(h_{i}, z_{i}\right)\right]
\end{aligned}
$$

where $S_{i} \sim D_{i}^{m_{i}}$ and $S_{\tilde{T}}=\left\{S_{1}, \ldots, S_{n}\right\}$. Similarly, the generalization error on the target task environment T is

$$
R(P, T)=\mathbb{E}_{(D, m) \sim T} \mathbb{E}_{S \sim D^{m}} \mathbb{E}_{z \in D} \mathbb{E}_{h \sim Q(h \mid P, S)}[L(h, z)]
$$

Using the Markov Inequality, with at least $1-\delta$ probability,

$$
\begin{aligned}
& \mathbb{E}_{P \sim \mathcal{P}}\left[e^{\lambda\left(R(P, T)-R_{S_{\tilde{T}}}(P)\right)}\right] \\
\leq & \frac{1}{\delta} \mathbb{E}_{P \sim \mathcal{P}} \mathbb{E}_{D_{i} \sim T, S_{i} \sim D_{i}^{m_{i}}}^{i=1, \ldots, n}\left[e^{\lambda\left(R(P, T)-R_{S_{\tilde{T}}}(P)\right)}\right] .
\end{aligned}
$$

The left-hand side can be lower bounded by,

$$
\begin{aligned}
& \log \mathbb{E}_{P \sim \mathcal{P}}\left[e^{\lambda\left(R(P, T)-R_{S_{\tilde{T}}}(P)\right)}\right] \\
= & \log \mathbb{E}_{P \sim \mathcal{Q}} \frac{\mathcal{P}(P)}{\mathcal{Q}(P)} e^{\lambda\left(R(P, T)-R_{S_{\tilde{T}}}(P)\right)} \\
\geq & \mathbb{E}_{P \sim \mathcal{Q}} \log \frac{\mathcal{P}(P)}{\mathcal{Q}(P)}+\lambda \mathbb{E}_{P \sim \mathcal{Q}}\left[R(P, T)-R_{S_{\tilde{T}}}(P)\right] \\
= & -D_{K L}(\mathcal{Q} \| \mathcal{P})+\lambda\left(R(\mathcal{Q}, T)-\mathbb{E}_{P \sim \mathcal{Q}}\left[R_{S_{\tilde{T}}}(P)\right]\right) .
\end{aligned}
$$

The right-hand side is upper bounded by

$$
\begin{align*}
& \log \frac{1}{\delta} \mathbb{E}_{P \sim \mathcal{P}} \mathbb{E}_{D_{i} \sim T, S_{i} \sim D_{i}^{m_{i}}}^{i=1, \ldots, n}\left[e^{\lambda\left(R(P, T)-R_{S_{\tilde{T}}}(P)\right)}\right] \\
= & \log \frac{1}{\delta}+\log \mathbb{E}_{P \sim \mathcal{P}} \mathbb{E}_{D_{i} \sim T, S_{i} \sim D_{i}^{m_{i}}}^{i=1, \ldots, n}\left[e^{\lambda\left(R(P, T)-R_{S_{\tilde{T}}}(P)\right)}\right] \\
= & \log \frac{1}{\delta}+\log \mathbb{E}_{P \sim \mathcal{P}}\left[e^{\lambda\left(R(P, T)-\mathbb{E}_{S_{\tilde{T}} \sim \tilde{T}}\left[R_{S_{\tilde{T}}}(P)\right]\right)}\right] \\
& +\log \mathbb{E}_{P \sim \mathcal{P}} \mathbb{E}_{D_{i} \sim T, S_{i} \sim D_{i}^{m_{i}}}^{i=1, \ldots, n}\left[e^{\lambda\left(\mathbb{E}_{S_{\tilde{T}}}\left[R_{S_{\tilde{T}}}(P)\right]-R_{S_{\tilde{T}}}(P)\right)}\right] \\
\leq & \log \frac{1}{\delta}+\log \mathbb{E}_{P \sim \mathcal{P}}\left[e^{\lambda\left(R(P, T)-\mathbb{E}_{S_{\tilde{T}}}\left[R_{S_{\tilde{T}}}(P)\right]\right)}\right]+n \Psi_{2}\left(\frac{\lambda}{n}\right), \tag{18}
\end{align*}
$$

where,

$$
\begin{aligned}
& \mathbb{E}_{S_{\tilde{T}}}\left[R_{S_{\tilde{T}}}(P)\right] \\
\triangleq & \mathbb{E}_{\left(D_{i}, m_{i}\right) \sim \tilde{T}, S_{i} \sim D_{i}^{m_{i}}}^{i=1, \ldots}\left[R_{S_{\tilde{T}}}(P)\right] \\
= & \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\left(D_{i}, m_{i}\right) \sim \tilde{T}} \mathbb{E}_{S_{i} \sim D_{i}^{m_{i}}} \mathbb{E}_{z_{i} \in D_{i}} \mathbb{E}_{h_{i} \sim Q\left(h_{i} \mid P, S_{i}\right)}\left[L\left(h_{i}, z_{i}\right)\right] \\
= & \mathbb{E}_{(D, m) \sim \tilde{T}} \mathbb{E}_{S \sim D^{m}} \mathbb{E}_{z \in D} \mathbb{E}_{h \sim Q(h \mid P, S)}[L(h, z)] \\
= & R(P, \tilde{T})
\end{aligned}
$$

Combining the left-hand and right-hand bounds together, we have with at least probability $1-\delta$,

$$
\begin{align*}
R(\mathcal{Q}, T) \leq & \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{P \sim \mathcal{Q}}\left[L\left(Q\left(S_{i}, P\right), D_{i}\right)\right] \\
& +\frac{1}{\lambda}\left(D_{K L}(\mathcal{Q} \| \mathcal{P})+\log \frac{1}{\delta}+n \Psi_{2}\left(\frac{\lambda}{n}\right)\right) \\
& +\frac{1}{\lambda} \log \mathbb{E}_{P \in \mathcal{P}} e^{\lambda(R(P, T)-R(P, \tilde{T}))} \tag{19}
\end{align*}
$$

Lastly, combining Eq. (19) with Eq. (15) yields Eq.(5).
Furthermore, from Theorem 3, it is straightforward to obtain the following corollary.
Corollary 5 For a target task environment T and an observed task environment \tilde{T} where $\mathbb{E}_{\tilde{T}}[D]=$ $\mathbb{E}_{T}[D]$ and $\mathbb{E}_{\tilde{T}}[m] \geq \mathbb{E}_{T}[m]$, let \mathcal{P} be a fixed hyper-prior and $\lambda>0, \beta>0$, then with probability at least $1-\delta$ over samples $S_{1} \in D_{1}^{m_{1}}, \ldots, S_{n} \in D_{n}^{m_{n}}$ where $\left(D_{i}, m_{i}\right) \sim \tilde{T}$, we have, for all base learners Q and hyper-posterior \mathcal{Q},

$$
\begin{align*}
R(\mathcal{Q}, T) \leq & \hat{R}\left(\mathcal{Q}, S_{i=1}^{n}\right)+\tilde{\xi} D_{K L}(\mathcal{Q} \| \mathcal{P})+\frac{1}{n \beta} \sum_{i=1}^{n} \mathbb{E}_{P \sim \mathcal{Q}}\left[D_{K L}\left(Q\left(S_{i}, P\right) \| P\right)\right] \\
& +C\left(\delta, \lambda, \beta, n, m_{i}\right)+\Delta_{\lambda}(\mathcal{P}, \mathcal{Q}, T, \tilde{T}) \tag{20}
\end{align*}
$$

where $\Delta_{\lambda}(\mathcal{P}, \mathcal{Q}, T, \tilde{T})=\min \left\{\frac{1}{\lambda} \log \mathbb{E}_{P \in \mathcal{P}} e^{\lambda(R(P, T)-R(P, \tilde{T}))}, R(\mathcal{Q}, T)-R(\mathcal{Q}, \tilde{T})\right\}$, and $\tilde{\xi}=$ $\frac{1}{\lambda}+\frac{1}{n \beta}$.

Proof Similar to (16), we have

$$
\begin{aligned}
R(\mathcal{Q}, \tilde{T}) \leq & \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{P \sim \mathcal{Q}}\left[L\left(Q\left(S_{i}, P\right), D_{i}\right)\right] \\
& +\frac{1}{\lambda}\left(D_{K L}(\mathcal{Q} \| \mathcal{P})+\log \frac{1}{\delta}+n \Psi_{2}\left(\frac{\lambda}{n}\right)\right) .
\end{aligned}
$$

A simple reorganization of the terms leads to,

$$
\begin{align*}
R(\mathcal{Q}, T) \leq & \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{P \sim \mathcal{Q}}\left[L\left(Q\left(S_{i}, P\right), D_{i}\right)\right] \\
& +\frac{1}{\lambda}\left(D_{K L}(\mathcal{Q} \| \mathcal{P})+\log \frac{1}{\delta}+n \Psi_{2}\left(\frac{\lambda}{n}\right)\right)+(R(\mathcal{Q}, T)-R(\mathcal{Q}, \tilde{T})) \tag{21}
\end{align*}
$$

Combining Eq. (21) with Eq. (19) and Eq. (15) gives the bound in Eq. (20).
Note that although Eq. 20) gives a potentially tighter bound than Eq. (5), empirically it makes little difference because $R(\mathcal{Q}, T)-R(\mathcal{Q}, \tilde{T})$ is inestimable in practice and cannot be directly optimized as a function of \mathcal{Q}. We will only numerically estimate its value in synthetic datasets in order to estimate the bound.

A. 3 Proof of Theorem 4

For a target task environment T and an observed task environment \tilde{T} where $\mathbb{E}_{\tilde{T}}[D]=\mathbb{E}_{T}[D]$ and $\mathbb{E}_{\tilde{T}}[m] \geq \mathbb{E}_{T}[m]$, let \mathcal{P} be a fixed hyper-prior and $\lambda>0, \beta>0$, then with probability at least $1-\delta$ over samples $S_{1} \in D_{1}^{m_{1}}, \ldots, S_{n} \in D_{n}^{m_{n}}$ where $\left(D_{i}, m_{i}\right) \sim \tilde{T}$, and subsamples $S_{1}^{\prime} \in D_{1}^{m_{1}^{\prime}} \subset S_{1}, \ldots, S_{n}^{\prime} \in D_{n}^{m_{n}^{\prime}} \subset S_{n}$, where $\mathbb{E}\left[m_{i}^{\prime}\right]=\mathbb{E}_{T}[m]$, we have, for all base learner Q and all hyper-posterior \mathcal{Q},

$$
\begin{aligned}
R(\mathcal{Q}, T) \leq & \mathbb{E}_{P \sim \mathcal{Q}}\left[\frac{1}{n} \sum_{i=1}^{n} \hat{L}\left(Q\left(S_{i}^{\prime}, P\right), S_{i}\right)\right]+\tilde{\xi} D_{K L}(\mathcal{Q} \| \mathcal{P})+\frac{1}{n \beta} \sum_{i=1}^{n} \mathbb{E}_{P \sim \mathcal{Q}}\left[D_{K L}\left(Q\left(S_{i}^{\prime}, P\right) \| P\right)\right] \\
& +C\left(\delta, \lambda, \beta, n, m_{i}\right)
\end{aligned}
$$

where $\tilde{\xi}=\frac{1}{\lambda}+\frac{1}{n \beta}$.
Proof The "task environment generalization bound" is the same as the one in Theorem 2, because the base-learner in observed and target task have the same task environment T. Therefore, we have

$$
\begin{equation*}
R(\mathcal{Q}, T) \leq \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{P \sim \mathcal{Q}}\left[L\left(Q\left(S_{i}^{\prime}, P\right), D_{i}\right)\right]+\frac{1}{\lambda}\left(D_{K L}(\mathcal{Q} \| \mathcal{P})+\log \frac{1}{\delta}\right)+\frac{n}{\lambda} \Psi_{2}\left(\frac{\lambda}{n}\right) \tag{22}
\end{equation*}
$$

As for the "task-specific generalization bound", define,

$$
\hat{L}(\mathbf{h})=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{m_{i}} \sum_{j=1}^{m_{i}} l\left(h_{i}, z_{i j}\right), \quad L(\mathbf{h})=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{z_{i} \sim D_{i}} l\left(h_{i}, z_{i}\right),
$$

where $z_{i j} \in S_{i}$ which is sampled from D_{i}. According to the Markov inequality, with at least $1-\delta$ probability, we have

$$
\mathbb{E}_{P \sim \mathcal{P}} \mathbb{E}_{\mathbf{h} \sim P^{n}}\left[e^{n \beta(L(\mathbf{h})-\hat{L}(\mathbf{h}))}\right] \leq \frac{1}{\delta} \mathbb{E}_{P \sim \mathcal{P}} \mathbb{E}_{\mathbf{h} \sim P^{n}} \mathbb{E}_{\mathbf{S} \sim \mathbf{D}^{\mathbf{m}}}\left[e^{n \beta(L(\mathbf{h})-\hat{L}(\mathbf{h}))}\right]
$$

Now take the logarithm of both sides, and transform the expectation over \mathcal{P}, P to \mathcal{Q}, Q, where we use base-learner $Q\left(S_{i}^{\prime}, P\right)$ with $S_{i}^{\prime} \in D_{i}^{m_{i}^{\prime}}$. Then the LHS becomes

$$
\begin{aligned}
& \log \mathbb{E}_{P \sim \mathcal{P}} \mathbb{E}_{\mathbf{h} \sim P^{n}}\left[e^{n \beta(L(\mathbf{h})-\hat{L}(\mathbf{h}))}\right] \\
= & \log \mathbb{E}_{P \sim \mathcal{Q}} \mathbb{E}_{\mathbf{h} \sim \mathbf{Q}\left(\mathbf{S}^{\prime}, P\right)}\left[\frac{\mathcal{P}(P) \prod_{i=1}^{n} P\left(h_{i}\right)}{\mathcal{Q}(P) \prod_{i=1}^{n} Q_{i}\left(h_{i} \mid S_{i}^{\prime}, P\right)} e^{n \beta(L(\mathbf{h})-\hat{L}(\mathbf{h}))}\right] \\
\geq & -D_{K L}(\mathcal{Q} \| \mathcal{P})-\sum_{i=1}^{n} \mathbb{E}_{P \sim \mathcal{Q}}\left[D_{K L}\left(Q\left(S_{i}^{\prime}, P\right) \| P\right)\right] \\
& +\beta \mathbb{E}_{P \sim \mathcal{Q}}\left[\sum_{i=1}^{n} L\left(Q\left(S_{i}^{\prime}, P\right), D_{i}\right)\right]-\beta \mathbb{E}_{P \sim \mathcal{Q}}\left[\sum_{i=1}^{n} \hat{L}\left(Q\left(S_{i}^{\prime}, P\right), S_{i}\right)\right] .
\end{aligned}
$$

The first equation uses the fact that the hyper-prior \mathcal{P} and hyper-posterior \mathcal{Q} as well as the prior P are shared across all n observed tasks. The inequality uses Jensen's inequality to move the logarithm inside expectation.
The RHS is

$$
\begin{aligned}
& \log \frac{1}{\delta}+\log \mathbb{E}_{P \sim \mathcal{P}} \mathbb{E}_{\mathbf{h} \sim P^{n}} \mathbb{E}_{\mathbf{S} \sim \mathbf{D}^{\mathbf{m}}}\left[e^{n \beta(L(h)-\hat{L}(h))}\right] \\
= & \log \frac{1}{\delta}+\log \mathbb{E}_{P \sim \mathcal{P}} \mathbb{E}_{\mathbf{h} \sim P^{n}} \prod_{i=1}^{n} \prod_{j=1}^{m_{i}} \mathbb{E}_{z_{i j} \sim D_{i}}\left[e^{\frac{\beta}{m_{i}}\left(\mathbb{E}_{z_{i} \sim D_{i}}\left[l\left(h_{i}, z_{i}\right)\right]-l\left(h_{i}, z_{i j}\right)\right)}\right] \\
= & \log \frac{1}{\delta}+\sum_{i=1}^{n} m_{i} \Psi_{1}\left(\frac{\beta}{m_{i}}\right) .
\end{aligned}
$$

Now, combining the LHS and RHS together, we get that with at least $1-\delta$ probability,

$$
\begin{align*}
& \mathbb{E}_{P \sim \mathcal{Q}}\left[\frac{1}{n} \sum_{i=1}^{n} L\left(Q\left(S_{i}^{\prime}, P\right), D_{i}\right)\right] \\
\leq & \mathbb{E}_{P \sim \mathcal{Q}}\left[\frac{1}{n} \sum_{i=1}^{n} L\left(Q\left(S_{i}^{\prime}, P\right), S_{i}\right)\right]+\frac{1}{n \beta} D_{K L}(\mathcal{Q} \| \mathcal{P})+\frac{1}{n \beta} \sum_{i=1}^{n} \mathbb{E}_{P \sim \mathcal{Q}}\left[D_{K L}\left(Q\left(S_{i}^{\prime}, P\right) \| P\right)\right] \\
& +\frac{1}{n \beta} \log \frac{1}{\delta}+\frac{1}{n} \sum_{i=1}^{n} \frac{m_{i}}{\beta} \Psi_{1}\left(\frac{\beta}{m_{i}}\right) \tag{23}
\end{align*}
$$

Combining Eq. (22) with Eq. (23) immediately yields Eq.(6).

B Derivations of MAML and Reptile

In this section, we derive a couple of meta-learning algorithms based on the MAP estimation of PAC-Bayesian bounds. To this end, we assume that the distribution families of the hyper-posterior $\mathcal{Q}(P)$ and posterior $Q_{i}(h)$ are from delta functions. In addition, we use the isotrophic Gaussian priors for the hyper-prior $\mathcal{P}(P)$ and the prior $P(h)$ on all model parameters,

$$
\begin{aligned}
\mathcal{P}(P) & =\mathcal{N}\left(\mathbf{p} \mid 0, \sigma_{0}^{2}\right) \\
\mathcal{Q}(P) & =\delta\left(\mathbf{p}=\mathbf{p}_{0}\right) \\
P(h) & =\mathcal{N}\left(\mathbf{h} \mid \mathbf{p}, \sigma^{2}\right) \\
Q_{i}(h) & =\delta\left(\mathbf{h}=\mathbf{q}_{i}\right) \quad \forall i=1, \ldots, n
\end{aligned}
$$

This way we have a closed form solution for the two KL terms, which are (up to a constant)

$$
\begin{aligned}
D_{K L}(\mathcal{Q} \| \mathcal{P}) & =\int d \mathbf{p} \delta\left(\mathbf{p}=\mathbf{p}_{0}\right) \cdot\left(\frac{\|\mathbf{p}\|^{2}}{2 \sigma_{0}^{2}}+\frac{k}{2} \log \left(2 \pi \sigma_{0}^{2}\right)+\log \delta\left(\mathbf{p}=\mathbf{p}_{0}\right)\right) \\
& =\frac{\left\|\mathbf{p}_{0}\right\|^{2}}{2 \sigma_{0}^{2}}+\frac{k}{2} \log \left(2 \pi \sigma_{0}^{2}\right)+c
\end{aligned}
$$

where k is the dimension of \mathbf{p} and c is a constant. Similarly,

$$
\begin{aligned}
& \mathbb{E}_{P \sim \mathcal{Q}}\left[D_{K L}\left(Q_{i} \mid P\right)\right] \\
= & \int d \mathbf{p} \delta\left(\mathbf{p}=\mathbf{p}_{0}\right) \int d \mathbf{h} \delta\left(\mathbf{h}=\mathbf{q}_{i}\right) \cdot\left(\frac{\|\mathbf{h}-\mathbf{p}\|^{2}}{2 \sigma^{2}}+\frac{k}{2} \log \left(2 \pi \sigma^{2}\right)+\log \delta\left(\mathbf{h}=\mathbf{q}_{i}\right)\right) \\
= & \int d \mathbf{p} \delta\left(\mathbf{p}=\mathbf{p}_{0}\right) \cdot \frac{\left\|\mathbf{p}-\mathbf{q}_{i}\right\|^{2}}{2 \sigma^{2}}+\frac{k}{2} \log \left(2 \pi \sigma^{2}\right)+c \\
= & \frac{\left\|\mathbf{p}_{0}-\mathbf{q}_{i}\right\|^{2}}{2 \sigma^{2}}+\frac{k}{2} \log \left(2 \pi \sigma^{2}\right)+c
\end{aligned}
$$

Plugging in the above results, the PAC-Bayesian bound (PacB) in Eq. (5) and Eq. (6) are both of the form of,

$$
P a c B=\frac{1}{n} \sum_{i=1}^{n} L\left(\mathbf{q}_{i}, S_{i}\right)+\frac{\tilde{\xi}\left\|\mathbf{p}_{0}\right\|^{2}}{2 \sigma_{0}^{2}}+\frac{1}{n \beta} \sum_{i=1}^{n} \frac{\left\|\mathbf{p}_{0}-\mathbf{q}_{i}\right\|^{2}}{2 \sigma^{2}}+C^{\prime}
$$

where the constant C^{\prime} corresponding to Eq. (5) and Eq. (6) are different by Δ_{λ}. The only free variable of $\operatorname{Pac} B$ is \mathbf{p}_{0}. The base-learner \mathbf{q}_{i} can be any function of \mathbf{p}_{0} and S_{i} for Eq. (5) or S_{i}^{\prime} for Eq. (6). One could find the MAP estimation of $P a c B$ by gradient descent with respect to \mathbf{p}_{0}.
Note that in Eq. [5], for a given \mathbf{p}_{0} and S_{i}, there exists an optimal base-learner \mathbf{q}_{i}^{*} in the form of,

$$
\mathbf{q}_{i}^{*}=\underset{\mathbf{q}_{i}}{\operatorname{argmin}}(P a c B)=\underset{\mathbf{q}_{i}}{\operatorname{argmin}}\left[L\left(\mathbf{q}_{i}, S_{i}\right)+\frac{\left\|\mathbf{p}_{0}-\mathbf{q}_{i}\right\|^{2}}{2 \beta \sigma^{2}}\right] .
$$

Given the optimal \mathbf{q}_{i}^{*}, the full derivative of $P a c B$ with respect to \mathbf{p}_{0} is substantially simpler,

$$
\begin{align*}
\frac{d(P a c B)}{d \mathbf{p}_{0}} & =\frac{\partial(P a c B)}{\partial \mathbf{p}_{0}}+\left\langle\frac{\partial \mathbf{q}_{i}^{*}}{\partial \mathbf{p}_{0}}, \frac{\partial(P a c B)}{\partial \mathbf{q}_{i}^{*}}\right\rangle \\
& =\frac{\partial(P a c B)}{\partial \mathbf{p}_{0}}=\frac{\tilde{\xi} \mathbf{p}_{0}}{\sigma_{0}^{2}}+\frac{1}{n} \sum_{i=1}^{n} \frac{\mathbf{p}_{0}-\mathbf{q}_{i}^{*}}{\beta \sigma^{2}} \tag{24}
\end{align*}
$$

where the 2 nd equation is because $\frac{\partial(P a c B)}{\partial \mathbf{q}_{i}^{*}}=0$ for the optimal base-leaner \mathbf{q}_{i}^{*}. Eq. 24) is the equivalent to the meta-update of the Reptile algorithm [16], except that Reptile does not solve for the optimal base learner \mathbf{q}_{i}^{*}.
From the optimal condition, the base-learner \mathbf{q}_{i}^{*} satisfies,

$$
\frac{\mathbf{p}_{0}-\mathbf{q}_{i}^{*}}{\beta \sigma^{2}}=\nabla_{\mathbf{q}_{i}^{*}} L\left(\mathbf{q}_{i}^{*}, S_{i}\right)
$$

Therefore, we can rewrite Eq. 24) in the form of the implicit gradient,

$$
\frac{d(\operatorname{Pac} B)}{d \mathbf{p}_{0}}=\frac{\tilde{\xi} \mathbf{p}_{0}}{\sigma_{0}^{2}}+\frac{1}{n} \sum_{i=1}^{n} \nabla_{\mathbf{q}_{i}^{*}} L\left(\mathbf{q}_{i}^{*}, S_{i}\right)
$$

In contrast, the standard multi-task objective uses the explicit gradient, where $\mathbf{q}_{i}=\mathbf{p}_{0}$ and

$$
\frac{d(P a c B)}{d \mathbf{p}_{0}}=\frac{\tilde{\xi} \mathbf{p}_{0}}{\sigma_{0}^{2}}+\frac{1}{n} \sum_{i=1}^{n} \nabla_{\mathbf{p}_{0}} L\left(\mathbf{p}_{0}, S_{i}\right)
$$

C Derivations of PACMAML

For Theorem 4 , we use the following posterior as the base-learner for observed task τ_{i},

$$
Q_{i}\left(S_{i}^{\prime}, P\right)(h)=\frac{P(h) \exp \left(-\alpha \hat{L}\left(h, S_{i}^{\prime}\right)\right)}{Z_{\alpha}\left(S_{i}^{\prime}, P\right)}
$$

Plugging this Q_{i} into Eq. (6), we have

$$
\begin{aligned}
& R(\mathcal{Q}, T) \\
\leq & \mathbb{E}_{P \sim \mathcal{Q}}\left[\frac{1}{n} \sum_{i=1}^{n} \hat{L}\left(Q_{i}, S_{i}\right)\right]+\tilde{\xi} D_{K L}(\mathcal{Q} \| \mathcal{P})+\frac{1}{n \beta} \sum_{i=1}^{n} \mathbb{E}_{P \sim \mathcal{Q}}\left[D_{K L}\left(Q_{i} \| P\right)\right]+C \\
= & \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{P \sim \mathcal{Q}}\left[\hat{L}\left(Q_{i}, S_{i}\right)+\frac{1}{\beta} D_{K L}\left(Q_{i} \| P\right)\right]+\tilde{\xi} D_{K L}(\mathcal{Q} \| \mathcal{P})+C \\
= & \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{P \sim \mathcal{Q}} \mathbb{E}_{h \sim Q_{i}}\left[\hat{L}\left(h, S_{i}\right)+\frac{1}{\beta} \log Q_{i}(h)-\frac{1}{\beta} \log P(h)\right]+\tilde{\xi} D_{K L}(\mathcal{Q} \| \mathcal{P})+C \\
= & \left.\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{P \sim \mathcal{Q}} \mathbb{E}_{h \sim Q_{i}}\left[\hat{L}\left(h, S_{i}\right)-\frac{\alpha}{\beta} \hat{L}\left(h, S_{i}^{\prime}\right)-\frac{1}{\beta} \log Z_{\alpha}\left(S_{i}^{\prime}, P\right)\right)\right]+\tilde{\xi} D_{K L}(\mathcal{Q} \| \mathcal{P})+C \\
= & \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{P \sim \mathcal{Q}}\left[-\frac{1}{\beta} \log Z_{\alpha}\left(S_{i}^{\prime}, P\right)+\hat{L}\left(Q_{i}, S_{i}\right)-\frac{\alpha}{\beta} \hat{L}\left(Q_{i}, S_{i}^{\prime}\right)\right]+\tilde{\xi} D_{K L}(\mathcal{Q} \| \mathcal{P})+C .
\end{aligned}
$$

where $C=\tilde{\xi} \log \frac{2}{\delta}+\frac{n}{\lambda} \Psi\left(\frac{\lambda}{n}\right)+\frac{1}{n} \sum_{i=1}^{n} \frac{m_{i}}{\beta} \Psi\left(\frac{\beta}{m_{i}}\right)$.

C. 1 The Gradient Estimator of PACOH and PACMAML

Assuming that the model hypothesis h is parameterized by \mathbf{v} such that $\hat{L}\left(h, S_{i}\right) \triangleq \hat{L}\left(\mathbf{v}, S_{i}\right)$, and \mathbf{v} has prior $P(\mathbf{v})=\mathcal{N}\left(\mathbf{v} \mid \mathbf{p}, \sigma^{2}\right)$ with meta-parameter \mathbf{p}, then

$$
\log Z_{\beta}\left(S_{i}, \mathbf{p}\right)=\log \int \mathcal{N}\left(\mathbf{v} \mid \mathbf{p}, \sigma^{2}\right) \exp \left(-\beta \hat{L}\left(\mathbf{v}, S_{i}\right)\right) d \mathbf{v}
$$

Note that the parameter \mathbf{p} appears in the probability distribution of the expectation, and the naive Monte-Carlo gradient estimator of such gradient is known to exhibit high variance. To reduce the variance, we apply the reparameterization trick [13] and rewrite $\mathbf{v}=\mathbf{p}+\mathbf{w}$ with $\mathbf{w} \sim \mathcal{N}\left(\mathbf{w} \mid \mathbf{0}, \sigma^{2}\right)$, then

$$
\log Z_{\beta}\left(S_{i}, \mathbf{p}\right)=\log \int \mathcal{N}\left(\mathbf{w} \mid \mathbf{0}, \sigma^{2}\right) \exp \left(-\beta \hat{L}\left(\mathbf{p}+\mathbf{w}, S_{i}\right)\right) d \mathbf{w}
$$

This leads to the gradient of W_{1} in the following form,

$$
\begin{gathered}
\frac{d}{d \mathbf{p}} W_{1}=-\frac{1}{\beta} \frac{d}{d \mathbf{p}} \log Z_{\beta}\left(S_{i}, \mathbf{p}\right)=\int Q_{i}^{\beta}\left(\mathbf{w} ; S_{i}\right) \frac{\partial \hat{L}\left(\mathbf{p}+\mathbf{w}, S_{i}\right)}{\partial \mathbf{p}} d \mathbf{w} \\
\text { where, } Q_{i}^{\beta}\left(\mathbf{w} ; S_{i}\right) \propto \mathcal{N}\left(\mathbf{w} \mid \mathbf{0}, \sigma^{2}\right) \exp \left(-\beta \hat{L}\left(\mathbf{p}+\mathbf{w}, S_{i}\right)\right)
\end{gathered}
$$

As for W_{2}, the first term is simlar to W_{1}, but we also need to evaluate the gradient of $\hat{L}_{\frac{\alpha}{\beta}}^{\Delta}\left(Q_{i}^{\alpha}, S_{i}, S_{i}^{\prime}\right)$, which is

$$
\begin{equation*}
\frac{d}{d \mathbf{p}} \hat{L}_{\frac{\alpha}{\beta}}^{\Delta}\left(Q_{i}^{\alpha}, S_{i}, S_{i}^{\prime}\right)=\int Q_{i}^{\alpha}\left(\mathbf{w} ; S_{i}^{\prime}\right) \frac{\partial \hat{L}_{\frac{\alpha}{\beta}}^{\Delta}\left(\mathbf{p}+\mathbf{w}, S_{i}, S_{i}^{\prime}\right)}{\partial \mathbf{p}} d \mathbf{w}+\int \frac{\partial Q_{i}^{\alpha}\left(\mathbf{w} ; S_{i}^{\prime}\right)}{\partial \mathbf{p}} \hat{L}_{\frac{\alpha}{\beta}}^{\Delta}\left(\mathbf{p}+\mathbf{w}, S_{i}, S_{i}^{\prime}\right) d \mathbf{w} \tag{25}
\end{equation*}
$$

The second term of Eq. (25) is equivalent to,

$$
\begin{aligned}
& \int \frac{\partial Q_{i}^{\alpha}\left(\mathbf{w} ; S_{i}^{\prime}\right)}{\partial \mathbf{p}} \hat{L}_{\frac{\alpha}{\beta}}^{\Delta}\left(\mathbf{p}+\mathbf{w}, S_{i}, S_{i}^{\prime}\right) d \mathbf{w} \\
= & -\frac{1}{\beta} \frac{\partial}{\partial \mathbf{p}} \int Q_{i}^{\alpha}\left(\mathbf{w} ; S_{i}^{\prime}\right) \text { stop_grad }\left(-\beta \hat{L}_{\frac{\alpha}{\beta}}^{\Delta}\left(\mathbf{p}+\mathbf{w}, S_{i}, S_{i}^{\prime}\right)\right) d \mathbf{w} .
\end{aligned}
$$

The Monte-Carlo gradient estimator of this has the same high-variance problem as in the policy gradient method, which causes unreliable inference without warm-start. Instead, we apply the cold-start policy gradient method by approximating the loss with the one from the softmax value function [8] as follows,

$$
\begin{aligned}
& -\frac{1}{\beta} \int Q_{i}^{\alpha}\left(\mathbf{w} ; S_{i}^{\prime}\right) \text { stop_grad }\left(-\beta \hat{L}_{\frac{\alpha}{\beta}}^{\Delta}\left(\mathbf{p}+\mathbf{w}, S_{i}, S_{i}^{\prime}\right)\right) d \mathbf{w} \\
\geq & -\frac{1}{\beta} \log \int Q_{i}^{\alpha}\left(\mathbf{w} ; S_{i}^{\prime}\right) \exp \left(\text { stop_grad }\left(-\beta \hat{L}_{\frac{\alpha}{\beta}}^{\Delta}\left(\mathbf{p}+\mathbf{w}, S_{i}, S_{i}^{\prime}\right)\right)\right) d \mathbf{w} .
\end{aligned}
$$

Then we take the gradient of the softmax value function,

$$
\begin{aligned}
& -\frac{1}{\beta} \frac{\partial}{\partial \mathbf{p}} \log \int Q_{i}^{\alpha}\left(\mathbf{w} ; S_{i}^{\prime}\right) \exp \left(\operatorname{stop} _\operatorname{grad}\left(-\beta \hat{L}_{\frac{\alpha}{\beta}}^{\Delta}\left(\mathbf{p}+\mathbf{w}, S_{i}, S_{i}^{\prime}\right)\right)\right) d \mathbf{w} \\
= & -\frac{1}{\beta} \frac{\int \frac{\partial Q_{i}^{\alpha}\left(\mathbf{w} ; S_{i}^{\prime}\right)}{\partial \mathbf{p}} \exp \left(\operatorname{stop_ grad}\left(-\beta \hat{L}_{\frac{\alpha}{\beta}}^{\Delta}\left(\mathbf{p}+\mathbf{w}, S_{i}, S_{i}^{\prime}\right)\right)\right) d \mathbf{w}}{\int Q_{i}^{\alpha}\left(\mathbf{w} ; S_{i}^{\prime}\right) \exp \left(\operatorname{stop} _\operatorname{grad}\left(-\beta \hat{L}_{\frac{\alpha}{\beta}}^{\Delta}\left(\mathbf{p}+\mathbf{w}, S_{i}, S_{i}^{\prime}\right)\right)\right) d \mathbf{w}} \\
= & -\frac{1}{\beta} \frac{\int \frac{\partial \log Q_{i}^{\alpha}\left(\mathbf{w} ; S_{i}^{\prime}\right)}{\partial \mathbf{p}} Q_{i}^{\alpha}\left(\mathbf{w} ; S_{i}^{\prime}\right) \exp \left(\operatorname{stop_ grad}\left(-\beta \hat{L}_{\frac{\alpha}{\beta}}^{\Delta}\left(\mathbf{p}+\mathbf{w}, S_{i}, S_{i}^{\prime}\right)\right)\right) d \mathbf{w}}{\int Q_{i}^{\alpha}\left(\mathbf{w} ; S_{i}^{\prime}\right) \exp \left(\operatorname{stop_ grad}\left(-\beta \hat{L}_{\frac{\alpha}{\beta}}^{\Delta}\left(\mathbf{p}+\mathbf{w}, S_{i}, S_{i}^{\prime}\right)\right)\right) d \mathbf{w}} \\
= & -\frac{1}{\beta} \frac{\int \frac{\partial \log Q_{i}^{\alpha}\left(\mathbf{w} ; S_{i}^{\prime}\right)}{\partial \mathbf{p}} \mathcal{N}\left(\mathbf{w} \mid \mathbf{0}, \sigma^{2}\right) \exp \left(-\beta \hat{L}\left(\mathbf{p}+\mathbf{w}, S_{i}\right)\right) d \mathbf{w}}{\int \mathcal{N}\left(\mathbf{w} \mid \mathbf{0}, \sigma^{2}\right) \exp \left(-\beta \hat{L}\left(\mathbf{p}+\mathbf{w}, S_{i}\right)\right) d \mathbf{w}} \\
= & -\frac{1}{\beta} \int Q_{i}^{\beta}\left(\mathbf{w} ; S_{i}\right) \frac{\partial \log Q_{i}^{\alpha}\left(\mathbf{w} ; S_{i}^{\prime}\right)}{\partial \mathbf{p}} d \mathbf{w} \\
= & \frac{\alpha}{\beta} \int\left(Q_{i}^{\beta}\left(\mathbf{w} ; S_{i}\right)-Q_{i}^{\alpha}\left(\mathbf{w} ; S_{i}^{\prime}\right)\right) \frac{\partial \hat{L}\left(\mathbf{p}+\mathbf{w}, S_{i}^{\prime}\right)}{\partial \mathbf{p}} d \mathbf{w} .
\end{aligned}
$$

This yields the overall gradient of W_{2} to be,

$$
\begin{aligned}
\frac{d}{d \mathbf{p}} W_{2} \simeq & \frac{\alpha}{\beta} \int Q_{i}^{\alpha}\left(\mathbf{w} ; S_{i}^{\prime}\right) \frac{\partial \hat{L}\left(\mathbf{p}+\mathbf{w}, S_{i}^{\prime}\right)}{\partial \mathbf{p}} d \mathbf{w}+\int Q_{i}^{\alpha}\left(\mathbf{w} ; S_{i}^{\prime}\right) \frac{\partial \hat{L}_{\frac{\alpha}{\beta}}^{\Delta}\left(\mathbf{p}+\mathbf{w}, S_{i}, S_{i}^{\prime}\right)}{\partial \mathbf{p}} d \mathbf{w} \\
& +\frac{\alpha}{\beta} \int\left(Q_{i}^{\beta}\left(\mathbf{w} ; S_{i}\right)-Q_{i}^{\alpha}\left(\mathbf{w} ; S_{i}^{\prime}\right)\right) \frac{\partial \hat{L}\left(\mathbf{p}+\mathbf{w}, S_{i}^{\prime}\right)}{\partial \mathbf{p}} d \mathbf{w} \\
= & \frac{\alpha}{\beta} \int Q_{i}^{\beta}\left(\mathbf{w} ; S_{i}\right) \frac{\partial \hat{L}\left(\mathbf{p}+\mathbf{w} ; S_{i}^{\prime}\right)}{\partial \mathbf{p}} d \mathbf{w}+\int Q_{i}^{\alpha}\left(\mathbf{w} ; S_{i}^{\prime}\right) \frac{\partial \hat{L}_{\frac{\alpha}{\beta}}^{\Delta}\left(\mathbf{p}+\mathbf{w}, S_{i}, S_{i}^{\prime}\right)}{\partial \mathbf{p}} d \mathbf{w} \\
= & \int Q_{i}^{\alpha}\left(\mathbf{w} ; S_{i}^{\prime}\right) \frac{\partial \hat{L}\left(\mathbf{p}+\mathbf{w} ; S_{i}\right)}{\partial \mathbf{p}} d \mathbf{w}+\frac{\alpha}{\beta} \int\left(Q_{i}^{\beta}\left(\mathbf{w} ; S_{i}\right)-Q_{i}^{\alpha}\left(\mathbf{w} ; S_{i}^{\prime}\right)\right) \frac{\partial \hat{L}\left(\mathbf{p}+\mathbf{w} ; S_{i}^{\prime}\right)}{\partial \mathbf{p}} d \mathbf{w} .
\end{aligned}
$$

The Pseudocode of PACMAML is shown in Algorithm 1.

```
Algorithm 1 Pseudocode of PACMAML with approximate gradient estimation. Every posterior is
approximated by 1 sample of SVGD, which reduces to SGD. For notation simplicity, we also assume
both inner and outer loop uses a gradient decent with fixed learning rate.
    Input: \(\sigma, \eta, \lambda, \alpha, \beta, N, K\).
    Initialize: \(\mathbf{p}_{0}\).
    for \(i=0, \ldots, N-1\) do
        \(\mathbf{w}_{i, 0}^{\alpha}=0, \mathbf{w}_{i, 0}^{\beta}=0\)
        for \(k=0, \ldots, K-1\) do
            \(\mathbf{w}_{i, k+1}^{\alpha}=\mathbf{w}_{i, k}^{\alpha}-\eta\left(\log \mathcal{N}\left(\mathbf{w}_{i, k} \mid 0, \sigma^{2}\right)-\beta \hat{L}\left(\mathbf{p}_{i}+\mathbf{w}_{i, k}, S_{i}^{\prime}\right)\right)\)
            \(\mathbf{w}_{i, k+1}^{\beta}=\mathbf{w}_{i, k}^{\beta}-\eta\left(\log \mathcal{N}\left(\mathbf{w}_{i, k} \mid 0, \sigma^{2}\right)-\alpha \hat{L}\left(\mathbf{p}_{i}+\mathbf{w}_{i, k}, S_{i}\right)\right)\)
        end for
        \(\mathbf{p}_{i+1}=\mathbf{p}_{i}-\lambda \nabla_{p}\left(\hat{L}\left(\mathbf{p}_{i}+\mathbf{w}_{i, K}^{\alpha}, S_{i}\right)-\frac{\alpha}{\beta} \hat{L}\left(\mathbf{p}_{i}+\mathbf{w}_{i, K}^{\alpha}, S_{i}^{\prime}\right)+\frac{\alpha}{\beta} \hat{L}\left(\mathbf{p}_{i}+\mathbf{w}_{i, K}^{\beta}, S_{i}\right)\right)\)
    end for
    Output: \(\mathbf{p}_{N}\).
```


D Experiment Details of the Regression Problem

D. 1 Gaussian Process Model Details

We use the Gaussian process prior, where $P_{\theta}(h)=\mathcal{G} \mathcal{P}\left(h \mid m_{\theta}(x), k_{\theta}\left(x, x^{\prime}\right)\right)$ and $k_{\theta}\left(x, x^{\prime}\right)=$ $\frac{1}{2} \exp \left(-\left\|\phi_{\theta}(x)-\phi_{\theta}\left(x^{\prime}\right)\right\|^{2}\right)$. Both $m_{\theta}(x)$ and $\phi_{\theta}(x)$ are instantiated to be neural networks. The networks are composed of an input layer of size 1×32, a hidden layer of size 32×32. m_{θ} and ϕ_{θ} has an output layer of size 32×1 and 32×2, respectively.
We focused on regression problems where for every example $z_{j}=\left(x_{j}, y_{j}\right)$ and a hypothesis h, the l_{2}-loss function is used so that $l\left(h, z_{j}\right)=\left\|h\left(x_{j}\right)-y_{j}\right\|_{2}^{2}$. This leads to a Gaussian likelihood function. Assuming there are m examples in the dataset, we have

$$
\begin{aligned}
P(y \mid h, x) & =\mathcal{N}\left(h, \frac{m}{2 \alpha} I\right) \\
& =\frac{1}{(\pi m / \alpha)^{m / 2}} \exp \left(-\frac{\alpha}{m} \sum_{j=1}^{m}\left(h\left(x_{j}\right)-y_{j}\right)^{2}\right) .
\end{aligned}
$$

As a result, the partition function $Z_{\alpha}(S, P)$ is,

$$
\begin{aligned}
Z_{\alpha}(S, P) & =(\pi m / \alpha)^{m / 2} \int_{h} d h P(y \mid h, x) P_{\theta}(h) \\
& =(\pi m / \alpha)^{m / 2} \mathcal{N}\left(y \mid m_{\theta}(x), k_{\theta}\left(x, x^{\prime}\right)+\frac{m}{2 \alpha} I\right)
\end{aligned}
$$

We apply the GP base-learner Q on the the observed data S_{i} of task τ_{i}. For notation simplicity, let us denote $Q_{i}\left(h^{i} \mid S_{i}, P\right)=\mathcal{N}\left(\mu_{i}, K_{i}\right)$, where h^{i} denotes the model hypothesis (predictions) of the m_{i} examples in S_{i}. Then we have,

$$
\begin{aligned}
\hat{L}\left(Q_{i}, S_{i}\right) & =\frac{1}{m_{i}} \int Q_{i}\left(h^{i}\right)\left(y^{i}-h^{i}\right)^{\top}\left(y^{i}-h^{i}\right) d h^{i} \\
& =\frac{1}{m_{i}}\left(y^{i \top} y^{i}-2 \mu_{i}^{\top} y^{i}+\mu_{i}^{\top} \mu_{i}+\operatorname{tr}\left(K_{i}\right)\right),
\end{aligned}
$$

where y^{i} denotes the labels of the m_{i} examples in S_{i}.
The hyper-prior $\mathcal{P}\left(P_{\theta}\right):=\mathcal{P}(\theta)=\mathcal{N}\left(\theta \mid 0, \sigma_{0}^{2} I\right)$ is an isotropic Gaussian defined over the network parameters θ, where we take $\sigma_{0}^{2}=3$ in our numerical experiments. The MAP approximated hyperposterior takes the form of a delta function, where $\mathcal{Q}_{\theta_{0}}\left(P_{\theta}\right):=\mathcal{Q}_{\theta_{0}}(\theta)=\delta\left(\theta=\theta_{0}\right)$. As a result, we have

$$
\begin{aligned}
& D_{K L}\left(\mathcal{Q}_{\theta_{0}} \| \mathcal{P}\right) \\
= & \int d \theta \delta\left(\theta=\theta_{0}\right)\left(\frac{\|\theta\|^{2}}{2 \sigma_{0}^{2}}+\frac{k}{2} \log \left(2 \pi \sigma_{0}^{2}\right)+\log \delta\left(\theta=\theta_{0}\right)\right) \\
= & \frac{\left\|\theta_{0}\right\|^{2}}{2 \sigma_{0}^{2}}+\frac{k}{2} \log \left(2 \pi \sigma_{0}^{2}\right)+c,
\end{aligned}
$$

which combined with $\tilde{\xi}$ becomes the regularizer on the parameters θ_{0}.

D. 2 Experiment Details

In the Sinusoid experiment, the number of available examples per observed task $m_{i} \in$ $\{5,10,30,50,100\}$. Under the setting of PACOH (Theorem 3), for each different m_{i}, we did a grid search on $\beta / m_{i} \in\{10,30,100\}$. Under the setting of PACMAML (Theorem 4), for each different m_{i}, we did a grid search on $\beta / m_{i} \in\{10,30,100\}$ and $\alpha / \beta \in\{0.1,0.2,0.3,0.4,0.5,0.6\}$. We use a subsect $S_{i}^{\prime} \subset S_{i}$ with $m_{i}^{\prime}=m$ to train the base-learner in PACMAML. For each hyperparameter setting β (and α), we trained 40 models. Each model is trained on 1 of the 8 pre-sampled meta-training sets (each containing $n=20$ observed tasks) and each set is run with 5 random seeds of network initialization. The ultimate result for each β (and α) is the averaged result across all models of that setting. The hyperparameters $\tilde{\xi}$ and σ_{0}^{2} in the hyper-prior $\left(\mathcal{P}(\theta)=\mathcal{N}\left(\theta \mid 0, \sigma_{0}^{2} I\right)\right)$ are chosen to be $\tilde{\xi}=1 /(n \beta)$ and $\sigma_{0}^{2}=3$. To find the optimal model parameter θ_{0}, we used the ADAM optimizer with learning rate 3×10^{-3}. The number of tasks per batch is fixed to 5 across all experiments. We run 8000 iterations for each experiment.
The experiments ran in parallel on several 56-core Intel CLX processors and each experiment runs on a single core. Each iteration in the PACOH and PACMAML setting takes about 0.03-0.06s and $0.07-0.14$ s to run, respectively, with the exact run-time varying for different number of tasks n and number of examples m_{i}.

D. 3 Additional Results

We performed the 4-fold cross validation over the 20 target tasks to determine the optimal β for PACOH (Theorem 3) or the optimal α and β for PACMAML (Theorem 4). For the selected α and β form validation, we report the lowest test error the corresponding models can achieve. The results are plotted in Figure 3 For each setting, both the validation and test errors show the same trend, where the error with PACOH setting saturates earlier than that with PACMAML setting.

m_{i}	5	10	30	50	100
β / m_{i}	100	100	30	30	100

Table 3: Optimal β under the setting of PACOH , based on the results of a 4 -fold cross validation.

In Table 3 and Table 4, we provide the optimal β (and α) for PACOH and PACMAML, respectively. In Fig. 4, we plotted the validation error for three different values of β we used. We see that for both PACOH and PACMAML, the error is large for a small $\beta / m_{i}=10$. The error with $\beta / m_{i}=30$ and

Figure 3: The validation and test error (error bars corresponding to standard errors) on the Sinusoid dataset under the settings of PACOH and PACMAML.

Figure 4: Left: β-dependence of the RMSE validation error under the PACOH (Theorem3) setting. Middle and Right: β - and α-dependence of the RMSE validation error under the PACMAML (Theorem 4) setting. α is chosen as the optimal α in the middle plot. $\beta=30 * m_{i}$ in the right plot.

m_{i}	10	30	50	100
α / β	0.2	0.2	0.2	0.1
β / m_{i}	100	100	100	100

Table 4: Optimal α and β values under the setting of PACMAML, based on the results of a 4 -fold cross validation.
$\beta / m_{i}=100$ are similar for PACOH. For PACMAML, the error with $\beta / m_{i}=100$ is slightly and consistently better than the error with $\beta / m_{i}=30$. From the right figure of Fig. 4 we see that for PACMAML, given $\beta / m_{i}=30, \alpha / \beta$ around 0.2 achieves lowest validation error.

D. 4 Generalization Bound of PACMAML

When β / m_{i} is held as a constant, the Ψ_{1} and Ψ_{2} terms of $C\left(\delta, \lambda, \beta, n, m_{i}\right)$ in Eq.(17) becomes the same across all m_{i} and both PACOH (Eq. (10)) and PACMAML (Eq. (11)). Thus, we exclulde the Ψ_{1} and Ψ_{2} terms when comparing the bound values for different m_{i} and different setups PACOH and PACMAML. In Fig. 5 and 6 we show the value of each term and the total bound for PACOH and PACMAML obtained from the same set of experiments for Fig. $2 \sqrt{4}$ For both PACOH and PACMAML, all three terms $W, \tilde{\xi} D_{K L}$ and $\tilde{\xi} \log (1 / \delta)$ tend to decrease with larger m_{i}. For PACOH , with the extra term Δ_{λ} that panalizes larger m_{i}, the total bound either always increases with m_{i} or first increases then saturates. For PACMAML, without the Δ_{λ} term, the total bound $W_{2}+\tilde{\xi} D_{K L}+\tilde{\xi} \log (1 / \delta)$ monotonically decreases vs. m_{i}.
In Fig. 7, we show the comparison between the total bound of PACOH and PACMAML. We see that for all $m_{i}>5$, PACMAML has lower bound for all choices of β.

D. 5 Experiment for Reptile and MAML

We also experimented with meta-learning algorithms that use Dirac-measure base-learners, by implementing the Reptile (with optimal \mathbf{q}^{*}) and the MAML algorithms following the equations of Section 3.2

Figure 5: Values of $W_{1}, \tilde{\xi} D_{K L}$ and Δ terms in the PACOH bound and the total value of the bound for $\beta / m_{i} \in\{10,30,100\}$.

Figure 6: Values of W_{2} and $\tilde{\xi} D_{K L}$ terms in the PACMAML bound and the total value of the bound for $\beta / m_{i} \in\{10,30,100\} . \alpha$ for each m_{i} is set to the optimal value according to Fig. 4 ,

Reptile follows the same experiment setting as PACOH. MAML follows the same experiment setting as PACMAML where $S_{i}^{\prime} \subset S_{i}, m_{i}^{\prime}=m$. In order to compute the optimal \mathbf{q}_{i}^{*} for Reptile, we use an L-BFGS optimizer in the inner loop with $\operatorname{lr}=5 e-3$, history_size $=10$, max_iter $=10$. Other experiment setting and hyperparameter selection procedure are the same as those in Section D. 3

The results of the 4 -fold cross validation are plotted in Fig. 8 The errors of Reptile and MAML follow a very similar trend to the ones with non-Dirac measure base-learners under PACOH and PACMAML setting, respectively (Fig. 3). However, the models with non-Dirac measure base-learners appear to have lower generalization errors than the ones with Dirac measure base-learners (i.e. Reptile and MAML).

Figure 7: Comparison of the values of PACOH and PACMAML bound for $\beta / m_{i} \in\{10,30,100\} . \alpha$ for each m_{i} for PACMAML is set to the optimal value according to Fig. 4 .

Figure 8: Mean and standard error of the validation and the test result for Reptile and MAML on Sinusoid. The results are obtained from cross-validation. The error bars in the figures represent the standard errors.

E Experiment Details of Image Classification

For most hyperparameters, we followed the same default values as in [9]. In Table 5], we listed the hyperparameters that we did grid search, and their chosen value based on the meta-validation performance. For the inner learning rate, the search space was $\{0.1,0.03,0.001,0.003\}$ for FOMAML, MAML, and PACMAML; the search space was $\{0.1,0.03,0.001,0.003,0.001,0.0003,0.0001\}$ for BMAML and PACOH. For the meta-learning rate, we used the default 0.001 for FOMAML, MAML and PACMAML; and searched over $\{0.001,0.0003,0.0001,0.00003\}$ for BMAML and PACOH. For α, we searched over $\{10,1.0,0.1\}$ for BMAML, PACOH, PACMAML. We also tried two gradient descent methods in the inner loop: Vanilla GD and ADAGRAD . We found that FOMAML and MAML worked better with Vanilla GD; while BMAML, PACOH and PACMAML worked better with ADAGRAD. σ^{2} was fixed to 1 for PACOH and PACMAML. The number of task per batch was 4 and the network filter size was 64 . The total number of meta-training iterations was 60000 for all algorithms. We ran these tasks with 1 NVIDIA P100 GPU per job and each job takes about 2-3 hours to finish.

m_{i}	Hyper-parameter	FOMAML	MAML	BMAML	PACOH	PACMAML
10	outer learning rate	0.001	0.001	0.0001	0.0001	0.001
	inner learning rate	0.1	0.1	0.003	0.01	0.03
	α	-	-	1.0	10	1.0
20	outer learning rate	0.001	0.001	0.0001	0.0001	0.001
	inner learning rate	0.03	0.1	0.003	0.003	0.01
	α	-	-	0.1	1.0	1.0
40	outer learning rate	0.001	0.001	0.0001	0.0001	0.001
	inner learning rate	0.03	0.03	0.003	0.003	0.01
	α	-	-	0.1	1.0	10
80	outer learning rate	0.001	0.001	0.0001	0.0001	0.001
	inner learning rate	0.03	0.03	0.0003	0.003	0.01
	α	-	-	0.1	1.0	1.0

Table 5: The final hyper-parameters of the algorithms in the Mini-imagenet task.

F Experiment Details of Natural Language Inference

We fixed $\sigma^{2}=0.0004$, which equals to the variance of the BERT parameter initialization. The hyper-parameter α is decided by a grid search over $\left\{10^{2}, 10^{3}, 10^{4}, 10^{5}, 10^{6}, 10^{7}\right\}$ based on the performance on the meta-validation dataset. The inner loop learning rate is 0.001 for all algorithms. We used 50 -step Adagrad optimizer in the inner-loop because it has automatic adaptive learning rate for individual variables which is beneficial for training large models. For the outer-loop optimization, we used the ADAM optimizer with learning rate 10^{-5}. The final hyperparameters are reported in Table 6 In the few-shot learning phase, we ran the ADAM optimizer for 200 steps with learning rate 10^{-5} on the adaptable layers. We ran the tasks with 16 TPUs(v2) per job.

Hyper-parameter	MAML	BMAML	PACOH	PACMAML
inner learning rate	0.001	0.001	0.001	0.001
v	12	12	12	11
m_{i}^{\prime}	32	64	256	64
m_{i}	256	256	256	256
α	-	10^{3}	10^{4}	10^{4}
tasks per batch	1	1	1	1
meta-training iteration	10000	10000	10000	10000

Table 6: The final hyper-parameters in the NLI tasks.

In Table 7 we report the detailed classification accuracy on the 12 NLI tasks with their standard errors.

Task name	N	k	MAML	BMAML	PACOH	PACMAML
CoNLL	4	4	63.0 ± 1.4	61 ± 2.3	62.1 ± 2.2	68.8 ± 1.6
		8	74.1 ± 1.8	68 ± 1.9	74.9 ± 1.2	79.5 ± 1.1
		16	81.6 ± 0.6	77.9 ± 1.4	83 ± 0.7	84.5 ± 0.6
MITR	8	4	51.3 ± 1.8	47.5 ± 1.9	55.9 ± 1.6	60.6 ± 1
		8	69.1 ± 2.1	64.2 ± 1.3	71.8 ± 0.8	70.9 ± 1
		16	78.7 ± 1.1	72.2 ± 1.3	78.1 ± 0.6	80 ± 0.6
Airline	3	4	60.1 ± 2.0	53 ± 2.7	60.1 ± 3.1	60.5 ± 1.9
		8	64.7 ± 2.7	67.4 ± 2.2	65 ± 1.5	65.4 ± 1.7
		16	68.4 ± 2.2	66.7 ± 2.6	69.6 ± 1.3	69.9 ± 1.1
Disaster	2	4	56.3 ± 0.5	58.7 ± 3.1	58.7 ± 2.6	63.3 ± 1.3
		8	61.5 ± 0.7	64.1 ± 2.3	64.1 ± 2.4	63.9 ± 2.9
		16	67.7 ± 0.4	69.4 ± 2.0	71.3 ± 1.7	71.1 ± 1.6
Emotion	13	4	13.7 ± 2.1	13.9 ± 0.5	13.8 ± 0.5	13.7 ± 0.7
		8	15.8 ± 1.9	14.6 ± 1.1	15 ± 0.6	15.8 ± 0.6
		16	16.7 ± 0.9	15.6 ± 0.7	17.2 ± 0.7	16.8 ± 0.5
Political Bias	2	4	58 ± 2.1	58 ± 2.0	58.8 ± 2.6	59.9 ± 2.1
		8	60.7 ± 1.9	61 ± 1.9	62.1 ± 1.5	62 ± 1.9
		16	64.6 ± 0.9	63.5 ± 1.2	63.8 ± 1.2	66 ± 1
Political Audience	2	4	52.2 ± 0.9	54.9 ± 0.7	53.1 ± 0.9	53.4 ± 1.3
		8	56.1 ± 1.5	55.9 ± 1.1	56 ± 1.3	56 ± 1.2
		16	56.5 ± 1.2	56.9 ± 1.3	60 ± 0.9	59.6 ± 1
Political Message	9	4	18.9 ± 0.8	17.4 ± 0.6	19.2 ± 0.7	19.3 ± 0.6
		8	22.3 ± 0.7	19.3 ± 0.8	22.3 ± 0.6	22.6 ± 0.5
		16	24.3 ± 0.8	21.6 ± 0.4	24.9 ± 0.4	25.5 ± 0.8
Rating Books	3	4	58.7 ± 2.1	56.2 ± 2.8	59 ± 2.3	56.8 ± 3
		8	61.3 ± 2.7	55.1 ± 2.7	64.2 ± 2	61.6 ± 1.5
		16	62 ± 1.3	66.6 ± 2.1	63 ± 2.1	60.4 ± 2.7
Rating DVD	3	4	49.5 ± 3.0	53.7 ± 2.7	53.7 ± 2.1	52.4 ± 1.5
		8	53.2 ± 1.6	51.8 ± 2.4	54.7 ± 2	56 ± 2
		16	54.7 ± 1.2	57.2 ± 1.5	55.4 ± 1.3	60 ± 1.4
Rating Electronics	3	4	46.9 ± 3.1	44.6 ± 1.9	53.3 ± 1.7	52.4 ± 2
		8	52.5 ± 1.6	54.1 ± 1.6	55.6 ± 2	56.1 ± 1.3
		16	54.7 ± 1.8	56.6 ± 1.8	57.5 ± 1.5	58.2 ± 0.7
Rating kitchen	3	4	49.9 ± 2.4	48.3 ± 2.1	57.9 ± 1.3	57.8 ± 2
		8	50.9 ± 2.8	49.5 ± 3.1	52.3 ± 2.2	58.3 ± 1.5
		16	58.7 ± 1.5	54.2 ± 1.8	54.8 ± 1.8	58.1 ± 2.5
Overall average	-	4	48.21	47.27	50.47	51.58
		8	53.52	52.08	54.83	55.68
		16	57.38	56.53	58.22	59.18

Table 7: Classification accuracy and standard error on the 12 NLI tasks.

