
Appendix for:
Data-Aware Low-Rank Compression for Large NLP Models

A Proof of Theorem 1

Theorem 1. Assume rank(W ) = r and rank(X) = t. The closed form solutionM∗ of the optimization
problem in equation 3 is

M∗ = VW,rS
−1
W,rZkS

−1
X,tU

T
X,t, (9)

where Zk is the rank-k truncated SVD of Z = SW,rV
T
W,rUX,tSX,t.

Proof. We firstly consider the unconstrained problem:

M∗ = arg min
M

‖WX −WMX‖2F

= arg min
M

‖UT
WWXVX − UT

WWMXVX‖2F

= arg min
M

‖SWV T
WUXSX − SWV T

WMUXSX‖2F ,

where the second equality holds due to the fact that UW and VX are orthonormal matrices. Note that
we could expand the term SWV T

WUXSX as:

SWV T
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[
SW,r 0

0 0

] [
V T
W,r

V̄ T
W,r
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]
=
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T
W,r 0

0 0

] [
UX,tSX,t 0

0 0

]
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[
SW,rV

T
W,rUX,tSX,t 0

0 0

]
.

Similarly, we will have

SWV T
WMUXSX =

[
SW,rV

T
W,rMUX,tSX,t 0

0 0

]
.

Therefore, we continue above unconstrained problem as:

M∗ = arg min
M

‖SWV T
WUXSX − SWV T

WMUXSX‖2F

= arg min
M

‖
[
SW,rV

T
W,rUX,tSX,t − SW,rV

T
W,rMUX,tSX,t 0

0 0

]
‖2F

= arg min
M

‖SW,rV
T
W,rUX,tSX,t − SW,rV

T
W,rMUX,tSX,t‖2F .

= arg min
M

‖Z − SW,rV
T
W,rMUX,tSX,t‖2F .

The above minimization problem obtains the optimal value if SW,rV
T
W,rMUX,tSX,t equals the rank-k

truncated SVD of Z by the fundamental property of SVD decomposition. Thus, we will have:

Zk = SW,rV
T
W,rM

∗UX,tSX,t

=⇒ M∗ = VW,rS
−1
W,rZkS

−1
X,tU

T
X,t.
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B An algorithm to Search of Ranks under DRONE

The input to Algorithm 2 consists of training data, the model with all parameters of weight matrices
and original training loss. In addition, a pre-defined search grid is also necessary. Taking

W ∈ R768×768 as an example, we can perform a grid search for a proper low rank k over [1, 768]
such as {96, 192, 288, 384, . . . , 768}. The finer the grid, the more compressed model we could get at

the cost of longer running time of the DRONE method. With these input parameters, we firstly
distribute the total allowed loss into each individual module. We then iteratively apply Algorithm 1
following the computational sequence illustrated in Figure 1. For each module, we search the rank k
by going through the grid. If the approximated result will not increase the allowed loss increase ratio
of the component, we will end the search and tie the found rank to the component and move on. The
procedure will continue until all components are compressed. The whole process could guarantee us
that the final loss L′ of the compressed model M̂ would not be greater than (1 + r)L, where L is the

original loss before approximation.

Algorithm 2 Overall Low-rank Model Approximation Algorithm

Input: training data Dtrain, original weight matrix W . prediction Model M , total allowed loss
increase ratio r, Observed inference time E, Search grids of ranks for each module G, original
Training loss L.
Output: Low-rank Model M̂ .

# Distribute allowed ratio r into each module by E
Emin ← arg minl,iEl,i

El,i ← El,i

Emin

Eb ← exp( log(1+r)∑
l,i El,i

)

Rl,i ← E
El,i

b − 1
for l = 1, · · · , total layers do

for each module mi ∈Ml do
Wl,i ← l-th layer parameter of module mi

(e.g., 2nd feed-forward matrix in first layer.)
for i = 1, · · · , |Gl,i| do

k ← Gl,i

U, V ← Algorithm 1 (k,Dtrain,Wl,i,M )
M̂ ←M with Wl,i replaced by U, V .
Evaluate new loss Lnew = M̂(Dtrain)
if Lnew/L < 1 +Rl,i then

M ← M̂
break;

end if
end for

end for
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C Efficiency and Efficacy Trade-off Graph

In this paper, we mentioned that we report the result of 3% accuracy drop as the performance of the
baseline methods and DRONE. However, as we mentioned above that all the approximation methods
need to consider efficiency and efficacy trade-off. 3% is chosen according to the literature. Here, we

show two exemplar graph on MRPC and SST-2 task to demonstrate two facts. First, it’s indeed a
trade-off between the efficiency and efficacy as the speedup ratio goes higher at the cost of lower

accuracy. Second, we want to point out that this trade-off relationship is not linear, and different task
might have different characteristics. Thus, in the real application, users need to decide what’s the best
cutoff to use. We also want to point out that this 3% accuracy drop comparison is fair to all baseline
methods. We could have chose another cutoff like 1% accuracy with lower speedup ratio to report,

but this won’t help too much when comparing different baseline methods.

(a)

(b)

Figure 3: Illustration of efficiency and efficacy trade-off. Each point in this graph represents a specific
ratio of training loss increase after approximation.
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D Detailed results

D.1 LSTM result

A 2-layer LSTM model is composed of two large matrices layers and one large softmax layer.
Additional processing time includes applying activation functions, softmax function and computing
the updated hidden representation. The detailed inference time in each layer is summarized in Table
4. We could observe that the overhead of the computation will be greatly incurred on GPU. Thus,
despite the matrix is much smaller and well approximated by DRONE, the overall acceleration on

GPU is less.

D.2 Transformer result

For BERT models, we use BERT-base models and it contains 12 layers of the same model structure
without sharing parameters. Each layer contains an attention module with hidden size 768 and 12
channels, a small 768× 768 Feed-forward (FF) layer followed by 2 larger FF layers (768× 3072
and 3072× 768). As shown in Figure 1, these four components consume the most computational

time in the BERT-base models. The detailed average inference time of each module is summarized in
Table 5 for CPU and Table 6 for GPU. There are two important points to note.

Firstly, we could see that attention module is not the bottleneck at all under the normal size of
context (128). Therefore, many works on accelerating attention module alone would not improve the
overall inference time of the module except a very long sequence appears. The necessity of the long
sequence is out of the domain of this paper and what we want to show is that the proposed DRONE

would work on both attention and feed-forward layer, which collectively could accelerate the
real(overall) inference time.

Secondly, we could observe that the FF2 layer could be accelerated most. A plausible reason could
be that the input dimension to the FF2 layer is in a larger dimension (3072) than all the other layers
(64 or 768). When the input distribution actually lies in a lower-dimensional space, there is much
more room for FF2 layer to be compressed and accelerated by the data-aware low-rank method.

Table 4: The average inference time of each component in the model of 2-layer LSTM model. Both
proposed methods and SVD use same ranks so the inference time is approximately the same. The
unit is in millisecond and the number in parenthesis shows the ratio respective to the overall inference
time.

Device Models LSTM-1 LSTM-2 Softmax Others Total Time Perplexity
PTB-Large 1.27ms 1.30ms 1.09ms 0.13ms 3.79ms 78.32

PTB-Large-SVD - - - - - 81.09
CPU PTB-Large-SVD-Retrain - - - - - 80.89

PTB-Large-DRONE - - - - - 80.87
PTB-Large-DRONE-Retrain 0.24ms 0.34ms 0.42ms 0.11ms 1.11ms(3.4x) 79.01

PTB-Large 0.019ms 0.018ms 0.015ms 0.32ms 0.11ms 78.32
PTB-Large-SVD - - - - - 81.09

GPU PTB-Large-SVD-Retrain - - - - - 80.89
PTB-Large-DRONE - - - - - 80.87

PTB-Large-DRONE-Retrain 0.01ms 0.01ms 0.015ms 0.055ms 0.09ms(1.2x) 79.01

Table 5: The detailed average inference time (in milliseconds) on CPU of each component in the
model by retrained DRONE.

Tasks Self-Attention Feed-Forward 0 Feed-Forward 1 Feed-Forward 2 Others Total Time
MNLI 122.7 19.5 78.5 46.1 4.2 271.0
QQP 131.5 29.9 99.2 66.5 5.8 333.0
SST-2 100.5 24.7 79.3 54.5 4.5 263.5
QNLI 128.3 28.4 111.0 79.0 5.9 352.6
MRPC 82.6 12.8 89.4 38.2 2.4 225.4
RTE 116.0 25.6 85.4 62.3 3.4 292.7

CoLA 108.2 22.7 93.1 70.8 3.4 298.2
STS-B 109.1 19.3 90.8 53.0 4.0 276.2
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Table 6: The detailed average inference time (in milliseconds) on GPU of each component in the
model by retrained DRONE.

Tasks Self-Attention Feed-Forward 0 Feed-Forward 1 Feed-Forward 2 Others Total Time
MNLI 0.94 0.26 0.76 0.60 0.003 2.56
QQP 0.92 0.24 0.64 0.52 0.001 2.32
SST-2 0.85 0.25 0.59 0.52 0.005 2.22
QNLI 0.91 0.25 0.72 0.60 0.001 2.48
MRPC 0.89 0.22 0.57 0.43 0.001 2.11
RTE 1.02 0.29 0.60 0.59 0.008 2.51

CoLA 0.93 0.25 0.68 0.61 0.002 2.47
STS-B 0.83 0.2 0.57 0.42 0.002 2.02

E Combination with Quantization Methods

Distillation in practice achieves the STOA without extra hardware accelerator, so it serves as a good
target to show how DRONE can be combined with other methods. The benefit of

quantization/pruning can only be shown when a ASIC/FPGA accelerator is provided. Since we don’t
have one, we can’t only use the software to simulate. We can apply any Quantization scheme and
empirically show combined method can achieve a competitive accuracy with lower bit bandwidth.

Algorithmically, we combine DRONE with vanilla quantization with fixed precision which gets 87.5
(vs 89.5 on MRPC) and 51.0 (vs 53.4 on CoLA) with 12 bits(vs 32 bits). Thus we can hypothesize

that with the hardware accelerator, there could be at least further 3x speedup when DRONE is
combined with Quantization methods.

F An example of ranks used in SST-2

Below are the ranks obtained by performing DRONE in SST-2 dataset. The order is from the bottom
layer to the top layer. Full rank of all the matrices are 768.

Attention layer: [192, 384, 192, 768, 768, 192, 768, 768, 192, 192, 768, 192],

Feed-Forward 0 : [288, 768, 96, 192, 288, 192, 768, 768, 96, 96, 288, 96],

Feed-Forward 1: [96, 96, 768, 768, 288, 288, 768, 768, 96, 96, 288, 96],

Feed-Forward 2 : [192, 192, 768, 288, 768, 768, 768, 192, 96, 192, 96, 96].
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G Python Pseudo Code for Solving equation (3)

Listing 1: The python function to solve the equation (3).
import numpy as np

def OPTsolver ( x , y , k ) :
’ ’ ’
compute t h e b e s t rank k p r o j e c t i o n M such t h a t \ | x * y ’ − x *M* y ’ \ | _ {F}
i s m i n i m i z e d
x \ i n shape n x d
y \ i n shape m x d

’ ’ ’
xSS = np . matmul ( x . t r a n s p o s e ( ) , x )
kSS = np . matmul ( y . t r a n s p o s e ( ) , y )
U1 , S1 , V1 = np . l i n a l g . svd ( xSS , F a l s e )
S1 = S1 ** 0 . 5
I1 = np . eye ( S1 . shape [ 0 ] )
U2 , S2 , V2 = np . l i n a l g . svd ( kSS , F a l s e )
S2 = S2 ** 0 .5
I2 = np . eye ( S2 . shape [ 0 ] )
YK = np . d o t ( np . d o t ( I1 *S1 , V1 ) , np . d o t ( V2 . t r a n s p o s e ( ) , I2 *S2 ) )
U, S ,V = np . l i n a l g . svd (YK, F a l s e )
L = np . d o t ( V1 . t r a n s p o s e ( ) , I1 * ( 1 / S1 ) )
R = np . d o t ( I2 * ( 1 / S2 ) , V2 )
M = np . d o t (U [ : , : k ]* S [ : k ] ,V [ : k , : ] )
re turn L , R , U, S ,V

H Python Pseudo Code of Rank Searching

Listing 2: A mixed of real code and pseudo code to illustrate the search algorithm.

import os
import numpy as np
import t o r c h
import s u b p r o c e s s a s sp

cuda_num = 7
n_heads = 12
t o t a l _ l a y e r = 12

p r e v _ l o s s = .11159391902588509 # I n i t i a l Loss
the_model_name = ’ ber tSST2 ’

t i m e _ a t t n = 117 .5 # E m p i r i c a l I n f e r e n c e Time on A t t e n t i o n Module
t ime_0 = 34 .27 # E m p i r i c a l I n f e r e n c e Time on A t t e n t i o n FFL Module
t ime_1 = 133 .11 # E m p i r i c a l I n f e r e n c e Time on Feedforward 1 l a y e r
t ime_2 = 128 .84 # E m p i r i c a l I n f e r e n c e Time on Feedforward 2 l a y e r
min ima l_ t ime = min ( t i m e _ a t t n , t ime_0 , t ime_1 , t ime_2 )
m u l t i p l i e r = ( t i m e _ a t t n + t ime_0 + t ime_1 + t ime_2 ) / ( min ima l_ t ime )
t o l e r a n t = 2 . # a l l o w e d l o s s i n c r e a s e r a t i o . $r$ i n A l g o r i t h m 2 .

# Code t o D i s t r i b u t e t h e $r$ i n t o i n d i v i d u a l Modules .
# The d i s t r i b u t i o n depends on e m p i r i c a l i n f e r e n c e t i m e o f each module and number o f l a y e r s .
b a s i c _ t o l e r a n c e = np . exp ( np . l o g ( t o l e r a n t ) / m u l t i p l i e r )
t o l _ a t t n = np . exp ( np . l o g ( b a s i c _ t o l e r a n c e **( t i m e _ a t t n / min ima l_ t ime ) ) / n _ l a y e r )
t o l _ 0 = np . exp ( np . l o g ( b a s i c _ t o l e r a n c e **( t ime_0 / min ima l_ t ime ) ) / n _ l a y e r )
t o l _ 1 = np . exp ( np . l o g ( b a s i c _ t o l e r a n c e **( t ime_1 / min ima l_ t ime ) ) / n _ l a y e r )
t o l _ 2 = np . exp ( np . l o g ( b a s i c _ t o l e r a n c e **( t ime_2 / min ima l_ t ime ) ) / n _ l a y e r )
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#### Omi t t ed Code ###
# T h i s p a r t o f t h e code i s t o change some p a r a m e t e r s o f t h e u n d e r l y i n g h u g g i n f a c e framework
in o r d e r t o e x t r a c t t h e t r a i n i n g d i s t r i b u t i o n X of each module from t h e model .
### Omi t t ed Code ###

f o r i in range ( t o t a l _ l a y e r ) :
f o r each module in t h e l a y e r : # T h i s l i n e i s pseudo code f o r c l a r i t y r e aso n .

# T h i s p a r t o f t h e code e x t r a c t s $R_ { l , i } $ ( named t h e _ t o l he re ) i n A l g o r i t h m 2 .
i f save_symbol == "E" :

t h e _ t o l = t o l _ a t t n
e l i f save_symbol == " F0 " :

t h e _ t o l = t o l _ 0
e l i f save_symbol == " F1 " :

t h e _ t o l = t o l _ 1
e l s e :

t h e _ t o l = t o l _ 2
# Update t h e a l l o w e d i n c r e a s e o f l o s s

p r e v _ l o s s = p r e v _ l o s s * t h e _ t o l

# i n i t i a l s e a r c h rank f o r A t t e n t i o n ( 1 6 ) and FFL l a y e r s ( 9 6 )

r ank = 16 i f save_symbol == "E" e l s e 96

# Maximal rank
t p s = 64 i f save_symbol == "E" e l s e 768 s p e c i f i e d in t h e o r i g i n a l models .
whi le r ank <= t p s :

### Omi t t ed Code ###
## W r i t e t h e t r i e d rank i n t o h u g g i n f a c e framework ##
### Omi t t ed Code ###

# T h i s l i n e run t h e i n f e r e n c e i n t h e command l i n e
os . sys tem ( py thon r u n _ g l u e . py −− mode l_ type b e r t −− task_name SST −2)

wi th open ( ’ / tmp / tmp0 ’ , ’ r ’ ) a s f i l e :
d a t a = f i l e . r e a d l i n e s ( )

new_r = f l o a t ( d a t a [ − 1 ] )
i f new_r < p r e v _ l o s s :

break
i f save_symbol == "E" : # A t t e n t i o n module , we i n c r e a s e s e a r c h rank 16 a t a t i m e .

r ank += 16
e l s e :

# rank += 96 # For FFL l a y e r , we i n c r e a s e s e a r c h rank 96 a t i m e .
i f r ank == 384 :

r ank = 768
break

e l s e :
r ank += 96

### Omi t t ed Code ###
# T h i s p a r t o f code upd a t e t h e model #
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