
A Omitted Related Work

Neural Kernel Bandits. [66] initiated the study of kernelized linear bandits, showing regret
dependent on the information gain. The work of [76, 73] specialized this to the Neural Tangent
Kernel (NTK) [54, 24, 40, 27, 10], where the algorithm utilizes gradient descent but remains close
to initialization and thus remains a kernel class. Furthermore, NTK methods require dp samples to
express a degree p polynomial in d dimensions [31], similar to eluder dimension of polynomials, and
so lack the inductive biases necessary for real-world applications of decision-making problems [60].

Neural Bandits. For bandits with practical neural networks (instead of overparameterized NTKs)
as the function approximator, we are not aware of any previous paper that gives provably efficient
bandit algorithm for this case. Our paper gives the first provably efficient algorithm for neural bandits
with noiseless reward and deterministic activation. We note that however, previous paper has already
solved neural bandits when the neural network happens to be convex [21].

Concave Bandits. There has been a rich line of work on concave bandits starting with [26, 46]. [4]
attained the first

√
T regret algorithm for concave bandits though with a large poly(d) dependence.

In the adversarial setting, a line of work [38, 14, 49] have attained polynomial-time algorithms with√
T regret with increasingly improved dimension dependence. The sharp dimension dependence

remains unknown.

Noiseless Bandits. In the noiseless setting, there is some investigation in phase retrieval borrowing
the tools from algebraic geometry (see e.g. [69]). In this paper, we will study the bandit problem
with more general reward functions: neural nets with polynomial activation (structured polynomials)
including phase retrieval. [45] study similar structured polynomials, also using tools from algebraic
geometry, but they only study the expressivity of those polynomials and do not consider the learning
problems. [21] study noiseless bandits with bounded Sequential Rademacher Complexity, but focus
on attaining local optimality.

Concurrent work. [50] address the phase retrieval bandit problem which is equivalent to a sym-
metric rank 1 variant of the bilinear bandit of [43] and attain Õ(

√
d2T) regret. Our work in Section

3.1 specialized to the rank 1 case attains the same regret.

Matrix/Tensor Power Method. Our analysis stems from noisy power methods for matrix/tensor
decomposition problems. Robust power method, subspace iteration, and tensor decomposition that
tolerate noise first appeared in [37, 8]. Follow-up work attained the optimal rate for both gap-
dependence and gap-free settings for matrix decomposition [58, 6]. An improvement on the problem
dimension for tensor power method is established in [70]. [63] considers the convergence of tensor
power method in the non-orthogonal case.

B Additional Preliminaries

In this section we show that adapting the eluder UCB algorithms from [62] would yield the sample
complexity in Theorem 2.1. Especially we give the rates in Table 1 for our stochastic settings.

The algorithm [62] consider Algorithm 2 for the stochastic generalized linear bandit problem.
Assume that θ∗ is the true parameter of the reward model. The reward is rt = fθ∗(at) + ηt for
fθ∗ ∈ F . Let N be the α-covering-number (under ∥·∥∞) of F , dE be the α-eluder-dimension of F
(see Definition 3,4 in [62]). Let C = sup

f∈F,a∈A
|f(a)|. We set α = 1

T 2 in the algorithm.

The regret analysis Choosing α = 1/T 2, proposition 4 in [62] state that with probability 1− δ,
for some universal constant C, the total regret R(T) ≤ 1

T + Cmin{dE , T} + 4
√
dEβTT ≤ 1 +

C
√
dET + 4

√
dEβTT = O(

√
dE(1 + βT)T). In our settings with α = 1/T 2, βT = 8 log(N/δ) +

2(8C +
√
8 ln(4T 2/δ))/T = O(log(N/δ)) where log(N) = Ω(1) for our action sets, and thus

R(T) = Õ(
√
dET logN).

16

Algorithm 2 Eluder UCB

1: Input: Function class F , failure probability δ, parameters α,N,C.
2: Initialization: F0 ← F .
3: for t from 1 to T do
4: Select Action:
5: at ∈ argmaxa∈A supfθ∈Ft−1

fθ(a)
6: Play action at and observe reward rt
7: Update Statistics:
8: θ̂t ∈ argminθ

∑t
s=1(fθ(as)− rs)2

9: βt ← 8 log(N/δ) + 2αt(8C +
√

8 ln(4t2/δ))

10: Ft ← {fθ :
∑t

s=1(fθ − fθ̂t
)2(as) ≤ βt}

Applications in our settings We show that in our settings Theorem 2.1 will obtain the rates listed
in Table 1.

The covering numbers
Lemma B.1. The log-covering-number (of radius α with α≪ 1, under ∥·∥∞) of the function classes
are: logN(FSYM) = O(dk log k

α), logN(FASYM) = O(dk log k
α), logN(FEV) = O(dk log k

α), and
logN(FLR) = O(dk log k

α).

Proof. Let Sd
ξ denote a minimal ξ-covering of Sd−1 (under ∥·∥2) for 0 < ξ < 1

10 , and |Sd
ξ | =

O(d log 1/ξ) (see for example [62]). Then we can construct the coverings in our settings from Sd
ξ :

• FSYM: let ξ = α
kp , and for k copies of Sd

ξ , we can construct a covering of FSYM

with size |Sd
ξ |k. Specifically, let the covering be SSYM = {g(a) =

∑k
j=1 λj(u

⊤
j a)

p :

(u1,u2, · · · ,uk) ∈ Sd
ξ ×Sd

ξ × · · ·×Sd
ξ }, then for each f(a) =

∑k
j=1 λj(v

⊤
j a)

p ∈ FSYM,
as we can find uj ∈ Sd

ξ that ∥uj − vj∥2 ≤ ξ,

sup
a

[f(a)− g(a)] ≤ sup
a

[

k∑
j=1

|λj ||u⊤
j a− v⊤

j a||
p−1∑
q=0

(u⊤
j a)

q(v⊤
j a)

p−q−1|] ≤ pkξ = α;

• FASYM: let ξ = α
kp , and for kp copies of Sd

ξ , let the covering be SASYM = {g(a) =∑k
j=1 λj

∏p
q=1(uj(q)

⊤a(q)) : (u1(1),u1(2), · · · ,u1(p),u2(1), · · · ,uk(p)) ∈ Sd
ξ ×

Sd
ξ × · · · × Sd

ξ } with size |Sd
ξ |kp. Then for each f(a) =

∑k
j=1 λj

∏p
q=1(vj(q)

⊤a(q)) ∈
FASYM, as we can find uj(q) ∈ Sd

ξ that ∥uj(q)− vj(q)∥2 ≤ ξ,

supa[f(a)− g(a)] ≤ supa[
∑k

j=1 |λj |
∑p

q=1 |uj(q)
⊤a− vj(q)

⊤a|·
|
∏

r<q(uj(r)
⊤a)

∏
r>q(vj(r)

⊤a)|]
≤ pkξ = α;

• FEV: the construction follows that of FSYM by taking p = 2;

• FLR: taking the construction of FSYM with p = 2 and ξ = α
2k , for N =∑k

j=1 λjuju
⊤
j and M =

∑k
j=1 λjvjv

⊤
j with ∥uj − vj∥2 ≤ ξ, we know ∥N −M∥F ≤∥∥∥N −∑k

j=1 λjujv
⊤
j

∥∥∥
F

+
∥∥∥∑k

j=1 λjujv
⊤
j −M

∥∥∥
F
≤

∑k
j=1 2|λj |ξ ≤ α. Then

supA[fM (A)− fN (A)] ≤ supA ∥M −N∥F · ∥A∥F ≤ α.

Then we can bound the covering numbers in Theorem 2.1. Notice that in the settings the log-covering
numbers are only different by constant factors.

17

The eluder dimensions
Lemma B.2. The ϵ-eluder-dimension (ϵ < 1) dE of the function classes are: dE(FSYM) = Θ̃(dp)

(for k ≥ p), dE(FASYM) = Θ̃(dp), dE(FEV) = Θ̃(d2), and dE(FLR) = Θ̃(d2). In the settings WLOG
we assume the top eigenvalue is r∗ = λ1 = 1 as we are mostly interested in the cases where r∗ > ϵ.

Proof. The upper bounds for the eluder dimension can be given by the linear argument. [62] show
that the d-dimension linear model {fθ(a) = θ⊤a} has ϵ-eluder-dimensionO(d log 1

ϵ). In all of these
settings, we can find feature maps ϕ and ψ so that F = {fθ(a), fθ(a) = ϕ(θ)⊤ψ(a), ∥ϕ(θ)∥2 ≤
k, ∥ψ(a)∥2 ≤ k}. Then the eluder dimensions will be bounded by the corresponding linear dimension
as an original ϵ-independent sequence {ai} will induce an ϵ-independent sequence {ψ(ai)} in the
linear model. Therefore for matrices (FLR and FEV) the eluder dimension is O(d2 log k

ϵ) and for the
tensors (FSYM and FASYM) it is O(dp log k

ϵ).

Then we consider the lower bounds. We provide the following example of O(1)-independent
sequences to bound the eluder dimension in our settings up to a log factor.

• FSYM: the sequence is {ai = (ei1 , ei2 , · · · , eip) : i = (i1, i2, · · · , ip) ∈ [d]p}. For
fj(a) =

∏p
q=1 e

⊤
jq
a(q), fj(ai) is only 1 when i = j and 0 otherwise. Then each ai is

1-independent to the predecessors on fi and zero, and thus the eluder dimension is lower
bounded by dp.

• FASYM: for p ≤ d and k ≥ p, the sequence is {ai = 1√
p (ei1 + ei2 + · · · + eip) : i =

(i1, i2, · · · , ip) ∈ [d]p, i1 < i2 < · · · < ip}. There are tensors fj and gj of CP-rank k that
(fj−gj)(a) =

∏p
q=1(e

⊤
jq
a) where j1 < j2 < · · · < jp, (fj−gj)(ai) is only 1 when i = j

and 0 otherwise. Then each ai is 1-independent to the predecessors on fi and gi, and thus
the eluder dimension is lower bounded by

(
d
p

)
.

• FEV: the sequence is {ai =
1√
2
(ei1 + ei2) : i = (i1, i2) ∈ [d]2, i1 ≤ i2}. For fj(a) =

1
2a

⊤(ej1 + ej2)(ej1 + ej2)
⊤a and gj(a) = 1

2a
⊤(ej1 − ej2)(ej1 − ej2)

⊤a with j1 ≤ j2,
(fj − gj)(ai) is only 1 when i = j and 0 otherwise. Then each ai is 1-independent to the
predecessors on fi and gi, and thus the eluder dimension is lower bounded by

(
d
2

)
.

• FLR: the sequence is {Ai = 1
2ei1e

T
i2

+ ei1e
T
i2

: i = (i1, i2) ∈ [d]2, i1 ≤ i2}. For
fj(A) = ⟨ 12 (ej1e

T
j2

+ ej2e
T
j1
),A⟩ with j1 ≤ j2, fj(Ai) is only 1 when i = j and 0

otherwise. Then each Ai is 1-independent to the predecessors on fi and zero, and thus the
eluder dimension is lower bounded by

(
d
2

)
.

Then we are all set for the results in the first line of 1. Notice that when we choose α = O(1/T 2) and
ϵ = O(1/T 2) in our analysis of Algorithm 2, the regret upper bound would only expand by log(T)
factors.

C Omitted Proofs for Quadratic Reward

In this section we include all the omitted proof of the theorems presented in the main paper.

C.1 Omitted Proofs of Main Results for Stochastic Bandit Eigenvector Problem

Proof of Theorem 3.3. Notice in Algorithm 1, for each iterate a, its next iterate y satisfies

y =
1

ns

ns∑
i=1

(a/2 + zi/2)
⊤M(a/2 + zi/2)zi + ηizi

=
ms

ns

ns∑
i=1

(
1

4
a⊤Ma+

1

2
a⊤Mzi + ηi)zi.

18

Therefore E[y] = 1
2Ma. We can write 2y = Ma+ g where g := ms

ns

∑ns

i=1(
1
2a

⊤Ma+ 2ηi)zi.

With Claim D.12 and Claim D.11 we get that ∥g∥ ≤ C
√

ms log2(n/δ) log(d/δ)d
ns

. Therefore with

our choice of ns ≥ Θ̃(d2

ε2s(λ1−|λ2|)2) we guarantee ∥g∥ ≤ εs(λ1 − |λ2|). Therefore it satisfies
the requirements for noisy power method, and by applying Corollary C.4, we have with L =
O(κ log(d/ε)) iterations we will be able to find ∥â−a∗∥ ≤ ε. By setting δ < 0.1/L in the algorithm
we can guarantee the whole process succeed with high probability. Altogether it is sufficient to take
Lns = Õ(κd2/(ε∆)2) actions to get an ε-optimal arm.

Finally to get the cumulative regret bound, we apply Claim D.7 with A = d2κ
∆2 and a = 2. Therefore

we set ε = A1/4T−1/4 = d1/2κ1/4

∆1/2T 1/4 and get:

Reg(T) ≲T 1/2A1/2r∗ =

√
d2κ

∆2
Tr∗ =

√
d2κ3T .

Corollary C.1 (Formal statement for Corollary 3.6). In Algorithm 1, by setting α = 1− ε2/2, one
can get ε-optimal reward with a total of Õ(d2λ21/ε

4) total samples to get a such that r∗ − f(a) ≤ ε.
Therefore one can get an accumulative regret of Õ(λ

3/5
1 d2/5T 4/5).

Proof of Lemma 3.6. In order to find an arm with λ1ε2-optimal reward, one will want to recover
an arm that is ε/2-close (meaning to find an a such that tan θ(Vl,a) ≤ ε/2) to the top eigenspace
span(v1, · · ·vl), where l satisfies λl ≥ λ1 − ε̃ and λl+1 ≤ λ1 − ε̃. Here we set ε̃ := λ1ε

2/2. We
first show 1) this is sufficient to get an λ1ε-optimal reward, and next show 2) how to set parameter to
achieve this.

To get 1), we write Vl = [v1, · · ·vl] ∈ Rd×l and V ⊥
l = [vl+1, · · ·vk]. When tan θ(Vl,aT) =

∥V ⊥a∥/∥V a∥ ≤ ε/2, from the proof of Claim D.6, we get r∗−f(a) ≤ min{λ1, λ12(ε/2)2+ ε̃} =
λ1ε

2.

Now to get 2), we note that in each iteration we try to conduct the power iteration to find an
action tan θ(Vl, â) ≤ ε/2 and with eigengap ≥ ε̃ := λ1ε

2/2. Therefore it is sufficient to let
∥g∥ ≤ 0.1ε̃ε and |v⊤

1 g| ≤ 0.1ϵ̃ 1√
d

, and thus ns ≥ Θ̃(d2

ε2ε̃2) ≤ Θ̃(d2/λ21ε
6). Together we need

λ1/ϵ̃ log(2d/ε)ns = Θ̃(d2/λ21ε
8) samples to get an λ1ε2-optimal reward. Namely we get ε̃-optimal

reward with Õ(d2λ21/ε̃
4) samples.

Finally by applying Claim D.7 we get:

R(T) ≲ (d2λ21)
1
5T

4
5λ

1
5
1 ≤ Õ(λ

3/5
1 d2/5T 4/5).

Theorem C.2 (Formal statement of Theorem 3.7). In Algorithm 3, if we set n = Θ̃(
d2λ2

1

ε2λ2
k
),m =

d log(n/δ), L = Θ(log(d/ε)), δ = 0.1/L, we will be able to identify an action â that yield at
most ε-regret with probability 0.9. Therefore by applying the standard PAC to regret conversion
as discussed in Claim D.7 we get a cumulative regret of Õ(λ

1/3
1 k1/3(κ̃dT)2/3) for large enough T ,

where κ̃ = λ1/|λk|.

On the other hand, we set n = Θ̃(d
2k2

ε2) and keep the other parameters. If we play Algorithm 3 k
times by setting k′ = 2, 4, 6, · · · 2k and select the best output among them, we can get a gap-free
cumulative regret of Õ(λ

1/3
1 k4/3(dT)2/3) for large enough T with high probability.

Proof of Theorem 3.7. First we show the first setting identify an ε-optimal reward with Õ(κ̃2d2kϵ−2)
samples.

Similarly as Theorem 3.8, when setting n ≥ Θ̃(d2/(σ2
k ϵ̃

2)), we can find XL that satisfies
∥(XLX

⊤
L − I)U∥ ≤ ϵ̃, and therefore we recover an YL = MXL−1 +GL with ∥GL∥ ≤ σkε̃ and

19

Algorithm 3 Gap-free Subspace Iteration for Bilinear Bandit

1: Input: Quadratic reward f : X → R generating noisy reward, failure probability δ, error ε.
2: Initialization: Set k′ = 2k. Initial candidate matrix X0 ∈ Rd×k′

, X0(j) ∈ Rd, j = 1, 2, · · · k′
is the j-th column of X0 and are i.i.d sampled on the unit sphere Sd−1 uniformly. Sample
variance m, # sample per iteration n, total iteration L.

3: for Iteration l from 1 to L do
4: for s from 1 to k′ do
5: Noisy subspace iteration:
6: Sample zi ∼ N (0, 1/mId), i = 1, 2, · · ·ns.
7: Calculate tentative rank-1 arms ãi =

1
2 (Xl−1(s) + zi).

8: Conduct estimation Yl(s)← 4m/n
∑n

i=1(f(ãi) + ηi)zi. (Yl ∈ Rd×k′
)

9: Let Yl = XlRl be a QR-factorization of Yl

10: Update target arm al ← argmax∥a∥=1 a
⊤YlX

⊤
l−1a.

11: Output: aL.

∥YLX
⊤
L−1−M∥2 = ∥MXL−1X

⊤
L−1−M+GLX

⊤
L−1∥2 ≤ (λ1+ |λk|)ε̃. Therefore by definition

of aL,a
⊤
LYLX

⊤
L−1aL = max∥a∥=1 a

⊤(MXL−1X
⊤
L−1+GLX

⊤
L−1)a ≥ λ1−(λ1+|λk|)ε̃. There-

fore a⊤
LMaL ≥ λ1− 2(λ1+ |λk|)ε̃. Therefore we set 2(λ1+ |λk|)ε̃ = ϵ, i.e., ε̃ = 0.5ϵ/(λ1+ |λk|)

which will get a total sample of T = Θ̃(kn) = Θ̃(d2κ̃2kε−2). Then by applying Claim D.7 we get
the cumulative regret bound.

Next we show how to estimate the action with Õ(d2k4ε−2) samples. To achieve this result, we need to
slightly alter Algorithm 3 where we respectively set k′ = 2, 4, 6, · · · 2k and keep the best arm among
the k outputs. We argue that among all the choices of k′, at least for one l ∈ [k], k′ = 2l, we have
|λl| − |λl+1| ≥ λ1/k. Notice with similar argument as above, when we set n = Θ̃(d2λ−2

l ε̃−2) ≤
Θ̃(d2k2λ−2

1 ε̃−2) we can get ∥G∥ ≤ ε̃λl as required by Corollary C.4, the total number of iterations
L = O(σl/(σl−σl+1) log(2d/ϵ) = Õ(k). Finally by setting ε̃ = ϵ/(4λ1) we get the overall samples
we required is Õ(k2n) = Õ(d2k4ϵ−2).

For both settings, directly applying our arguments in the PAC to regret conversion: Claim D.7 will
finish the proof.

C.2 Omitted Details of Main Results of Low-Rank Linear Reward

Algorithm 4 Subspace Iteration Exploration for Low-rank Linear Reward.

1: Input: Quadratic function f : A → R with noisy reward, failure probability δ, error ε.
2: Initialization: Set k′ = 2k. Initial candidate matrix X0 ∈ Rd×k′

, X0(j) ∈ Rd, j = 1, 2, · · · k′
is the j-th column of X0 and are i.i.d sampled on the unit sphere Sd−1 uniformly. Sample
variance m, # sample per iteration n, total iteration L.

3: for Iteration l from 1 to L do
4: Sample zi ∼ N (0, 1/mId), i = 1, 2, · · ·n.
5: for s from 1 to k′ do
6: Noisy subspace iteration:
7: Calculate tentative rank-1 actions Ãi = Xl−1(s)z

⊤
i .

8: Conduct estimation Yl(s)← m/n
∑n

i=1(⟨M , Ãi⟩+ ηi,s)zi. (Yl ∈ Rd×k′
)

9: Let Yl = XlRl be a QR-factorization of Yl

10: Update target action Al ← YlX
⊤
l .

11: Output: Â = AL/∥AL∥F

Theorem C.3 (Formal statement of Theorem 3.8). In Algorithm 4, for large enough constants
Cn, CL, Cm, let n = Cnd

2 log2(d/δ)σ−2
k ε−2, m = Cmd log(n/δ), and L = CL log(d/ε), XL

20

satisfies ∥(I −XLX
⊤
L)V ∥ ≤ ε/4, and the output Â satisfies ∥Â−A∗∥F ≤ ∥M∥F ε. Altogether

to get an ε-optimal action, it is sufficient to have total sample complexity of T ≤ Õ(d2kλ−2
k ε−2).

Proof of Theorem 3.8 . Let M = V ΣV ⊤. From Claim C.6 we get that for each noisy subspace
iteration step we get Yl = MXl + Gl with 5∥Gl∥ ≤ εσk and ∥V ⊤G∥ ≤ σk

√
k/3
√
d ≤

σk(
√
2k −

√
k)/2
√
d. Therefore we can apply Corollary C.4, and get ∥V (XLX

⊤
L − I)∥ ≤ ε/4

with O(log 2d/ϵ) steps. Therefore we have:

∥AL −M∥F =∥(MXL +GL)X
⊤
L −M∥F = ∥V ⊤ΣV (XLX

⊤
L − I)) +GLX

⊤
L ∥F

≤∥M∥F ∥V (XLX
⊤
L − I)∥+ ∥GL∥∥XL∥F

≤(∥M∥F + σk)ε/4 < ∥M∥F ε/2.

Meanwhile, notice ∥A∗∥F = 1, ∥M∥F = r∗ and ∥Â∥F = 1. ∥AL/r
∗ − A∗∥F ≤ ε/2. ∥Â −

A∗∥F = ∥AL/∥AL∥F −A∗∥F = ∥vec(AL)/∥vec(AL)∥2 − vec(A∗)∥2.

Write θA := θ(vec(AL), vec(A
∗). The worst case that makes ∥vec(Â)−vec(A∗)∥ to be larger than

∥vec(AL/r
∗)−vec(A∗)∥ is when ∥vec(AL/r

∗)−vec(A∗)∥ = sin θA and ∥vec(Â)−vec(A∗)∥ is
always 2 sin(θA/2). Notice trivially 2 sin(θA/2) ≤ 2 sin(θA) Therefore we could get ∥Â−A∗∥F ≤
2∥AL/r

∗ −A∗∥F ≤ ε.

Proof of Corollary 3.9. The corollary uses a special property of the strongly convex action set that
ensures: A∗ = M/r∗. With Â that satisfies ∥Â∥F = 1, we have

r∗ − fM (A) =r∗ − ⟨Â,M⟩ = r∗ − ⟨Â, r∗A∗⟩

=
r∗

2
(2− 2⟨Â,A∗⟩) = r∗

2
(∥Â∥2F + ∥A∗∥2F − ⟨Â,A∗⟩)

=
r∗

2
∥Â−A∗∥2F ≤

r∗ε2

2
(2)

Therefore, with first T1 = Õ(d2kλ−2
k ε−2) exploratory samples we get r∗ − f(Â) ≤ r∗ε2/2 =

r∗
√

d2k
λ2
kT

=
√

(r∗)2d2k
λ2
kT

. Together we have:

R(T) =

T1∑
t=1

r∗ − f(At) +

T∑
t=T1+1

r∗ − f(Â)

<r∗T1 + Tr∗ε2

≤Õ(
√
d2k(r∗)2λ−2

k T).

Proof of Theorem 3.10. We find an l to be the smallest integer such that
∑k

i=l+1 σ
2
i ≤ ϵ2∥M∥2F .

Then we have σl ≥ ϵ/
√
k − l > ϵ/

√
k.

Notice that in Algorithm 4, we set n ≥ Θ̃(d2k
(r∗)2ε4) large enough such that ∥G∥2 ≤

O(∥M∥F ϵ2/
√
k) ≲ ϵ(σl − 0) and ∥U⊤G∥2 ≤ ∥M∥F ϵ/

√
k
√
k′−

√
k−1

2
√
d

. (This comes from the
argument proved in Claim C.6.)

Therefore by conducting noisy power method we get with O(nk) = Õ(d2k2

(r∗)2ε4) samples we can get

an action Â that satisfies:

∥M −XLX
⊤
LM∥2F ≤

k∑
i=l+1

σ2
i + lϵ2σ2

l ≤ 2∥M∥2F ϵ2.

21

Therefore we could get ∥A∗ − Â∥ ≤ 2ϵ, and with similar argument as (2) we have r∗ − f(Â) ≤
∥M∥F ϵ2.

Therefore if we want to take a total of T actions, we will set ϵ6 = Θ̃(d2k2

(r∗)2T) and we get:

R(T) =

T1∑
t=1

r∗ − f(At) +

T∑
t=T1+1

r∗ − f(Â)

<r∗T1 + Tr∗ε2

≤Õ(d2/3k2/3(r∗)1/3T 2/3).

C.3 Technical Details for Quadratic Reward

Noisy Power Method.
Corollary C.4 (Adapted from Corollary 1.1 from [37]). Let k′ ≥ l. Let U ∈ Rd×l represent the top
l singular vectors of M and let σ1 ≥ · · · ≥ σk > 0 denote its singular values. Suppose X0 is an
orthonormal basis of a random k′-dimensional subspace. Further suppose that at every step of NPM
we have

5∥G∥ ≤ϵ(σl − σl+1),

and 5∥U⊤G∥ ≤(σl − σl+1)

√
k′ −

√
l − 1

2
√
d

for some fixed parameter ϵ < 1/2. Then with all but 2−Ω(k′+1−l) + eΩ(d) probability, there exists an
L = O(σl

σl−σl+1
log(2d/ϵ)) so that after L steps we have that ∥(I −XLX

⊤
L)U∥ ≤ ϵ.

Theorem C.5 (Adapted from Theorem 2.2 from [11]). Let Ul ∈ Rd×l represent the top l singular
vectors of M and let σ1 ≥ · · · ≥ σk > 0 denote its singular values. Naturally l ≤ k. Suppose X0 is
an orthonormal basis of a random k′-dimensional subspace where k′ ≥ k. Further suppose that at
every step of NPM we have

∥G∥ ≤O(ϵσl),

and ∥U⊤
k G∥2 ≤O(σl

√
k′ −

√
k − 1

2
√
d

)

for small enough ϵ. Then with all but 2−Ω(k′+1−k) + eΩ(d) probability, there exists an L =
O(log(2d/ϵ)) so that after L steps we have that ∥(I −XLX

⊤
L)Ul∥ ≤ ϵ. Furthermore:

∥M −XLX
⊤
LM∥2F ≤

k∑
i=l+1

σ2
i + lσ2σ2

l .

Concentration Bounds.
Claim C.6. Write the eigendecomposition for M as M = UΣU⊤. In Algorithm 4, when n ≥
Θ̃(d2/(λ2kε

2)), the noisy subspace iteration step can be written as: Yl = MXl−1 +Gl, where the
noise term satisfies:

5∥Gl∥ ≤ε|λk|

5∥U⊤Gl∥ ≤ε|λk|
√
k

3
√
d
.

with high probability for our choice of n.

Proof. For compact notation, write vector ηi := [ηi,1, ηi,2, · · · ηi,k′]⊤ ∈ Rk′
. We have:

Gl(s) =
m

n

n∑
i=1

(z⊤
i MXl(s))zi +

m

n

n∑
i=1

ηi,szi −MXl(s), therefore

Gl =(
m

n

n∑
i=1

[ziz
⊤
i]− I)MXl +

m

n

n∑
i=1

ziη
⊤
i .

22

First note that for orthogonal matrix Xl, ∥MXl∥ ≤ λ1, and ∥mn
∑n

i=1[ziz
⊤
i] − I∥ ≤

O(
√

d+log(1/δ)
n). The bottleneck is from the second term and we will use Matrix Bernstein to

concentrate it. Write Si =
m
n ziη

⊤
i . We have ∥Si∥ ≤ O(

√
mk′ log(n/δ)

n) with probability 1− δ and
E[
∑

i SiS
⊤
i] = mk′

n Id and E[
∑

i S
⊤
i Si] =

md
n Ik′ . Therefore with matrix Bernstein we can get that

∥
∑

i Si∥i ≤ O(
√

md
n log(d/δ)) with probability 1− δ.

Therefore for n ≥ Ω̃(d2/(λ2kε
2), we can get that 5∥Gl∥ ≤ ε|λk|.

Similarly since U⊤zi ∼ N (0, 1
mIk′), with the same argument one can easily get that ∥U⊤Gl∥ ≤

O(
√

mk′

n log(d/δ)). Therefore with the same lower bound for n one can get 15∥U⊤Gl∥ ≤

ε|λk|
√

k
d .

C.4 Omitted Proof for RL with Quadratic Q function

Algorithm 5 Learn policy complete polynomial with simulator.

1: Initialize: Set n = Θ̃(κ̃2d2H3/ε2), Oracle to estimate T̂h from noisy observations.
2: for h = H, . . . 1 do
3: Sample ϕ(sih, a

i
h), i ∈ [n] from standard Gaussian N(0, Id)

4: for i ∈ [n] do
5: Query (sih, a

i
h) and use πh+1, . . . , πH as the roll-out to get estimation

Q̂
πh+1,...,πH

h (sih, a
i
h)

6: Retrieve M̂h from estimation Q̂πh+1,...,πH

h (sih, a
i
h), i ∈ [n]

7: Set Q̂h(s, a)← fT̂h

8: Set πh(s)← argmaxa∈S Q̂h(s, a)

9: Return π1, . . . , πH

Proof of Theorem 3.13. With the oracle, at horizon H , we can estimate M̂H that is ϵ/H close to
M∗

H in spectral norm through noisy observations from the reward function with Õ(κ̃2d2H2/ε2)
samples. Next, for each horizon h = H − 1, H − 1, · · · , 1, sample s′i ∼ P(·|s, a), we define ηi =
maxa′ f

M̂h+1
(s′i, a

′) − Es′∼P(·|s,a) maxa′ f
M̂h+1

(s′, a′). ηi is mean-zero and O(1)-sub-gaussian
since it is bounded. Denote Mh as the matrix that satisfies fMh

:= T f
M̂h+1

, which is well-defined

due to Bellman completeness. We estimate M̂h from the noisy observations yi = rh(s, a) +

maxa′ f
M̂h+1

(s′i, a
′) = T f

M̂h+1
+ ηi =: fMh

+ ηi. Therefore with the oracle, we can estimate M̂h

such that ∥M̂h −Mh∥2 ≤ ϵ/H with Θ(κ̃2d2k2H2/ϵ2) bandits. Together we have:

∥f
M̂h
− f

M̂∗
h
∥∞ =∥M̂h −M∗

h∥

≤∥M̂h −Mh∥+ ∥Mh −M∗
h∥

≤ϵ/H + ∥T f
M̂h+1

− T fM∗
h+1
∥∞

≤ϵ/H + ∥f
M̂h+1

− fM∗
h+1
∥∞

≤2ϵ/H + ∥f
M̂h+2

− fM∗
h+2
∥∞

≤ · · ·
≤(H − h)ϵ/H.

Finally for h = 1 we have ∥M̂1 −M∗∥ ≤ ϵ if we sample n = Θ̃(κ̃2d2k2H2/ϵ2) for each h ∈ [H].
Therefore for all the H timesteps we need Θ(κ̃2d2k2H3/ϵ2).

23

D Technical details for General Tensor Reward

Algorithm 6 Phased elimination with zeroth order exploration.

1: Input: Function f : A → R of polynomial degree p generating noisy reward, failure probability
δ, error ε.

2: Initialization: L0 = CLk log(1/δ); Total number of stages S = CS⌈log(1/ε)⌉ + 1, A0 =

{a(1)
0 ,a

(2)
0 , · · ·a(L0)

0 } where each a
(l)
0 is uniformly sampled on the unit sphere Sd−1. ε̃0 = 1.

3: for s from 1 to S do
4: ε̃s ← ε̃s−1/2, ns ← Cnd

p log(d/δ)/λ21ε̃
2
s),ns ← ns · log3(ns/δ), ms ← Cmd log(ns/δ),

As = ∅.
5: for l from 1 to Ls−1 do
6: Zeroth-order optimization:
7: Locate current action ã = a

(l)
s−1.

8: for ⌈(1/(1− α)) log(2d)⌉ times do
9: Sample zi ∼ N (0, 1/msId), i = 1, 2, · · ·ns.

10: Take actions ai = (1 − 1
2p)ã + 1

2pzi and observe ri = T (ai) + ηi, i ∈ [ns]; Take
actions 1

2pzi and observe r′i = T (1
2pzi) + η′i, i ∈ [ns].

11: Conduct estimation y ← 1/ns
∑ns

i=1(ri − r′i)zi.
12: Update the current action ã← y/∥y∥.
13: Estimate the expected reward for ã through ns samples: rn(ã) = 1/ns

∑ns

i=1(T (ã)+ηi).
14: Candidate Elimination:
15: if rn ≥ λ1(1− pε̃2s) then
16: Keep the action As ← As ∪ {ã}
17: Label the actions: Ls = |As|,As =: {a(1)

s , · · ·a(Ls)
s }.

18: Run UCB (Algorithm 7) with the candidate set AS .

D.1 Technical Details for Symmetric Setting

Lemma D.1 (Zeroth order optimization for noiseless setting). For p ≥ 3, suppose 0.5a⊤v1 > |a⊤vj |
for all j ≥ 2, we have:

tan θ(G(a),v1) ≤
1

2
tan θ(a,v1).

Proof. We first simplify G(a) =
∑r

j=1 λjvj · Sj , where

G(a) =

⌊(p−3)/2⌋∑
s=0

(1− 1
2p)

p−2s−1(1
2p)

2s+1

ms

(
p

2s+ 1

)
T (I⊗s+1 ⊗ a⊗p−2s−1)

=

⌊(p−3)/2⌋∑
s=0

(1− 1
2p)

p−2s−1(1
2p)

2s+1

ms

(
p

2s+ 1

) k∑
j=1

λj(v
⊤
j a)

p−2j−1vj

=

k∑
j=1

vj ·

Sj :=︷ ︸︸ ︷
λj

⌊(p−3)/2⌋∑
s=0

(1− 1
2p)

p−2s−1(1
2p)

2s+1

ms

(
p

2s+ 1

)
(v⊤

j a)
p−2s−1

=

k∑
j=1

Sjvj .

24

Notice for even p,

Sj =λj(v
⊤
j a)

3 ·
p/2−2∑
s=0

(1− 1
2p)

p−2s−1(1
2p)

2s+1

ms

(
p

2s+ 1

)
(v⊤

j a)
p−2s−4

=λj(v
⊤
j a)

3 ·
p/2−2∑
r=0

(1− 1
2p)

2r+3(1
2p)

p−3−2r

mp/2−2−r

(
p

p− 2r − 3

)
(v⊤

j a)
2r.

(let 2r = p− 4− 2s)

Sj

λj(v⊤
j a)

3
=

p/2−2∑
r=0

(1− 1
2p)

2r+3(1
2p)

p−3−2r

mp/2−2−r

(
p

p− 2r − 3

)
(v⊤

j a)
2r

(Divide both sides by λj(v⊤
j a)

3)

≤
p/2−2∑
r=0

(1− 1
2p)

2r+3(1
2p)

p−3−2r

mp/2−2−r

(
p

p− 2r − 3

)
(v⊤

1 a)
2r.

(Since the first term is constant and |v⊤
j a| ≤ v⊤

1 a for r ≥ 1)

=
S1

λ1(v⊤
1 a)

3
.

Therefore for even p ≥ 4:

|Sj | ≤
|λj |
λ1

|v⊤
j a|3

|v⊤
1 a|3

S1 ≤
1

4

|v⊤
j a|
|v⊤

1 a|
S1,∀j ≥ 2. (3)

Similarly for odd p, we have:

Sj =λj(v
⊤
j a)

2 ·
(p−3)/2∑

s=0

(1− 1
2p)

p−2s−1(1
2p)

2s+1

ms

(
p

2s+ 1

)
(v⊤j a)

p−2s−3

=λj(v
⊤
j a)

2 ·
(p−3)/2∑

r=0

(1− 1
2p)

2r+2(1
2p)

p−2−2r

m(p−3)/2−r

(
p

p− 2− 2r

)
(v⊤

j a)
2r,

(Let r = (p− 3)/2− s)

Sj

λj(v⊤
j a)

2
=

(p−3)/2∑
r=0

(1− 1
2p)

2r+2(1
2p)

p−2−2r

m(p−3)/2−r

(
p

p− 2− 2r

)
(v⊤

j a)
2r

(Divide both sides by λj(v⊤
j a)

2)

≤
(p−3)/2∑

r=0

(1− 1
2p)

2r+2(1
2p)

p−2−2r

m(p−3)/2−r

(
p

p− 2− 2r

)
(v⊤

1 a)
2r

(Since the first term is constant and |v⊤
j a| ≤ v⊤

1 a for r ≥ 1)

=
S1

λ1(v⊤
1 a)

2
.

Therefore for odd p we have:

|Sj | ≤
|λj |
λ1

|v⊤
j a|2

|v⊤
1 a|2

S1 ≤
1

2

|v⊤
j a|
|v⊤

1 a|
S1,∀j ≥ 2. (4)

Write V = [v2,v3, · · · ,vk] ∈ Rd×k be the complement for v1. Therefore for any x without
normalization, one can conveniently represent | tan θ(x,v1)| as ∥V ⊤x∥2/|v⊤

1 x|.

25

∥V ⊤G(a)∥2 =

k∑
j=2

S2
j (5)

≤
k∑

j=2

|v⊤
j a|2

4|v⊤
1 a|2

S2
1 (from (4),(3))

=
1

4
tan2 θ(v1,a)(v

⊤
1 G(a))

2. (6)

Therefore for p ≥ 3, tan θ(G(a),v1) ≤ 1
2 tan θ(a,v1).

D.1.1 Proof Sketch of Theorem 3.14

Definition D.2 (Zeroth order gradient function). For some scalar m, we define an empirical operator
Gn : A → A that is similar to the zeroth-order gradient of f through n samples:

Gn(a) :=
m

n

n∑
i=1

(
T

((
(1− 1

2p
)a+

1

2p
zi

)⊗p
)
− T (

1

2p
zi)

)
zi + (ηi − η′i)zi.

where zi ∼ N (0, 1
mI) and ηi, η′i are independent zero-mean 1-sub-Gaussian noise. Therefore we

have:

E[Gn(a)] =mE[
p−1∑
l=0

(
p

l

)
T ((1− 1

2p
)p−la⊗(p−l) ⊗ (

1

2p
)lz⊗l)z]

(Due to symmetry of Gaussian only for odd l =: 2s+ 1 expectation is nonzero)

=(1− 1

2p
)p−2s−1(

1

2p
)2s+1[

⌊p/2−1⌋∑
s=0

m−s

(
p

2s+ 1

)
T (a⊗(p−2s−1) ⊗ I⊗s+1)]

Note that for even p the last term (when s = p/2−1) is T (a⊗I⊗p/2) =
∑k

j=1 λj(a
⊤vj)vj . While

all other terms will push the iterate towards the optimal action at a superlinear speed, the last term
perform a matrix multiplication and the convergence speed will depend on the eigengap. Therefore
for p ≥ 4 we will remove the extra bias in the last term that is orthogonal to v1 and will treat it as
noise. (Notice for quadratic function s = 0 = p/2 − 1 is the only term in E[Gn(a)]. This is the
distinction between p = 2 and larger p, and why its convergence depends on eigengap.)

We further define G(a) as the population version of Gn(a) by removing this undesirable bias term
that will be treated as noise:

G(a) =

{
E[Gn]−

(1
2p)

p−1(1− 1
2p)p

mp/2−1

∑k
j=2 λj(v

⊤
j a)vj , when p is even

E[Gn], when p is odd.

=

⌊(p−3)/2⌋∑
s=0

(1
2p)

2s+1

ms

(
p

2s+ 1

)
T (I⊗s+1 ⊗ ((1− 1

2p
)a)⊗p−2s−1)

=
1

2
(1− 1

2p
)p−1T (I,a⊗p−1) +O(1/m).

We define G(a) to push the action a towards the v1 direction with at least linear convergence rate.
More precisely, their angle tan θ(G(a),v1) will converge linearly to 0 for proper initialization with
the dynamics a → G(a). An easy way to see that is when p = 2 or 3, G is conducting (3-order
tensor) power iteration. For higher-order problems, this operation G is equivalent to the summation
of p, p− 2, p− 4, · · · -th order tensor product and hence the linear convergence.

The estimation error Gn(a)−G(a) will be treated as noise (which is not mean zero when p is even
but will be small enough: O((2p)−pm−(p−1)/2)). Therefore the iterative algorithm with a→ Gn(a)
will converge to a small neighborhood of v1 depending on the estimation error. This estimation error
is controlled by the choice of sample size n in each iteration. We now provide the proof sketch:

26

Lemma D.3 (Initialization for p ≥ 3; Corollary C.1 from [70]). For any η ∈ (0, 1/2), with
L = Θ(k log(1/η)) samples A = {a(1),a(2), · · ·a(L)} where each a(l) is sampled uniformly on the
sphere Sd−1. At least one sample a ∈ A satisfies

max
j ̸=1
|v⊤

j a| ≤ 0.5|v⊤
1 a|, and |v⊤

1 a| ≥ 1/
√
d. (7)

with probability at least 1− η.
Lemma D.4 (Iterative progress). Let α = 1/2 for p ≥ 3 in Algorithm 6. Consider noisy operation
a+ → G(a) + g. If the error term g satisfies:

∥g∥ ≤min{0.025
p

λ1(v
⊤
1 a)

p−2, 0.1λ1ε̃}

+ 0.03λ1| sin θ(v1,a)|(v⊤
1 a)

p−2,

|v⊤
1 g| ≤0.05λ1(v⊤

1 a)
p−1.

Suppose a satisfies 0.5|v⊤
1 a| ≥ maxj≥2 |v⊤

j a|, we have:

tan θ(a+,v1) ≤ 0.8 tan θ(a,v1) + ε̃.

We can also bound g by standard concentration plus an additional small bias term.
Lemma D.5 (Estimation error bound for G). For fixed value δ ∈ (0, 1) and large enough universal
constant c1, c2, cm, cn, when m = cmd log(n/δ), n ≥ cnd log(d/δ), we have

∥g∥ ≡ ∥Gn(a)−G(a)∥ ≤c1

√
d2 log3(n/δ) log(d/δ)

n
+ eλ2| sin θ(a,v1)|,

|v⊤
1 g| ≡ |v⊤

1 Gn(a)− v⊤
1 G(a)| ≤c2

√
d log3(n/δ) log(d/δ)

n
.

with probability 1− δ. e = 0 for odd p and e = (2p)−(p−1)m−(p/2−1) for even p.

Together we are able to prove Theorem 3.14:

Proof of Theorem 3.14. Initially with high probability there exists an a0 ∈ A0 such that Eqn. (7)
holds, i.e., v⊤

1 a0 ≥ 1/
√
d and v⊤

1 a0 ≥ 2|v⊤
j a0|,∀j ≥ 2.

Next, from Lemma D.5, the extra bias term is bounded by eλ2| sin θ(a,v1)|
≤ 0.03λ1(v

⊤
1 a)

p−2| sin θ(a,v1)| since e = (2p)−p+1m
−p/2+1
s and with our choice of variance

ms ≥ d ≥ (v⊤
1 a)

−2, plus p ≥ 3. Next with our setting of ns = Θ̃(dp/(λ21ε̃
2
t)), the error term

∥E[G(a)]−Gn(a)∥ is upper bounded by Õ(
√

d2

n) ≤ 0.025λ1d
−(p−2)/2ε̃s/p+0.1λ1ε̃s. Meanwhile

|v⊤
1 g| ≤ Õ(

√
d
ns
) ≤ 0.05λ1(v

⊤
1 a)

p−1.

This meets the requirements for Theorem D.4 and therefore tan θ(Gn(a0),v1) ≤ 0.8 tan θ(a0,v1)+
0.1λ1ε̃s. Therefore after l steps will have

tan θ(Gl
n(a0),v1) ≤0.8l tan θ(a0,v1) +

l∑
i=1

0.8i · 0.1ε̃s

≤0.8l tan θ(a0,v1) + 0.5ε̃s.

Notice initially tan θ(a0,v1) ≤ 1/(v⊤
1 a0) ≤

√
d. Therefore after at most

l = O(log2(tan θ(a0,v1))) ≤ O(log2(d)) steps, we will have tan
(
Gl

n(a0),v1

)
≤ ε̃0/2 = ε̃1.

With the same argument, the progress also holds for s > 0 with even smaller l.

Proof of Lemma D.5. We first estimate Gn(a) − E[Gn(a)], which is want we want for even
p. For odd p we will need to analyze an extra bias term that is orthogonal to v1, e :=
(1
2p)

p−1(1− 1
2p)p

mp/2−1

∑k
j=2 λj(v

⊤
j a)vj ; and we have Gn(a)− E[Gn(a)] = Gn(a)−G(a) + e.

27

We decompose Gn(a) as Gn(a) =
∑k

s=1G
(s)
n + N , where G

(s)
n := m

n

∑n
i=1

(
p
s

)
T (((1 −

0.5/p)a)⊗p−s ⊗ (zi/(2p))
⊗s)zi. The noise term N := m

n

∑
ϵizi.

G(s)
n :=

m

n

n∑
i=1

(
p

s

)
T (((1− 0.5/p)a)⊗p−s ⊗ (zi/(2p))

⊗s)zi

=
m

n
(1− 1

2p
)p−s(

1

2p
)s
(
p

s

) n∑
i=1

k∑
j=1

λj(a
⊤vj)

p−s(z⊤
i vj)

szi.

E[G(s)
n] =m(1− 1

2p
)p−s(

1

2p
)s
(
p

s

) k∑
j=1

λj(a
⊤vj)

p−sE[(z⊤vj)
sz]

=

{
(1− 1

2p)
p−s(1

2p)
sm
(
p
s

)∑k
j=1 λj(a

⊤vj)
p−s 1

m(s+1)/2 (s)!!vj , for odd s,
0, for even s

=

{
(1− 1

2p)
p−s(1

2p)
s s!!
m(s−1)/2

(
p
s

)∑k
j=1 λj(a

⊤vj)
p−svj , for odd s,

0, for even s

G(s)
n − E[G(s)

n] = m(1− 1

2p
)p−s(

1

2p
)s
(
p

s

) k∑
j=1

λj(a
⊤vj)

p−sgn,s(j),

where gn,s(j) :=
1
n

∑n
i=1(z

⊤
i vj)

szi − E[(z⊤vj)
sz].

Notice the scaling in each G(s)
n is (1− 1

2p)
p−s(1

2p)
s
(
p
s

)
≤ (1

2p)
sps/(s!) < 2−s decays exponentially.

In Claim D.12 we give bounds for gn,s(j). We note the bound for each gn,s also decays with s.

Therefore the bottleneck of the upper bound mostly depend on gn,0 and v⊤
1 gn,0, and we get:

∥Gn − E[Gn]∥ ≤C1λ1

√
(d+ log(1/δ))d log(n/δ)

n
+N,

|v⊤
1 Gn − E[v⊤

1 Gn]| ≤C2λ1

√
d log(n/δ)(1 + log(1/δ))

n
+ v⊤

1 N.

Next from Claim D.11, the noise term

N ≤ C3

√
m log(n/δ)(d+ log(n/δ)) log(d/δ)

n
,

|v⊤1 N | ≤ C4

√
m
log2(n/δ) log(d/δ)

n
,

Finally e is very small: ∥e∥ ≤ 1
mp/2−1(2p)(p−1)

λ2∥V ⊤a∥ = λ2
1

mp/2−1(2p)(p−1)
sin θ(a,v1).

|e⊤v1| = 0.

Together we can bound Gn(a)−G(a) and finish the proof.

28

Proof of Lemma D.4. From Lemma D.1 we have: | tan θ(G(a),v1)| ≤ 1/2| tan θ(a,v1)|. Let
V = [v2, · · ·vk]. For any p ≥ 2, we have:

| tan θ(a+,v1)| =
∥V ⊤a+∥2
|v⊤

1 a
+|

=
∥V ⊤(G(a) + g)∥
|v⊤

1 (G(a) + g)|

≤∥V
⊤G(a)∥+ ∥V ⊤g∥
|v⊤

1 G(a)| − |v⊤
1 g|

≤1/2| tan θ(a,v1)||v⊤
1 G(a)|+ ∥g∥

|v⊤
1 G(a)| − |v⊤

1 g|

=α| tan θ(a,v1)|
S1

S1 − ∥v⊤
1 g∥

+
∥g∥

S1 − ∥v⊤
1 g∥

,

where S1 := v⊤
1 G(a) = v⊤

1 G(a) = λ1
∑⌊(p−3)/2⌋

s=0

(1− 1
2p)

p−2s−1(1
2p)

2s+1

ms

(
p

2s+1

)
(v⊤

1 a)
p−2s−1 ≥

λ1(1− 1
2p)

p−1(1
2p)p(v

⊤
1 a)

p−1 ≥ λ1

4 (v⊤
1 a)

p−1. The inequality comes from keeping only the first
term where s = 0. With the assumption that |v⊤

1 g| ≤ 0.05λ1(v
⊤
1 a)

p−1, we have |v⊤
1 g| ≤ 0.2S1.

Therefore

| tan θ(a+,v1)| ≤1.25/2| tan θ(a,v1)|+
∥g∥

S1 − |v⊤
1 g|

≤1.25/2| tan θ(a,v1)|+ 5/4
∥g∥
S1

≤1.25/2| tan θ(a,v1)|+ 5
∥g∥

λ1(v⊤
1 a)

p−1
.

Notice when 5 ∥g∥
λ1(v⊤

1 a)p−1 ≤ max{0.125| tan θ(a,v1)|, ϵ̃}, which will ensure | tan θ(G(a),v1)| ≤
(1.25/2 + 0.125)| tan θ(G(a),v1)| + ϵ̃. (We will prove this condition is satisfied when ∥g∥ ≤
min{ 0.025p λ1(v

⊤
1 a)

p−2, 0.1λ1ε̃}. We will handle the additional term in the upper bound of ∥g∥ later.)
We divide this requirement into the following two cases. On one hand, when |v⊤

1 a| ≤ 1− 1/(p− 1),
∥V ⊤a∥ ≥

√
1− (1− 1/(p− 1))2 > 1/p, therefore | tan θ(a,v1)| ≥ 1/p|v⊤

1 a|. Therefore

5
∥g∥

λ1(v⊤
1 a)

p−1
≤ 0.125| tan θ(a,v1)|

⇐5
∥g∥

λ1(v⊤
1 a)

p−1
≤ 0.125/

(
p|v⊤

1 a|
)

⇔∥g∥ ≤ 0.025λ1(v
⊤
1 a)

p−2/p.

On the other hand, when |v⊤
1 a| ≥ 1 − 1/(p − 1), |va

1 |p−1 ≥ 1/4 when p = 3. Therefore
5 ∥g∥
λ1(v⊤

1 a)p−1 ≤ 20∥g∥/λ1. Therefore we will need ∥g∥ ≤ 0.05λ1ϵ̃, and then the requirement that

5 ∥g∥
λ1(v⊤

1 a)p−1 ≤ ϵ̃ is satisfied.

Altogether in both cases we have: | tan θ(G(a),v1)| ≤ 0.75| tan θ(G(a),v1)| + ϵ̃. Fi-
nally if we additionally increase ∥g∥ by 0.05λ1(v

⊤
1 a)

p−1 we will have: | tan θ(G(a),v1)| ≤
0.8| tan θ(G(a),v1)|+ ϵ̃.

Proof of Corollary 3.16 . As shown in Theorem 3.14 at least one action a in AS , |AS | ≤ Õ(k)

satisfies tan θ(a,a∗) ≤ ε with a total of Õ(dpk
λ2
1ε

2) steps. Therefore with Claim D.6 we have to get

ε̃-optimal reward we need Õ(d
pk

λ1ε̃
) steps. Notice the eluder dimension for symmetric polynomials is

dp and the size of AS is at most Õ(k). Then by applying Corollary D.9 we get that the total regret is
at most Õ(

√
dpkT +

√
|AS |T) = Õ(

√
dpkT).

29

D.2 PAC to Regret Bound Relation.

Claim D.6 (Connecting angle to regret). When 0 < tan θ(a,v1) ≤ ζ, we have regret r∗ − r(a) ≤
r∗ min{2, pζ2}.

Proof.

| cos θ(a,v1)| =|a⊤v1| =: b,

| tan θ(a,v1)| =
√
1− b2
b

≤ ζ ⇔ b ≥ 1√
ζ2 + 1

.

⇒ r∗ − r(a) ≤λ1 − λ1bp

≤λ1(1− (ζ2 + 1)−p/2)

=λ1
(ζ2 + 1)p/2 − 1

(ζ2 + 1)p/2

≤λ1((ζ2 + 1)p/2 − 1) (since denominator (ζ2 + 1)p/2 ≥ 1)

≤λ1pζ2, when ζ2 ≤ 1/p.

Additionally by definition r∗ − r(a) ≤ λ1 − (−λ1) = 2λ1 and thus r∗ − r(a) ≤ λ1 min{2, pζ2}.
We now derive the last inequality. When ζ ≥ 1/p it is trivially true. When ζ ≤ 1/p, we have
(1 + ζ2)p/2 ≤ 1 + pζ2 for any p ≥ 2. Since the LHS is a convex function for ζ when p ≥ 2 and
when ζ = 0 LHS=RHS and when ζ2 = 1/p LHS is always smaller than RHS (=2).

Notice the argument is straightforward to extend to the setting where the angle is between a and
subspace V1 that satisfies ∀v ∈ V1, T (v) ≥ λ1− ϵ, then one also get r∗− r(a) ≤ λ1− (λ1− ϵ)bp ≤
min{λ1, λ1pζ2 + ϵbp} ≤ min{λ1, λ1pζ2 + ϵ}.

Claim D.7 (Connecting PAC to Cumulative Regret). Suppose we have an algorithm alg(ζ) that finds
ζ-optimal action â that satisfies 0 < tan θ(a,v1) ≤ ζ by taking Aζ−a actions. Here A can depend
on any parameters such as d, λ1, probability error δ, etc., that are not ζ . Then for large enough T , by
calling alg with ζ = A

1
a+2T− 1

a+2 p−
1

a+2 and playing its output action â for the remaining actions,
one can get a cumulative regret of:

R(T) ≲ T
a

a+2 p
a

a+2A
2

a+2 r∗.

Similarly, if an oracle finds ε-optimal action â that satisfies r∗ − r(a) ≤ ε with Bε−b samples, then
by setting ε = (Br∗/T)

1
1+b , and playing the output arm for the remaining actions, one can get

cumulative regret of:
R(T) ≲ B

1
1+bT

b
1+b r

1
1+b .

Proof. For the chosen ζ, write T1 = Aζ−a be the number of actions that finds ζ-optimal action.
Therefore T1 = A

2
a+2T

a
a+2 p

a
a+2 . First, when T ≥ Apa/2, ζ2 ≤ 1/p, namely r∗ − r(a) ≤ r∗pζ2.

We have:

R(T) ≤
T1∑
t=1

2r∗ +

T∑
t=T1+1

r∗pζ2

≤2r∗T1 + Tr∗pζ2

≤3T
a

a+2 p
a

a+2A
2

a+2 r∗.

When T < Apa/2, it trivially holds that R(T) ≤ 2r∗T < 2T
a

a+2 p
a

a+2A
2

a+2 r∗.

Theorem D.8 (Theorem 5.1 from [5]). With UCB algorithm on action set with size K, we have with
probability 1− δ,

R(T) = Õ(min{
√
KT}+K).

30

Algorithm 7 UCB (Algorithm 1 in Section 5 of [5])

1: Input: Stochastic reward function f , failure probability δ, action set A with finite size K.
2: for t from 1 to T − 1−K do
3: Execute arm It = argmaxi∈[K]

(
µ̂t(i) +

√
log(TK/δ)

Nt(i)

)
. Here N t(a) = 1 +

∑t
i=1 1{Ii =

a}; and µ̂t(a) = 1
Nt(a)

(
ra +

∑t
i=1 1{Ii = a}ri

)
.

4: Observe rIt

Corollary D.9. With the same setting of Claim D.7, except that now the algorithm alg(ε) finds a set
A of size S where at least one action a ∈ A satisfies r∗ − f(a) ≤ ε. Then all argument in Claim
D.7 still hold by adding Õ(

√
ST) on the RHS of each regret bound.

Proof. Suppose we run alg for T1 steps and achieve ε-optimal reward.

Let rε := maxa∈A f(a). Therefore with UCB on mutiarm bandit we have:
∑T

t=T1+1 rε − f(at) ≤
Õ(
√
ST) by Theorem D.8.

From the statement rε ≥ r∗−ζ . Therefore
∑T

t=T1+1 r
∗−f(at) ≤ Õ(

√
ST)+ε(T−T1). Therefore

R(T) ≤
T1∑
t=1

2r∗ + ε(T − T1) + Õ(
√
ST).

With the same choices of T1 in Claim D.7, the same conclusion still holds with an additional term of
Õ(
√
ST).

For symmetric tensor problems the set size is Õ(k) and therefore we will have an additional
√
kT

term which will be subsumed in our regret bound.

D.3 Variance and Noise Concentration

Lemma D.10 (Vector Bernstein; adapted from Theorem 7.3.1 in [65]). Consider a finite sequence
{xk}nk=1 be i.i.d randomly generated samples, xk ∈ Rd, and assume that E[xk] = 0, ∥xk∥ ≤ L,
and covariance matrix of xk is Σ. Then it satisfies that when n ≥ log d/δ, we have:∥∥∥∥∑n

i=1 xi

n

∥∥∥∥ ≤ C
√

(∥Σ∥+ L2) log d/δ

n
,

with probability 1− δ.
Claim D.11 (Noise concentration). Let independent samples zi ∼ N (0, 1/mId) and ϵi ∼ N (0, 1).
With probability 1− δ, δ ∈ (0, 1):∥∥∥∥∥mn

n∑
i=1

ϵizi

∥∥∥∥∥ ≤C
√
m log(n/δ)(d+ log(n/δ)) log(d/δ)

n∣∣∣∣∣mn
n∑

i=1

ϵiz
⊤
i v1

∣∣∣∣∣ ≤C ′

√
m log2(n/δ) log(d/δ)

n
.

Proof. We use the Vector Bernstein Lemma D.10. The covariance matrix for xi = ϵizi satisfies
E[xix

⊤
i] = 1/mId. xi is mean zero. ∥ϵizi∥2 = ϵ2i ∥zi∥2. Notice ϵ2i ∼ χ(1) ≲ 1 + log(1/δ)

and mz⊤
i zi ∼ χ(d) ≲ d + log(1/δ). Therefore by directly applying Vector Bernstein ∥ϵizi∥ ≤

c
√

(1+log(1/δ))(d+log(1/δ))
m with probability 1 − δ. By union bound we have: for all i, ∥ϵizi∥ ≤

c
√

log(n/δ)(d+log(n/δ))
m with probability 1− δ. Therefore∥∥∥∥∥ 1n

n∑
i=1

ϵizi

∥∥∥∥∥ ≤ C
√

log(n/δ)(d+ log(n/δ)) log(d/δ)

mn
,

31

with probability 1− δ. Similarly∣∣∣∣∣ 1n
n∑

i=1

ϵiz
⊤
i v1

∣∣∣∣∣ ≤C
√

log(n/δ)(1 + log(n/δ)) log(d/δ)

mn

=C ′

√
log2(n/δ) log(d/δ)

mn
,

Claim D.12. Let {zi}ni=1 be i.i.d samples from N (0, 1/mId). Let gn,s(j) := 1
n

∑n
i=1(z

⊤
i vj)

szi −
E[(z⊤vj)

sz]. We have:

∥gn,0(j)∥ ≲
√
d+ log(1/δ)

nm
,

|v⊤
1 gn,0(j)| ≲

√
1 + log(1/δ)

nm
,

|v⊤
1 gn,1(j)| ≤ ∥gn,1(j)∥ ≲

√
d+ log(1/δ)

m2n
, when n ≥ d log(1/δ),

|v⊤
1 gn,s(j)| ≤ ∥gn,s(j)∥ ≲

√
log(d/δ)

dsn
, when n ≥ log(d/δ),m ≥ c0d log(n/δ), s ≥ 2.

For any j ∈ [k].

We mostly care about the correct concentration for smaller s. For larger s a very loose bound will
already suffice our requirement.

Proof of Claim D.12. For s = 0, nm∥ 1n
∑n

i=1 zi∥2 ∼ χ(d), therefore ∥ 1n
∑n

i=1 zi∥ ≲√
d+log(1/δ)

nm . nm(1n
∑n

i=1 z
⊤
i v1)

2 ∼ χ(1). Therefore | 1n
∑n

i=1 z
⊤
i v1| ≲

√
1+log(1/δ)

nm .

For s = 1, due to standard concentration for covariance matrices (see e.g. [65, 22]), we have:

m∥(1
n

n∑
i=1

ziz
⊤
i − E[zz⊤])∥ ≤ max{

√
d+ log(2/δ)

n
,
d+ log(2/δ)

n
}.

Therefore when n ≥ d log(1/δ), both results

∥gn,1(j)∥ ≲
√
d+ log(1/δ)

m2n
∥vj∥,

=

√
d+ log(1/δ)

m2n
, and

∥v⊤
1 gn,1(j)∥ ≲

√
d+ log(1/δ)

m2n
∥v1∥∥vj∥

=

√
d+ log(1/δ)

m2n
hold.

For larger s ≥ 2, with probability 1 − δ, |z⊤
i vj | ≤ C

√
log(n/δ)/m = Cc0/

√
d ≤ 1/

√
d. When

m ≥ c0d log(n/δ), for small enough c0 we have |z⊤
i vj | ≤ 1/

√
d and ∥zi∥ ≤ 1 for all i ∈ [n].

Therefore ∥(z⊤
i vj)

szi∥ ≤ d−s/2 We can use vector Bernstein, i.e., Lemma D.10 to get:

∥gn,s(j)∥ ≤C1

√
log(d/δ)

dsn
.

Therefore we have:

|gn,s(j)⊤v1| ≤C1

√
log(d/δ)

dsn
.

32

D.3.1 The asymmetric setting

Now we consider the asymmetric tensor problem with reward f : A → R. The input space
A consists of p vectors in a unit ball: a⃗ = (a(1),a(2), · · ·a(p)) ∈ A, ∥a(s)∥ ≤ 1,∀s ∈ [p].
f(a⃗) = T (⊗p

s=1a(s)) + η. Tensor T =
∑k

j=1 λjvj(1) ⊗ vj(2) · · · ⊗ vj(p). For each s ∈ [p],
{v1(s),v2(s), · · ·vk(s)} are orthonormal vectors. We order the eigenvalues such that λ1 ≥
|λ2| · · · ≥ |λk|. Therefore the optimal reward is λ1 and can be achieved by a∗(s) = v1(s), s ∈ [p].
In this section we only consider p ≥ 3 and leave the quadratic and low-rank matrix setting to the next
section.
Theorem D.13. For p ≥ 3, by conducting alternating power iteration, one can get a ε-optimal
reward with a total Õ

(
(2k)p logp(p/δ)dpλ−1

1 ε−1
)

actions; therefore the regret bound is at most
Õ(
√
kpdpT).

This setting is actually much easier than the symmetric setting. Notice by replacing one slice of
a⃗ by random Gaussian zi ∼ N (0, 2/d log(d/δ)), one directly gets T (a(1), · · ·a(s − 1), I,a(s +
1), · · ·a(p)) on each slice with 1/n

∑
i f(a(1), · · ·a(s−1), zi,a(s+1), · · ·a(p))zi which is tensor

product. We defer the proof to Appendix D.4.

D.4 Omitted Details for Asymmetric Tensors

Algorithm 8 Phased elimination with alternating tensor product.

1: Input: Stochastic reward r : (Bd
1)

⊗p → R of polynomial degree p, failure probability δ, error ε.
2: Initialization: L0 = CLk log(1/δ); Total number of stages S = CS⌈log(1/ε)⌉ + 1, A0 =

{a(1)
0 ,a

(2)
0 , · · ·a(L0)

0 } ⊂ (Bd
1)

⊗p where each a
(l)
0 (j), j ∈ [p] is uniformly sampled on the unit

sphere Sd−1. ε̃0 = 1.
3: for s from 1 to S do
4: ε̃s ← ε̃s−1/2, ns ← Cnd

p log(d/δ)/ε̃2s, ns ← ns · log3(ns/δ), ms ← Cmd log(n/δ),
As = ∅.

5: for l from 1 to Ls−1 do
6: Tensor product update:
7: Locate current arm ã = a

(l)
s−1.

8: for ⌈(λ1/∆) log(2d)⌉ times do
9: for j from 1 to p do

10: Sample zi ∼ N (0, 1/msId), i = 1, 2, · · ·ns.
11: Calculate tentative arm ai ← ã,ai(j) = (1− ε̃s)ã(j) + ε̃szi
12: Conduct estimation y ← 1/ns

∑ns

i=1 rϵi(ai)zi.
13: Update the current arm ã(j)← y/∥y∥.
14: Estimate the expected reward for ã through ns samples: rn = 1/ns

∑ns

i=1 rϵi(ã).
15: Candidate Elimination:
16: if rn ≥ λ1(1− pε̃s) then
17: Keep the arm As ← As ∪ {ã}
18: Label the arms: Ls = |As|,At =: {a(1)

s , · · ·a(Ls)
s }.

19: Run Algorithm 7 with AS .

Lemma D.14 (Asymmetric Tensor Initialization). With probability 1 − δ, with L =

Θ̃((2k)p logp(p/δ)) random initializations A0 = {a(0)
0 ,a

(1)
0 , · · ·a(L)

0 }, there exists an initialization
a0 ∈ A0 that satisfies:

αa0(s)
⊤v

(s)
1 ≥ |a0(s)

⊤v
(s)
j |,∀j ≥ 2&j ∈ [k],∀s ∈ [p], (8)

a0(s)
⊤v

(s)
1 ≥ 1/

√
d.

with some constant α < 1.

Proof. This lemma simply comes from applying Lemma D.3 for p times and we need ≥ 2k log2(pδ)
to ensure the condition for each a0(s), s ∈ [p] holds. Therefore together we will need (2k log2(p/δ))

p

samples.

33

Lemma D.15 (Asymmetric tensor progress). For each a that satisfies Eqn. (8) with constant α < 1,
we have:

tan θ(T (a(1), · · ·a(s− 1), I,a(s+ 1), · · ·a(p)),v(s)
1) ≤ α tan θ(aj ,v

(j)
1),

for any j that is in [p] but is not s.When n ≥ Θ(dp log(d/δ) log3(n/δ)/ε̃2) andm = Θ(d log(n/δ)),
we have:

tan θ(T (a(1), · · ·a(s− 1), I,a(s+ 1), · · ·a(p)),v(s)
1)

≤(1 + α)/2 tan θ(aj ,v
(j)
1) + ε̃, ∀j ∈ [p]&j ̸= s.

The remaining proof is a simpler version for the symmetric tensor setting on conducting noisy power
method with the good initialization and iterative progress.

Finally due to the good initialization that satisfies (8) and together with Lemma D.15 we can finish
the proof for Theorem D.13.

E Proof of Theorem 3.21

E.1 Additional Notations

Here, we briefly introduce complex and real algebraic geometry. This section is based on [56, 64, 12,
69].

An (affine) algebraic variety is the common zero loci of a set of polynomials, defined as V =
Z(S) = {x ∈ Cn : f(x) = 0,∀f ∈ S} ⊆ An = Cn for some S ⊆ C[x1, · · · , xn]. A projective
variety U is a subset of Pn = (Cn+1 \ {0})/ ∼, where (x0, · · · , xn) ∼ k(x0, · · · , xn) for k ̸= 0
and S is a set of homogeneous polynomials of (n+ 1) variables.

For an affine variety V , its projectivization is the variety P(V) = {[x] : x ∈ V } ⊆ Pn−1, where [x]
is the line corresponding to x.

The Zariski topology is the topology generated by taking all varieties to be the closed sets.

A set is irreducible if it is not the union of two proper closed subsets.

A variety is irreducible if and only if it is irreducible under the Zariski topology.

The algebraic dimension d = dimV of a variety V is defined as the length of the longest chain
V0 ⊂ V1 ⊂ · · · ⊂ Vd = V , such that each Vi is irreducible.

A variety V is said to be admissible to a set of linear functions {ℓα : Cd → C}α∈I}, if for every ℓα,
we have dim(V ∩ {x ∈ Cd : ℓα(x) = 0}) < dimV .

A map f = (f1, · · · , fm) : An → Am is regular if each fi is a polynomial.

A algebraic set is the common real zero loci of a set of polynomials.

For a complex variety V ⊆ An, its real points form a algebraic set VR.

For an algebraic set VR, its real dimension d = dimR VR is the maximum number d such that VR is
locally semi-algebraically homeomorphic to the unit cube (0, 1)d, details can be found in [12].

E.2 Proof of Sample Complexity

Lemma E.1 ([69], Theorem 3.2). For i = 1, . . . , T , let Li : Cn × Cm → C be bilinear functions
and Vi be varieties given by homogeneous polynomials in Cn. Let V = V1× · · ·×VT ⊆ (Cn)N . Let
W ⊆ Cm be a variety given by homogeneous polynomials. In addition, we assume Vi is admissible
with respect to the linear functions {fw(·) = Li(·,w) : w ∈ W \ {0}}. When T ≥ dimW , let
δ = T − dimW + 1 ≥ 1. Then there exists a subvariety Z ⊆ V with dimZ ≤ dimV − δ such that
for any (x1, . . . ,xT) ∈ V \ Z and w ∈W , if L1(x1,w) = · · · = LT (xT ,w) = 0, then w = 0.

Lemma E.2 ([69], Lemma 3.1). Let V be an algebraic variety in Cd. Then dimR VR ≤ dimV .
Lemma E.3. Let W be a vector space. For vectors x1, · · · ,xT , if the map f : w 7→
(⟨x1, w⟩, . . . , ⟨xT ,w⟩) is not injective over W −W := {w1−w2 : w1,w2 ∈W}, then there exists
v ∈W such that f(v) = 0.

34

Proof. Suppose f(w1) = f(w2). Let v = w1 − w2. Then v ∈ W −W and f(v) = f(w1) −
f(w2) = 0.

Definition E.4 (Tensorization). Let f be a polynomial of x1, · · · , xd with degree deg f ≤ p. Then
every p-tensor Wf satisfying ⟨Wf ,Xx⟩ = f(x) is said to be a tensorization of the polynomial f ,
where Xx is the tensorization of x itself:

Xx =

(
1
x

)⊗p

. (9)

Let F be a class of polynomials. A variety of tensorization of F is defined to be an irredicuble closed
variety defined by homogeneous polynomials W , such that for every f ∈ F , there is a tensorization
Wf of f , such that W ∋ Wf contains its tensorization. Note that neither tensorization of f nor
variety of tensorization of F is unique.

We define the variety of tensorization of x as follows. (Note that this is uniquely defined.) Consider
the regular map

φ1 : Cd → C(d+1)p , x 7→
(
1
x

)⊗p

, (10)

the tensorization of x is defined as Vi = P(Imφ1).

Note that Vi is irreducible because φ1 is regular and Cd is irreducible. By [56, Theorem 9.9], its
dimension is given by

dimVi ≤ dim Imφ1 + 1 ≤ dimCd + 1 = d+ 1. (11)

Lemma E.5. For any non-zero polynomial f ̸= 0 with deg f ≤ p. Let Wf be a tensorization of f .
Then Vi is admissible with respect to {Li(·) = ⟨·,Wf ⟩}.

Proof. Since Vi is irredicuble and Li is a linear function, it suffices to verify that ⟨Xx,Wf ⟩ ≠ 0 [69].
But according to Definition E.4, ⟨Xx,Wf ⟩ ≠ 0 is equivalent to

f(x) =

〈
Wf ,

(
1
x

)⊗p
〉
̸= 0. (12)

Since f ̸= 0, we must have f(x) ̸= 0 for some x, which gives a non-zero Xx ̸= 0 for the above
equation: ⟨Xx,Wf ⟩ ≠ 0, and we conclude that Vi is admissible.

Lemma E.6. Let V ⊂ Cn be a (Zariski) closed proper subset, V ̸= Cn. Then V is a null set, i.e. it
has (Lebesgue) measure zero.

Proof. Suppose V = Z(S) is the vanishing set for some S ⊆ C[x1, · · · , xn]. Since V ̸= Cn,
let f ∈ S, we have V ⊆ Z(f), so it suffices to show Leb(Z(f)) = 0, which is because
Z(f) = f−1(0),Leb({0}) = 0, f is a continuous function (under Euclidean topology), and
Leb({x : ∇f(x) = 0}) = 0.

Theorem E.7. Assume that the reward function class is a class of polynomials F . Let W be (one
of) its variety of tensorization. If we sample T ≥ dimW times, and the sample points satisfying
(x1, · · · ,xT) ∈ (Cd)T \Z for some null set Z. Then we can uniquely determine the reward function
f from the observed rewards (f(x1), · · · , f(xT)).

Proof. Let n = m = (d+1)p, Li(x,w) = ⟨x,w⟩, V = V1× · · · ×VT , where Vi is as in Definition
E.4. By [64, Example 1.33], we have dimV ≤ (d+ 1)T . Since W is a vareity of tensorization, by
Lemma E.5, Vi is admissible with respect to {Li(·,W) : W ∈W}.
We are now ready to apply Lemma E.1, which gives that when T ≥ dimW , there exists subvariety
Z ⊂ V with dimZ < dimV ≤ rT , and for any (X1, · · · ,XT) ∈ V \ Z and any W ∈ W , if
⟨X1,W⟩ = · · · = ⟨XT ,W⟩ = 0, then W = 0. By Lemma E.3, we have for every (X1, · · · ,XT) ∈
V \ Z, the map W 7→ (⟨X1,W⟩, · · · , ⟨XT ,W⟩) is injective, so Wf and thus f can be uniquely
recovered from the observed rewards.

35

Finally, we show that (φ−1
1 × · · · × φ−1

1)(Z) is a null set, where φ1 is as in (10). According to
the proof of Lemma E.1 by [69], we find that Z is also defined by homogeneous polynomials. We
take the slice Z ′ = {x ∈ Z : x11 = · · · = xT1 = 1}, V ′ = {x ∈ V : x11 = · · · = xT1 = 1},
(here xij is the j-th coordinate of xi), then Z ′, V ′ are varieties. Since dimZ < dimV , we have
dimZ ′ = dimZ − T < dimV − T = dimV ′ and Z ′ ⊂ V ′.

Now consider the regular map φ′
1 : V ′ → (Cd)T ,((

1
x1

)⊗p

, · · · ,
(

1
x1

)⊗p
)
7→ (x1, · · · ,xT). (13)

Then φ′
1(Z

′), φ′
1(V

′) are both varieties. By [56, Lemma 9.9], we have dimφ′
1(Z

′) ≤ dimZ.
Since φ′

1(V) = (Cd)T and dimφ′
1(V

′) ≤ dimV ′ = dimV − T ≤ (d + 1)T − T , we have
dimV = dimφ′

1(V) = dT and as a result, dimφ′
1(Z) ≤ dimZ < dimV = dT . By Lemma

E.6, φ′
1(Z) is a null set. Since (x1, · · · ,xT) /∈ φ′

4(Z) implies that (φ1(x1), · · · , φ1(xT)) /∈ Z, we
conclude the proof.

Theorem E.7 is stated for complex sample points. Next we extend it to the real case.
Lemma E.8. In Lemma E.1, if we assume in addition that dimR VR = dimV , then the conclusion
can be enhanced to ensure that Z is a real subvariety and dimR Z < dimR VR.
Lemma E.9. Let V ⊂ Rn be a (Zariski) closed proper subset, V ̸= Rn. Then V is a null set.

The proof of Lemma E.9 is the same as that of Lemma E.6.
Theorem E.10. We can additionally assume xi ∈ Rd in Theorem E.7.

Proof. We verify that dimV = dimR VR, where V is defined in the proof of Theorem E.7, but this
follows clearly by [12, Corollary 2.8.2]. We conclude the proof by applying Lemma E.8.

Finally, we apply Theorem E.10 to two concrete classes of polynomials, namely Examples 3.22 and
3.23. For Example 3.22, we construct its variety of tensorization ofRV as follows. We first construct
the tensorization of each polynomial. We define

Wf =

r∑
i=1

ai

(
1
wi

)⊗pi

⊗
(
1
0

)⊗(p−pi)

. (14)

Next we construct the variety of tensorization W . Consider the map φ2 : (Cd)r → C(d+1)p ,

φ2(w1, · · · ,wr) =

r∑
i=1

(
1
wi

)⊗pi

⊗
(
1
0

)⊗(p−pi)

, (15)

and let Y = P(Imφ2). Similar to Vi, we can prove that Y is an irredicuble closed variety defined by
homogeneous polynomials with dimY ≤ dr + 1. Next consider the map φ′

2 : (Cd)2r → C(d+1)p ,

φ′
2(w1, · · · ,w2r) = φ2(w1, · · · ,wr)− φ2(wr+1, · · · ,w2r) (16)

and let W = P(Imφ′
2). Similar to Y , we can prove that W is an irredicuble closed variety defined

by homogeneous polynomials with dimW ≤ 2dr+1. Together with Theorem E.10, we can conlude
that the optimal action for Example 3.22 can be uniquely determined using at most 2dr + 1 samples.

For Example 3.23, we construct W as follows. Let

U = (w1 · · · wk), q =
∑

I⊆[k]:|I|≤p

aIx
I ,

then we construct the tensorization of each polynomial by

Wf =
∑

I⊆[k]:|I|≤p

aI
⊗
i∈I

(
1
wi

)
⊗
(
1
0

)⊗(p−|I|)

. (17)

36

Then we have f(x) = ⟨Wf ,Xx⟩. To reduce the dimension of W and get better sample complexity
bound, we construct in a manner slightly different from what we did for Example 3.22. Consider the
map φ3 : (Cd)k × C(k+1)p → C(d+1)p ,

(w1, · · · ,wk)× (aI : I ⊆ [k], |I| ≤ p) 7→Wf , (18)

where Wf is as defined in (17). Let Y = P(Imφ3) and W = P(Imφ3 − Imφ3). We end up with
dimY =≤ dk + (k + 1)p + 1,dimW ≤ 2(dk + (k + 1)p) + 1. So we conlude that the optimal
action for Example 3.23 can be uniquely determined using at most 2dk + 2(k + 1)p + 1 samples.

F Omitted Proof for Lower Bounds with UCB Algorithms

In this section, we provide the proof for the lower bounds for learning with UCB algorithms in
Subsection G.0.1.

Notation Recall that we use Λ to denote the subset of the p-th multi-indices Λ = {(α1, . . . , αp)|1 ≤
α1 < · · · < αp ≤ d}. For an α = (α1, . . . , αp) ∈ Λ, denote Mα = eα1

⊗ · · · ⊗ eαp
, Aα =

(eα1
+ · · ·+ eαp

)⊗p. The model spaceM is a subset of rank-1 p-th order tensors, which is defined

asM =
{
Mα|α ∈ Λ

}
. We define the core action set A0 as A0 = {eα1

+ · · ·+ eαp
|α ∈ Λ}. The

action set A is the convex hull of A0: A = conv(A0). Assume that the ground-truth parameter is
M∗ = Mα∗ ∈ M. At round t, the algorithm chooses an action at ∈ A, and gets the noiseless
reward rt = r(M∗,at) = ⟨M∗, (at)

⊗p⟩ =
∏p

i=1⟨eα∗
i
,at⟩.

F.1 Proof for Theorem G.2

We introduce a lemma showing that if the action set is restricted to the core action set A0, then at
least |A0| − 1 =

(
d
p

)
− 1 actions are needed to identify the ground-truth.

Lemma F.1. If the actions are restricted to A0, then for the noiseless degree-p polynomial bandits,
any algorithm needs to play at least

(
d
p

)
− 1 actions to determine M∗ in the worst case. Furthermore,

the worst-case cumulative regret at round T can be lower bounded by

R(T) ≥ min{T,
(
d

p

)
− 1}.

proof of Lemma F.1. For any α and α′, the reward of playing eα1
+ · · ·+ eαp

when the ground-truth
model is M ′

α is

⟨M ′
α, (eα1

+ · · ·+ eαp
)⊗p⟩ =

p∏
i=1

⟨eα′
i
, eα1

+ · · ·+ eαp
⟩

=

p∏
i=1

I{α′
i ∈ α}

=

{
1, if α = α′

0, otherwise .

Hence, no matter how the algorithm adaptively chooses the actions, in the worst case
(
d
p

)
− 1 actions

are needed to determine M∗. Also notice that the reward for eα1
+ · · · + eαp

is zero if α ̸= α∗.
Therefore the regret lower bound follows.

Next, we show that even when the action set is unrestricted, any UCB algorithm fails to explore
in an unrestricted way. This is because the optimistic mechanism forbids the algorithm to play an
informative action that is known to be low reward for all models in the confidence set. We first recall
the definition of UCB algorithms.

37

UCB Algorithms The UCB algorithms sequentially maintain a confidence set Ct after playing
actions a1, . . . ,at. Then UCB algorithms play

at+1 ∈ argmax
a∈A

UCBt(a),

where
UCBt(a) = max

M∈Ct

⟨M , (a)⊗p⟩.

proof of Theorem G.2. We prove that even if the action set is unrestrcited, the optimistic mechanism
in the UCB algorithm above forces it to choose actions in the restricted action set A0.

Assume M∗ = Mα∗ . Next we show that for all a ∈ A − A0 (where the minus sign should be
understood as set difference), we have

UCBt(a) < 1.

For all a ∈ A, since A = conv(A0), we can write

a =
∑
α∈Λ

pα(eα1
+ · · ·+ eαp

),

where
∑

α∈Λ pα = 1 and pα ≥ 0. Therefore,

UCBt(a) = max
M∈Ct

⟨M , (a)⊗p⟩

≤ max
M∈M

⟨M , (a)⊗p⟩

= max
α′
⟨Mα′ , (a)⊗p⟩

= max
α′

p∏
i=1

⟨eα′
i
,a⟩.

Plug in the expression of a, we have

⟨eα′
i
,a⟩ =

∑
α

pα⟨eα′
i
, eα1

+ · · ·+ eαp
⟩

=
∑
α

pαI{α′
i ∈ α}

≤
∑
α

pα = 1.

Therefore, for any fixed α′ = (α′
1, . . . , α

′
p),

p∏
i=1

⟨eα′
i
,a⟩ =

(∑
α

pαI{α′
1 ∈ α}

)
· · ·
(∑

α

pαI{α′
p ∈ α}

)
≤ 1,

where the equality holds if and only if for any pα > 0, α = α′, which is equivalent to a =
eα′

1
+ · · ·+eα′

p
. Therefore, if a ∈ A−A0, for any α′ ∈ Λ, we have

∏p
i=1⟨eα′

i
,a⟩ < 1. This means

UCBt(a) < 1.

Meanwhile, we can see that for the action a∗ = eα∗
1
+ · · ·+ eα∗

p
∈ A0,

UCBt(a
∗) = max

M∈Ct

⟨M , (a∗)⊗p⟩

≥ ⟨M∗, (a∗)⊗p⟩ (M∗ ∈ Ct)
= ⟨M∗,Aα∗⟩ = 1.

Therefore, we see that (A − A0) ∩ argmaxa∈A UCBt(a) = ∅, which means at+1 ∈ A0 for all
t ≥ 0. Therefore, by Lemma F.1, the theorem holds.

38

F.2 O(d) Actions via Solving Polynomial Equations

Firstly, we verify that the model falls into the category of Example 3.23 with k = p. For every α ∈ Λ,
the reward of playing a when the ground-truth model is Mα is

⟨Mα, (a)
⊗p⟩ =

p∏
i=1

⟨eαi
,a⟩,

which can be written as q0(Uαa), where q0(x1, . . . , xp) = x1x2 · · ·xp and Uα ∈ Rp×d is a matrix
with eαi

as the i-th row.

Secondly, we show that since the ground-truth model is p-homogenous, we can extend the action
set to conv(A,0). This is because for every action of the form ca, where 0 ≤ c ≤ 1 and a ∈ A, the
reward is cp times the reward at a. Therefore, to get the reward at ca, we only need to play at a and
multiply the reward by cp.

Notice that conv(A,0) is of positive Lebesgue measure. By Theorem 3.21, we know that only
2(dk + (p+ 1)p) = O(d) actions are needed to determine the optimal action almost surely.

G Proof of Section 3.3.2

We present the proof of Theorem 3.18 in the following.

Proof. We overload the notation and use [d] to denote the set {e1, e2, . . . , ed}. The hard instances
are chosen in ∆ · [d]p, i.e. (θ1, . . . ,θp) = ∆ · (θ̂1, . . . , θ̂p) where (θ̂1, . . . , θ̂p) ∈ [d]p. For a group
of vectors θ1, . . . ,θp ∈ [d], we use

supp(θ1, . . . ,θp) := (max
i∈[p]

(θi)1, . . . ,max
i∈[p]

(θi)d) ∈ {0, 1}d

to denote the support of these vectors. We use a(t) ∈ Rd to denote the action in t-th episode.

We use P(θ1,...,θp) to denote the measure on outcomes induced by the interaction of the fixed policy
and the bandit paramterised by r =

∏p
i=1(θ

⊤
i a) + ϵ. Specifically, We use P0 to denote the measure

on outcomes induced by the interaction of the fixed policy and the pure noise bandit r = ϵ.

R(d, p, T)

≥ 1

dp

∑
(θ1,...,θp)∈∆·[d]p

E(θ1,...,θp)

[
T∆p/pp/2 −

T∑
t=1

p∏
i=1

(θ⊤
i a

(t))

]

=
∆p

dp

∑
(θ1,...,θp)∈∆·[d]p

(
T/pp/2 − E(θ1,...,θp)

[
T∑

t=1

p∏
i=1

(θ̂⊤
i a

(t))

])

≥ ∆p

dp

∑
(θ1,...,θp)∈∆·[d]p

(
T/pp/2 − E0

[
T∑

t=1

p∏
i=1

(θ̂⊤
i a

(t))

]
− T∥P0 − P(θ1,...,θp)∥TV

)

≥ ∆p

dp

∑
(θ1,...,θp)∈∆·[d]p

(
T/pp/2 − E0

[
T∑

t=1

p∏
i=1

(θ̂⊤
i a

(t))

]
− T

√
DKL(P0||P(θ1,...,θp))

)

≥ ∆p

dp

∑
(θ1,...,θp)∈∆·[d]p

T/pp/2 − E0

[
T∑

t=1

p∏
i=1

(θ̂⊤
i a

(t))

]
− T

√√√√∆2pE0

[
T∑

t=1

p∏
i=1

(θ̂⊤
i a

(t))2

]
≥ ∆p

dp

dpT
p

p
2

− E0

 ∑
(θ̂1,...,θ̂p)∈[d]p

T∑
t=1

p∏
i=1

(θ̂⊤
i a

(t))

− Td p
2∆p

√√√√√E0

 ∑
(θ̂1,...,θ̂p)∈[d]p

T∑
t=1

p∏
i=1

(θ̂⊤
i a

(t))2

39

where the first step comes from

Regret ≥ E(θ1,...,θp)

[
T∆p/pp/2 −

T∑
t=1

p∏
i=1

(θ⊤
i a

(t))

]
(the optimal action in hindsight is a = supp(θ1, . . . ,θp)/

√
p); the second step comes from

(θ1, . . . ,θp) = ∆ · (θ̂1, . . . , θ̂p) and algebra; the third step comes from
∣∣∣∑T

t=1

∏p
i=1(θ̂

⊤
i a

(t))
∣∣∣ ≤ T ;

the fourth step comes from Pinsker’s inequality; the fifth step comes from

DKL(P0||Pθ1,...,θp
) = E0

[
T∑

t=1

DKL

(
N(0, 1)||N(

p∏
i=1

(θ⊤
i a

(t)), 1)

)]

= ∆2pE0

[
T∑

t=1

p∏
i=1

(θ̂⊤
i a

(t))2

]
and the final step comes from Jensen’s inequality and algebra.

Notice that

E0

 ∑
(θ̂1,...,θ̂p)∈[d]p

T∑
t=1

p∏
i=1

(θ̂⊤
i a

(t))

 = E0

 ∑
(j1,...,jp)∈[d]p

T∑
t=1

p∏
i=1

(a
(t)
ji
)

= E0

 T∑
t=1

p∏
i=1

(

d∑
j=1

a
(t)
j)

≤ E0

[
T∑

t=1

p∏
i=1

∥a(t)∥1

]
≤ dp/2T

and

E0

 ∑
(θ̂1,...,θ̂p)∈[d]p

T∑
t=1

p∏
i=1

(θ̂⊤
i a

(t))2

 = E0

 ∑
(j1,...,jp)∈[d]p

T∑
t=1

p∏
i=1

(a
(t)
ji
)2

= E0

[
T∑

t=1

p∏
i=1

∥a(t)∥22

]
≤ T

where we used ∥a(t)∥2 ≤ 1,∀t ∈ [T]. Therefore plugging back we have

R(d, p, T) ≥ ∆p

dp

(
dpT

p
p
2

− d
p
2 T − Td

p
2∆p
√
T

)
and finally letting ∆p =

√
dp

4Tpp leads to

R(d, p, T) ≥ O(
√
dpT/pp).

Remark G.1. Better result O(
√
dpT) holds for bandits r =

∏p
i=1(θ

⊤
i ai) + ϵ where ai ∈

Rd, ∥ai∥2 ≤ 1.

For completeness, we show the proof of the above remark.

Proof. We overload the notation and use [d] to denote the set {e1, e2, . . . , ed}. The hard instances
are chosen in ∆ · [d]p, i.e. (θ1, . . . ,θp) = ∆ · (θ̂1, . . . , θ̂p) where (θ̂1, . . . , θ̂p) ∈ [d]p. We use
a
(t)
i ∈ Rd to denote the i-th action in t-th episode, where i ∈ [p], t ∈ [T].

40

We use P(θ1,...,θp) to indicate the measure on outcomes induced by the interaction of the fixed policy
and the bandit paramterised by r =

∏p
i=1(θ

⊤
i ai)+ ϵ. Specifically, We use P0 to indicate the measure

on outcomes induced by the interaction of the fixed policy and the pure noise bandit r = ϵ.

R(d, p, T)

≥ 1

dp

∑
(θ1,...,θp)∈∆·[d]p

E(θ1,...,θp)

[
T∆p −

T∑
t=1

p∏
i=1

(θ⊤
i a

(t)
i)

]

=
∆p

dp

∑
(θ1,...,θp)∈∆·[d]p

(
T − E(θ1,...,θp)

[
T∑

t=1

p∏
i=1

(θ̂⊤
i a

(t)
i)

])

≥ ∆p

dp

∑
(θ1,...,θp)∈∆·[d]p

(
T − E0

[
T∑

t=1

p∏
i=1

(θ̂⊤
i a

(t)
i)

]
− T∥P0 − P(θ1,...,θp)∥TV

)

≥ ∆p

dp

∑
(θ1,...,θp)∈∆·[d]p

(
T − E0

[
T∑

t=1

p∏
i=1

(θ̂⊤
i a

(t)
i)

]
− T

√
DKL(P0||P(θ1,...,θp))

)

≥ ∆p

dp

∑
(θ1,...,θp)∈∆·[d]p

T − E0

[
T∑

t=1

p∏
i=1

(θ̂⊤
i a

(t)
i)

]
− T

√√√√∆2pE0

[
T∑

t=1

p∏
i=1

(θ̂⊤
i a

(t)
i)2

]
≥ ∆p

dp

dpT − E0

 ∑
(θ̂1,...,θ̂p)∈[d]p

T∑
t=1

p∏
i=1

(θ̂⊤
i a

(t)
i)

− Td p
2∆p

√√√√√E0

 ∑
(θ̂1,...,θ̂p)∈[d]p

T∑
t=1

p∏
i=1

(θ̂⊤
i a

(t)
i)2

where the first step comes from

Regret ≥ E(θ1,...,θp)

[
T∆p −

T∑
t=1

p∏
i=1

(θ⊤
i a

(t)
i)

]

(the optimal action in hindsight is ai = θ̂i); the second step comes from (θ1, . . . ,θp) = ∆ ·
(θ̂1, . . . , θ̂p) and algebra; the third step comes from

∣∣∣∑T
t=1

∏p
i=1(θ̂

⊤
i a

(t)
i)
∣∣∣ ≤ T ; the fourth step

comes from Pinsker’s inequality; the fifth step comes from

DKL(P0||Pθ1,...,θp) = E0

[
T∑

t=1

DKL

(
N(0, 1)||N(

p∏
i=1

(θ⊤
i a

(t)
i), 1)

)]

= ∆2pE0

[
T∑

t=1

p∏
i=1

(θ̂⊤
i a

(t)
i)2

]
and the final step comes from Jensen’s inequality and algebra.

Notice that

E0

 ∑
(θ̂1,...,θ̂p)∈[d]p

T∑
t=1

p∏
i=1

(θ̂⊤
i a

(t)
i)

 = E0

 ∑
(j1,...,jp)∈[d]p

T∑
t=1

p∏
i=1

(
(a

(t)
i)ji

)
= E0

 T∑
t=1

p∏
i=1

 d∑
j=1

(a
(t)
i)j

≤ E0

[
T∑

t=1

p∏
i=1

∥a(t)
i ∥1

]
≤ dp/2T

41

and

E0

 ∑
(θ̂1,...,θ̂p)∈[d]p

T∑
t=1

p∏
i=1

(θ̂⊤
i a

(t)
i)2

 = E0

 ∑
(j1,...,jp)∈[d]p

T∑
t=1

p∏
i=1

(
(a

(t)
i)ji

)2
= E0

[
T∑

t=1

p∏
i=1

∥a(t)
i ∥

2
2

]
≤ T

where we used ∥a(t)
i ∥2 ≤ 1,∀t ∈ [T]. Therefore plugging back we have

R(d, p, T) ≥ ∆p

dp

(
dpT − d

p
2 T − Td

p
2∆p
√
T
)

and finally letting ∆p =
√

dp

4T leads to

R(d, p, T) ≥ O(
√
dpT).

We present the proof of Theorem 3.19 in the following.

Proof. Denote the optimal action in hindsight as a∗ = supp(θ1, . . . ,θp)/
√
p. From the proof of

Theorem 3.18 we know that if T ≤ 1
4pp · dp

∆2p , then

1

dp

∑
(θ1,...,θp)∈∆·[d]p

E(θ1,...,θp)

[
p∏

i=1

(θ⊤
i a

∗)−
p∏

i=1

(θ⊤
i a

(t))

]

≥ ∆p

dp

(
dp

p
p
2

− d
p
2 − d

p
2∆p
√
T

)
≥ ∆p

4p
p
2

≥ 1

4
· 1
dp

∑
(θ1,...,θp)∈∆·[d]p

E(θ1,...,θp)

[
p∏

i=1

(θ⊤
i a

∗)

]
which indicates the following

inf
π

sup
(θ1,...,θp)

E(θ1,...,θp)

[
3

4
·

p∏
i=1

(θ⊤
i a

∗)−
p∏

i=1

(θ⊤
i a

(t))

]
≥ 0.

G.0.1 Lower Bounds with UCB Algorithms

In this subsection, we construct a hard bandit problem where the rewards are noiseless degree-p
polynomial, and show that any UCB algorithm needs at least Ω(dp) actions to learn the optimal
action. On the contrary, Theorem 3.21 shows that by playing actions randomly, we only need
2(dk + (p+ 1)p) = O(d) actions.

Hard Case Construction Let ei denotes the i-th standard orthonormal basis of Rd, i.e., ei has
only one 1 at the i-th entry and 0’s for other entries. We define a p-th multi-indices set Λ as
Λ = {(α1, . . . , αp)|1 ≤ α1 < · · · < αp ≤ d}. For an α = (α1, . . . , αp) ∈ Λ, denote Mα =

eα1
⊗· · ·⊗eαp

. Then the model spaceM is defined asM =
{
Mα|α ∈ Λ

}
, which is a subset of rank-

1 p-th order tensors. The action set A is defined as A = conv({eα1
+ · · ·+ eαp

|α ∈ Λ}). Assume
that the ground-truth parameter is M∗ = Mα∗ ∈ M. The noiseless reward rt = r(M∗,at) =
⟨M∗, (at)

⊗p⟩ =
∏p

i=1⟨eα∗
i
,at⟩ is a polynomial of at and falls into the case of Example 3.23.

42

UCB Algorithms The UCB algorithms sequentially maintain a confidence set Ct after playing
actions a1, . . . ,at. Then UCB algorithms play at+1 ∈ argmaxa∈A UCBt(a), where UCBt(a) =
maxM∈Ct⟨M , (a)⊗p⟩.
Theorem G.2. Assume that for each t ≥ 0, the confidence set Ct contains the ground-truth model,
i.e., M∗ ∈ Ct. Then for the noiseless degree-p polynomial bandits, any UCB algorithm needs to play
at least

(
d
p

)
− 1 actions to distinguish models inM. Furthermore, the worst-case cumulative regret

at round T can be lower bounded by

R(T) ≥ min{T,
(
d

p

)
− 1}.

Theorem G.2 shows the failure of the optimistic mechanism, which forbids the algorithm to play
an informative action that is known to be of low reward for all models in the confidence set. On
the contrary, the reward function class falls into the form of q(Ua), therefore, by playing actions
randomly6, we only need O(d) actions as Theorem 3.21 suggests.

6Careful readers may notice that A is of measure zero in this setting. However, since the reward function is a
homogenous polynomial of degree p, we can actually obtain the rewards on conv(A,0), which is of positive
measure.

43

	Omitted Related Work
	Additional Preliminaries
	Omitted Proofs for Quadratic Reward
	Omitted Proofs of Main Results for Stochastic Bandit Eigenvector Problem
	Omitted Details of Main Results of Low-Rank Linear Reward
	Technical Details for Quadratic Reward
	Omitted Proof for RL with Quadratic Q function

	Technical details for General Tensor Reward
	Technical Details for Symmetric Setting
	Proof Sketch of Theorem 3.14

	PAC to Regret Bound Relation.
	Variance and Noise Concentration
	The asymmetric setting

	Omitted Details for Asymmetric Tensors

	Proof of Theorem 3.21
	Additional Notations
	Proof of Sample Complexity

	Omitted Proof for Lower Bounds with UCB Algorithms
	Proof for Theorem G.2
	O(d) Actions via Solving Polynomial Equations

	Proof of Section 3.3.2
	Lower Bounds with UCB Algorithms

