
A Proofs of Propositions

For Lemmas 1 and 2, we first introduce some additional quantities to enable more compact notation; in
particular, we adopt the value-function terminology from imitation learning. The following definitions
are standard and immediate from the mapping given by Corollary 6, but are explicitly stated here for
completeness. Recall that fs : H×X → [−c, c] for some finite c. At any state ht, define the “value
function” to be the (forward-looking) expected sum of future quantities fs(hu, xu) for u = t, ..., T .
Specifically, let V πθs,t (h) : H → [−cT, cT] and Qπθs,t(h, x) : H×X → [−cT, cT] be given as follows:

V πθs,t (h) := Eτ∼pθ [
∑T
u=tfs(hu, xu)|ht = h] (13)

Qπθs,t(h, x) := Eτ∼pθ [
∑T
u=tfs(hu, xu)|ht = h, xt = x] (14)

where the notation for both V πθs,t and Qπθs,t is explicit as to their dependence on the policy πθ being
followed, the source s under consideration, and the time t—unlike in typical imitation learning, we
operate in a non-stationary (and non-Markovian) setting. For Lemma 1, we require an additional result:

Lemma 7 (Expected Quality Difference) ∆F̄s(θ) = TE h∼µs
x∼πs(·|h)

Qπθs,t(h, x)−TE h∼µs
x∼πθ(·|h)

Qπθs,t(h, x).

Proof. From Definition 2,

∆F̄s(θ) = Eτ∼ps
∑
t fs(ht, xt)− Eτ∼pθ

∑
t fs(ht, xt) (15)

= Eτ∼ps
∑
t(fs(ht, xt) + V πθs,t (ht)− V πθs,t (ht))− Eτ∼pθ

∑
t fs(ht, xt) (16)

= Eτ∼ps
∑
t(fs(ht, xt) + V πθs,t+1(ht+1)− V πθs,t (ht)) (17)

= Eτ∼ps
∑
t(Q

πθ
s,t(ht, xt)− V

πθ
s,t (ht)) (18)

= TEh∼µs,x∼πs(·|h)(Q
πθ
s,t(h, x)− V πθs,t (h)) (19)

= TEh∼µs,x∼πs(·|h)Q
πθ
s,t(h, x)− TEh∼µs,x∼πθ(·|h)Q

πθ
s,t(h, x) (20)

where (16) to (17) telescopes terms, and we use the fact V πs,T+1(h) = 0. This derivation can be view-
ed as a non-stationary, non-Markovian analogue of the “performance difference” result in [103]. �

Lemma 1 Let maxf∈RH×X
(
E h∼µs
x∼πs(·|h)

f(h, x)−E h∼µs
x∼πθ(·|h)

f(h, x)
)
≤ ε. Then ∆F̄s(θ) ∈ O(T 2ε).

Proof. From Lemma 7,

∆F̄s(θ) = TEh∼µs,x∼πs(·|h)Q
πθ
s,t(h, x)− TEh∼µs,x∼πθ(·|h)Q

πθ
s,t(h) (21)

= TEh∼µs [Ex∼πs(·|h)Q
πθ
s,t(h, x)− Ex∼πθ(·|h)Q

πθ
s,t(h, x)] (22)

≤ maxQ∈[−cT,cT]H×XTEh∼µs [Ex∼πs(·|h)Q(h, x)− Ex∼πθ(·|h)Q(h, x)] (23)

≤ maxf∈RH×XTEh∼µs [Ex∼πs(·|h)Tf(h, x)− Ex∼πθ(·|h)Tf(h, x)] (24)

≤ T 2ε (25)

where the final inequality applies the assumption from the lemma. Note that this is similar in spirit to
various results for error accumulation in imitation learning through behavioral cloning. The most
well-known one is [61], where a quadratic bound is given with respect to the probability that the
learned policy makes a small mistake. Another well-known one is in [104], where the bound is given
with respect to sample complexity. Here, in order to motivate our perspective from the notion of
expected quality difference, our bound is given with respect to the moment-matching discrepancy,
and can be interpreted as a non-Markovian variant of the “off-policy upper bound” result in [105]. �

Lemma 2 Let maxf∈RH×X
(
E h∼µs
x∼πs(·|h)

f(h, x) − E h∼µθ
x∼πθ(·|h)

f(h, x)
)
≤ ε. Then ∆F̄s(θ) ∈ O(Tε).

Proof. From Definition 1,

∆F̄s(θ) = Eτ∼ps
∑
t fs(ht, xt)− Eτ∼pθ

∑
t fs(ht, xt) (26)

= TEh∼µs,πs(·|h)fs(h, x)− TEh∼µθ,πθ(·|h)fs(h, x) (27)

≤ maxf∈[−c,c]H×X (TEh∼µs,x∼πs(·|h)f(h, x)− TEh∼µθ,x∼πθ(·|h)f(h, x)) (28)

≤ maxf∈RH×X (TEh∼µs,x∼πs(·|h)f(h, x)− TEh∼µθ,x∼πθ(·|h)f(h, x)) (29)

≤ Tε (30)

18

where the final inequality applies the assumption from the lemma. Note that this is similar in spirit
to various results for error accumulation in imitation learning through distribution matching. For
instance, [106] shows a bound in terms of divergences in occupancy measures, while [104] shows a
bound in terms of sample complexity. Here, in order to motivate our perspective from the notion of
expected quality difference, our bound is given with respect to the moment-matching discrepancy,
and can similarly be interpreted as a non-Markovian variant of the “reward upper bound” in [105]. �

For Propositions 3 and 4, we use the fact that training the structured classifier (Definition 2) using the
energy loss (Equation 11) amounts to a specific form of (sequence-wise) noise-contrastive estimation,
and where the “noise” pθ employed happens to be adaptively trained via the policy loss (Equation 12):

Proposition 3 (Global Optimality) Let fφ ∈ RH×X , and let pθ ∈ ∆(T) be any distribution satisfy-
ing positivity: ps(τ) > 0⇒ pθ(τ) > 0 (this does not require πθ be optimal for fφ). ThenLenergy(φ; θ)
is globally minimized at Fφ(·)− logZφ = log ps(·), whence pφ is self-normalized with unit integral.

Proof. Briefly, a noise-contrastive estimator [79] operates as follows: Suppose we have some data
y ∈ Y distributed as pdata(y). Consider that we wish to learn a model distribution pmodel, as follows:

pmodel(y; a, b) := p̃model(y; a) exp(b) (31)

parameterized by a and b, where we emphasize that the model is not necessarily normalized as b is
simply a learnable parameter. Also denote any noise distribution that can be sampled and evaluated:

pnoise(y; c) (32)

parameterized by c. Now, define a classifier d(· ; a, b, c) as follows, which we shall train to discriminate
between pdata and pnoise—that is, given some y, to represent the (posterior) probability that it is real:

d(y; a, b, c) := σ(log pmodel(y; a, b)− log pnoise(y; c)) (33)

where σ indicates the usual sigmoid function, i.e. σ(u) := 1/(1 + exp(−u)) for any u ∈ R. The
noise contrastive estimator maximizes the likelihood of the parameters a, b in d given pdata and pnoise:

Lclass(a, b; c) := −Ey∼pdata log d(y; a, b, c)− Ey∼pnoise log
(
1− d(y; a, b, c)

)
(34)

In this optimization problem, a basic result is that Lclass attains a minimum at log pmodel = log pdata
and that there are no other minima if pnoise is chosen such that pdata(y) > 0⇒ pnoise(y) > 0 holds:
see the “nonparametric estimation” result in [52]. Now, let us consider the following correspondence:(

Y, pdata, p̃model(· ; a), b, pnoise(· ; c)
)

:=
(
T , ps, p̃φ,− logZφ, pθ

)
(35)

In other words, let the underlying space be that of trajectories Y := T ; let the data distribution be
pdata := ps; let the model distribution be given by the un-normalized energy model p̃model(· ; a) := p̃φ
and partition function b = − logZφ; and let the noise distribution be given by rollouts of the policy,
pnoise(· ; c) := pθ. Then it is easy to see that the classifier and its loss function correspond as follows:

dθ,φ(·) = d(· ; a, b, c)
Lenergy(φ; θ) = Lclass(a, b; c)

(36)

But then the optimality result above directly maps to the statement that Lenergy is globally minimized
at Fφ(·)− logZφ = log ps(·) assuming that the positivity condition ps(τ) > 0⇒ pθ(τ) > 0 holds.
Technicality: Note that here p̃φ is constrained as Fφ(τ) :=

∑
t fφ(ht, xt) instead of being arbitrarily

parameterizable, but this does not affect realizability as we assumed that Fs(τ) :=
∑
t fs(ht, xt). �

Proposition 4 (Asymptotic Consistency) Let φ∗ denote the minimizer for Lenergy(φ; θ), and let φ̂∗M
denote the minimizer for its finite-data approximation—that is, where the expectations over ps and
pθ are approximated by M samples. Then under some mild conditions, as M increases φ̂∗M

p−→ φ∗.

Proof. Continuing the exposition above, let LMclass(a, b; c) indicate the finite-data approximation of
Lclass(a, b; c)—that is, by using M samples to approximate the true expectations over pdata and pnoise:

LMclass(a, b; c) := − 1
M

∑M
m=1 log d(y

(m)
data ; a, b, c)− 1

M

∑M
m=1 log

(
1− d(y

(m)
noise; a, b, c)

)
(37)

where the samples are drawn as y
(m)
data ∼ pdata and y

(m)
noise ∼ pnoise. Consider the following conditions:

19

1. Positivity: pdata(y) > 0⇒ pnoise(y) > 0;
2. Uniform convergence: supa,b |LMclass(a, b; c)− Lclass(a, b; c)|

p−→ 0; and
3. The following matrix is full-rank: I :=

∫
g(y)g(y)>pdata(y)pnoise(y)/(pdata(y)+pnoise(y))dy,

where g(y) := ∇(a,b) log pmodel(y; a, b)|(a∗,b∗) and a∗, b∗ denote the optimal values of the model.

Note that (1) is same as before, and (2) and (3) are analogous to standard assumptions in maximum
likelihood estimation. Let â∗M , b̂

∗
M denote the minimizers for LMclass(a, b; c). Under the preceding

conditions, another basic result is that (â∗M , b̂
∗
M) converges in probability to (a∗, b∗) as M grows: see

the “consistency” result in [52]. But continuing the correspondence from before, it is easy to see that

LMenergy(φ; θ) = LMclass(a, b; c) (38)

where we similarly define LMenergy(φ; θ) to be the finite-data approximation of Lenergy(φ; θ)—that is,
by using M samples to approximate the true expectations over ps and pθ, and y(m)

s ∼ ps and y(m)

θ ∼ pθ:

LMenergy(φ; θ) := − 1
M

∑M
m=1 log dθ,φ(τ

(m)
s)− 1

M

∑M
m=1 log

(
1− dθ,φ(τ

(m)
θ)

)
(39)

which directly maps the above convergence result to the statement that as M increases φ̂∗M
p→ φ∗. �

Proposition 5 (Gradient Equality) Let φk be the value taken by φ after the k-th gradient update,
and let θ∗k denote the associated minimizer for Lpolicy(θ;φk). Suppose pφ is already normalized; then

∇φLenergy(φ; θ∗k) = −T2∇φL(θ∗k, φ)

That is, at θ∗k the energy gradient (of Equation 11) recovers the original gradient (from Equation 7). In
the general case, suppose pφ is un-normalized, such that pθ∗k = pφ/Kφ for some constant Kφ; then

∇φLenergy(φ; θ∗k) =
TKφ
Kφ+1E h∼µθ∗

k

x∼πθ∗
k
(·|h)
∇φfφ(h, x)− T

Kφ+1E h∼µs
x∼πs(·|h)

∇φfφ(h, x)

Proof. From Equation 11,

∇φLenergy(φ; θ∗k) = ∇φ
(
− Eτ∼ps log dθ∗k,φ(τ)− Eτ∼pθ∗

k
log
(
1− dθ∗k,φ(τ)

))
(40)

= ∇φ
(
− Eτ∼ps log

pφ(τ)

pφ(τ) + pθ∗
k
(τ)
− Eτ∼pθ∗

k
log

pθ∗
k
(τ)

pφ(τ) + pθ∗
k
(τ)

)
(41)

= − Eτ∼ps∇φ(log pφ(τ)− log(pφ(τ) + pθ∗k(τ))) + Eτ∼pθ∗
k
∇φ log(pφ(τ) + pθ∗k(τ)) (42)

= − Eτ∼ps
[
∇φ log pφ(τ)− ∇φpφ(τ)

pφ(τ) + pθ∗
k
(τ)

]
+ Eτ∼pθ∗

k

∇φpφ(τ)
pφ(τ) + pθ∗

k
(τ)

(43)

= − Eτ∼ps
[
∇φ log pφ(τ)− pφ(τ)∇φ log pφ(τ)

pφ(τ) + pθ∗
k
(τ)

]
+ Eτ∼pθ∗

k

pφ(τ)∇φ log pφ(τ)

pφ(τ) + pθ∗
k
(τ)

(44)

= − Eτ∼ps
[
∇φ log pφ(τ)− 1

2∇φ log pφ(τ)
]

+ 1
2Eτ∼pθ∗k∇φ log pφ(τ) (45)

= 1
2Eτ∼pθ∗k∇φ log pφ(τ)− 1

2Eτ∼ps∇φ log pφ(τ) (46)

= 1
2Eτ∼pθ∗k∇φ(log p̃φ(τ)− logZφ)− 1

2Eτ∼ps∇φ(log p̃φ(τ)− logZφ) (47)

= 1
2

(
Eτ∼pθ∗

k
∇φ
∑
t fφ(ht, xt)− Eτ∼ps∇φ

∑
t fφ(ht, xt)

)
(48)

= 1
2

(
TEh∼µθ∗

k
,x∼πθ∗

k
(·|h)∇φfφ(h, x)− TEh∼µs,x∼πs(·|h)∇φfφ(h, x)

)
(49)

= −T2∇φL(θ∗k, φ) (50)

where the fourth and fifth lines repeatedly use the identity ∇zpz ≡ pz∇z log pz for any pz parame-
terized by z, and the sixth line uses the fact that the current value of θ (i.e. θ∗k) is the minimizer for
Lpolicy(θ;φ) at the current value of φ (i.e. φk), hence it must be the case that pθ = pφ at those values.
Note that this assumes that pφ is normalized; in practice this will be approximately true, for instance
if we pre-train φ beforehand, using a fixed πθ pre-trained by maximum likelihood (see Appendix B).

20

In the more general case of any arbitrary un-normalized pφ, we only know pθ∗k = 1
Kφ
pφ for some con-

stant Kφ; then we recover a generalized “weighted” version of Equation 7. From the fifth line above,

∇φLenergy(φ; θ∗k) = −Eτ∼ps
[
∇φ log pφ(τ)− pφ(τ)∇φ log pφ(τ)

pφ(τ) + pθ∗
k
(τ)

]
+ Eτ∼pθ∗

k

pφ(τ)∇φ log pφ(τ)

pφ(τ) + pθ∗
k
(τ)

(51)

= −Eτ∼ps
[
∇φ log pφ(τ)− Kφ

Kφ+1∇φ log pφ(τ)
]

+
Kφ
Kφ+1Eτ∼pθ∗k∇φ log pφ(τ) (52)

=
Kφ
Kφ+1Eτ∼pθ∗k∇φ log pφ(τ)− 1

Kφ+1Eτ∼ps∇φ log pφ(τ) (53)

=
Kφ
Kφ+1Eτ∼pθ∗k∇φ(log p̃φ(τ)− logZφ)− 1

Kφ+1Eτ∼ps∇φ(log p̃φ(τ)− logZφ) (54)

=
Kφ
Kφ+1Eτ∼pθ∗k∇φ

∑
t fφ(ht, xt)− 1

Kφ+1Eτ∼ps∇φ
∑
t fφ(ht, xt) (55)

=
TKφ
Kφ+1Eh∼µθ∗

k
,x∼πθ∗

k
(·|h)∇φfφ(h, x)− T

Kφ+1Eh∼µs,x∼πs(·|h)∇φfφ(h, x) (56)

This “weighting” is intuitive: If pφ is un-normalized such that Kφ > 1, the energy loss automatically
places higher weights on negative samples h ∼ µθ∗k , x ∼ πθ∗k(·|h) to bring it down; conversely, if
pφ is un-normalized such that Kφ < 1, the energy loss places higher weights on positive samples
h ∼ µs, x ∼ πs(·|h) to bring it up. (If pφ is normalized, then Kφ = 1 and the weights are equal). �

Note on Duality Lemmas 1 and 2 are for building intuition, and we are not implying that Equations
3 and 5 are direct generalizations of the duality between maximum likelihood and maximum entropy.
To be clear, we shall explain Equation 5; Equation 3 is similar. Consider first the case of finite X
(therefore finite T). In the usual linear case, given basis functions T (τ), the optimization problem is:

argminθEτ∼pθ log pθ(τ) s.t. Eτ∼psT (τ) = Eτ∼pθT (τ) (57)

Internalizing the constraint, we may write argminθ(Eτ∼pθ log pθ(τ) + maxF (〈F,Eτ∼psT (τ)〉 −
〈F,Eτ∼pθT (τ)〉)). To generalize to the nonlinear case, let us now specifically define the feature
vector T (τ) to be the indicator function (i.e. a finite-length vector, each zero-one entry of which
corresponds to each element in T). Then note that 〈F,Eτ∼pT (τ)〉 = 〈F, p〉 = Eτ∼pF (τ), therefore:

argminθ(Eτ∼pθ log pθ(τ) + max
F

(Eτ∼psF (τ)− Eτ∼pθF (τ))) (58)

Finally, to arrive at Equation 5 we use the fact that Eτ∼p
∑
t f(ht, xt) = TEh∼µ,x∼π(·|h)f(h, x), as

already noted. All in all, this is a “generalization” from the case of linearity in known basis functions,
to the case of unknown basis functions—where we “linearize” the expression using indicator functions.
But we cannot use the same logic to claim the same for infinite X (which is the setting we operate in).

B Details on Algorithm

Policy Optimization Recall the policy update (Equation 12); this corresponds to entropy-regularized
reinforcement learning using fφ(h, x) as transition-wise reward function. Here we give a brief review
of entropy-regularized reinforcement learning [45–47] in our context, as well as the practical method
we employ (i.e. soft actor-critic). First, we introduce some standard notation. At any state h, define the
(soft) “value function” to be the (forward-looking) expected sum of future rewards fφ(h, x) as well
as entropies H(π(·|h)). Specifically, let V πθφ (h) and Qπθφ (h, x) be given as follows (we omit explicit
notation for t, as any influence of time is implicit through dependence on variable-length histories):

V πθφ (h) := Eτ∼pθ [
∑T
u=tfφ(hu, xu) +H(πθ(·|hu))|ht = h] (59)

Qπθφ (h, x) := fφ(h, x) + Eτ∼pθ [
∑T
u=t+1fφ(hu, xu) +H(πθ(·|hu))|ht = h, xt = x] (60)

Let πθ∗ denote the optimal policy (i.e. that minimizes loss Lpolicy), and Qπθ∗φ its corresponding value
function. An elementary result is that the optimal policy assigns probabilities to x proportional to the
exponentiated expected returns of energy and entropy terms of all trajectories that begin with (h, x):

πθ∗(x|h) =
exp(Q

πθ∗
φ (h, x))∫

X exp(Q
πθ∗
φ (h, x))dx

(61)

Now, for any transition policy πθ (i.e. not necessarily optimal with respect to fφ), the value function
Qπθφ is the unique fixed point of the following (soft) Bellman backup operator Bπθφ :RH×X→RH×X :

21

(Bπθφ Q)(h, x) := fφ(h, x) + Ex′∼πθ(·|h′)[Q(h′, x′)− log πθ(x
′|h′)] (62)

and hence—in theory—Qπθφ may be computed iteratively by repeatedly applying the operator Bπθφ
starting from any function Q ∈ RH×X ; this is referred to as the (soft) “policy evaluation” procedure.

Using Qπθφ , we may then perform (soft) “policy improvement” to update the policy πθ towards the
exponential of its value function, and is guaranteed to result in an improved policy (in terms of Qπθφ):

θ′ ← argminθ DKL

(
πθ′(·|h)

∥∥ exp(Q
πθ
φ (h, ·))∫

X exp(Q
πθ
φ (h, x))dx

)
(63)

for all h ∈ H. In theory, then, finding the optimal policy can be approached by repeatedly applying
the above policy evaluation and policy improvement steps starting from any initial policy πθ; this is re-
ferred to as (soft) “policy iteration”. However, in large continuous domains (such asH×X) doing this
exactly is impossible, so we need to rely on function approximation for representing value functions.

Practical Algorithm Precisely, the soft actor-critic approach is to introduce a function approximator
to represent the value function (i.e. the “critic”) parameterized by ψ, in addition to the policy itself (i.e.
the “actor”) parameterized by θ, and to alternate between optimizing both with stochastic gradient de-
scent [57]. Specifically, the actor performs soft policy improvement steps as before, but now usingQψ:

Lactor(θ;φ, ψ) := Eh∼B Ex∼πθ(·|h)[log πθ(x|h)−Qψ(h, x)] (64)

where B is a replay buffer of samples generated by πθ (that is, instead of enumerating all h ∈ H, we
are relying on h ∼ B). Note that the normalizing constant is dropped as it does not contribute to the
gradient. The critic is trained to represent the value function by minimizing squared residual errors:

Lcritic(ψ;φ) := Eh,x∼B(Qψ(h, x)−Qtarget
ψ (h, x))2 (65)

with (bootstrapped) targets:

Qtarget
ψ (h, x) := fφ(h, x) + Ex′∼πθ(·|h′)[Qψ(h′, x′)− log πθ(x

′|h′)] (66)

Together, this provides a way to minimize the policy loss Lpolicy (Equation 12). The complete Time-
GCI algorithm simply alternates between this and minimizing the energy loss Lenergy (Equation 11):

Lenergy(φ; θ) := −Eτ∼ps log dθ,φ(τ)−Eτ∼pθ log
(
1−dθ,φ(τ)

)
(67)

Hence in Algorithm 1, gradient updates for the energy, policy, and critic are interleaved with policy
rollouts. Note that several standard approximations are being used. First, the replay buffer provides
samples h ∼ B for optimizing the policy (in both actor and critic updates), instead of covering the
entire spaceH (which is uncountable). Second, in the energy loss negative samples τ ∼ B are used in
lieu of sampling fresh from pθ at every iteration (this is known to give the benefit of providing more
diverse negative samples). Finally, also per usual samples from the dataset τ ∼ D is used in lieu of ps.

Practical Considerations First, in practice we must use a vector representation of histories h ∈ H;
here we use RNNs to encode histories into fixed-length vectors, which can then be treated as regular
“states” in continuous space. Like our choice of policy optimization, this is also an arbitrary design
choice—we could just as conceivably have used e.g. temporal convolutions, attention mechanisms, etc.

Second, interleaving multiple gradient updates of different networks requires some care: In soft actor-
critic itself, policy updates have to be sufficiently small, and/or critic updates have to be sufficiently
frequent, to prevent divergence. The situation is analogous when interleaving this with energy gradient
updates as well: Both actor and energy updates have to be sufficiently small, and/or critic updates have
to be sufficiently frequent. That said, the energy updates are indeed decoupled from the policy updates:
Regardless of how quickly/slowly the policy is learning, the energy can learn on their negative samples.
In practice, we perform multiple critic updates for every update of the policy and energy functions.

Finally, note that in large continuous domains such asH×X it is necessary to pre-train the networks
beforehand such that optimization of the complete algorithm actually converges: On the one hand, the
policy side requires a sufficiently good energy signal to actually make progress, and on the other hand,
the energy side requires a sufficiently good policy providing challenging enough negative samples to
actually make progress. Pre-training networks separately is standard in actor-critic methods (see for
instance [35]); here we take a similar approach but with the addition of the energy update step as well:

22

1. Policy-only: πθ is pre-trained using maximum likelihood;
2. Energy-only: fφ is pre-trained using Lenergy(φ; θ), holding πθ fixed;
3. Critic-only: Qψ is pre-trained using Lcritic(ψ;φ), holding πθ, fφ fixed; and finally,
4. All: fφ, πθ, andQψ are trained on Lenergy(φ; θ), Lactor(θ;φ, ψ), and Lcritic(ψ;φ) (cf. Algorithm 1).

C Details on Experiments

Benchmark Algorithms Except where components are standardized (see below), we use the publicly
available source code when constructing the benchmark algorithms; references are in the following:

• T-Forcing [5]: (straightforward MLE with ground-truth conditioning)
• P-Forcing [10]: https://github.com/anirudh9119/LM_GANS
• C-RNN-GAN [18]: https://github.com/olofmogren/c-rnn-gan
• COT-GAN [20]: https://github.com/tianlinxu312/cot-gan
• RC-GAN [21]: https://github.com/ratschlab/RGAN
• TimeGAN [12]: https://github.com/jsyoon0823/TimeGAN

Dataset Sources We use the original source code for preprocessing sines and UCI datasets from
TimeGAN (https://github.com/jsyoon0823/TimeGAN). For MIMIC-III, we extract 52 clinical
covariates including vital signs (e.g. respiratory rate, heart rate, O2 saturation) and lab tests (e.g. glu-
cose, hemoglobin, white blood cell count) aggregated every hour during their ICU stay up to 24 hours.

• Sines [5]: https://github.com/jsyoon0823/TimeGAN
• Energy [10]: archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
• Gas [18]: archive.ics.uci.edu/ml/datasets/Gas+sensor+array+temperature+modulation
• Metro [20]: archive.ics.uci.edu/ml/datasets/Metro+Interstate+Traffic+Volume
• MIMIC-III [21]: https://physionet.org/content/mimiciii/1.4/

Encoder Networks For fair comparison, analogous network components across all benchmarks share
the same architecture where possible. In particular, all components taking ht as input require an en-
coder network to construct fixed-length vector representations of variable-length histories (x1, ..., xt).
To do so, these components use an LSTM network with a hidden layer of size 32 to compute hidden
states for representing h. These are not shared: separate components have their own encoder networks.

Task-Specific Networks Then, for mapping from ht and/or xt to task-specific output variables, we
use a fully-connected network with two hidden layers of size 32 and ELU activations. Where both ht
and xt serve as inputs, their vectors are concatenated. For instance, the energy network for TimeGCI
contains one such network for computing fφ (as well as trainable parameter for Zφ). The same applies
to the mapping from ht and/or xt to implicit generator outputs (as in C-RNN-GAN and RC-GAN),
black-box discriminator output (as in P-Forcing, C-RNN-GAN, and RC-GAN), transition policies (as
in T-Forcing and P-Forcing), and critic values (for TimeGCI). Note that TimeGAN and COT-GAN
were designed with additional unique components/losses that operate as a unit (e.g. the embedding/
recovery networks for generating/discriminating within latent space); we use their original source code.

Replay Buffer The replay buffer B has a fixed size; once filled, new samples stored replace the oldest
still in the buffer. Sampling from the buffer operates as follows: In updating the energy, we require
τ ∼ B (that is, in lieu of pθ, cf. Equation 67); this is done by randomly sampling a batch of trajectories
from the replay buffer, without replacement. In policy the actor, we require h ∼ B (cf. Equation
64); this is done by first randomly sampling a batch of trajectories from the replay buffer, and then
randomly sampling a cutoff time t to obtain a batch of subsequences ht. Finally, in updating the critic,
we require h, x ∼ B (cf. Equation 65); this is similarly done by first randomly sampling a batch of
trajectories from the replay buffer, then randomly sampling a cutoff t to yield a batch of (ht, xt) pairs.

Hyperparameters In all experiments, we use the following hyperparameters for TimeGCI and for
benchmarks (wherever applicable): The replay buffer is of size |B| = 10, 000. The hidden dimension
of all encoder and task-specific networks is 32. The entropy regularization (in the actor/policy loss) is
α = 0.2. The policy network is pre-trained for 2,000 steps, energy for 4,000, and critic for 20,000. The
complete algorithm is trained for up to 50,000 steps with checkpointing and early stopping (triggerable
every 1,000 iterations, if performance does not improve). The Adam optimizer is used for all losses,
and batch size M = 64. Learning rates: For energy networks λenergy = 0.0001, for policy networks
λpolicy = 0.0001 (same for implicit generator networks), for critic networks λcritic = 0.001, and for
black-box discriminator networks λdiscrim = 0.001. (Note that the critic/discriminator networks are

23

https://github.com/anirudh9119/LM_GANS
https://github.com/olofmogren/c-rnn-gan
https://github.com/tianlinxu312/cot-gan
https://github.com/ratschlab/RGAN
https://github.com/jsyoon0823/TimeGAN
https://github.com/jsyoon0823/TimeGAN
https://github.com/jsyoon0823/TimeGAN
archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
archive.ics.uci.edu/ml/datasets/Gas+sensor+array+temperature+modulation
archive.ics.uci.edu/ml/datasets/Metro+Interstate+Traffic+Volume
https://physionet.org/content/mimiciii/1.4/

updated more greedily). Per usual in soft actor-critic algorithms, we also employ a lagged target critic
network (i.e. used for bootstrapping); this is updated using polyak averaging at a rate of τ = 0.005.

Performance Metrics We use the original source code for computing the TSTR metric (i.e. Predic-
tive Score), publicly available at: https://github.com/jsyoon0823/TimeGAN; this is straightfor-
wardly modified to compute TSTR scores for horizons of lengths three (+3 Steps Ahead) and five (+5
Steps Ahead). Likewise, we use the original source code for computing the cross-correlation score
(x-Corr. Score), this is also publicly available at: https://github.com/tianlinxu312/cot-gan.

D Clarifying the Analogy

This section clarifies the analogy of “generation as imitation”. While the point of our investigation
is to explicitly invite an analogy between synthetic time-series generation and imitation learning,
they are different problems with different considerations. In particular, TimeGCI is not suitable for
imitation learning per se, and we make no claim that it is (Appendix D.1). Conversely, while existing
adversarial imitation learning methods may be naively applied to time-series generation, their opti-
mization objectives are different, and we empirically verify they do not perform well (Appendix D.2).

D.1 Can TimeGCI be used for Imitation Learning?

At its core, time-series generation is the problem of modeling a distribution of trajectories p(τ)
faithfully, and is what TimeGCI does. In MDP parlance, in time-series generation the “environment
dynamics” are by construction known and deterministic: ω(·|zt, ut) is the Dirac delta centered at
zt+1 = (u1, . . . , ut). We have p(τ) =

∏
t π(ut|zt). However, in imitation learning the dynamics are

generally unknown and stochastic. We have p(τ) =
∏
t π(ut|zt)ω(zt|zt−1, ut−1). This difference

is crucial. Consider walking through the logic of Section 3, but applying it to imitation learning
instead. Begin with the gradient update for learning the Gibbs parameters (Equation 7). To avoid
costly inner-loop optimization of θ to completion, we again consider (1) importance sampling, as well
as our preferred method of (2) contrastive estimation. We will see that in imitation learning neither of
these work out of the box. For (1), the importance weights now become exp(Fφ(τ))/pθ(τ), where
pθ(τ) =

∏
t πθ(ut|zt)ω(zt|zt−1, ut−1). But the problem is that we do not have access to ω. We can

naively estimate it beforehand (clearly inadvisable). Or, we can perform a specific approximation
in the energy model: pφ(τ) = exp(Fφ(τ)− logZφ) ≈ 1

Zφ,ω
exp(Fφ(τ))

∏
t ω(zt|zt−1, ut−1) such

that ω cancels out from the expression. Instead of modeling the distribution of trajectories p(τ)
exactly, this now assumes that transition randomness has a limited effect on behavior and that the
partition function is constant for all random outcome samples (see e.g. [67]). The situation is similar
for (2), where it is easy to see that in imitation learning scenarios Equation 10 is no longer accessible
without performing the above approximation to cancel out ω. Three points bear emphasis. First, if
we are willing to make this simplification, we are no longer speaking of TimeGCI anymore. Instead,
it is easy to show that this effectively becomes a sort of trajectory-centric “maximum causal entropy”
inverse optimal control (see e.g. [39]), which is no longer learning p(τ) with an exact objective.
Second, in general we have little reason to believe that such a trajectory-centric approach would work
well in imitation learning: The variance of sample-based estimates is now exacerbated by the unknown
and stochastic environment dynamics in imitation learning, such that trajectory-based sampling is
generally known to perform quite poorly (see e.g. [54]). In fact, for this reason modern adversarial
imitation learning methods almost always take a transition-centric approach. Third, empirically a
similar structured-classifier approach (with the above approximation) has indeed been found to be
unworkable in practice due to high variance (see [54] Section 4, implementing [53]); moreover, an
importance-sampling based approach (with the above approximation) has been made to work, but has
required hand-crafted, domain-specific regularization to work, and the learned energy functions only
explain the demonstrations locally [68]. For these reasons, we do not evaluate TimeGCI on imitation
learning scenarios. It is simply not applicable without modifying it to become a different method
altogether. Modern imitation learning methods are designed specifically to handle the unknown and
stochastic nature of environment transitions. In particular, transition-centric approaches (i.e. scoring
(z, u) pairs) have been found to be more effective empirically. What we are doing with TimeGCI,
on the other hand, is to focus on an exact objective for learning time-series trajectories p(τ), which
requires a trajectory-centric approach. This is because this allows us to equate TimeGCI with a special
kind of noise-contrastive estimation, for which we can enjoy some theoretical guarantees. (Note that
these properties are lost when performing the above approximation in an imitation learning setting).

24

https://github.com/jsyoon0823/TimeGAN
https://github.com/tianlinxu312/cot-gan

D.2 Can AIL be used for Time-series Generation?

Table 4: Performance Comparison of GAIL, AIRL, and TimeGCI. Bold numbers indicate best-performing results.

Benchmark Metric Sines Energy Gas Metro MIMIC-III

GAIL-SAC

Predictive Score 0.447 ± 0.002 0.261 ± 0.001 0.022 ± 0.002 0.257 ± 0.001 0.017 ± 0.001
+3 Steps Ahead 0.472 ± 0.003 0.262 ± 0.001 0.048 ± 0.001 0.250 ± 0.001 0.012 ± 0.001
+5 Steps Ahead 0.542 ± 0.004 0.261 ± 0.001 0.074 ± 0.002 0.245 ± 0.003 0.011 ± 0.001
x-Corr. Score 6.798 ± 0.014 142.457 ± 0.471 111.124 ± 0.232 1.044 ± 0.031 540.89 ± 0.159

AIRL-SAC

Predictive Score 0.223 ± 0.006 0.283 ± 0.002 0.0478 ± 0.0015 0.243 ± 0.001 0.018 ± 0.005
+3 Steps Ahead 0.381 ± 0.002 0.295 ± 0.003 0.0883 ± 0.0029 0.250 ± 0.001 0.019 ± 0.003
+5 Steps Ahead 0.349 ± 0.005 0.321 ± 0.001 0.1176 ± 0.0040 0.251 ± 0.002 0.019 ± 0.001
x-Corr. Score 10.397 ± 0.005 202.61 ± 0.119 144.79 ± 0.3199 1.286 ± 0.098 2635.57 ± 0.050

TimeGCI

Predictive Score 0.097 ± 0.001 0.251 ± 0.001 0.018 ± 0.000 0.239 ± 0.001 0.002 ± 0.000
+3 Steps Ahead 0.104 ± 0.001 0.251 ± 0.001 0.042 ± 0.001 0.239 ± 0.001 0.001 ± 0.000
+5 Steps Ahead 0.109 ± 0.001 0.251 ± 0.001 0.067 ± 0.001 0.239 ± 0.001 0.001 ± 0.000
x-Corr. Score 1.195 ± 0.011 105.2 ± 0.433 47.91 ± 0.811 0.738 ± 0.019 194.3 ± 0.180

Conversely to the preceding, we can also ask: Can adversarial imitation learning methods work for
time-series generation (hence can we compare them against TimeGCI)? The answer is “yes”, they can
be applied to time-series generation, but “no”, there is no reason to expect they would perform better.
Modern adversarial imitation learning methods come in two broad flavors: (1) GAIL-based [107–110],
which do not recover a reward function, and (2) AIRL-based [54, 69, 111], which do recover a reward
function. Both are transition-centric (i.e. scoring (z, u) pairs). For (1): Here, optimization is of
the familiar GAN-like objective: minθ maxφ Ez,u∼µs log dφ(z, u) + Ez,u∼µθ log

(
1 − dφ(z, u)

)
,

which minimizes the JS-divergence between the state-action occupancy measures (i.e. distribution
of transitions, in time-series generation terms) induced by the learned and source policies. Note
that this is the same as the TimeGAN objective [12], modulo entropic/supervised regularization.
As noted before, matching the transition marginals is indirectly performing the “global” sort of
moment-matching. However, as pertains time-series generation, the key difference between GAIL
and TimeGAN is that the former performs policy optimization for the generator, whereas the latter
simply performs backpropagation. Otherwise, note that both methods are adversarial (viz. saddle-
point optimization) and do not learn an explicit energy (viz. black-box discriminator). In light
of this, we may consider GAIL for experimental comparison (to be consistent, we also use SAC
as the policy optimization method); see Table 4 above. For (2): Here, the discriminator is first
constructed to be transition-based: dθ,φ(z, u) = (exp(gφ(z, u))/(exp(gφ(z, u)) + πθ(u|z))). Note
that this actually breaks the relationship with modeling the distribution of trajectories directly
pφ(τ) = exp(Fφ(τ) − logZφ). Importantly, if we apply AIRL to time-series generation, we lose
the convergence property that comes from the relationship with noise-contrastive estimation (cf.
Proposition 4), and the gradient of the discriminator is no longer related to the original trajectory-wise
energy-based gradient (cf. Proposition 5). In fact, all we are left with is that the global optimum is
a correct optimum—but this by itself is not helpful (e.g. the global optimum of naive MLE is also
a correct optimum, but there is no guarantee that it can be found effectively). In fact, it has been
formally shown that the original theoretical justifications for AIRL are incorrect (see e.g. [111] Sec.
2.4.2, or [112] Sec. B.2). (In stochastic domains in imitation learning, it is true that the empirical
benefit of variance-reduction from sampling in this transition-based manner still dominates. In
time-series generation, however, there is no stochasticity in the “environment”, and doing it this way
may unnecessarily bias our objective of learning p(τ)). In light of this, we may consider AIRL for
experimental comparison (to be consistent, we also use SAC for policy optimization); see Table 4.

D.3 Ablation Studies on Sequence Lengths

First, we compare the performance of T-Forcing to TimeGCI, using sequence lengths T ∈ {2, 8, 24}.
We compute the TSTR predictive score, +3 steps ahead, +5 steps ahead, and x-Corr. score as usual for
each of these settings. Note that for T = 2 we cannot ask the TSTR evaluation model to predict more
than one step ahead, since there is no data for more than one step ahead; we indicate this with “N/A”.
The Gas dataset is used. For ease of interpretation, we consider T-Forcing as the “baseline”, and also
express the TimeGCI numbers as a fraction of the T-Forcing numbers. The results are consistent with
what we would expect: The performance advantage enjoyed by TimeGCI over T-Forcing diminishes
as the sequence lengths of the input dataset decreases, and increases as the sequence lengths of the
input dataset increases. This is true regardless of what metric we are talking about (i.e. 1/3/5-step
TSTR score, or feature correlation score). Moreover, at T = 2 there is almost no difference between

25

the TSTR scores of T-Forcing and TimeGCI. This shows that T-Forcing appears to preserve quite well
the one-step ahead relationships of the original data (viz. T = 2). However, for longer sequences
TimeGCI performs relatively better, which is consistent with the motivation behind using an objective
that matches the distribution of trajectories, instead of simply matching transition conditionals:

Benchmark Metric T = 2 T = 8 T = 24

T-Forcing

Predictive Score 0.038 ± 0.001 0.036 ± 0.007 0.035 ± 0.003
+3 Steps Ahead N/A 0.076 ± 0.007 0.080 ± 0.001
+5 Steps Ahead N/A 0.114 ± 0.003 0.111 ± 0.001
x-Corr. Score 160.3 ± 0.346 154.2 ± 0.219 150.8 ± 0.067

TimeGCI

Predictive Score 0.037 ± 0.001 0.022 ± 0.000 0.018 ± 0.000
+3 Steps Ahead N/A 0.048 ± 0.001 0.042 ± 0.001
+5 Steps Ahead N/A 0.071 ± 0.001 0.067 ± 0.001
x-Corr. Score 140.4 ± 0.173 50.72 ± 0.816 47.91 ± 0.811

Ratio of Mean

Predictive Score 97.37% 61.11% 51.43%
+3 Steps Ahead N/A 63.16% 52.50%
+5 Steps Ahead N/A 62.28% 60.36%
x-Corr. Score 87.59% 32.89% 31.77%

Second, we use a new synthetic simulation where what is being generated is a set of multi-dimensional
sinusoidal waves which—if not perturbed by noise—correspond to different frequencies, phases, etc.
This allows us to manually inject noise where we want, and also allows us to simulate “ground truth”.
First, we train both models (T-Forcing and TimeGCI) using the same training data generated by the
simulator, and save these learned models. Then during validation, we obtain a sequence from the
simulator, then add some additional noise. Specifically, we add independent Gaussian noise N (µ, σ),
using µ = 0 and σ = 0.1, to each of the feature dimensions of the wave at time K. Then, our task is
to predict t steps ahead with the learned models. To be clear, we ask the learned models to predict
ahead using the information up to and including this (perturbed) K-th step; if the prediction is for
t > 1, we perform open-loop sampling as usual. We can measure the model’s prediction error (i.e.
evaluating how well the model forecasts the future based on the provided histories as input, along with
the perturbation). Note that this is entirely different from the TSTR predictive score hitherto used (i.e.
evaluating how well the model’s freely generated output dataset preserves the characteristics of the
input dataset); this is only done as an additional sensitivity analysis: By analogy to imitation learning,
we can interpret this experiment as a special case of “action-matching” (i.e. based on ground-truth
state/history as input, we can measure the “prediction error” between the action chosen by the imitator
policy and the actual action taken by the expert)—but specifically where the state/history has been
perturbed with additional noise. We ask each model to perform t-steps ahead prediction, where t ∈
{1, 2, 3, 4, 5} as a sensitivity. When we add noise, we use values {σ, 2σ, 3σ, 4σ, 5σ} as a sensitivity.
Given any sequence, the step K at which noise is artificially added (and at which point the models are
asked to perform t-step ahead predictions) is uniformly randomly sampled fromK ∈ {1, 2, ..., T−1}.

Noise at K Benchmark 1-Ahead MSE 2-Ahead MSE 3-Ahead MSE 4-Ahead MSE 5-Ahead MSE

σ
T-Forcing 0.024 ± 0.000 0.029 ± 0.001 0.036 ± 0.001 0.041 ± 0.001 0.047 ± 0.001
TimeGCI 0.024 ± 0.000 0.025 ± 0.001 0.026 ± 0.001 0.028 ± 0.001 0.031 ± 0.001

2σ T-Forcing 0.055 ± 0.000 0.059 ± 0.001 0.065 ± 0.001 0.071 ± 0.002 0.076 ± 0.001
TimeGCI 0.055 ± 0.001 0.055 ± 0.001 0.057 ± 0.001 0.059 ± 0.000 0.061 ± 0.001

3σ T-Forcing 0.106 ± 0.001 0.109 ± 0.002 0.116 ± 0.001 0.121 ± 0.001 0.127 ± 0.002
TimeGCI 0.106 ± 0.001 0.106 ± 0.001 0.107 ± 0.001 0.109 ± 0.001 0.111 ± 0.001

4σ T-Forcing 0.176 ± 0.001 0.181 ± 0.002 0.185 ± 0.001 0.191 ± 0.002 0.197 ± 0.002
TimeGCI 0.176 ± 0.002 0.176 ± 0.002 0.177 ± 0.001 0.179 ± 0.002 0.181 ± 0.001

5σ T-Forcing 0.266 ± 0.003 0.271 ± 0.002 0.277 ± 0.002 0.280 ± 0.002 0.287 ± 0.002
TimeGCI 0.266 ± 0.002 0.267 ± 0.003 0.267 ± 0.002 0.270 ± 0.003 0.272 ± 0.003

The results give some orthogonal intuition as to why the proposed method is better; specifically, is it
because of better first-step prediction, or is it because of better robustness when having small errors in
the previous steps? Observe that for single-step prediction, there is virtually no difference between the
performance of T-Forcing and TimeGCI when evaluating the prediction MSE. The more noise added,
the worse both models perform; but there is little difference between them, no matter the noise. On the
other hand, for multi-step prediction, when predicting multiple steps ahead using open-loop sampling,
T-Forcing performs worse than TimeGCI. In fact, the gap between their performances increases as t
increases. So it appears that it is not the case that TimeGCI simply has better first-step prediction per
se; also, it appears that TimeGCI does have better robustness when having errors in the previous steps.
Because, while the 1-step performance of both T-Forcing and TimeGCI are impacted almost equally,
TimeGCI appears to have an advantage in terms of “propagating” less of that error into later time steps.

26

References

[1] Jason Walonoski, Mark Kramer, Joseph Nichols, Andre Quina, Chris Moesel, Dylan Hall,
Carlton Duffett, Kudakwashe Dube, Thomas Gallagher, and Scott McLachlan. Synthea: An
approach, method, and software mechanism for generating synthetic patients and the synthetic
electronic health care record. Journal of the American Medical Informatics Association, 2018.

[2] Anna L Buczak, Steven Babin, and Linda Moniz. Data-driven approach for creating synthetic
electronic medical records. BMC medical informatics and decision making, 2010.

[3] Saloni Dash, Andrew Yale, Isabelle Guyon, and Kristin P Bennett. Medical time-series data
generation using generative adversarial networks. International Conference on Artificial
Intelligence in Medicine (AIME), 2020.

[4] James Jordon, Daniel Jarrett, Evgeny Saveliev, Jinsung Yoon, Paul Elbers, Patrick Thoral, Ari
Ercole, Cheng Zhang, Danielle Belgrave, and Mihaela van der Schaar. Hide-and-seek privacy
challenge: Synthetic data generation vs. patient re-identification. NeurIPS 2020 Competition
and Demonstration Track, 2021.

[5] Ronald J Williams and David Zipser. A learning algorithm for continually running fully
recurrent neural networks. Neural Computation, 1989.

[6] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level
training with recurrent neural networks. International Conference on Learning Representations
(ICLR), 2016.

[7] Yoshua Bengio and Paolo Frasconi. An input output hmm architecture. Advances in neural
information processing systems (NeurIPS), 1995.

[8] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
International Conference on Machine Learning (ICML), 2009.

[9] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural
networks. Journal of Machine Learning Research (JMLR), 2016.

[10] Alex Lamb, Anirudh Goyal, Ying Zhang, Saizheng Zhang, Aaron Courville, and Yoshua
Bengio. Professor forcing: A new algorithm for training recurrent networks. Advances in
Neural Information Processing Systems (NeurIPS), 2016.

[11] Ferenc Huszár. How (not) to train your generative model: Scheduled sampling, likelihood,
adversary? International Conference on Learning Representations (ICLR), 2016.

[12] Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series generative adversarial
networks. Advances in Neural Information Processing Systems (NeurIPS), 2019.

[13] Anirudh Goyal, Alessandro Sordoni, Marc-Alexandre Côté, Nan Rosemary Ke, and Yoshua
Bengio. Z-forcing: Training stochastic recurrent networks. Advances in Neural Information
Processing Systems (NeurIPS), 2017.

[14] Ahmed M Alaa, Alex J Chan, and Mihaela van der Schaar. Generative time-series modeling
with fourier flows. International Conference on Learning Representations (ICLR), 2020.

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
neural information processing systems, pages 2672–2680, 2014.

[16] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint,
2014.

[17] Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning generative models with sinkhorn
divergences. International Conference on Artificial Intelligence and Statistics (AISTATS),
2018.

27

[18] Olof Mogren. C-rnn-gan: Continuous recurrent neural networks with adversarial training.
Advances in Neural Information Processing Systems (NeurIPS), 2016.

[19] Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar. Generating high-fidelity,
synthetic time series datasets with doppelganger. ACM Internet Measurement Conference
(IMC), 2019.

[20] Tianlin Xu, Li K Wenliang, Michael Munn, and Beatrice Acciaio. Cot-gan: Generating
sequential data via causal optimal transport. Advances in Neural Information Processing
Systems (NeurIPS), 2020.

[21] Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch. Real-valued (medical) time series
generation with recurrent conditional gans. arXiv preprint, 2017.

[22] Giorgia Ramponi, Pavlos Protopapas, Marco Brambilla, and Ryan Janssen. T-cgan: Condi-
tional generative adversarial network for data augmentation in noisy time series with irregular
sampling. arXiv preprint, 2018.

[23] Luca Simonetto. Generating spiking time series with generative adversarial networks: an
application on banking transactions. 2018.

[24] Moustafa Alzantot, Supriyo Chakraborty, and Mani Srivastava. Sensegen: A deep learning
architecture for synthetic sensor data generation. In 2017 IEEE International Conference on
Pervasive Computing and Communications Workshops (PerCom Workshops), pages 188–193.
IEEE, 2017.

[25] Shota Haradal, Hideaki Hayashi, and Seiichi Uchida. Biosignal data augmentation based on
generative adversarial networks. In 2018 40th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), pages 368–371. IEEE, 2018.

[26] Chi Zhang, Sanmukh R Kuppannagari, Rajgopal Kannan, and Viktor K Prasanna. Generative
adversarial network for synthetic time series data generation in smart grids. In 2018 IEEE
International Conference on Communications, Control, and Computing Technologies for Smart
Grids (SmartGridComm), pages 1–6. IEEE, 2018.

[27] Ahmed M Alaa, Boris van Breugel, Evgeny Saveliev, and Mihaela van der Schaar. How
faithful is your synthetic data? sample-level metrics for evaluating and auditing generative
models. International Conference on Machine Learning (ICML), 2021.

[28] Aditya Grover, Jiaming Song, Alekh Agarwal, Kenneth Tran, Ashish Kapoor, Eric Horvitz, and
Stefano Ermon. Bias correction of learned generative models using likelihood-free importance
weighting. Advances in Neural Information Processing Systems (NeurIPS), 2019.

[29] Chris Donahue, Julian McAuley, and Miller Puckette. Adversarial audio synthesis. Interna-
tional Conference on Learning Representations (ICLR), 2019.

[30] Jesse Engel, Kumar Krishna Agrawal, Shuo Chen, Ishaan Gulrajani, Chris Donahue, and
Adam Roberts. Gansynth: Adversarial neural audio synthesis. International Conference on
Learning Representations (ICLR), 2019.

[31] Weili Nie, Nina Narodytska, and Ankit Patel. Relgan: Relational generative adversarial
networks for text generation. International Conference on Learning Representations (ICLR),
2019.

[32] Massimo Caccia, Lucas Caccia, William Fedus, Hugo Larochelle, Joelle Pineau, and Laurent
Charlin. Language gans falling short. International Conference on Learning Representations
(ICLR), 2020.

[33] Masaki Saito, Eiichi Matsumoto, and Shunta Saito. Temporal generative adversarial nets with
singular value clipping. IEEE International Conference on Computer Vision (ICCV), 2017.

[34] Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. Mocogan: Decomposing
motion and content for video generation. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

28

[35] Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau,
Aaron Courville, and Yoshua Bengio. An actor-critic algorithm for sequence prediction.
International Conference on Learning Representations (ICLR), 2017.

[36] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. Advances in Neural Information
Processing Systems (NeurIPS), 2000.

[37] Peter D Grünwald, A Philip Dawid, et al. Game theory, maximum entropy, minimum discrep-
ancy and robust bayesian decision theory. Annals of Statistics, 2004.

[38] Farzan Farnia and David Tse. A minimax approach to supervised learning. Advances in Neural
Information Processing Systems (NeurIPS), 2016.

[39] Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. Dissertation, Carnegie Mellon University, 2010.

[40] Michael I Jordan. An introduction to probabilistic graphical models. 2003.

[41] Taesup Kim and Yoshua Bengio. Deep directed generative models with energy-based probabil-
ity estimation. International Conference on Learning Representations (ICLR), 2016.

[42] Shuangfei Zhai, Yu Cheng, Rogerio Feris, and Zhongfei Zhang. Generative adversarial
networks as variational training of energy based models. arXiv preprint, 2016.

[43] Zihang Dai, Amjad Almahairi, Philip Bachman, Eduard Hovy, and Aaron Courville. Cali-
brating energy-based generative adversarial networks. International Conference on Learning
Representations (ICLR), 2017.

[44] Rithesh Kumar, Sherjil Ozair, Anirudh Goyal, Aaron Courville, and Yoshua Bengio. Maximum
entropy generators for energy-based models. arXiv preprint, 2019.

[45] Roy Fox, Ari Pakman, and Naftali Tishby. Taming the noise in reinforcement learning via soft
updates. Conference on Uncertainty in Artificial Intelligence (UAI), 2016.

[46] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning
with deep energy-based policies. International Conference on Machine Learning (ICML),
2017.

[47] Wenjie Shi, Shiji Song, and Cheng Wu. Soft policy gradient method for maximum entropy
deep reinforcement learning. International Joint Conference on Artificial Intelligence (IJCAI),
2019.

[48] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[49] Josiah P Hanna and Peter Stone. Towards a data efficient off-policy policy gradient. AAAI
Symposium on Data Efficient Reinforcement Learning (AAAI), 2018.

[50] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Unsupervised as supervised learning.
The Elements of Statistical Learning, 2009.

[51] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed repre-
sentations of words and phrases and their compositionality. Advances in Neural Information
Processing Systems (NeurIPS), 2013.

[52] Michael U Gutmann and Aapo Hyvärinen. Noise-contrastive estimation of unnormalized
statistical models, with applications to natural image statistics. Journal of Machine Learning
Research (JMLR), 2012.

[53] Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. A connection between
generative adversarial networks, inverse reinforcement learning, and energy-based models.
NeurIPS Workshop on Adversarial Training, 2016.

[54] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse
reinforcement learning. International Conference on Learning Representations (ICLR), 2018.

29

[55] Ian J Goodfellow. On distinguishability criteria for estimating generative models. International
Conference on Learning Representations (ICLR), 2015.

[56] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning. MIT
Press Cambridge, 2016.

[57] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. International
Conference on Machine Learning (ICML), 2018.

[58] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning
and structured prediction to no-regret online learning. International conference on artificial
intelligence and statistics (AISTATS), 2011.

[59] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, and Jan
Peters. An algorithmic perspective on imitation learning. Foundations and Trends in Robotics,
2018.

[60] Alexandre Attia and Sharone Dayan. Global overview of imitation learning. arXiv preprint,
2018.

[61] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. International
conference on artificial intelligence and statistics (AISTATS), 2010.

[62] Umar Syed and Robert E Schapire. A reduction from apprenticeship learning to classification.
Advances in neural information processing systems (NeurIPS), 2010.

[63] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. Interna-
tional conference on Machine learning (ICML), 2000.

[64] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning.
International conference on Machine learning (ICML), 2004.

[65] Ioana Bica, Daniel Jarrett, Alihan Hüyük, and Mihaela van der Schaar. Learning what-if expla-
nations for sequential decision-making. International Conference on Learning Representations
(ICLR), 2021.

[66] Daniel Jarrett, Alihan Hüyük, and Mihaela Van Der Schaar. Inverse decision modeling:
Learning interpretable representations of behavior. International Conference on Machine
Learning (ICML), 2021.

[67] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy
inverse reinforcement learning. AAAI Conference on Artificial Intelligence (AAAI), 2008.

[68] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal
control via policy optimization. International conference on machine learning (ICML), 2016.

[69] Ahmed H Qureshi, Byron Boots, and Michael C Yip. Adversarial imitation via variational
inverse reinforcement learning. International Conference on Learning Representations (ICLR),
2019.

[70] Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan
Tompson. Discriminator-actor-critic: Addressing sample inefficiency and reward bias in
adversarial imitation. International Conference on Learning Representations (ICLR), 2019.

[71] Lionel Blondé and Alexandros Kalousis. Sample-efficient imitation learning via gans. Interna-
tional conference on artificial intelligence and statistics (AISTATS), 2019.

[72] Huan Xu and Shie Mannor. Distributionally robust markov decision processes. Mathematics
of Operations Research, 2012.

[73] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. A tutorial on energy-
based learning. Predicting Structured Data, 2006.

30

[74] Jianwen Xie, Yang Lu, Song-Chun Zhu, and Yingnian Wu. A theory of generative convnet.
International Conference on Machine Learning (ICML), 2016.

[75] Yilun Du and Igor Mordatch. Implicit generation and generalization in energy-based models.
Advances in Neural Information Processing Systems (NeurIPS), 2019.

[76] Philip Bachman and Doina Precup. Data generation as sequential decision making. Advances
in Neural Information Processing Systems (NeurIPS), 2015.

[77] Arun Venkatraman, Martial Hebert, and J Bagnell. Improving multi-step prediction of learned
time series models. AAAI Conference on Artificial Intelligence (AAAI), 2015.

[78] Yaser Keneshloo, Tian Shi, Naren Ramakrishnan, and Chandan K Reddy. Deep reinforcement
learning for sequence-to-sequence models. IEEE Transactions on Neural Networks and
Learning Systems (TNNLS), 2019.

[79] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation prin-
ciple for unnormalized statistical models. International Conference on Artificial Intelligence
and Statistics (AISTATS), 2010.

[80] Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural probabilistic
language models. International Conference on Machine Learning (ICML), 2012.

[81] Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently with noise-
contrastive estimation. Advances in Neural Information Processing Systems (NeurIPS), 2013.

[82] Zhuang Ma and Michael Collins. Noise contrastive estimation and negative sampling for
conditional models: Consistency and statistical efficiency. Conference on Empirical Methods
in Natural Language Processing (EMNLP), 2018.

[83] Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman
Ganchev, Slav Petrov, and Michael Collins. Globally normalized transition-based neural
networks. Annual Meeting of the Association for Computational Linguistics (ACL), 2016.

[84] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial
nets with policy gradient. AAAI Conference on Artificial Intelligence (AAAI), 2017.

[85] Sidi Lu, Lantao Yu, Siyuan Feng, Yaoming Zhu, and Weinan Zhang. Cot: Cooperative training
for generative modeling of discrete data. International Conference on Machine Learning
(ICML), 2019.

[86] Haiyan Yin, Dingcheng Li, Xu Li, and Ping Li. Meta-cotgan: A meta cooperative training
paradigm for improving adversarial text generation. AAAI Conference on Artificial Intelligence
(AAAI), 2020.

[87] William Fedus, Ian Goodfellow, and Andrew M Dai. Maskgan: better text generation via
filling in the_. International Conference on Learning Representations (ICLR), 2018.

[88] Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and Jun Wang. Long text generation
via adversarial training with leaked information. AAAI Conference on Artificial Intelligence
(AAAI), 2018.

[89] Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo Henao, Dinghan Shen, and Lawrence
Carin. Adversarial feature matching for text generation. International Conference on Machine
Learning (ICML), 2017.

[90] Luis M Candanedo, Véronique Feldheim, and Dominique Deramaix. Data driven prediction
models of energy use of appliances in a low-energy house. Energy and buildings, 2017.

[91] Javier Burgués, Juan Manuel Jiménez-Soto, and Santiago Marco. Estimation of the limit
of detection in semiconductor gas sensors through linearized calibration models. Analytica
Chimica Acta, 2018.

[92] John Hogue. Hourly interstate 94 westbound traffic volume for mn dot atr station 301.
Minnesota Department of Transportation, 2018.

31

[93] Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-Wei, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,
a freely accessible critical care database. Nature Scientific Data, 2016.

[94] Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series generative adversarial
networks. https://github.com/jsyoon0823/TimeGAN, 2019.

[95] Tianlin Xu, Li K Wenliang, Michael Munn, and Beatrice Acciaio. Cot-gan: Generating se-
quential data via causal optimal transport. https://github.com/tianlinxu312/cot-gan,
2020.

[96] Olof Mogren. C-rnn-gan: Continuous recurrent neural networks with adversarial training.
https://github.com/olofmogren/c-rnn-gan, 2016.

[97] Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch. Real-valued (medical) time series
generation with recurrent conditional gans. https://github.com/ratschlab/RGAN, 2017.

[98] Alex Lamb, Anirudh Goyal, Ying Zhang, Saizheng Zhang, Aaron Courville, and Yoshua
Bengio. Professor forcing. https://github.com/anirudh9119/LM_GANS, 2016.

[99] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling
tabular data using conditional gan. Advances in Neural Information Processing Systems
(NeurIPS), 2019.

[100] Noseong Park, Mahmoud Mohammadi, Kshitij Gorde, Sushil Jajodia, Hongkyu Park, and
Youngmin Kim. Data synthesis based on generative adversarial networks. International
Conference on Very Large Data Bases (VLDB), 2018.

[101] Mohammad Navid Fekri, Ananda Mohon Ghosh, and Katarina Grolinger. Generating energy
data for machine learning with recurrent generative adversarial networks. Energies, 2020.

[102] James Jordon, Jinsung Yoon, and Mihaela Van Der Schaar. Pate-gan: Generating synthetic data
with differential privacy guarantees. International Conference on Learning Representations
(ICLR), 2019.

[103] Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning.
International Conference on Machine Learning (ICML), 2002.

[104] Alekh Agarwal, Nan Jiang, and Sham M Kakade. Reinforcement learning: Theory and
algorithms. 2019.

[105] Gokul Swamy, Sanjiban Choudhury, Steven Wu, and Andrew Bagnell. Of moments and match-
ing tradeoffs and treatments in imitation learning. International Conference on Machine
Learning (ICML), 2021.

[106] Tian Xu, Ziniu Li, and Yang Yu. Error bounds of imitating policies and environments. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021.

[107] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in
neural information processing systems (NeurIPS), 2016.

[108] Nir Baram, Oron Anschel, and Shie Mannor. Model-based adversarial imitation learning.
International Conference on Machine Learning (ICML), 2017.

[109] Wonseok Jeon, Seokin Seo, and Kee-Eung Kim. A bayesian approach to generative adversarial
imitation learning. Advances in Neural Information Processing Systems (NeurIPS), 2018.

[110] Xin Zhang, Yanhua Li, Ziming Zhang, and Zhi-Li Zhang. f -gail: Learning f -divergence for
generative adversarial imitation learning. Advances in Neural Information Processing Systems
(NeurIPS), 2020.

[111] Oleg Arenz and Gerhard Neumann. Non-adversarial imitation learning and its connections to
adversarial methods. arXiv preprint, 2020.

[112] Tianwei Ni, Harshit Sikchi, Yufei Wang, Tejus Gupta, Lisa Lee, and Benjamin Eysenbach.
F-irl: Inverse reinforcement learning via state marginal matching. Conference on Robot
Learning (CoRL), 2020.

32

https://github.com/jsyoon0823/TimeGAN
https://github.com/tianlinxu312/cot-gan
https://github.com/olofmogren/c-rnn-gan
https://github.com/ratschlab/RGAN
https://github.com/anirudh9119/LM_GANS

	Introduction
	Synthetic Time Series
	Problem Setup
	Matching Local Moments
	Matching Global Moments

	Generating by Imitating
	Challenges of Learning
	Contrastive Imitation
	Optimization Algorithm

	Discussion
	Experiments
	Conclusion
	Proofs of Propositions
	Details on Algorithm
	Details on Experiments
	Clarifying the Analogy
	Can TimeGCI be used for Imitation Learning?
	Can AIL be used for Time-series Generation?
	Ablation Studies on Sequence Lengths

