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Abstract

Model-based reinforcement learning (RL) algorithms, which learn a dynamics
model from logged experience and perform conservative planning under the learned
model, have emerged as a promising paradigm for offline reinforcement learning
(offline RL). However, practical variants of such model-based algorithms rely on
explicit uncertainty quantification for incorporating conservatism. Uncertainty
estimation with complex models, such as deep neural networks, can be difficult and
unreliable. We empirically find that uncertainty estimation is not accurate and leads
to poor performance in certain scenarios in offline model-based RL. We overcome
this limitation by developing a new model-based offline RL algorithm, COMBO,
that trains a value function using both the offline dataset and data generated using
rollouts under the model while also additionally regularizing the value function on
out-of-support state-action tuples generated via model rollouts. This results in a
conservative estimate of the value function for out-of-support state-action tuples,
without requiring explicit uncertainty estimation. Theoretically, we show that
COMBO satisfies a policy improvement guarantee in the offline setting. Through
extensive experiments, we find that COMBO attains greater performance compared
to prior offline RL on problems that demand generalization to related but previously
unseen tasks, and also consistently matches or outperforms prior offline RL methods
on widely studied offline RL benchmarks, including image-based tasks.

1 Introduction
Offline reinforcement learning (offline RL) [30, 34] refers to the setting where policies are trained
using static, previously collected datasets. This presents an attractive paradigm for data reuse
and safe policy learning in many applications, such as healthcare [62], autonomous driving [65],
robotics [25, 48], and personalized recommendation systems [59]. Recent studies have observed
that RL algorithms originally developed for the online or interactive paradigm perform poorly in the
offline case [14, 28, 26]. This is primarily attributed to the distribution shift that arises over the course
of learning between the offline dataset and the learned policy. Thus, development of algorithms
specialized for offline RL is of paramount importance to benefit from the offline data available in
aformentioned applications. In this work, we develop a principled model-based offline RL algorithm
that matches or exceeds the performance of prior offline RL algorithms in benchmark tasks.

A major paradigm for algorithm design in offline RL is to incorporate conservatism or regularization
into online RL algorithms. Model-free offline RL algorithms [15, 28, 63, 21, 29, 27] directly
incorporate conservatism into the policy or value function training and do not require learning a
dynamics model. However, model-free algorithms learn only on the states in the offline dataset,
which can lead to overly conservative algorithms. In contrast, model-based algorithms [26, 67] learn
a pessimistic dynamics model, which in turn induces a conservative estimate of the value function. By
generating and training on additional synthetic data, model-based algorithms have the potential for
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broader generalization and solving new tasks using the offline dataset [67]. However, these methods
rely on some sort of strong assumption about uncertainty estimation, typically assuming access to
a model error oracle that can estimate upper bounds on model error for any state-action tuple. In
practice, such methods use more heuristic uncertainty estimation methods, which can be difficult
or unreliable for complex datasets or deep network models. It then remains an open question as to
whether we can formulate principled model-based offline RL algorithms with concrete theoretical
guarantees on performance without assuming access to an uncertainty or model error oracle. In this
work, we propose precisely such a method, by eschewing direct uncertainty estimation, which we
argue is not necessary for offline RL.

Figure 1: COMBO learns a conservative value function
by utilizing both the offline dataset as well as simu-
lated data from the model. Crucially, COMBO does not
require uncertainty quantification, and the value func-
tion learned by COMBO is less conservative on the
transitions seen in the dataset than CQL. This enables
COMBO to steer the agent towards higher value states
compared to CQL, which may steer towards more opti-
mal states, as illustrated in the figure.

Our main contribution is the development of
conservative offline model-based policy opti-
mization (COMBO), a new model-based algo-
rithm for offline RL. COMBO learns a dynamics
model using the offline dataset. Subsequently, it
employs an actor-critic method where the value
function is learned using both the offline dataset
as well as synthetically generated data from the
model, similar to Dyna [57] and a number of
recent methods [20, 67, 7, 48]. However, in con-
trast to Dyna, COMBO learns a conservative
critic function by penalizing the value function
in state-action tuples that are not in the support
of the offline dataset, obtained by simulating the
learned model. We theoretically show that for
any policy, the Q-function learned by COMBO
is a lower-bound on the true Q-function. While
the approach of optimizing a performance lower-bound is similar in spirit to prior model-based
algorithms [26, 67], COMBO crucially does not assume access to a model error or uncertainty oracle.
In addition, we show theoretically that the Q-function learned by COMBO is less conservative
than model-free counterparts such as CQL [29], and quantify conditions under which the this lower
bound is tighter than the one derived in CQL. This is illustrated through an example in Figure 1.
Following prior works [31], we show that COMBO enjoys a safe policy improvement guarantee.
By interpolating model-free and model-based components, this guarantee can utilize the best of
both guarantees in certain cases. Finally, in our experiments, we find that COMBO achieves the
best performance on tasks that require out-of-distribution generalization and outperforms previous
latent-space offline model-based RL methods on image-based robotic manipulation benchmarks. We
also test COMBO on commonly studied benchmarks for offline RL and find that COMBO generally
performs well on the benchmarks, achieving the highest score in 9 out of 12 MuJoCo domains from
the D4RL [12] benchmark suite.

2 Preliminaries
Markov Decision Processes and Offline RL. We study RL in the framework of Markov decision pro-
cesses (MDPs) specified by the tupleM = (S,A, T, r, µ0, γ). S,A denote the state and action spaces.
T (s′|s,a) and r(s,a) ∈ [−Rmax, Rmax] represent the dynamics and reward function respectively.
µ0(s) denotes the initial state distribution, and γ ∈ (0, 1) denotes the discount factor. We denote the
discounted state visitation distribution of a policy π using dπM(s) := (1− γ)

∑∞
t=0 γ

tP(st = s|π),
where P(st = s|π) is the probability of reaching state s at time t by rolling out π in M. Sim-
ilarly, we denote the state-action visitation distribution with dπM(s,a) := dπM(s)π(a|s). The
goal of RL is to learn a policy that maximizes the return, or long term cumulative rewards:
maxπ J(M, π) := 1

1−γE(s,a)∼dπ
M(s,a)[r(s,a)].

Offline RL is the setting where we have access only to a fixed dataset D = {(s,a, r, s′)}, which
consists of transition tuples from trajectories collected using a behavior policy πβ . In other words, the
dataset D is sampled from dπβ (s,a) := dπβ (s)πβ(a|s). We defineM as the empirical MDP induced
by the dataset D and d(s,a) as sampled-based version of dπβ (s,a). In the offline setting, the goal is
to find the best possible policy using the fixed offline dataset.

Model-Free Offline RL Algorithms. One class of approaches for solving MDPs involves the use of
dynamic programming and actor-critic schemes [56, 5], which do not explicitly require the learning
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of a dynamics model. To capture the long term behavior of a policy without a model, we define the
action value function as Qπ(s,a) := E [

∑∞
t=0 γ

t r(st,at) | s0 = s,a0 = a] , where future actions
are sampled from π(·|s) and state transitions happen according to the MDP dynamics. Consider
the following Bellman operator: BπQ(s,a) := r(s,a) + γE s′∼T (·|s,a),a′∼π(·|s′) [Q(s′,a′)], and its
sample based counterpart: B̂πQ(s,a) := r(s,a) + γQ(s′,a′), associated with a single transition
(s,a, s′) and a′ ∼ π(·|s′). The action-value function satisfies the Bellman consistency criterion
given by BπQπ(s,a) = Qπ(s,a) ∀(s,a). When given an offline dataset D, standard approximate
dynamic programming (ADP) and actor-critic methods use this criterion to alternate between policy
evaluation [40] and policy improvement. A number of prior works have observed that such a direct
extension of ADP and actor-critic schemes to offline RL leads to poor results due to distribution
shift over the course of learning and over-estimation bias in the Q function [14, 28, 63]. To address
these drawbacks, prior works have proposed a number of modifications aimed towards regularizing
the policy or value function (see Section 6). In this work, we primarily focus on CQL [29], which
alternates between:

Policy Evaluation: The Q function associated with the current policy π is approximated conserva-
tively by repeating the following optimization:

Qk+1←argmin
Q

β
(
Es∼D,a∼µ(·|s)[Q(s,a)]−Es,a∼D[Q(s,a)]

)
+
1

2
Es,a,s′∼D

[(
Q(s,a)−B̂πQk(s,a)

)
2
]
, (1)

where µ(·|s) is a wide sampling distribution such as the uniform distribution over action bounds.
CQL effectively penalizes the Q function at states in the dataset for actions not observed in the
dataset. This enables a conservative estimation of the value function for any policy [29], mitigating
the challenges of over-estimation bias and distribution shift.

Policy Improvement: After approximating the Q function as Q̂π, the policy is improved as
π ← argmaxπ′Es∼D,a∼π′(·|s)

[
Q̂π(s,a)

]
. Actor-critic methods with parameterized policies and Q

functions approximate argmax and argmin in above equations with a few gradient descent steps.

Model-Based Offline RL Algorithms. A second class of algorithms for solving MDPs involve
the learning of the dynamics function, and using the learned model to aid policy search. Using the
given dataset D, a dynamics model T̂ is typically trained using maximum likelihood estimation as:
minT̂ E(s,a,s′)∼D

[
log T̂ (s′|s,a)

]
. A reward model r̂(s,a) can also be learned similarly if it is un-

known. Once a model has been learned, we can construct the learned MDP M̂ = (S,A, T̂ , r̂, µ0, γ),
which has the same state and action spaces, but uses the learned dynamics and reward function.
Subsequently, any policy learning or planning algorithm can be used to recover the optimal policy in
the model as π̂ = argmaxπ J(M̂, π).

This straightforward approach is known to fail in the offline RL setting, both in theory and practice,
due to distribution shift and model-bias [51, 26]. In order to overcome these challenges, offline
model-based algorithms like MOReL [26] and MOPO [67] use uncertainty quantification to construct
a lower bound for policy performance and optimize this lower bound by assuming a model error
oracle u(s,a). By using an uncertainty estimation algorithm like bootstrap ensembles [43, 4, 37],
we can estimate u(s,a). By constructing and optimizing such a lower bound, offline model-based
RL algorithms avoid the aforementioned pitfalls like model-bias and distribution shift. While any
RL or planning algorithm can be used to learn the optimal policy for M̂, we focus specifically on
MBPO [20, 57] which was used in MOPO. MBPO follows the standard structure of actor-critic
algorithms, but in each iteration uses an augmented dataset D ∪Dmodel for policy evaluation. Here,
D is the offline dataset and Dmodel is a dataset obtained by simulating the current policy using the
learned dynamics model. Specifically, at each iteration, MBPO performs k-step rollouts using T̂
starting from state s ∈ D with a particular rollout policy µ(a|s), adds the model-generated data to
Dmodel, and optimizes the policy with a batch of data sampled from D ∪Dmodel where each datapoint
in the batch is drawn from D with probability f ∈ [0, 1] and Dmodel with probability 1− f .

3 Conservative Offline Model-Based Policy Optimization
The principal limitation of prior offline model-based algorithms (discussed in Section 2) is the
assumption of having access to a model error oracle for uncertainty estimation and strong reliance
on heuristics of quantifying the uncertainty. In practice, such heuristics could be challenging for
complex datasets or deep neural network models [44]. We argue that uncertainty estimation is not
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Algorithm 1 COMBO: Conservative Model Based Offline Policy Optimization

Require: Offline dataset D, rollout distribution µ(·|s), learned dynamics model T̂θ , initialized policy and critic
πϕ and Qψ .

1: Train the probabilistic dynamics model T̂θ(s′, r|s,a) = N (µθ(s,a),Σθ(s,a)) on D.
2: Initialize the replay buffer Dmodel ← ∅.
3: for i = 1, 2, 3, · · · , do
4: Collect model rollouts by sampling from µ and T̂θ starting from states inD. Add model rollouts toDmodel.

5: Conservatively evaluate πiϕ by repeatedly solving eq. 2 to obtain Q̂
πi
ϕ

ψ using samples from D ∪Dmodel.
6: Improve policy under state marginal of df by solving eq. 3 to obtain πi+1

ϕ .
7: end for

imperative for offline model-based RL and empirically show that uncertainty estimation could be
inaccurate in offline RL problems especially when generalization to unknown behaviors is required
in Section 5.1.1. Our goal is to develop a model-based offline RL algorithm that enables optimizing
a lower bound on the policy performance, but without requiring uncertainty quantification. We
achieve this by extending conservative Q-learning [29], which does not require explicit uncertainty
quantification, into the model-based setting. Our algorithm COMBO, summarized in Algorithm 1,
alternates between a conservative policy evaluation step and a policy improvement step, which we
outline below.

Conservative Policy Evaluation: Given a policy π, an offline dataset D, and a learned model of the
MDP M̂, the goal in this step is to obtain a conservative estimate of Qπ . To achieve this, we penalize
the Q-values evaluated on data drawn from a particular state-action distribution that is more likely to
be out-of-support while pushing up the Q-values on state-action pairs that are trustworthy, which is
implemented by repeating the following recursion:

Q̂k+1←argmin
Q

β
(
Es,a∼ρ(s,a)[Q(s,a)]−Es,a∼D[Q(s,a)]

)
+
1

2
Es,a,s′∼df

[(
Q(s,a)−B̂πQ̂k(s,a)

)2]
. (2)

Here, ρ(s,a) and df are sampling distributions that we can choose. Model-based algorithms allow
ample flexibility for these choices while providing the ability to control the bias introduced by these
choices. For ρ(s,a), we make the following choice: ρ(s,a) = dπ

M̂
(s)π(a|s), where dπ

M̂
(s) is the

discounted marginal state distribution when executing π in the learned model M̂. Samples from
dπ
M̂
(s) can be obtained by rolling out π in M̂. Similarly, df is an f−interpolation between the

offline dataset and synthetic rollouts from the model: dµf (s,a) := f d(s,a) + (1 − f) dµ
M̂
(s,a),

where f ∈ [0, 1] is the ratio of the datapoints drawn from the offline dataset as defined in Section 2
and µ(·|s) is the rollout distribution used with the model, which can be modeled as π or a uniform
distribution. To avoid notation clutter, we also denote df := dµf .

Under such choices of ρ and df , we push down (or conservatively estimate) Q-values on state-action
tuples from model rollouts and push up Q-values on the real state-action pairs from the offline dataset.
When updating Q-values with the Bellman backup, we use a mixture of both the model-generated
data and the real data, similar to Dyna [57]. Note that in comparison to CQL and other model-free
algorithms, COMBO learns the Q-function over a richer set of states beyond the states in the offline
dataset. This is made possible by performing rollouts under the learned dynamics model, denoted by
dµ
M̂
(s,a). We will show in Section 4 that the Q function learned by repeating the recursion in Eq. 2

provides a lower bound on the true Q function, without the need for explicit uncertainty estimation.
Furthermore, we will theoretically study the advantages of using synthetic data from the learned
model, and characterize the impacts of model bias.

Policy Improvement Using a Conservative Critic: After learning a conservative critic Q̂π, we
improve the policy as:

π′ ← argmax
π

Es∼ρ,a∼π(·|s)

[
Q̂π(s,a)

]
(3)

where ρ(s) is the state marginal of ρ(s,a). When policies are parameterized with neural networks,
we approximate the argmax with a few steps of gradient descent. In addition, entropy regularization
can also be used to prevent the policy from becoming degenerate if required [17]. In Section 4.2, we
show that the resulting policy is guaranteed to improve over the behavior policy.
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Practical Implementation Details. Our practical implementation largely follows MOPO, with the
key exception that we perform conservative policy evaluation as outlined in this section, rather than
using uncertainty-based reward penalties. Following MOPO, we represent the probabilistic dynamics
model using a neural network, with parameters θ, that produces a Gaussian distribution over the next
state and reward: T̂θ(st+1, r|s,a) = N (µθ(st,at),Σθ(st,at)). The model is trained via maximum
likelihood. For conservative policy evaluation (eq. 2) and policy improvement (eq. 3), we augment
ρ with states sampled from the offline dataset, which shows more stable improvement in practice.
It is relatively common in prior work on model-based offline RL to select various hyperparameters
using online policy rollouts [67, 26, 3, 33]. However, we would like to avoid this with our method,
since requiring online rollouts to tune hyperparameters contradicts the main aim of offline RL, which
is to learn entirely from offline data. Therefore, we do not use online rollouts for tuning COMBO,
and instead devise an automated rule for tuning important hyperparameters such as β and f in a
fully offline manner. We search over a small discrete set of hyperparameters for each task, and use
the value of the regularization term Es,a∼ρ(s,a)[Q(s,a)]−Es,a∼D[Q(s, s)] (shown in Eq. 2) to pick
hyperparameters in an entirely offline fashion. We select the hyperparameter setting that achieves
the lowest regularization objective, which indicates that the Q-values on unseen model-predicted
state-action tuples are not overestimated. Additional details about the practical implementation and
the hyperparameter selection rule are provided in Appendix B.1 and Appendix B.2 respectively.

4 Theoretical Analysis of COMBO
In this section, we theoretically analyze our method and show that it optimizes a lower-bound on the
expected return of the learned policy. This lower bound is close to the actual policy performance
(modulo sampling error) when the policy’s state-action marginal distribution is in support of the
state-action marginal of the behavior policy and conservatively estimates the performance of a
policy otherwise. By optimizing the policy against this lower bound, COMBO guarantees policy
improvement beyond the behavior policy. Furthermore, we use these insights to discuss cases when
COMBO is less conservative compared to model-free counterparts.

4.1 COMBO Optimizes a Lower Bound
We first show that training the Q-function using Eq. 2 produces a Q-function such that the expected
off-policy policy improvement objective [8] computed using this learned Q-function lower-bounds
its actual value. We will reuse notation for df and d from Sections 2 and 3. Assuming that the
Q-function is tabular, the Q-function found by approximate dynamic programming in iteration k, can
be obtained by differentiating Eq. 2 with respect to Qk (see App. A for details):

Q̂k+1(s,a) = (B̂πQk)(s,a)− β ρ(s,a)− d(s,a)
df (s,a)

. (4)

Eq. 4 effectively applies a penalty that depends on the three distributions appearing in the COMBO
critic training objective (Eq. 2), of which ρ and df are free variables that we choose in practice as
discussed in Section 3. For a given iteration k of Eq. 4, we further define the expected penalty under
ρ(s,a) as:

ν(ρ, f) := Es,a∼ρ(s,a)

[
ρ(s,a)− d(s,a)

df (s,a)

]
. (5)

Next, we will show that the Q-function learned by COMBO lower-bounds the actual Q-function
under the initial state distribution µ0 and any policy π. We also show that the asymptotic Q-function
learned by COMBO lower-bounds the actual Q-function of any policy π with high probability for a
large enough β ≥ 0, which we include in Appendix A.2. LetM represent the empirical MDP which
uses the empirical transition model based on raw data counts. The Bellman backups over the dataset
distribution df in Eq. 2 that we analyze is an f−interpolation of the backup operator in the empirical
MDP (denoted by BπM) and the backup operator under the learned model M̂ (denoted by Bπ

M̂
). The

empirical backup operator suffers from sampling error, but is unbiased in expectation, whereas the
model backup operator induces bias but no sampling error. We assume that all of these backups enjoy
concentration properties with concentration coefficient Cr,T,δ , dependent on the desired confidence
value δ (details in Appendix A.2). This is a standard assumption in literature [31]. Now, we state our
main results below.
Proposition 4.1. For large enough β, we have Es∼µ0,a∼π(·|s)[Q̂

π(s,a)] ≤ Es∼µ0,a∼π(·|s)[Q
π(s,a)],

where µ0(s) is the initial state distribution. Furthermore, when ϵs is small, such as in the large
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sample regime, or when the model bias ϵm is small, a small β is sufficient to guarantee this condition
along with an appropriate choice of f .

The proof for Proposition 4.1 can be found in Appendix A.2. Finally, while Kumar et al. [29] also
analyze how regularized value function training can provide lower bounds on the value function at
each state in the dataset [29] (Proposition 3.1-3.2), our result shows that COMBO is less conservative
in that it does not underestimate the value function at every state in the dataset like CQL (Remark 1)
and might even overestimate these values. Instead COMBO penalizes Q-values at states generated via
model rollouts from ρ(s,a). Note that in general, the required value of β may be quite large similar
to prior works, which typically utilize a large constant β, which may be in the form of a penalty on a
regularizer [36, 29] or as constants in theoretically optimal algorithms [23, 49]. While it is challenging
to argue that that either COMBO or CQL attains the tightest possible lower-bound on return, in our
final result of this section, we discuss a sufficient condition for the COMBO lower-bound to be tighter
than CQL.

Proposition 4.2. Assuming previous notation, let ∆π
COMBO := Es,a∼dM(s),π(a|s)

[
Q̂π(s,a)

]
and

∆π
CQL := Es,a∼dM(s),π(a|s)

[
Q̂π

CQL(s,a)
]

denote the average values on the dataset under the Q-
functions learned by COMBO and CQL respectively. Then, ∆π

COMBO ≥ ∆π
CQL, if:

Es,a∼ρ(s,a)

[
π(a|s)
πβ(a|s)

]
− Es,a∼dM(s),π(a|s)

[
π(a|s)
πβ(a|s)

]
≤ 0. (∗)

Proposition 4.2 indicates that COMBO will be less conservative than CQL when the action prob-
abilities under learned policy π(a|s) and the probabilities under the behavior policy πβ(a|s) are
closer together on state-action tuples drawn from ρ(s,a) (i.e., sampled from the model using the
policy π(a|s)), than they are on states from the dataset and actions from the policy, dM(s)π(a|s).
COMBO’s objective (Eq. 2) only penalizes Q-values under ρ(s,a), which, in practice, are expected
to primarily consist of out-of-distribution states generated from model rollouts, and does not penalize
the Q-value at states drawn from dM(s). As a result, the expression (∗) is likely to be negative,
making COMBO less conservative than CQL.

4.2 Safe Policy Improvement Guarantees

Now that we have shown various aspects of the lower-bound on the Q-function induced by COMBO,
we provide policy improvement guarantees for the COMBO algorithm. Formally, Proposition 4.3
discuss safe improvement guarantees over the behavior policy. building on prior work [46, 31, 29].
Proposition 4.3 (ζ-safe policy improvement). Let π̂out(a|s) be the policy obtained by COMBO. Then,
if β is sufficiently large and ν(ρπ, f)− ν(ρβ , f) ≥ C for a positive constant C, the policy π̂out(a|s)
is a ζ-safe policy improvement over πβ in the actual MDPM, i.e., J(π̂out,M) ≥ J(πβ ,M) − ζ,
with probability at least 1− δ, where ζ is given by,

O
(

γf

(1− γ)2

)
E
s∼dπ̂out

M

[√
|A|
|D(s)|DCQL(π̂out, πβ)

]
︸ ︷︷ ︸

:= (1)

+O
(
γ(1− f)
(1− γ)2

)
DTV(M,M̂)︸ ︷︷ ︸

:= (2)

−β C

(1− γ)︸ ︷︷ ︸
:= (3)

.

The complete statement (with constants and terms that grow smaller than quadratic in the horizon)
and proof for Proposition 4.3 is provided in Appendix A.4. DCQL denotes a notion of probabilistic
distance between policies [29] which we discuss further in Appendix A.4. The expression for ζ in
Proposition 4.3 consists of three terms: term (1) captures the decrease in the policy performance due
to limited data, and decays as the size of D increases. The second term (2) captures the suboptimality
induced by the bias in the learned model. Finally, as we show in Appendix A.4, the third term (3)
comes from ν(ρπ, f)− ν(ρβ , f), which is equivalent to the improvement in policy performance as
a result of running COMBO in the empirical and model MDPs. Since the learned model is trained
on the dataset D with transitions generated from the behavior policy πβ , the marginal distribution
ρβ(s,a) is expected to be closer to d(s,a) for πβ as compared to the counterpart for the learned
policy, ρπ . Thus, the assumption that ν(ρπ, f)− ν(ρβ , f) is positive is reasonable, and in such cases,
an appropriate (large) choice of β will make term (3) large enough to counteract terms (1) and (2)
that reduce policy performance. We discuss this elaborately in Appendix A.4 (Remark 3).
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Further note that in contrast to Proposition 3.6 in Kumar et al. [29], note that our result indicates the
sampling error (term (1)) is reduced (multiplied by a fraction f ) when a near-accurate model is used to
augment data for training the Q-function, and similarity, it can avoid the bias of model-based methods
by relying more on the model-free component. This allows COMBO to attain the best-of-both
model-free and model-based methods, via a suitable choice of the fraction f .

To summarize, through an appropriate choice of f , Proposition 4.3 guarantees safe improvement over
the behavior policy without requiring access to an oracle uncertainty estimation algorithm.

5 Experiments
In our experiments, we aim to answer the follow questions: (1) Can COMBO generalize better than
previous offline model-free and model-based approaches in a setting that requires generalization to
tasks that are different from what the behavior policy solves? (2) How does COMBO compare with
prior work in tasks with high-dimensional image observations? (3) How does COMBO compare to
prior offline model-free and model-based methods in standard offline RL benchmarks?

To answer those questions, we compare COMBO to several prior methods. In the domains with
compact state spaces, we compare with recent model-free algorithms like BEAR [28], BRAC [63],
and CQL [29]; as well as MOPO [67] and MOReL [26] which are two recent model-based algorithms.
In addition, we also compare with an offline version of SAC [17] (denoted as SAC-off), and behavioral
cloning (BC). In high-dimensional image-based domains, which we use to answer question (3), we
compare to LOMPO [48], which is a latent space offline model-based RL method that handles image
inputs, latent space MBPO (denoted LMBPO), similar to Janner et al. [20] which uses the model
to generate additional synthetic data, the fully offline version of SLAC [32] (denoted SLAC-off),
which only uses a variational model for state representation purposes, and CQL from image inputs.
To our knowledge, CQL, MOPO, and LOMPO are representative of state-of-the-art model-free and
model-based offline RL methods. Hence we choose them as comparisons to COMBO. To highlight
the distinction between COMBO and a naïve combination of CQL and MBPO, we perform such a
comparison in Table 8 in Appendix C. For more details of our experimental set-up, comparisons, and
hyperparameters, see Appendix B.

5.1 Results on tasks that require generalization

Environment Batch
Mean

Batch
Max

COMBO
(Ours)

MOPO MOReL CQL

halfcheetah-jump -1022.6 1808.6 5308.7±575.5 4016.6 3228.7 741.1
ant-angle 866.7 2311.9 2776.9±43.6 2530.9 2660.3 2473.4
sawyer-door-close 5% 100% 98.3%±3.0% 65.8% 42.9% 36.7%

Table 1: Average returns of halfcheetah-jump and ant-angle and average
success rate of sawyer-door-close that require out-of-distribution generalization.
All results are averaged over 6 random seeds. We include the mean and max return
/ success rate of episodes in the batch data (under Batch Mean and Batch Max,
respectively) for comparison. We also include the 95%-confidence interval for
COMBO.

To answer ques-
tion (1), we use
two environments
halfcheetah-jump
and ant-angle con-
structed in Yu et al.
[67], which requires
the agent to solve a
task that is different
from what the behav-
ior policy solved. In
both environments,
the offline dataset is
collected by policies trained with original reward functions of halfcheetah and ant, which reward
the robots to run as fast as possible. The behavior policies are trained with SAC with 1M steps and
we take the full replay buffer as the offline dataset. Following Yu et al. [67], we relabel rewards in the
offline datasets to reward the halfcheetah to jump as high as possible and the ant to run to the top
corner with a 30 degree angle as fast as possible. Following the same manner, we construct a third
task sawyer-door-close based on the environment in Yu et al. [66], Rafailov et al. [48]. In this
task, we collect the offline data with SAC policies trained with a sparse reward function that only
gives a reward of 1 when the door is opened by the sawyer robot and 0 otherwise. The offline dataset
is similar to the “medium-expert“ dataset in the D4RL benchmark since we mix equal amounts of
data collected by a fully-trained SAC policy and a partially-trained SAC policy. We relabel the
reward such that it is 1 when the door is closed and 0 otherwise. Therefore, in these datasets, the
offline RL methods must generalize beyond behaviors in the offline data in order to learn the intended
behaviors. We visualize the sawyer-door-close environment in the right image in Figure 3 in
Appendix B.4.
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We present the results on the three tasks in Table 1. COMBO significantly outperforms MOPO,
MOReL and CQL, two representative model-based methods and one representative model-free
methods respectively, in the halfcheetah-jump and sawyer-door-close tasks, and achieves
an approximately 8%, 4% and 12% improvement over MOPO, MOReL and CQL respectively on
the ant-angle task. These results validate that COMBO achieves better generalization results in
practice by behaving less conservatively than prior model-free offline methods (compare to CQL,
which doesn’t improve much), and does so more robustly than prior model-based offline methods
(compare to MOReL and MOPO).

5.1.1 Empirical analysis on uncertainty estimation in offline model-based RL

Figure 2: We visualize the fitted linear regression line between the model
error and two uncertainty quantification methods maximum learned vari-
ance over the ensemble (denoted as Max Var) on two tasks that test the
generalization abilities of offline RL algorithms (halfcheetah-jump
and ant-angle). We show that Max Var struggles to predict the true
model error. Such visualizations indicates that uncertainty quantification
is challenging with deep neural networks and could lead to poor perfor-
mance in model-based offline RL in settings where out-of-distribution
generalization is needed. In the meantime, COMBO addresses this issue
by removing the burden of performing uncertainty quantification.

To further understand why
COMBO outperforms prior
model-based methods in tasks
that require generalization, we
argue that one of the main
reasons could be that uncertainty
estimation is hard in these tasks
where the agent is required
to go further away from the
data distribution. To test this
intuition, we perform empirical
evaluations to study whether
uncertainty quantification with
deep neural networks, especially
in the setting of dynamics model
learning, is challenging and
could cause problems with
uncertainty-based model-based
offline RL methods such as
MOReL [26] and MOPO [67]. In our evaluations, we consider maximum learned variance over the
ensemble (denoted as Max Var) maxi=1,...,N ∥Σi

θ(s,a)∥F (used in MOPO).

We consider two tasks halfcheetah-jump and ant-angle. We normalize both the model error
and the uncertainty estimates to be within scale [0, 1] and performs linear regression that learns the
mapping between the uncertainty estimates and the true model error. As shown in Figure 2, on
both tasks, Max Var is unable to accurately predict the true model error, suggesting that uncertainty
estimation used by offline model-based methods is not accurate and might be the major factor
that results in its poor performance. Meanwhile, COMBO circumvents challenging uncertainty
quantification problem and achieves better performances on those tasks, indicating the effectiveness
and the robustness of the method.

5.2 Results on image-based tasks
To answer question (2), we evaluate COMBO on two image-based environments: the stan-
dard walker (walker-walk) task from the the DeepMind Control suite [61] and a visual
door opening environment with a Sawyer robotic arm (sawyer-door) as used in Section 5.1.

Dataset Environment COMBO
(Ours)

LOMPO LMBPO SLAC
-Off

CQL

M-R walker_walk 69.2 66.9 59.8 45.1 15.6
M walker_walk 57.7 60.2 61.7 41.5 38.9
M-E walker_walk 76.4 78.9 47.3 34.9 36.3
expert walker_walk 61.1 55.6 13.2 12.6 43.3
M-E sawyer-door 100.0% 100.0% 0.0% 0.0% 0.0%
expert sawyer-door 96.7% 0.0% 0.0% 0.0% 0.0%

Table 2: Results for vision experiments. For the Walker task each
number is the normalized score proposed in [12] of the policy at the last
iteration of training, averaged over 3 random seeds. For the Sawyer task,
we report success rates over the last 100 evaluation runs of training. For
the dataset, M refers to medium, M-R refers to medium-replay, and M-E
refers to medium expert.

For the walker task we construct
4 datasets: medium-replay (M-R),
medium (M), medium-expert (M-
E), and expert, similar to Fu et al.
[12], each consisting of 200 tra-
jectories. For sawyer-door task
we use only the medium-expert
and the expert datasets, due to
the sparse reward – the agent is
rewarded only when it success-
fully opens the door. Both en-
vironments are visulized in Fig-
ure 3 in Appendix B.4. To extend
COMBO to the image-based setting, we follow Rafailov et al. [48] and train a recurrent variational
model using the offline data and use train COMBO in the latent space of this model. We present
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Dataset type Environment BC COMBO
(Ours)

MOPO MOReL CQL SAC-off BEAR BRAC-p BRAC-v

random halfcheetah 2.1 38.8±3.7 35.4 25.6 35.4 30.5 25.1 24.1 31.2
random hopper 1.6 17.9±1.4 11.7 53.6 10.8 11.3 11.4 11.0 12.2
random walker2d 9.8 7.0±3.6 13.6 37.3 7.0 4.1 7.3 -0.2 1.9
medium halfcheetah 36.1 54.2±1.5 42.3 42.1 44.4 -4.3 41.7 43.8 46.3
medium hopper 29.0 97.2±2.2 28.0 95.4 86.6 0.8 52.1 32.7 31.1
medium walker2d 6.6 81.9±2.8 17.8 77.8 74.5 0.9 59.1 77.5 81.1
medium-replay halfcheetah 38.4 55.1±1.0 53.1 40.2 46.2 -2.4 38.6 45.4 47.7
medium-replay hopper 11.8 89.5±1.8 67.5 93.6 48.6 3.5 33.7 0.6 0.6
medium-replay walker2d 11.3 56.0±8.6 39.0 49.8 32.6 1.9 19.2 -0.3 0.9
med-expert halfcheetah 35.8 90.0±5.6 63.3 53.3 62.4 1.8 53.4 44.2 41.9
med-expert hopper 111.9 111.1±2.9 23.7 108.7 111.0 1.6 96.3 1.9 0.8
med-expert walker2d 6.4 103.3±5.6 44.6 95.6 98.7 -0.1 40.1 76.9 81.6

Table 3: Results for D4RL datasets. Each number is the normalized score proposed in [12] of the policy at
the last iteration of training, averaged over 6 random seeds. We take results of MOPO, MOReL and CQL from
their original papers and results of other model-free methods from [12]. We include the performance of behavior
cloning (BC) for comparison. We include the 95%-confidence interval for COMBO. We bold the highest score
across all methods.
results in Table 2. On the walker-walk task, COMBO performs in line with LOMPO and previous
methods. On the more challenging Sawyer task, COMBO matches LOMPO and achieves 100%
success rate on the medium-expert dataset, and substantially outperforms all other methods on the
narrow expert dataset, achieving an average success rate of 96.7%, when all other model-based and
model-free methods fail.

5.3 Results on the D4RL tasks

Finally, to answer the question (3), we evaluate COMBO on the OpenAI Gym [6] domains in the
D4RL benchmark [12], which contains three environments (halfcheetah, hopper, and walker2d) and
four dataset types (random, medium, medium-replay, and medium-expert). We include the results
in Table 3. The numbers of BC, SAC-off, BEAR, BRAC-P and BRAC-v are taken from the D4RL
paper, while the results for MOPO, MOReL and CQL are based on their respective papers [67, 29].
COMBO achieves the best performance in 9 out of 12 settings and comparable result in 1 out of the
remaining 3 settings (hopper medium-replay). As noted by Yu et al. [67] and Rafailov et al. [48],
model-based offline methods are generally more performant on datasets that are collected by a wide
range of policies and have diverse state-action distributions (random, medium-replay datasets) while
model-free approaches do better on datasets with narrow distributions (medium, medium-expert
datasets). However, in these results, COMBO generally performs well across dataset types compared
to existing model-free and model-based approaches, suggesting that COMBO is robust to different
dataset types.

6 Related Work
Offline RL [10, 50, 30, 34] is the task of learning policies from a static dataset of past interactions with
the environment. It has found applications in domains including robotic manipulation [25, 38, 48, 54],
NLP [21, 22] and healthcare [52, 62]. Similar to interactive RL, both model-free and model-based
algorithms have been studied for offline RL, with explicit or implicit regularization of the learning
algorithm playing a major role.

Model-free offline RL. Prior model-free offline RL algorithms have been designed to regularize
the learned policy to be “close“ to the behavioral policy either implicitly via regularized variants of
importance sampling based algorithms [47, 58, 35, 59, 41], offline actor-critic methods [53, 45, 27, 16,
64], applying uncertainty quantification to the predictions of the Q-values [2, 28, 63, 34], and learning
conservative Q-values [29, 55] or explicitly measured by direct state or action constraints [14, 36], KL
divergence [21, 63, 69], Wasserstein distance, MMD [28] and auxiliary imitation loss [13]. Different
from these works, COMBO uses both the offline dataset as well as model-generated data.

Model-based offline RL. Model-based offline RL methods [11, 9, 24, 26, 67, 39, 3, 60, 48, 33, 68]
provide an alternative approach to policy learning that involves the learning of a dynamics model
using techniques from supervised learning and generative modeling. Such methods however rely
either on uncertainty quantification of the learned dynamics model which can be difficult for deep
network models [44], or on directly constraining the policy towards the behavioral policy similar
to model-free algorithms [39]. In contrast, COMBO conservatively estimates the value function
by penalizing it in out-of-support states generated through model rollouts. This allows COMBO to
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retain all benefits of model-based algorithms such as broad generalization, without the constraints of
explicit policy regularization or uncertainty quantification.

7 Conclusion
In the paper, we present conservative offline model-based policy optimization (COMBO), a model-
based offline RL algorithm that penalizes the Q-values evaluated on out-of-support state-action pairs.
In particular, COMBO removes the need of uncertainty quantification as widely used in previous
model-based offline RL works [26, 67], which can be challenging and unreliable with deep neural
networks [44]. Theoretically, we show that COMBO achieves less conservative Q values compared to
prior model-free offline RL methods [29] and guarantees a safe policy improvement. In our empirical
study, COMBO achieves the best generalization performances in 3 tasks that require adaptation
to unseen behaviors. Moreover, COMBO is able scale to vision-based tasks and outperforms or
obtain comparable results in vision-based locomotion and robotic manipulation tasks. Finlly, on
standard D4RL benchmark, COMBO generally performs well across dataset types compared to prior
methods Despite the advantages of COMBO, there are few challenges left such as the lack of an
offline hyperparameter selection scheme that can yield a uniform hyperparameter across different
datasets and an automatically selected f conditioned on the model error. We leave them for future
work.
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A Proofs from Section 4
In this section, we provide proofs for theoretical results in Section 4. Before the proofs, we note that
all statements are proven in the case of finite state space (i.e., |S| <∞) and finite action space (i.e.,
|A| <∞) we define some commonly appearing notation symbols appearing in the proof:

• PM and rM (or P and r with no subscript for notational simplicity) denote the dynamics
and reward function of the actual MDPM

• PM and rM denote the dynamics and reward of the empirical MDPM generated from the
transitions in the dataset

• PM̂ and rM̂ denote the dynamics and reward of the MDP induced by the learned model M̂
We also assume that whenever the cardinality of a particular state or state-action pair in the offline
dataset D, denoted by |D(s,a)|, appears in the denominator, we assume it is non-zero. For any
non-existent (s,a) /∈ D, we can simply set |D(s,a)| to be a small value < 1, which prevents any
bound from producing trivially∞ values.

A.1 A Useful Lemma and Its Proof

Before proving our main results, we first show that the penalty term in equation 4 is positive in
expectation. Such a positive penalty is important to combat any overestimation that may arise as a
result of using B̂.

Lemma A.1 ((Interpolation Lemma). For any f ∈ [0, 1], and any given ρ(s,a) ∈ ∆|S||A|, let df be
an f-interpolation of ρ and D, i.e., df (s,a) := fd(s,a) + (1− f)ρ(s,a). For a given iteration k of
Equation 4, we restate the definition of the expected penalty under ρ(s,a) in Eq. 5:

ν(ρ, f) := Es,a∼ρ(s,a)

[
ρ(s,a)− d(s,a)

df (s,a)

]
.

Then ν(ρ, f) satisfies, (1) ν(ρ, f) ≥ 0, ∀ρ, f , (2) ν(ρ, f) is monotonically increasing in f for a
fixed ρ, and (3) ν(ρ, f) = 0 iff ∀ s,a, ρ(s,a) = d(s,a) or f = 0.

Proof. To prove this lemma, we use algebraic manipulation on the expression for quantity ν(ρ, f)
and show that it is indeed positive and monotonically increasing in f ∈ [0, 1].

ν(ρ, f) =
∑
s,a

ρ(s,a)

(
ρ(s,a)− d(s,a)

fd(s,a) + (1− f)ρ(s,a)

)
=

∑
s,a

ρ(s,a)

(
ρ(s,a)− d(s,a)

ρ(s,a) + f(d(s,a)− ρ(s,a))

)
(6)

=⇒ dν(ρ, f)

df
=

∑
s,a

ρ(s,a) (ρ(s,a)− d(s,a))2 ·
(

1

(ρ(s,a) + f(d(s,a)− ρ(s,a))

)2

≥ 0

∀f ∈ [0, 1]. (7)

Since the derivative of ν(ρ, f) with respect to f is always positive, it is an increasing function of f
for a fixed ρ, and this proves the second part (2) of the Lemma. Using this property, we can show the
part (1) of the Lemma as follows:

∀f ∈ (0, 1], ν(ρ, f) ≥ ν(ρ, 0) =
∑
s,a

ρ(s,a)
ρ(s,a)− d(s,a)

ρ(s,a)
=

∑
s,a

(ρ(s,a)− d(s,a))

= 1− 1 = 0. (8)

Finally, to prove the third part (3) of this Lemma, note that when f = 0, ν(ρ, f) = 0 (as shown
above), and similarly by setting ρ(s,a) = d(s,a) note that we obtain ν(ρ, f) = 0. To prove the only
if side of (3), assume that f ̸= 0 and ρ(s,a) ̸= d(s,a) and we will show that in this case ν(ρ, f) ̸= 0.
When d(s,a) ̸= ρ(s,a), the derivative dν(ρ,f)

df > 0 (i.e., strictly positive) and hence the function
ν(ρ, f) is a strictly increasing function of f . Thus, in this case, ν(ρ, f) > 0 = ν(ρ, 0) ∀f > 0. Thus
we have shown that if ρ(s,a) ̸= d(s,a) and f > 0, ν(ρ, f) ̸= 0, which completes our proof for the
only if side of (3).

15



A.2 Proof of Proposition 4.1
Before proving this proposition, we provide a bound on the Bellman backup in the empirical MDP,
BM. To do so, we formally define the standard concentration properties of the reward and transition
dynamics in the empirical MDP,M, that we assume so as to prove Proposition A.1. Following prior
work [42, 19, 29], we assume:
Assumption A1. ∀ s,a ∈M, the following relationships hold with high probability, ≥ 1− δ

|rM(s,a)− r(s,a)| ≤ Cr,δ√
|D(s,a)|

, ||PM(s′|s,a)− P (s′|s,a)||1 ≤
CP,δ√
|D(s,a)|

.

Under this assumption and assuming that the reward function in the MDP, r(s,a) is bounded, as
|r(s,a)| ≤ Rmax, we can bound the difference between the empirical Bellman operator, BM and the
actual MDP, BM,∣∣∣(BMπQ̂k

)
−
(
BπMQ̂k

)∣∣∣ = |(rM(s,a)− rM(s,a))

+γ
∑
s′

(PM(s′|s,a)− PM(s′|s,a))Eπ(a′|s′)

[
Q̂k(s′,a′)

]∣∣∣∣∣
≤ |rM(s,a)− rM(s,a)|

+ γ

∣∣∣∣∣∑
s′

(PM(s′|s,a)− PM(s′|s,a))Eπ(a′|s′)

[
Q̂k(s′,a′)

]∣∣∣∣∣
≤ Cr,δ + γCP,δ2Rmax/(1− γ)√

|D(s,a)|
.

Thus the overestimation due to sampling error in the empirical MDP,M is bounded as a function of
a bigger constant, Cr,P,δ that can be expressed as a function of Cr,δ and CP,δ , and depends on δ via a√
log(1/δ) dependency. For the purposes of proving Proposition A.1, we assume that:

∀s,a,
∣∣∣(BMπQ̂k

)
−

(
BπMQ̂k

)∣∣∣ ≤ Cr,T,δRmax

(1− γ)
√
|D(s,a)|

. (9)

Next, we provide a bound on the error between the bellman backup induced by the learned dynamics
model and the learned reward, BM̂, and the actual Bellman backup, BM. To do so, we note that:∣∣∣(BM̂πQ̂k

)
−
(
BπMQ̂k

)∣∣∣ = ∣∣(rM̂(s,a)− rM(s,a)
)

(10)

+γ
∑
s′

(
PM̂(s′|s,a)− PM(s′|s,a)

)
Eπ(a′|s′)

[
Q̂k(s′,a′)

]∣∣∣∣∣
≤ |rM̂(s,a)− rM(s,a)|+ γ

2Rmax

1− γ
D(P, PM̂), (11)

whereD(P, PM̂) is the total-variation divergence between the learned dynamics model and the actual
MDP. Now, we show that the asymptotic Q-function learned by COMBO lower-bounds the actual
Q-function of any policy π with high probability for a large enough β ≥ 0. We will use Equations 9
and 11 to prove such a result.
Proposition A.1 (Asymptotic lower-bound). Let Pπ denote the Hadamard product of the dynamics
P and a given policy π in the actual MDP and let Sπ := (I − γPπ)−1. Let D denote the total-
variation divergence between two probability distributions. For any π(a|s), the Q-function obtained
by recursively applying Equation 4, with B̂π = fBπM + (1− f)Bπ

M̂
, with probability at least 1− δ,

results in Q̂π that satisfies:

∀s,a, Q̂π(s,a) ≤ Qπ(s,a)− β ·
[
Sπ

[
ρ− d
df

]]
(s,a) + f

[
Sπ

[
Cr,T,δRmax

(1− γ)
√
|D|

]]
(s,a)

+ (1− f)
[
Sπ

[
|r − rM̂|+

2γRmax

1− γ
D(P, PM̂)

]]
(s,a).
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Proof. We first note that the Bellman backup B̂π induces the following Q-function iterates as per
Equation 4,

Q̂k+1(s,a) =
(
B̂πQ̂k

)
(s,a)− β ρ(s,a)− d(s,a)

df (s,a)

= f
(
BπMQ̂k

)
(s,a) + (1− f)

(
BπM̂Q̂k

)
(s,a)− β ρ(s,a)− d(s,a)

df (s,a)

=
(
BπQ̂k

)
(s,a)− β ρ(s,a)− d(s,a)

df (s,a)
+ (1− f)

(
BM̂

πQ̂k − BπQ̂k
)
(s,a)

+ f
(
BM

πQ̂k − BπQ̂k
)
(s,a)

∀s,a, Q̂k+1 ≤
(
BπQ̂k

)
− β ρ− d

df
+ (1− f)

[
|rM̂ − rM|+

2γRmax

1− γ
D(P, PM̂)

]
+ f

Cr,T,δRmax

(1− γ)
√
|D|

Since the RHS upper bounds the Q-function pointwise for each (s,a), the fixed point of the Bellman
iteration process will be pointwise smaller than the fixed point of the Q-function found by solving for
the RHS via equality. Thus, we get that

Q̂π(s,a) ≤ SπrM︸ ︷︷ ︸
=Qπ(s,a)

−β
[
Sπ

[
ρ− d
df

]]
(s,a) + f

[
Sπ

[
Cr,T,δRmax

(1− γ)
√
|D|

]]
(s,a)

+ (1− f)
[
Sπ

[
|r − rM̂|+

2γRmax

1− γ
D(P, PM̂)

]]
(s,a),

which completes the proof of this proposition.

Next, we use the result and proof technique from Proposition A.1 to prove Corollary 4.1, that in
expectation under the initial state-distribution, the expected Q-value is indeed a lower-bound.
Corollary A.1 (Corollary 4.1 restated). For a sufficiently large β, we have a lower-bound that
Es∼µ0,a∼π(·|s)[Q̂

π(s,a)] ≤ Es∼µ0,a∼π(·|s)[Q
π(s,a)], where µ0(s) is the initial state distribution.

Furthermore, when ϵs is small, such as in the large sample regime; or when the model bias ϵm is
small, a small β is sufficient along with an appropriate choice of f .

Proof. To prove this corollary, we note a slightly different variant of Proposition A.1. To observe this,
we will deviate from the proof of Proposition A.1 slightly and will aim to express the inequality using
BM̂, the Bellman operator defined by the learned model and the reward function. Denoting (I −
γPM̂)−1 as Sπ

M̂
, doing this will intuitively allow us to obtain β (µ(s)π(a|s))T

(
Sπ
M̂

[
ρ−d
df

])
(s,a)

as the conservative penalty which can be controlled by choosing β appropriately so as to nullify the
potential overestimation caused due to other terms. Formally,

Q̂k+1(s,a) =
(
B̂πQ̂k

)
(s,a)− β ρ(s,a)− d(s,a)

df (s,a)
=

(
BπM̂Q̂k

)
(s,a)− β ρ(s,a)− d(s,a)

df (s,a)

+ f
(
BπM − B

π
M̂Q̂k

)
(s,a)︸ ︷︷ ︸

:=∆(s,a)

By controlling ∆(s,a) using the pointwise triangle inequality:

∀s,a,
∣∣∣BπMQ̂k − BπM̂Q̂k

∣∣∣ ≤ ∣∣∣BπQ̂k − BπM̂Q̂k
∣∣∣+ ∣∣∣BπMQ̂k − BπQ̂k

∣∣∣ , (12)

and then iterating the backup Bπ
M̂

to its fixed point and finally noting that ρ(s,a) =(
(µ · π)TSπ

M̂

)
(s,a), we obtain:

Eµ,π[Q̂
π(s,a)] ≤ Eµ,π[Q

π
M̂(s,a)]− β Eρ(s,a)

[
ρ(s,a)− d(s,a)

df (s,a)

]
+ terms independent of β.

(13)
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The terms marked as “terms independent of β” correspond to the additional positive error terms
obtained by iterating

∣∣∣BπQ̂k − Bπ
M̂
Q̂k

∣∣∣ and
∣∣∣BπMQ̂k − BπQ̂k

∣∣∣, which can be bounded similar to
the proof of Proposition A.1 above. Now by replacing the model Q-function, Eµ,π[Q

π
M̂
(s,a)] with

the actual Q-function, Eµ,π[Q
π(s,a)] and adding an error term corresponding to model error to the

bound, we obtain that:

Eµ,π[Q̂
π(s,a)] ≤ Eµ,π[Q

π(s,a)] + terms independent of β − β Eρ(s,a)

[
ρ(s,a)− d(s,a)

df (s,a)

]
︸ ︷︷ ︸

=ν(ρ,f)>0

.

(14)
Hence, by choosing β large enough, we obtain the desired lower bound guarantee.

Remark 1 (COMBO does not underestimate at every s ∈ D unlike CQL.). Before concluding
this section, we discuss how the bound obtained by COMBO (Equation 14) is tighter than CQL. CQL
learns a Q-function such that the value of the policy under the resulting Q-function lower-bounds
the true value function at each state s ∈ D individually (in the absence of no sampling error), i.e.,
∀s ∈ D, V̂ π

CQL(s) ≤ V π(s), whereas the bound in COMBO is only valid in expectation of the value
function over the initial state distribution, i.e., Es∼µ0(s)[V̂

π
COMBO(s)] ≤ Es∼µ0(s)[V

π(s)], and the
value function at a given state may not be a lower-bound. For instance, COMBO can overestimate
the value of a state more frequent in the dataset distribution d(s,a) but not so frequent in the ρ(s,a)
marginal distribution of the policy under the learned model M̂. To see this more formally, note that
the expected penalty added in the effective Bellman backup performed by COMBO (Equation 4), in
expectation under the dataset distribution d(s,a), ν̃(ρ, d, f) is actually negative:

ν̃(ρ, d, f) =
∑
s,a

d(s,a)
ρ(s,a)− d(s,a)

df (s,a)
= −

∑
s,a

d(s,a)
d(s,a)− ρ(s,a)

fd(s,a) + (1− f)ρ(s,a)
< 0,

where the final inequality follows via a direct application of the proof of Lemma A.1. Thus, COMBO
actually overestimates the values at atleast some states (in the dataset) unlike CQL.

A.3 Proof of Proposition 4.2

In this section, we will provide a proof for Proposition 4.2, and show that the COMBO can be less
conservative in terms of the estimated value. To recall, let ∆π

COMBO := Es,a∼dM(s),π(a|s)

[
Q̂π(s,a

]
and let ∆π

CQL := Es,a∼dM,π(a|s)

[
Q̂π

CQL(s,a)
]
. From Kumar et al. [29], we obtain that Q̂π

CQL(s,a) :=

Qπ(s,a)−β π(a|s)−πβ(a|s)
πβ(a|s) . We shall derive the condition for the real data fraction f = 1 for COMBO,

thus making sure that df (s) = dπβ (s). To derive the condition when ∆π
COMBO ≥ ∆π

CQL, we note the
following simplifications:

∆π
COMBO ≥ ∆π

CQL (15)

=⇒
∑
s,a

dM(s)π(a|s)Q̂π(s,a) ≥
∑
s,a

dM(s)π(a|s)Q̂π
CQL(s,a) (16)

=⇒ β
∑
s,a

dM(s)π(a|s)
(
ρ(s,a)− dπβ (s)πβ(a|s)

dπβ (s)πβ(a|s)

)
≤ β

∑
s,a

dM(s)π(a|s)
(
π(a|s)− πβ(a|s)

πβ(a|s)

)
.

(17)
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Now, in the expression on the left-hand side, we add and subtract dπβ (s)π(a|s) from the numerator
inside the paranthesis.

∑
s,a

dM(s,a)

(
ρ(s,a)− dπβ (s)πβ(a|s)

dπβ (s)πβ(a|s)

)
(18)

=
∑
s,a

dM(s,a)

(
ρ(s,a)− dπβ (s)π(a|s) + dπβ (s)π(a|s)− dπβ (s)πβ(a|s)

dπβ (s)πβ(a|s)

)
(19)

=
∑
s,a

dM(s,a)
π(a|s)− πβ(a|s)

πβ(a|s)︸ ︷︷ ︸
(1)

+
∑
s,a

dM(s,a) · ρ(s)− d
πβ (s)

dπβ (s)
· π(a|s)
πβ(a|s)

(20)

The term marked (1) is identical to the CQL term that appears on the right in Equation 17. Thus
the inequality in Equation 17 is satisfied when the second term above is negative. To show this, first
note that dπβ (s) = dM(s) which results in a cancellation. Finally, re-arranging the second term into
expectations gives us the desired result. An analogous condition can be derived when f ̸= 1, but we
omit that derivation as it will be hard to interpret terms appear in the final inequality.

A.4 Proof of Proposition 4.3

To prove the policy improvement result in Proposition 4.3, we first observe that using Equation 4 for
Bellman backups amounts to finding a policy that maximizes the return of the policy in the a modified
“f-interpolant” MDP which admits the Bellman backup B̂π , and is induced by a linear interpolation of
backups in the empirical MDPM and the MDP induced by a dynamics model M̂ and the return of a
policy π in this effective f-interpolant MDP is denoted by J(M,M̂, f, π). Alongside this, the return
is penalized by the conservative penalty where ρπ denotes the marginal state-action distribution of
policy π in the learned model M̂.

Ĵ(f, π) = J(M,M̂, f, π)− β ν(ρ
π, f)

1− γ
. (21)

We will require bounds on the return of a policy π in this f-interpolant MDP, J(M,M̂, f, π), which
we first prove separately as Lemma A.2 below and then move to the proof of Proposition 4.3.

Lemma A.2 (Bound on return in f-interpolant MDP). For any two MDPs, M1 and M2, with
the same state-space, action-space and discount factor, and for a given fraction f ∈ [0, 1], define
the f-interpolant MDPMf as the MDP on the same state-space, action-space and with the same
discount as the MDP with dynamics: PMf

:= fPM1 + (1− f)PM2 and reward function: rMf
:=

frM1
+ (1 − f)rM2

. Then, given any auxiliary MDP, M, the return of any policy π in Mf ,
J(π,Mf ), also denoted by J(M1,M2, f, π), lies in the interval:[

J(π,M)− α, J(π,M) + α
]
, where α is given by:

α =
2γ(1− f)
(1− γ)2

RmaxD (PM2 , PM) +
γf

1− γ
∣∣Edπ

Mπ

[(
Pπ
M − Pπ

M1

)
Qπ

M
]∣∣

+
f

1− γ
Es,a∼dπ

Mπ[|rM1(s,a)− rM(s,a)|] + 1− f
1− γ

Es,a∼dπ
Mπ[|rM2(s,a)− rM(s,a)|]. (22)

Proof. To prove this lemma, we note two general inequalities. First, note that for a fixed transition
dynamics, say P , the return decomposes linearly in the components of the reward as the expected
return is linear in the reward function:

J(P, rMf
) = J(P, frM1

+ (1− f)rM2
) = fJ(P, rM1

) + (1− f)J(P, rM2
).
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As a result, we can bound J(P, rMf
) using J(P, r) for a new reward function r of the auxiliary

MDP,M, as follows

J(P, rMf
) = J(P, frM1

+ (1− f)rM2
) = J(P, r + f(rM1

− r) + (1− f)(rM2
− r)

= J(P, r) + fJ(P, rM1
− r) + (1− f)J(P, rM2

− r)

= J(P, r) +
f

1− γ
Es,a∼dπ

M(s)π(a|s) [rM1
(s,a)− r(s,a)]

+
1− f
1− γ

Es,a∼dπ
M(s)π(a|s) [rM2

(s,a)− r(s,a)] .

Second, note that for a given reward function, r, but a linear combination of dynamics, the following
bound holds:

J(PMf
, r) = J(fPM1 + (1− f)PM2 , r)

= J(PM + f(PM1
− PM) + (1− f)(PM2

− PM), r)

= J(PM, r)− γ(1− f)
1− γ

Es,a∼dπ
M(s)π(a|s)

[(
Pπ
M2
− Pπ

M
)
Qπ

M
]

− γf

1− γ
Es,a∼dπ

M(s)π(a|s)
[(
Pπ
M − Pπ

M1

)
Qπ

M
]

∈
[
J(PM, r) ±

(
γf

(1− γ)

∣∣∣Es,a∼dπ
M(s)π(a|s)

[(
Pπ
M − Pπ

M1

)
Qπ

M
]∣∣∣

+
2γ(1− f)Rmax

(1− γ)2
D(PM2 , PM)

)]
.

To observe the third equality, we utilize the result on the difference between returns of a policy π
on two different MDPs, PM1

and PMf
from Agarwal et al. [1] (Chapter 2, Lemma 2.2, Simula-

tion Lemma), and additionally incorporate the auxiliary MDP M in the expression via addition
and subtraction in the previous (second) step. In the fourth step, we finally bound one term that
corresponds to the learned model via the total-variation divergence D(PM2

, PM) and the other term
corresponding to the empirical MDPM is left in its expectation form to be bounded later.

Using the above bounds on return for reward-mixtures and dynamics-mixtures, proving this lemma is
straightforward:

J(M1,M2, f, π) := J(PMf
, frM1 + (1− f)rM2) = J(fPM1 + (1− f)PM2 , rMf

)

∈
[
J(PMf

, rM) ±

(
f

1− γ
Es,a∼dπ

Mπ[|rM1
(s,a)− rM(s,a)|] + 1− f

1− γ
Es,a∼dπ

Mπ[|rM2
(s,a)− rM(s,a)|]

)
︸ ︷︷ ︸

:=∆R

 ,
where the second step holds via linear decomposition of the return of π inMf with respect to the
reward interpolation, and bounding the terms that appear in the reward difference. For convenience,
we refer to these offset terms due to the reward as ∆R. For the final part of this proof, we bound
J(PMf

, rM) in terms of the return on the actual MDP, J(PM, rM), using the inequality proved
above that provides intervals for mixture dynamics but a fixed reward function. Thus, the overall
bound is given by J(π,Mf ) ∈ [J(π,M)− α, J(π,M) + α], where α is given by:

α =
2γ(1− f)
(1− γ)2

RmaxD (PM2
, PM) +

γf

1− γ
∣∣Edπ

Mπ

[(
Pπ
M − Pπ

M1

)
Qπ

M
]∣∣+∆R. (23)

This concludes the proof of this lemma.

Finally, we prove Theorem 4.3 that shows how policy optimization with respect to Ĵ(f, π) affects the
performance in the actual MD by using Equation 21 and building on the analysis of pure model-free
algorithms from Kumar et al. [29]. We restate a more complete statement of the theorem below and
present the constants at the end of the proof.
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Theorem 2 (Formal version of Proposition 4.3). Let π̂out(a|s) be the policy obtained by COMBO.
Assume ν(ρπout , f) − ν(ρβ , f) ≥ C for some constant C > 0. Then, the policy πout(a|s) is a ζ-
safe policy improvement over πβ in the actual MDPM, i.e., J(πout,M) ≥ J(πβ ,M) − ζ, with
probability at least 1− δ, where ζ is given by (where ρβ(s,a) := d

πβ

M̂
(s,a)):

O
(

γf

(1− γ)2

)[
Es∼dπout

M

[√
|A|
|D(s)|

(DCQL(πout, πβ) + 1)

]]

+O
(
γ(1− f)
(1− γ)2

)
DTV(PM, PM̂)− β C

(1− γ)
.

Proof. We first note that since policy improvement is not being performed in the same MDP,M
as the f-interpolant MDP, Mf , we need to upper and lower bound the amount of improvement
occurring in the actual MDP due to the f-interpolant MDP. As a result our first is to relate J(π,M)

and J(π,Mf ) := J(M,M̂, f, π) for any given policy π.

Step 1: Bounding the return in the actual MDP due to optimization in the f-interpolant MDP.
By directly applying Lemma A.2 stated and proved previously, we obtain the following upper and
lower-bounds on the return of a policy π:

J(M,M̂, f, π) ∈ [J(π,M)− α, J(π,M) + α] ,

where α is shown in Equation 22. As a result, we just need to bound the terms appearing the
expression of α to obtain a bound on the return differences. We first note that the terms in the
expression for α are of two types: (1) terms that depend only on the reward function differences
(captured in ∆R in Equation 23), and (2) terms that depend on the dynamics (the other two terms in
Equation 23).

To bound ∆R, we simply appeal to concentration inequalities on reward (Assumption A1), and bound
∆R as:

∆R :=
f

1− γ
Es,a∼dπ

Mπ[|rM1(s,a)− rM(s,a)|] + 1− f
1− γ

Es,a∼dπ
Mπ[|rM2(s,a)− rM(s,a)|]

≤ Cr,δ

1− γ
Es,a∼dπ

Mπ

[
1√

D(s,a)

]
+

1

1− γ
||RM −RM̂|| := ∆u

R.

Note that both of these terms are of the order of O(1/(1 − γ)) and hence they don’t figure in
the informal bound in Theorem 4.3 in the main text, as these are dominated by terms that grow
quadratically with the horizon. To bound the remaining terms in the expression for α, we utilize a
result directly from Kumar et al. [29] for the empirical MDP,M, which holds for any policy π(a|s),
as shown below.

γ

(1− γ)

∣∣∣Es,a∼dπ
M(s)π(a|s)

[(
Pπ
M − Pπ

M1

)
Qπ

M
]∣∣∣

≤ 2γRmaxCP,δ

(1− γ)2
Es∼dπ

M
(s)

[ √
|A|√
|D(s)|

√
DCQL(π, πβ)(s) + 1

]
.

Step 2: Incorporate policy improvement in the f-inrerpolant MDP. Now we incorporate the
improvement of policy πout over the policy πβ on a weighted mixture of M̂ andM. In what follows,
we derive a lower-bound on this improvement by using the fact that policy πout is obtained by
maximizing Ĵ(f, π) from Equation 21. As a direct consequence of Equation 21, we note that

Ĵ(f, πout) = J(M,M̂, f, πout)− β
ν(ρπ, f)

1− γ
≥ Ĵ(f, πβ) = J(M,M̂, f, πβ)− β

ν(ρβ , f)

1− γ
(24)
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Following Step 1, we will use the upper bound on J(M,M̂, f, π) for policy π = πout and a
lower-bound on J(M,M̂, f, π) for policy π = πβ and obtain the following inequality:

J(πout,M)− β ν(ρ
π, f)

1− γ
≥

{
J(πβ ,M)− β ν(ρ

β , f)

1− γ
− 4γ(1− f)Rmax

(1− γ)2
D(PM, PM̂)

− 2γf

(1− γ)

∣∣∣Ed
πout
M

[(
Pπout
M − Pπout

M

)
Qπout

M

]∣∣∣︸ ︷︷ ︸
:=(∗)

− 4γRmaxCP,δf

(1− γ)2
E
s∼d

πβ
M

[√
|A|
|D(s)|

]
︸ ︷︷ ︸

:=(∧)

−∆u
R

}
.

The term marked by (∗) in the above expression can be upper bounded by the concentration properties
of the dynamics as done in Step 1 in this proof:

(∗) ≤ 4γfCP,δRmax

(1− γ)2
Es∼d

πout
M (s)

[ √
|A|√
|D(s)|

√
DCQL(πout, πβ)(s) + 1

]
. (25)

Finally, using Equation 25, we can lower-bound the policy return difference as:

J(πout,M)− J(πβ ,M) ≥ β ν(ρ
π, f)

1− γ
− β ν(ρ

β , f)

1− γ
− 4γ(1− f)Rmax

(1− γ)2
D(PM, PM̂)− (∗)−∆u

R

≥ β C

1− γ
− 4γ(1− f)Rmax

(1− γ)2
D(PM, PM̂)− (∗)−∆u

R.

Plugging the bounds for terms (a), (b) and (c) in the expression for ζ where J(πout,M)−J(πβ ,M) ≥
ζ, we obtain:

ζ =

(
4fγRmaxCP,δ

(1− γ)2

)
Es∼d

πout
M (s)

[ √
|A|√
|D(s)|

√
DCQL(πout, πβ)(s) + 1

]
+ (∧)−∆u

R

+
4(1− f)γRmax

(1− γ)2
D(PM, PM̂)− β C

1− γ
. (26)

Remark 3 (Interpretation of Proposition 4.3). Now we will interpret the theoretical expression for
ζ in Equation 26, and discuss the scenarios when it is negative. When the expression for ζ is negative,
the policy πout is an improvement over πβ in the original MDP,M.

• We first discuss if the assumption of ν(ρπout , f) − ν(ρβ , f) ≥ C > 0 is reasonable in
practice. Note that we have never used the fact that the learned model PM̂ is close to the
actual MDP, PM on the states visited by the behavior policy πβ in our analysis. We will use
this fact now: in practical scenarios, ν(ρβ , f) is expected to be smaller than ν(ρπ, f), since
ν(ρβ , f) is directly controlled by the difference and density ratio of ρβ(s,a) and d(s,a):

ν(ρβ , f) ≤ ν(ρβ , f = 1) =
∑

s,a d
πβ

M̂
(s,a)

(
d
πβ

M̂
(s,a)/d

πβ

M(s,a)− 1
)2

by Lemma A.1
which is expected to be small for the behavior policy πβ in cases when the behavior policy
marginal in the empirical MDP, dπβ

M(s,a), is broad. This is a direct consequence of the
fact that the learned dynamics integrated with the policy under the learned model: Pπβ

M̂
is

closer to its counterpart in the empirical MDP: Pπβ

M for πβ . Note that this is not true for
any other policy besides the behavior policy that performs several counterfactual actions in
a rollout and deviates from the data. For such a learned policy π, we incur an extra error
which depends on the importance ratio of policy densities, compounded over the horizon
and manifests as the DCQL term (similar to Equation 25, or Lemma D.4.1 in Kumar et al.
[29]). Thus, in practice, we argue that we are interested in situations where the assumption
ν(ρπout , f) − ν(ρβ , f) ≥ C > 0 holds, in which case by increasing β, we can make the
expression for ζ in Equation 26 negative, allowing for policy improvement.
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• In addition, note that when f is close to 1, the bound reverts to a standard model-free policy
improvement bound and when f is close to 0, the bound reverts to a typical model-based
policy improvement bound. In scenarios with high sampling error (i.e. smaller |D(s)|), if
we can learn a good model, i.e., D(PM, PM̂) is small, we can attain policy improvement
better than model-free methods by relying on the learned model by setting f closer to 0. A
similar argument can be made in reverse for handling cases when learning an accurate
dynamics model is hard.

B Experimental details
In this section, we include all details of our empirical evaluations of COMBO.

B.1 Practical algorithm implementation details

Model training. In the setting where the observation space is low-dimensional, as mentioned
in Section 3, we represent the model as a probabilistic neural network that outputs a Gaussian
distribution over the next state and reward given the current state and action:

T̂θ(st+1, r|s,a) = N (µθ(st,at),Σθ(st,at)).

We train an ensemble of 7 such dynamics models following [20] and pick the best 5 models based on
the validation prediction error on a held-out set that contains 1000 transitions in the offline dataset D.
During model rollouts, we randomly pick one dynamics model from the best 5 models. Each model
in the ensemble is represented as a 4-layer feedforward neural network with 200 hidden units. For
the generalization experiments in Section 5.1, we additionally use a two-head architecture to output
the mean and variance after the last hidden layer following [67].

In the image-based setting, we follow Rafailov et al. [48] and use a variational model with the
following components:

Image encoder: ht = Eθ(ot)

Inference model: st ∼ qθ(st|ht, st−1,at−1)

Latent transition model: st ∼ T̂θ(st|st−1,at−1)

Reward predictor: rt ∼ pθ(rt|st)
Image decoder: ot ∼ Dθ(ot|st).

(27)

We train the model using the evidence lower bound:

max
θ

T−1∑
τ=0

[
Eqθ [logDθ(oτ+1|sτ+1)]

]
− Eqθ

[
DKL[qθ(oτ+1, sτ+1|sτ ,aτ )∥T̂θτ (sτ+1, aτ+1)]

]

At each step τ we sample a latent forward model T̂θτ from a fixed set ofK models [T̂θ1 , . . . , T̂θK ]. For
the encoder Eθ we use a convolutional neural network with kernel size 4 and stride 2. For the Walker
environment we use 4 layers, while the Door Opening task has 5 layers. The Dθ is a transposed
convolutional network with stride 2 and kernel sizes [5, 5, 6, 6] and [5, 5, 5, 6, 6] respectively. The
inference network has a two-level structure similar to Hafner et al. [18] with a deterministic path
using a GRU cell with 256 units and a stochastic path implemented as a conditional diagonal Gaussian
with 128 units. We only train an ensemble of stochastic forward models, which are also implemented
as conditional diagonal Gaussians.

Policy Optimization. We sample a batch size of 256 transitions for the critic and policy learning.
We set f = 0.5, which means we sample 50% of the batch of transitions from D and another 50%
from Dmodel. The equal split between the offline data and the model rollouts strikes the balance
between conservatism and generalization in our experiments as shown in our experimental results in
Section 5. We represent the Q-networks and policy as 3-layer feedforward neural networks with 256
hidden units.
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For the choice of ρ(s,a) in Equation 2, we can obtain the Q-values that lower-bound the true value of
the learned policy π by setting ρ(s,a) = dπ

M̂
(s)π(a|s). However, as discussed in [29], computing π

by alternating the full off-policy evaluation for the policy π̂k at each iteration k and one step of policy
improvement is computationally expensive. Instead, following [29], we pick a particular distribution
ψ(a|s) that approximates the the policy that maximizes the Q-function at the current iteration and set
ρ(s,a) = dπ

M̂
(s)ψ(a|s). We formulate the new objective as follows:

Q̂k+1 ← argmin
Q

β
(
Es∼dπ

M̂
(s),a∼ψ(a|s)[Q(s,a)]− Es,a∼D [Q(s,a)]

)
+

1

2
Es,a,s′∼df

[(
Q(s,a)− B̂πQ̂k(s,a))

)2]
+R(ψ), (28)

whereR(ψ) is a regularizer on ψ. In practice, we pickR(ψ) to be the −DKL(ψ(a|s)∥Unif(a)) and
under such a regularization, the first term in Equation 28 corresponds to computing softmax of the
Q-values at any state s as follows:

Q̂k+1 ← argmin
Q

max
ψ

β

(
Es∼dπ

M̂
(s)

[
log
∑
a

Q(s,a)

]
− Es,a∼D [Q(s,a)]

)

+
1

2
Es,a,s′∼df

[(
Q(s,a)− B̂πQ̂k(s,a))

)2]
. (29)

We estimate the log-sum-exp term in Equation 29 by sampling 10 actions at every state s in the
batch from a uniform policy Unif(a) and the current learned policy π(a|s) with importance sampling
following [29].

B.2 Hyperparameter Selection

In this section, we discuss the hyperparameters that we use for COMBO. In the D4RL and gen-
eralization experiments, our method are built upon the implementation of MOPO provided at:
https://github.com/tianheyu927/mopo. The hyperparameters used in COMBO that relates
to the backbone RL algorithm SAC such as twin Q-functions and number of gradient steps follow
from those used in MOPO with the exception of smaller critic and policy learning rates, which
we will discuss below. In the image-based domains, COMBO is built upon LOMPO without any
changes to the parameters used there. For the evaluation of COMBO, we follow the evaluation
protocol in D4RL [12] and a variety of prior offline RL works [29, 67, 26] and report the normalized
score of the smooth undiscounted averaged return over 3 random seeds for all environments except
sawyer-door-close and sawyer-door where we report the average success rate over 3 random
seeds. As mentioned in Section 3, we use the regularization objective in Eq. 2 to select the hyperpa-
rameter from a range of pre-specified candidates in a fully offline manner, unlike prior model-based
offline RL schemes such as [67] and [26] that similar hyperparameters as COMBO and tune them
manually based on policy performance obtained via online rollouts.

We now list the additional hyperparameters as follows.

• Rollout length h. We perform a short-horizon model rollouts in COMBO similar to
Yu et al. [67] and Rafailov et al. [48]. For the D4RL experiments and generalization
experiments, we followed the defaults used in MOPO and used h = 1 for walker2d and
sawyer-door-close, h = 5 for hopper, halfcheetah and halfcheetah-jump, and h = 25
for ant-angle. In the image-based domain we used rollout length of h = 5 for both the the
walker-walk and sawyer-door-open environments following the same hyperparameters
used in Rafailov et al. [48].

• Q-function and policy learning rates. On state-based domains, we apply our automatic
selection rule to the set {1e − 4, 3e − 4} for the Q-function learning rate and the set
{1e−5, 3e−5, 1e−4} for the policy learning rate. We found that 3e−4 for the Q-function
learning rate (also used previously in Kumar et al. [29]) and 1e−4 for the policy learning rate
(also recommended previously in Kumar et al. [29] for gym domains) work well for almost
all domains except that on walker2d where a smaller Q-function learning rate of 1e− 4 and
a correspondingly smaller policy learning rate of 1e − 5 works the best according to our
automatic hyperparameter selection scheme. In the image-based domains, we followed the
defaults from prior work [48] and used 3e− 4 for both the policy and Q-function.
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• Conservative coefficient β. We use our hyperparameter selection rule to select the right
β from the set {0.5, 1.0, 5.0} for β, which correspond to low conservatism, medium con-
servatism and high conservatism. A larger β would be desirable in more narrow dataset
distributions with lower-coverage of the state-action space that propagates error in a backup
whereas a smaller β is desirable with diverse dataset distributions. On the D4RL experi-
ments, we found that β = 0.5 works well for halfcheetah agnostic of dataset quality, while
on hopper and walker2d, we found that the more “narrow” dataset distributions: medium
and medium-expert datasets work best with larger β = 5.0 whereas more “diverse” dataset
distributions: random and medium-replay datasets work best with smaller β = 0.5 which
is consistent with the intuition. On generalization experiments, β = 1.0 works best for all
environments. In the image-domains we use β = 0.5 for the medium-replay walker-walk
task and and β = 1.0 for all other domains, which again is in accordance with the impact of
β on performance.

• Choice of ρ(s,a). We first decouple ρ(s,a) = ρ(s)ρ(a|s) for convenience. As discussed
in Appendix B.1, we use ρ(a|s) as the soft-maximum of the Q-values and estimated with
log-sum-exp. For ρ(s), we apply the automatic hyperparameter selection rule to the set
{dπ

M̂
, ρ(s) = df}. We found that dπ

M̂
works better the hopper task in D4RL while df is

better for the rest of the environments. For the remaining domains, we found ρ(s) = df
works well.

• Choice of µ(a|s). For the rollout policy µ, we use our automatic selection rule on the
set {Unif(a), π(a|s)}, i.e. the set that contains a random policy and a current learned
policy. We found that µ(a|s) = Unif(a) works well on the hopper task in D4RL and also
in the ant-angle generalization experiment. For the remaining state-based environments,
we discovered that µ(a|s) = π(a|s) excels. In the image-based domain, we found that
µ(a|s) = Unif(a) works well in the walker-walk domain and µ(a|s) = π(a|s) is better
for the sawyer-door environment. We observed that µ(a|s) = Unif(a) behaves less
conservatively and is suitable to tasks where dynamics models can be learned fairly precisely.

• Choice of f . For the ratio between model rollouts and offline data f , we input the set
{0.5, 0.8} to our automatic hyperparameter selection rule to figure out the best f on each
domain. We found that f = 0.8 works well on the medium and medium-expert in the
walker2d task in D4RL. For the remaining environments, we find f = 0.5 works well.

We also provide additional experimental results on how our automatic hyperparameter selection rule
selects hyperparameters. As shown in Table 4, 5, 6 and 7, our automatic hyperparameter selection
rule is able to pick the hyperparameters β, µ(a|s), ρ(s) and f and that correspond to the best policy
performance based on the regularization value.

Task β = 0.5 β = 0.5 β = 5.0 β = 5.0
performance regularizer value performance regularizer value

halfcheetah-medium 54.2 -778.6 40.8 -236.8
halfcheetah-medium-replay 55.1 28.9 9.3 283.9
halfcheetah-medium-expert 89.4 189.8 90.0 6.5
hopper-medium 75.0 -740.7 97.2 -2035.9
hopper-medium-replay 89.5 37.7 28.3 107.2
hopper-medium-expert 111.1 -705.6 75.3 -64.1
walker2d-medium 1.9 51.5 81.9 -1991.2
walker2d-medium-replay 56.0 -157.9 27.0 53.6
walker2d-medium-expert 10.3 -788.3 103.3 -3891.4

Table 4: We include our automatic hyperparameter selection rule of β on a set of representative D4RL
environments. We show the policy performance (bold with the higher number) and the regularizer value (bold
with the lower number). Lower regularizer value consistently corresponds to the higher policy return, suggesting
the effectiveness of our automatic selection rule.

B.3 Details of generalization environments

For halfcheetah-jump and ant-angle, we follow the same environment used in MOPO.
For sawyer-door-close, we train the sawyer-door environment in https://github.com/
rlworkgroup/metaworld with dense rewards for opening the door until convergence. We col-
lect 50000 transitions with half of the data collected by the final expert policy and a policy that
reaches the performance of about half the expert level performance. We relabel the reward such that
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Task µ(a|s) = Unif(a) µ(a|s) = Unif(a) µ(a|s) = π(a|s) µ(a|s) = π(a|s)
performance regularizer value performance regularizer value

hopper-medium 97.2 -2035.9 52.6 -14.9
walker2d-medium 7.9 -106.8 81.9 -1991.2

Table 5: We include our automatic hyperparameter selection rule of µ(a|s) on the medium datasets in the
hopper and walker2d environments from D4RL. We follow the same convention defined in Table 4 and find that
our automatic selection rule can effectively select µ offline.

Task ρ(s) = dπ
M̂ ρ(s) = dπ

M̂ ρ(s) = df ρ(s) = df

performance regularizer value performance regularizer value

hopper-medium 97.2 -2035.9 56.0 -6.0
walker2d-medium 1.8 14617.4 81.9 -1991.2

Table 6: We include our automatic hyperparameter selection rule of ρ(s) on the medium datasets in the hopper
and walker2d environments from D4RL. We follow the same convention defined in Table 4 and find that our
automatic selection rule can effectively select ρ offline.

the reward is 1 when the door is fully closed and 0 otherwise. Hence, the offline RL agent is required
to learn the behavior that is different from the behavior policy in a sparse reward setting. We provide
the datasets in the following anonymous link1.

B.4 Details of image-based environments

Figure 3: Our image-based environments: The observations are 64 × 64 and 128 × 128 raw RGB images
for the walker-walk and sawyer-door tasks respectively. The sawyer-door-close environment used in in
Section 5.1 also uses the sawyer-door environment.

We visualize our image-based environments in Figure 3. We use the standard walker-walk envi-
ronment from Tassa et al. [61] with 64× 64 pixel observations and an action repeat of 2. Datasets
were constructed the same way as Fu et al. [12] with 200 trajectories each. For the sawyer-door we
use 128× 128 pixel observations. The medium-expert dataset contains 1000 rollouts (with a rollout
length of 50 steps) covering the state distribution from grasping the door handle to opening the door.
The expert dataset contains 1000 trajectories samples from a fully trained (stochastic) policy. The
data was obtained from the training process of a stochastic SAC policy using dense reward function
as defined in Yu et al. [66]. However, we relabel the rewards, so an agent receives a reward of 1
when the door is fully open and 0 otherwise. This aims to evaluate offline-RL performance in a
sparse-reward setting. All the datasets are from [48].

B.5 Computation Complexity

For the D4RL and generalization experiments, COMBO is trained on a single NVIDIA GeForce RTX
2080 Ti for one day. For the image-based experiments, we utilized a single NVIDIA GeForce RTX
2070. We trained the walker-walk tasks for a day and the sawyer-door-open tasks for about two
days.

B.6 License of datasets

We acknowledge that all datasets used in this paper use the MIT license.

1The datasets of the generalization environments are available at the anonymous link: https://drive.
google.com/file/d/1pn6dS5OgPQVp_ivGws-tmWdZoU7m_LvC/view?usp=sharing.
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Task f = 0.5 f = 0.5 f = 0.8 f = 0.8
performance regularizer value performance regularizer value

hopper-medium 97.2 -2035.9 93.8 -21.3
walker2d-medium 70.9 -1707.0 81.9 -1991.2

Table 7: We include our automatic hyperparameter selection rule of f on the medium datasets in the hopper
and walker2d environments from D4RL. We follow the same convention defined in Table 4 and find that our
automatic selection rule can effectively select f offline.

Environment Batch
Mean

Batch
Max

COMBO
(Ours)

CQL+MBPO

halfcheetah-jump -1022.6 1808.6 5392.7±575.5 4053.4±176.9
ant-angle 866.7 2311.9 2764.8±43.6 809.2±135.4
sawyer-door-close 5% 100% 100%±0.0% 62.7%±24.8%

Table 8: Comparison between COMBO and CQL+MBPO on tasks that require out-of-distribution gener-
alization. Results are in average returns of halfcheetah-jump and ant-angle and average success rate of
sawyer-door-close. All results are averaged over 6 random seeds, ± the 95%-confidence interval.

C Comparison to the Naive Combination of CQL and MBPO
In this section, we stress the distinction between COMBO and a direct combination of two previous
methods CQL and MBPO (denoted as CQL + MBPO). CQL+MBPO performs Q-value regularization
using CQL while expanding the offline data with MBPO-style model rollouts. While COMBO
utilizes Q-value regularization similar to CQL, the effect is very different. CQL only penalizes the
Q-value on unseen actions on the states observed in the dataset whereas COMBO penalizes Q-values
on states generated by the learned model while maximizing Q values on state-action tuples in the
dataset. Additionally, COMBO also utilizes MBPO-style model rollouts for also augmenting samples
for training Q-functions.

To empirically demonstrate the consequences of this distinction, CQL + MBPO performs quite a bit
worse than COMBO on generalization experiments (Section 5.1) as shown in Table 8. The results
are averaged across 6 random seeds (± denotes 95%-confidence interval of the various runs). This
suggests that carefully considering the state distribution, as done in COMBO, is crucial.
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