
A Proofs from Section 4
In this section, we provide proofs for theoretical results in Section 4. Before the proofs, we note that
all statements are proven in the case of finite state space (i.e., |S| <∞) and finite action space (i.e.,
|A| <∞) we define some commonly appearing notation symbols appearing in the proof:

• PM and rM (or P and r with no subscript for notational simplicity) denote the dynamics
and reward function of the actual MDPM

• PM and rM denote the dynamics and reward of the empirical MDPM generated from the
transitions in the dataset

• PM̂ and rM̂ denote the dynamics and reward of the MDP induced by the learned model M̂
We also assume that whenever the cardinality of a particular state or state-action pair in the offline
dataset D, denoted by |D(s,a)|, appears in the denominator, we assume it is non-zero. For any
non-existent (s,a) /∈ D, we can simply set |D(s,a)| to be a small value < 1, which prevents any
bound from producing trivially∞ values.

A.1 A Useful Lemma and Its Proof

Before proving our main results, we first show that the penalty term in equation 4 is positive in
expectation. Such a positive penalty is important to combat any overestimation that may arise as a
result of using B̂.

Lemma A.1 ((Interpolation Lemma). For any f ∈ [0, 1], and any given ρ(s,a) ∈ ∆|S||A|, let df be
an f-interpolation of ρ and D, i.e., df (s,a) := fd(s,a) + (1− f)ρ(s,a). For a given iteration k of
Equation 4, we restate the definition of the expected penalty under ρ(s,a) in Eq. 5:

ν(ρ, f) := Es,a∼ρ(s,a)

[
ρ(s,a)− d(s,a)

df (s,a)

]
.

Then ν(ρ, f) satisfies, (1) ν(ρ, f) ≥ 0, ∀ρ, f , (2) ν(ρ, f) is monotonically increasing in f for a
fixed ρ, and (3) ν(ρ, f) = 0 iff ∀ s,a, ρ(s,a) = d(s,a) or f = 0.

Proof. To prove this lemma, we use algebraic manipulation on the expression for quantity ν(ρ, f)
and show that it is indeed positive and monotonically increasing in f ∈ [0, 1].

ν(ρ, f) =
∑
s,a

ρ(s,a)

(
ρ(s,a)− d(s,a)

fd(s,a) + (1− f)ρ(s,a)

)
=

∑
s,a

ρ(s,a)

(
ρ(s,a)− d(s,a)

ρ(s,a) + f(d(s,a)− ρ(s,a))

)
(6)

=⇒ dν(ρ, f)

df
=

∑
s,a

ρ(s,a) (ρ(s,a)− d(s,a))2 ·
(

1

(ρ(s,a) + f(d(s,a)− ρ(s,a))

)2

≥ 0

∀f ∈ [0, 1]. (7)

Since the derivative of ν(ρ, f) with respect to f is always positive, it is an increasing function of f
for a fixed ρ, and this proves the second part (2) of the Lemma. Using this property, we can show the
part (1) of the Lemma as follows:

∀f ∈ (0, 1], ν(ρ, f) ≥ ν(ρ, 0) =
∑
s,a

ρ(s,a)
ρ(s,a)− d(s,a)

ρ(s,a)
=

∑
s,a

(ρ(s,a)− d(s,a))

= 1− 1 = 0. (8)

Finally, to prove the third part (3) of this Lemma, note that when f = 0, ν(ρ, f) = 0 (as shown
above), and similarly by setting ρ(s,a) = d(s,a) note that we obtain ν(ρ, f) = 0. To prove the only
if side of (3), assume that f ̸= 0 and ρ(s,a) ̸= d(s,a) and we will show that in this case ν(ρ, f) ̸= 0.
When d(s,a) ̸= ρ(s,a), the derivative dν(ρ,f)

df > 0 (i.e., strictly positive) and hence the function
ν(ρ, f) is a strictly increasing function of f . Thus, in this case, ν(ρ, f) > 0 = ν(ρ, 0) ∀f > 0. Thus
we have shown that if ρ(s,a) ̸= d(s,a) and f > 0, ν(ρ, f) ̸= 0, which completes our proof for the
only if side of (3).

15

A.2 Proof of Proposition 4.1
Before proving this proposition, we provide a bound on the Bellman backup in the empirical MDP,
BM. To do so, we formally define the standard concentration properties of the reward and transition
dynamics in the empirical MDP,M, that we assume so as to prove Proposition A.1. Following prior
work [42, 19, 29], we assume:
Assumption A1. ∀ s,a ∈M, the following relationships hold with high probability, ≥ 1− δ

|rM(s,a)− r(s,a)| ≤ Cr,δ√
|D(s,a)|

, ||PM(s′|s,a)− P (s′|s,a)||1 ≤
CP,δ√
|D(s,a)|

.

Under this assumption and assuming that the reward function in the MDP, r(s,a) is bounded, as
|r(s,a)| ≤ Rmax, we can bound the difference between the empirical Bellman operator, BM and the
actual MDP, BM,∣∣∣(BMπQ̂k

)
−
(
BπMQ̂k

)∣∣∣ = |(rM(s,a)− rM(s,a))

+γ
∑
s′

(PM(s′|s,a)− PM(s′|s,a))Eπ(a′|s′)

[
Q̂k(s′,a′)

]∣∣∣∣∣
≤ |rM(s,a)− rM(s,a)|

+ γ

∣∣∣∣∣∑
s′

(PM(s′|s,a)− PM(s′|s,a))Eπ(a′|s′)

[
Q̂k(s′,a′)

]∣∣∣∣∣
≤ Cr,δ + γCP,δ2Rmax/(1− γ)√

|D(s,a)|
.

Thus the overestimation due to sampling error in the empirical MDP,M is bounded as a function of
a bigger constant, Cr,P,δ that can be expressed as a function of Cr,δ and CP,δ , and depends on δ via a√
log(1/δ) dependency. For the purposes of proving Proposition A.1, we assume that:

∀s,a,
∣∣∣(BMπQ̂k

)
−

(
BπMQ̂k

)∣∣∣ ≤ Cr,T,δRmax

(1− γ)
√
|D(s,a)|

. (9)

Next, we provide a bound on the error between the bellman backup induced by the learned dynamics
model and the learned reward, BM̂, and the actual Bellman backup, BM. To do so, we note that:∣∣∣(BM̂πQ̂k

)
−
(
BπMQ̂k

)∣∣∣ = ∣∣(rM̂(s,a)− rM(s,a)
)

(10)

+γ
∑
s′

(
PM̂(s′|s,a)− PM(s′|s,a)

)
Eπ(a′|s′)

[
Q̂k(s′,a′)

]∣∣∣∣∣
≤ |rM̂(s,a)− rM(s,a)|+ γ

2Rmax

1− γ
D(P, PM̂), (11)

whereD(P, PM̂) is the total-variation divergence between the learned dynamics model and the actual
MDP. Now, we show that the asymptotic Q-function learned by COMBO lower-bounds the actual
Q-function of any policy π with high probability for a large enough β ≥ 0. We will use Equations 9
and 11 to prove such a result.
Proposition A.1 (Asymptotic lower-bound). Let Pπ denote the Hadamard product of the dynamics
P and a given policy π in the actual MDP and let Sπ := (I − γPπ)−1. Let D denote the total-
variation divergence between two probability distributions. For any π(a|s), the Q-function obtained
by recursively applying Equation 4, with B̂π = fBπM + (1− f)Bπ

M̂
, with probability at least 1− δ,

results in Q̂π that satisfies:

∀s,a, Q̂π(s,a) ≤ Qπ(s,a)− β ·
[
Sπ

[
ρ− d
df

]]
(s,a) + f

[
Sπ

[
Cr,T,δRmax

(1− γ)
√
|D|

]]
(s,a)

+ (1− f)
[
Sπ

[
|r − rM̂|+

2γRmax

1− γ
D(P, PM̂)

]]
(s,a).

16

Proof. We first note that the Bellman backup B̂π induces the following Q-function iterates as per
Equation 4,

Q̂k+1(s,a) =
(
B̂πQ̂k

)
(s,a)− β ρ(s,a)− d(s,a)

df (s,a)

= f
(
BπMQ̂k

)
(s,a) + (1− f)

(
BπM̂Q̂k

)
(s,a)− β ρ(s,a)− d(s,a)

df (s,a)

=
(
BπQ̂k

)
(s,a)− β ρ(s,a)− d(s,a)

df (s,a)
+ (1− f)

(
BM̂

πQ̂k − BπQ̂k
)
(s,a)

+ f
(
BM

πQ̂k − BπQ̂k
)
(s,a)

∀s,a, Q̂k+1 ≤
(
BπQ̂k

)
− β ρ− d

df
+ (1− f)

[
|rM̂ − rM|+

2γRmax

1− γ
D(P, PM̂)

]
+ f

Cr,T,δRmax

(1− γ)
√
|D|

Since the RHS upper bounds the Q-function pointwise for each (s,a), the fixed point of the Bellman
iteration process will be pointwise smaller than the fixed point of the Q-function found by solving for
the RHS via equality. Thus, we get that

Q̂π(s,a) ≤ SπrM︸ ︷︷ ︸
=Qπ(s,a)

−β
[
Sπ

[
ρ− d
df

]]
(s,a) + f

[
Sπ

[
Cr,T,δRmax

(1− γ)
√
|D|

]]
(s,a)

+ (1− f)
[
Sπ

[
|r − rM̂|+

2γRmax

1− γ
D(P, PM̂)

]]
(s,a),

which completes the proof of this proposition.

Next, we use the result and proof technique from Proposition A.1 to prove Corollary 4.1, that in
expectation under the initial state-distribution, the expected Q-value is indeed a lower-bound.
Corollary A.1 (Corollary 4.1 restated). For a sufficiently large β, we have a lower-bound that
Es∼µ0,a∼π(·|s)[Q̂

π(s,a)] ≤ Es∼µ0,a∼π(·|s)[Q
π(s,a)], where µ0(s) is the initial state distribution.

Furthermore, when ϵs is small, such as in the large sample regime; or when the model bias ϵm is
small, a small β is sufficient along with an appropriate choice of f .

Proof. To prove this corollary, we note a slightly different variant of Proposition A.1. To observe this,
we will deviate from the proof of Proposition A.1 slightly and will aim to express the inequality using
BM̂, the Bellman operator defined by the learned model and the reward function. Denoting (I −
γPM̂)−1 as Sπ

M̂
, doing this will intuitively allow us to obtain β (µ(s)π(a|s))T

(
Sπ
M̂

[
ρ−d
df

])
(s,a)

as the conservative penalty which can be controlled by choosing β appropriately so as to nullify the
potential overestimation caused due to other terms. Formally,

Q̂k+1(s,a) =
(
B̂πQ̂k

)
(s,a)− β ρ(s,a)− d(s,a)

df (s,a)
=

(
BπM̂Q̂k

)
(s,a)− β ρ(s,a)− d(s,a)

df (s,a)

+ f
(
BπM − B

π
M̂Q̂k

)
(s,a)︸ ︷︷ ︸

:=∆(s,a)

By controlling ∆(s,a) using the pointwise triangle inequality:

∀s,a,
∣∣∣BπMQ̂k − BπM̂Q̂k

∣∣∣ ≤ ∣∣∣BπQ̂k − BπM̂Q̂k
∣∣∣+ ∣∣∣BπMQ̂k − BπQ̂k

∣∣∣ , (12)

and then iterating the backup Bπ
M̂

to its fixed point and finally noting that ρ(s,a) =(
(µ · π)TSπ

M̂

)
(s,a), we obtain:

Eµ,π[Q̂
π(s,a)] ≤ Eµ,π[Q

π
M̂(s,a)]− β Eρ(s,a)

[
ρ(s,a)− d(s,a)

df (s,a)

]
+ terms independent of β.

(13)

17

The terms marked as “terms independent of β” correspond to the additional positive error terms
obtained by iterating

∣∣∣BπQ̂k − Bπ
M̂
Q̂k

∣∣∣ and
∣∣∣BπMQ̂k − BπQ̂k

∣∣∣, which can be bounded similar to
the proof of Proposition A.1 above. Now by replacing the model Q-function, Eµ,π[Q

π
M̂
(s,a)] with

the actual Q-function, Eµ,π[Q
π(s,a)] and adding an error term corresponding to model error to the

bound, we obtain that:

Eµ,π[Q̂
π(s,a)] ≤ Eµ,π[Q

π(s,a)] + terms independent of β − β Eρ(s,a)

[
ρ(s,a)− d(s,a)

df (s,a)

]
︸ ︷︷ ︸

=ν(ρ,f)>0

.

(14)
Hence, by choosing β large enough, we obtain the desired lower bound guarantee.

Remark 1 (COMBO does not underestimate at every s ∈ D unlike CQL.). Before concluding
this section, we discuss how the bound obtained by COMBO (Equation 14) is tighter than CQL. CQL
learns a Q-function such that the value of the policy under the resulting Q-function lower-bounds
the true value function at each state s ∈ D individually (in the absence of no sampling error), i.e.,
∀s ∈ D, V̂ π

CQL(s) ≤ V π(s), whereas the bound in COMBO is only valid in expectation of the value
function over the initial state distribution, i.e., Es∼µ0(s)[V̂

π
COMBO(s)] ≤ Es∼µ0(s)[V

π(s)], and the
value function at a given state may not be a lower-bound. For instance, COMBO can overestimate
the value of a state more frequent in the dataset distribution d(s,a) but not so frequent in the ρ(s,a)
marginal distribution of the policy under the learned model M̂. To see this more formally, note that
the expected penalty added in the effective Bellman backup performed by COMBO (Equation 4), in
expectation under the dataset distribution d(s,a), ν̃(ρ, d, f) is actually negative:

ν̃(ρ, d, f) =
∑
s,a

d(s,a)
ρ(s,a)− d(s,a)

df (s,a)
= −

∑
s,a

d(s,a)
d(s,a)− ρ(s,a)

fd(s,a) + (1− f)ρ(s,a)
< 0,

where the final inequality follows via a direct application of the proof of Lemma A.1. Thus, COMBO
actually overestimates the values at atleast some states (in the dataset) unlike CQL.

A.3 Proof of Proposition 4.2

In this section, we will provide a proof for Proposition 4.2, and show that the COMBO can be less
conservative in terms of the estimated value. To recall, let ∆π

COMBO := Es,a∼dM(s),π(a|s)

[
Q̂π(s,a

]
and let ∆π

CQL := Es,a∼dM,π(a|s)

[
Q̂π

CQL(s,a)
]
. From Kumar et al. [29], we obtain that Q̂π

CQL(s,a) :=

Qπ(s,a)−β π(a|s)−πβ(a|s)
πβ(a|s) . We shall derive the condition for the real data fraction f = 1 for COMBO,

thus making sure that df (s) = dπβ (s). To derive the condition when ∆π
COMBO ≥ ∆π

CQL, we note the
following simplifications:

∆π
COMBO ≥ ∆π

CQL (15)

=⇒
∑
s,a

dM(s)π(a|s)Q̂π(s,a) ≥
∑
s,a

dM(s)π(a|s)Q̂π
CQL(s,a) (16)

=⇒ β
∑
s,a

dM(s)π(a|s)
(
ρ(s,a)− dπβ (s)πβ(a|s)

dπβ (s)πβ(a|s)

)
≤ β

∑
s,a

dM(s)π(a|s)
(
π(a|s)− πβ(a|s)

πβ(a|s)

)
.

(17)

18

Now, in the expression on the left-hand side, we add and subtract dπβ (s)π(a|s) from the numerator
inside the paranthesis.

∑
s,a

dM(s,a)

(
ρ(s,a)− dπβ (s)πβ(a|s)

dπβ (s)πβ(a|s)

)
(18)

=
∑
s,a

dM(s,a)

(
ρ(s,a)− dπβ (s)π(a|s) + dπβ (s)π(a|s)− dπβ (s)πβ(a|s)

dπβ (s)πβ(a|s)

)
(19)

=
∑
s,a

dM(s,a)
π(a|s)− πβ(a|s)

πβ(a|s)︸ ︷︷ ︸
(1)

+
∑
s,a

dM(s,a) · ρ(s)− d
πβ (s)

dπβ (s)
· π(a|s)
πβ(a|s)

(20)

The term marked (1) is identical to the CQL term that appears on the right in Equation 17. Thus
the inequality in Equation 17 is satisfied when the second term above is negative. To show this, first
note that dπβ (s) = dM(s) which results in a cancellation. Finally, re-arranging the second term into
expectations gives us the desired result. An analogous condition can be derived when f ̸= 1, but we
omit that derivation as it will be hard to interpret terms appear in the final inequality.

A.4 Proof of Proposition 4.3

To prove the policy improvement result in Proposition 4.3, we first observe that using Equation 4 for
Bellman backups amounts to finding a policy that maximizes the return of the policy in the a modified
“f-interpolant” MDP which admits the Bellman backup B̂π , and is induced by a linear interpolation of
backups in the empirical MDPM and the MDP induced by a dynamics model M̂ and the return of a
policy π in this effective f-interpolant MDP is denoted by J(M,M̂, f, π). Alongside this, the return
is penalized by the conservative penalty where ρπ denotes the marginal state-action distribution of
policy π in the learned model M̂.

Ĵ(f, π) = J(M,M̂, f, π)− β ν(ρ
π, f)

1− γ
. (21)

We will require bounds on the return of a policy π in this f-interpolant MDP, J(M,M̂, f, π), which
we first prove separately as Lemma A.2 below and then move to the proof of Proposition 4.3.

Lemma A.2 (Bound on return in f-interpolant MDP). For any two MDPs, M1 and M2, with
the same state-space, action-space and discount factor, and for a given fraction f ∈ [0, 1], define
the f-interpolant MDPMf as the MDP on the same state-space, action-space and with the same
discount as the MDP with dynamics: PMf

:= fPM1 + (1− f)PM2 and reward function: rMf
:=

frM1
+ (1 − f)rM2

. Then, given any auxiliary MDP, M, the return of any policy π in Mf ,
J(π,Mf), also denoted by J(M1,M2, f, π), lies in the interval:[

J(π,M)− α, J(π,M) + α
]
, where α is given by:

α =
2γ(1− f)
(1− γ)2

RmaxD (PM2 , PM) +
γf

1− γ
∣∣Edπ

Mπ

[(
Pπ
M − Pπ

M1

)
Qπ

M
]∣∣

+
f

1− γ
Es,a∼dπ

Mπ[|rM1(s,a)− rM(s,a)|] + 1− f
1− γ

Es,a∼dπ
Mπ[|rM2(s,a)− rM(s,a)|]. (22)

Proof. To prove this lemma, we note two general inequalities. First, note that for a fixed transition
dynamics, say P , the return decomposes linearly in the components of the reward as the expected
return is linear in the reward function:

J(P, rMf
) = J(P, frM1

+ (1− f)rM2
) = fJ(P, rM1

) + (1− f)J(P, rM2
).

19

As a result, we can bound J(P, rMf
) using J(P, r) for a new reward function r of the auxiliary

MDP,M, as follows

J(P, rMf
) = J(P, frM1

+ (1− f)rM2
) = J(P, r + f(rM1

− r) + (1− f)(rM2
− r)

= J(P, r) + fJ(P, rM1
− r) + (1− f)J(P, rM2

− r)

= J(P, r) +
f

1− γ
Es,a∼dπ

M(s)π(a|s) [rM1
(s,a)− r(s,a)]

+
1− f
1− γ

Es,a∼dπ
M(s)π(a|s) [rM2

(s,a)− r(s,a)] .

Second, note that for a given reward function, r, but a linear combination of dynamics, the following
bound holds:

J(PMf
, r) = J(fPM1 + (1− f)PM2 , r)

= J(PM + f(PM1
− PM) + (1− f)(PM2

− PM), r)

= J(PM, r)− γ(1− f)
1− γ

Es,a∼dπ
M(s)π(a|s)

[(
Pπ
M2
− Pπ

M
)
Qπ

M
]

− γf

1− γ
Es,a∼dπ

M(s)π(a|s)
[(
Pπ
M − Pπ

M1

)
Qπ

M
]

∈
[
J(PM, r) ±

(
γf

(1− γ)

∣∣∣Es,a∼dπ
M(s)π(a|s)

[(
Pπ
M − Pπ

M1

)
Qπ

M
]∣∣∣

+
2γ(1− f)Rmax

(1− γ)2
D(PM2 , PM)

)]
.

To observe the third equality, we utilize the result on the difference between returns of a policy π
on two different MDPs, PM1

and PMf
from Agarwal et al. [1] (Chapter 2, Lemma 2.2, Simula-

tion Lemma), and additionally incorporate the auxiliary MDP M in the expression via addition
and subtraction in the previous (second) step. In the fourth step, we finally bound one term that
corresponds to the learned model via the total-variation divergence D(PM2

, PM) and the other term
corresponding to the empirical MDPM is left in its expectation form to be bounded later.

Using the above bounds on return for reward-mixtures and dynamics-mixtures, proving this lemma is
straightforward:

J(M1,M2, f, π) := J(PMf
, frM1 + (1− f)rM2) = J(fPM1 + (1− f)PM2 , rMf

)

∈
[
J(PMf

, rM) ±

(
f

1− γ
Es,a∼dπ

Mπ[|rM1
(s,a)− rM(s,a)|] + 1− f

1− γ
Es,a∼dπ

Mπ[|rM2
(s,a)− rM(s,a)|]

)
︸ ︷︷ ︸

:=∆R

 ,
where the second step holds via linear decomposition of the return of π inMf with respect to the
reward interpolation, and bounding the terms that appear in the reward difference. For convenience,
we refer to these offset terms due to the reward as ∆R. For the final part of this proof, we bound
J(PMf

, rM) in terms of the return on the actual MDP, J(PM, rM), using the inequality proved
above that provides intervals for mixture dynamics but a fixed reward function. Thus, the overall
bound is given by J(π,Mf) ∈ [J(π,M)− α, J(π,M) + α], where α is given by:

α =
2γ(1− f)
(1− γ)2

RmaxD (PM2
, PM) +

γf

1− γ
∣∣Edπ

Mπ

[(
Pπ
M − Pπ

M1

)
Qπ

M
]∣∣+∆R. (23)

This concludes the proof of this lemma.

Finally, we prove Theorem 4.3 that shows how policy optimization with respect to Ĵ(f, π) affects the
performance in the actual MD by using Equation 21 and building on the analysis of pure model-free
algorithms from Kumar et al. [29]. We restate a more complete statement of the theorem below and
present the constants at the end of the proof.

20

Theorem 2 (Formal version of Proposition 4.3). Let π̂out(a|s) be the policy obtained by COMBO.
Assume ν(ρπout , f) − ν(ρβ , f) ≥ C for some constant C > 0. Then, the policy πout(a|s) is a ζ-
safe policy improvement over πβ in the actual MDPM, i.e., J(πout,M) ≥ J(πβ ,M) − ζ, with
probability at least 1− δ, where ζ is given by (where ρβ(s,a) := d

πβ

M̂
(s,a)):

O
(

γf

(1− γ)2

)[
Es∼dπout

M

[√
|A|
|D(s)|

(DCQL(πout, πβ) + 1)

]]

+O
(
γ(1− f)
(1− γ)2

)
DTV(PM, PM̂)− β C

(1− γ)
.

Proof. We first note that since policy improvement is not being performed in the same MDP,M
as the f-interpolant MDP, Mf , we need to upper and lower bound the amount of improvement
occurring in the actual MDP due to the f-interpolant MDP. As a result our first is to relate J(π,M)

and J(π,Mf) := J(M,M̂, f, π) for any given policy π.

Step 1: Bounding the return in the actual MDP due to optimization in the f-interpolant MDP.
By directly applying Lemma A.2 stated and proved previously, we obtain the following upper and
lower-bounds on the return of a policy π:

J(M,M̂, f, π) ∈ [J(π,M)− α, J(π,M) + α] ,

where α is shown in Equation 22. As a result, we just need to bound the terms appearing the
expression of α to obtain a bound on the return differences. We first note that the terms in the
expression for α are of two types: (1) terms that depend only on the reward function differences
(captured in ∆R in Equation 23), and (2) terms that depend on the dynamics (the other two terms in
Equation 23).

To bound ∆R, we simply appeal to concentration inequalities on reward (Assumption A1), and bound
∆R as:

∆R :=
f

1− γ
Es,a∼dπ

Mπ[|rM1(s,a)− rM(s,a)|] + 1− f
1− γ

Es,a∼dπ
Mπ[|rM2(s,a)− rM(s,a)|]

≤ Cr,δ

1− γ
Es,a∼dπ

Mπ

[
1√

D(s,a)

]
+

1

1− γ
||RM −RM̂|| := ∆u

R.

Note that both of these terms are of the order of O(1/(1 − γ)) and hence they don’t figure in
the informal bound in Theorem 4.3 in the main text, as these are dominated by terms that grow
quadratically with the horizon. To bound the remaining terms in the expression for α, we utilize a
result directly from Kumar et al. [29] for the empirical MDP,M, which holds for any policy π(a|s),
as shown below.

γ

(1− γ)

∣∣∣Es,a∼dπ
M(s)π(a|s)

[(
Pπ
M − Pπ

M1

)
Qπ

M
]∣∣∣

≤ 2γRmaxCP,δ

(1− γ)2
Es∼dπ

M
(s)

[√
|A|√
|D(s)|

√
DCQL(π, πβ)(s) + 1

]
.

Step 2: Incorporate policy improvement in the f-inrerpolant MDP. Now we incorporate the
improvement of policy πout over the policy πβ on a weighted mixture of M̂ andM. In what follows,
we derive a lower-bound on this improvement by using the fact that policy πout is obtained by
maximizing Ĵ(f, π) from Equation 21. As a direct consequence of Equation 21, we note that

Ĵ(f, πout) = J(M,M̂, f, πout)− β
ν(ρπ, f)

1− γ
≥ Ĵ(f, πβ) = J(M,M̂, f, πβ)− β

ν(ρβ , f)

1− γ
(24)

21

Following Step 1, we will use the upper bound on J(M,M̂, f, π) for policy π = πout and a
lower-bound on J(M,M̂, f, π) for policy π = πβ and obtain the following inequality:

J(πout,M)− β ν(ρ
π, f)

1− γ
≥

{
J(πβ ,M)− β ν(ρ

β , f)

1− γ
− 4γ(1− f)Rmax

(1− γ)2
D(PM, PM̂)

− 2γf

(1− γ)

∣∣∣Ed
πout
M

[(
Pπout
M − Pπout

M

)
Qπout

M

]∣∣∣︸ ︷︷ ︸
:=(∗)

− 4γRmaxCP,δf

(1− γ)2
E
s∼d

πβ
M

[√
|A|
|D(s)|

]
︸ ︷︷ ︸

:=(∧)

−∆u
R

}
.

The term marked by (∗) in the above expression can be upper bounded by the concentration properties
of the dynamics as done in Step 1 in this proof:

(∗) ≤ 4γfCP,δRmax

(1− γ)2
Es∼d

πout
M (s)

[√
|A|√
|D(s)|

√
DCQL(πout, πβ)(s) + 1

]
. (25)

Finally, using Equation 25, we can lower-bound the policy return difference as:

J(πout,M)− J(πβ ,M) ≥ β ν(ρ
π, f)

1− γ
− β ν(ρ

β , f)

1− γ
− 4γ(1− f)Rmax

(1− γ)2
D(PM, PM̂)− (∗)−∆u

R

≥ β C

1− γ
− 4γ(1− f)Rmax

(1− γ)2
D(PM, PM̂)− (∗)−∆u

R.

Plugging the bounds for terms (a), (b) and (c) in the expression for ζ where J(πout,M)−J(πβ ,M) ≥
ζ, we obtain:

ζ =

(
4fγRmaxCP,δ

(1− γ)2

)
Es∼d

πout
M (s)

[√
|A|√
|D(s)|

√
DCQL(πout, πβ)(s) + 1

]
+ (∧)−∆u

R

+
4(1− f)γRmax

(1− γ)2
D(PM, PM̂)− β C

1− γ
. (26)

Remark 3 (Interpretation of Proposition 4.3). Now we will interpret the theoretical expression for
ζ in Equation 26, and discuss the scenarios when it is negative. When the expression for ζ is negative,
the policy πout is an improvement over πβ in the original MDP,M.

• We first discuss if the assumption of ν(ρπout , f) − ν(ρβ , f) ≥ C > 0 is reasonable in
practice. Note that we have never used the fact that the learned model PM̂ is close to the
actual MDP, PM on the states visited by the behavior policy πβ in our analysis. We will use
this fact now: in practical scenarios, ν(ρβ , f) is expected to be smaller than ν(ρπ, f), since
ν(ρβ , f) is directly controlled by the difference and density ratio of ρβ(s,a) and d(s,a):

ν(ρβ , f) ≤ ν(ρβ , f = 1) =
∑

s,a d
πβ

M̂
(s,a)

(
d
πβ

M̂
(s,a)/d

πβ

M(s,a)− 1
)2

by Lemma A.1
which is expected to be small for the behavior policy πβ in cases when the behavior policy
marginal in the empirical MDP, dπβ

M(s,a), is broad. This is a direct consequence of the
fact that the learned dynamics integrated with the policy under the learned model: Pπβ

M̂
is

closer to its counterpart in the empirical MDP: Pπβ

M for πβ . Note that this is not true for
any other policy besides the behavior policy that performs several counterfactual actions in
a rollout and deviates from the data. For such a learned policy π, we incur an extra error
which depends on the importance ratio of policy densities, compounded over the horizon
and manifests as the DCQL term (similar to Equation 25, or Lemma D.4.1 in Kumar et al.
[29]). Thus, in practice, we argue that we are interested in situations where the assumption
ν(ρπout , f) − ν(ρβ , f) ≥ C > 0 holds, in which case by increasing β, we can make the
expression for ζ in Equation 26 negative, allowing for policy improvement.

22

• In addition, note that when f is close to 1, the bound reverts to a standard model-free policy
improvement bound and when f is close to 0, the bound reverts to a typical model-based
policy improvement bound. In scenarios with high sampling error (i.e. smaller |D(s)|), if
we can learn a good model, i.e., D(PM, PM̂) is small, we can attain policy improvement
better than model-free methods by relying on the learned model by setting f closer to 0. A
similar argument can be made in reverse for handling cases when learning an accurate
dynamics model is hard.

B Experimental details
In this section, we include all details of our empirical evaluations of COMBO.

B.1 Practical algorithm implementation details

Model training. In the setting where the observation space is low-dimensional, as mentioned
in Section 3, we represent the model as a probabilistic neural network that outputs a Gaussian
distribution over the next state and reward given the current state and action:

T̂θ(st+1, r|s,a) = N (µθ(st,at),Σθ(st,at)).

We train an ensemble of 7 such dynamics models following [20] and pick the best 5 models based on
the validation prediction error on a held-out set that contains 1000 transitions in the offline dataset D.
During model rollouts, we randomly pick one dynamics model from the best 5 models. Each model
in the ensemble is represented as a 4-layer feedforward neural network with 200 hidden units. For
the generalization experiments in Section 5.1, we additionally use a two-head architecture to output
the mean and variance after the last hidden layer following [67].

In the image-based setting, we follow Rafailov et al. [48] and use a variational model with the
following components:

Image encoder: ht = Eθ(ot)

Inference model: st ∼ qθ(st|ht, st−1,at−1)

Latent transition model: st ∼ T̂θ(st|st−1,at−1)

Reward predictor: rt ∼ pθ(rt|st)
Image decoder: ot ∼ Dθ(ot|st).

(27)

We train the model using the evidence lower bound:

max
θ

T−1∑
τ=0

[
Eqθ [logDθ(oτ+1|sτ+1)]

]
− Eqθ

[
DKL[qθ(oτ+1, sτ+1|sτ ,aτ)∥T̂θτ (sτ+1, aτ+1)]

]

At each step τ we sample a latent forward model T̂θτ from a fixed set ofK models [T̂θ1 , . . . , T̂θK]. For
the encoder Eθ we use a convolutional neural network with kernel size 4 and stride 2. For the Walker
environment we use 4 layers, while the Door Opening task has 5 layers. The Dθ is a transposed
convolutional network with stride 2 and kernel sizes [5, 5, 6, 6] and [5, 5, 5, 6, 6] respectively. The
inference network has a two-level structure similar to Hafner et al. [18] with a deterministic path
using a GRU cell with 256 units and a stochastic path implemented as a conditional diagonal Gaussian
with 128 units. We only train an ensemble of stochastic forward models, which are also implemented
as conditional diagonal Gaussians.

Policy Optimization. We sample a batch size of 256 transitions for the critic and policy learning.
We set f = 0.5, which means we sample 50% of the batch of transitions from D and another 50%
from Dmodel. The equal split between the offline data and the model rollouts strikes the balance
between conservatism and generalization in our experiments as shown in our experimental results in
Section 5. We represent the Q-networks and policy as 3-layer feedforward neural networks with 256
hidden units.

23

For the choice of ρ(s,a) in Equation 2, we can obtain the Q-values that lower-bound the true value of
the learned policy π by setting ρ(s,a) = dπ

M̂
(s)π(a|s). However, as discussed in [29], computing π

by alternating the full off-policy evaluation for the policy π̂k at each iteration k and one step of policy
improvement is computationally expensive. Instead, following [29], we pick a particular distribution
ψ(a|s) that approximates the the policy that maximizes the Q-function at the current iteration and set
ρ(s,a) = dπ

M̂
(s)ψ(a|s). We formulate the new objective as follows:

Q̂k+1 ← argmin
Q

β
(
Es∼dπ

M̂
(s),a∼ψ(a|s)[Q(s,a)]− Es,a∼D [Q(s,a)]

)
+

1

2
Es,a,s′∼df

[(
Q(s,a)− B̂πQ̂k(s,a))

)2]
+R(ψ), (28)

whereR(ψ) is a regularizer on ψ. In practice, we pickR(ψ) to be the −DKL(ψ(a|s)∥Unif(a)) and
under such a regularization, the first term in Equation 28 corresponds to computing softmax of the
Q-values at any state s as follows:

Q̂k+1 ← argmin
Q

max
ψ

β

(
Es∼dπ

M̂
(s)

[
log
∑
a

Q(s,a)

]
− Es,a∼D [Q(s,a)]

)

+
1

2
Es,a,s′∼df

[(
Q(s,a)− B̂πQ̂k(s,a))

)2]
. (29)

We estimate the log-sum-exp term in Equation 29 by sampling 10 actions at every state s in the
batch from a uniform policy Unif(a) and the current learned policy π(a|s) with importance sampling
following [29].

B.2 Hyperparameter Selection

In this section, we discuss the hyperparameters that we use for COMBO. In the D4RL and gen-
eralization experiments, our method are built upon the implementation of MOPO provided at:
https://github.com/tianheyu927/mopo. The hyperparameters used in COMBO that relates
to the backbone RL algorithm SAC such as twin Q-functions and number of gradient steps follow
from those used in MOPO with the exception of smaller critic and policy learning rates, which
we will discuss below. In the image-based domains, COMBO is built upon LOMPO without any
changes to the parameters used there. For the evaluation of COMBO, we follow the evaluation
protocol in D4RL [12] and a variety of prior offline RL works [29, 67, 26] and report the normalized
score of the smooth undiscounted averaged return over 3 random seeds for all environments except
sawyer-door-close and sawyer-door where we report the average success rate over 3 random
seeds. As mentioned in Section 3, we use the regularization objective in Eq. 2 to select the hyperpa-
rameter from a range of pre-specified candidates in a fully offline manner, unlike prior model-based
offline RL schemes such as [67] and [26] that similar hyperparameters as COMBO and tune them
manually based on policy performance obtained via online rollouts.

We now list the additional hyperparameters as follows.

• Rollout length h. We perform a short-horizon model rollouts in COMBO similar to
Yu et al. [67] and Rafailov et al. [48]. For the D4RL experiments and generalization
experiments, we followed the defaults used in MOPO and used h = 1 for walker2d and
sawyer-door-close, h = 5 for hopper, halfcheetah and halfcheetah-jump, and h = 25
for ant-angle. In the image-based domain we used rollout length of h = 5 for both the the
walker-walk and sawyer-door-open environments following the same hyperparameters
used in Rafailov et al. [48].

• Q-function and policy learning rates. On state-based domains, we apply our automatic
selection rule to the set {1e − 4, 3e − 4} for the Q-function learning rate and the set
{1e−5, 3e−5, 1e−4} for the policy learning rate. We found that 3e−4 for the Q-function
learning rate (also used previously in Kumar et al. [29]) and 1e−4 for the policy learning rate
(also recommended previously in Kumar et al. [29] for gym domains) work well for almost
all domains except that on walker2d where a smaller Q-function learning rate of 1e− 4 and
a correspondingly smaller policy learning rate of 1e − 5 works the best according to our
automatic hyperparameter selection scheme. In the image-based domains, we followed the
defaults from prior work [48] and used 3e− 4 for both the policy and Q-function.

24

https://github.com/tianheyu927/mopo

• Conservative coefficient β. We use our hyperparameter selection rule to select the right
β from the set {0.5, 1.0, 5.0} for β, which correspond to low conservatism, medium con-
servatism and high conservatism. A larger β would be desirable in more narrow dataset
distributions with lower-coverage of the state-action space that propagates error in a backup
whereas a smaller β is desirable with diverse dataset distributions. On the D4RL experi-
ments, we found that β = 0.5 works well for halfcheetah agnostic of dataset quality, while
on hopper and walker2d, we found that the more “narrow” dataset distributions: medium
and medium-expert datasets work best with larger β = 5.0 whereas more “diverse” dataset
distributions: random and medium-replay datasets work best with smaller β = 0.5 which
is consistent with the intuition. On generalization experiments, β = 1.0 works best for all
environments. In the image-domains we use β = 0.5 for the medium-replay walker-walk
task and and β = 1.0 for all other domains, which again is in accordance with the impact of
β on performance.

• Choice of ρ(s,a). We first decouple ρ(s,a) = ρ(s)ρ(a|s) for convenience. As discussed
in Appendix B.1, we use ρ(a|s) as the soft-maximum of the Q-values and estimated with
log-sum-exp. For ρ(s), we apply the automatic hyperparameter selection rule to the set
{dπ

M̂
, ρ(s) = df}. We found that dπ

M̂
works better the hopper task in D4RL while df is

better for the rest of the environments. For the remaining domains, we found ρ(s) = df
works well.

• Choice of µ(a|s). For the rollout policy µ, we use our automatic selection rule on the
set {Unif(a), π(a|s)}, i.e. the set that contains a random policy and a current learned
policy. We found that µ(a|s) = Unif(a) works well on the hopper task in D4RL and also
in the ant-angle generalization experiment. For the remaining state-based environments,
we discovered that µ(a|s) = π(a|s) excels. In the image-based domain, we found that
µ(a|s) = Unif(a) works well in the walker-walk domain and µ(a|s) = π(a|s) is better
for the sawyer-door environment. We observed that µ(a|s) = Unif(a) behaves less
conservatively and is suitable to tasks where dynamics models can be learned fairly precisely.

• Choice of f . For the ratio between model rollouts and offline data f , we input the set
{0.5, 0.8} to our automatic hyperparameter selection rule to figure out the best f on each
domain. We found that f = 0.8 works well on the medium and medium-expert in the
walker2d task in D4RL. For the remaining environments, we find f = 0.5 works well.

We also provide additional experimental results on how our automatic hyperparameter selection rule
selects hyperparameters. As shown in Table 4, 5, 6 and 7, our automatic hyperparameter selection
rule is able to pick the hyperparameters β, µ(a|s), ρ(s) and f and that correspond to the best policy
performance based on the regularization value.

Task β = 0.5 β = 0.5 β = 5.0 β = 5.0
performance regularizer value performance regularizer value

halfcheetah-medium 54.2 -778.6 40.8 -236.8
halfcheetah-medium-replay 55.1 28.9 9.3 283.9
halfcheetah-medium-expert 89.4 189.8 90.0 6.5
hopper-medium 75.0 -740.7 97.2 -2035.9
hopper-medium-replay 89.5 37.7 28.3 107.2
hopper-medium-expert 111.1 -705.6 75.3 -64.1
walker2d-medium 1.9 51.5 81.9 -1991.2
walker2d-medium-replay 56.0 -157.9 27.0 53.6
walker2d-medium-expert 10.3 -788.3 103.3 -3891.4

Table 4: We include our automatic hyperparameter selection rule of β on a set of representative D4RL
environments. We show the policy performance (bold with the higher number) and the regularizer value (bold
with the lower number). Lower regularizer value consistently corresponds to the higher policy return, suggesting
the effectiveness of our automatic selection rule.

B.3 Details of generalization environments

For halfcheetah-jump and ant-angle, we follow the same environment used in MOPO.
For sawyer-door-close, we train the sawyer-door environment in https://github.com/
rlworkgroup/metaworld with dense rewards for opening the door until convergence. We col-
lect 50000 transitions with half of the data collected by the final expert policy and a policy that
reaches the performance of about half the expert level performance. We relabel the reward such that

25

https://github.com/rlworkgroup/metaworld
https://github.com/rlworkgroup/metaworld

Task µ(a|s) = Unif(a) µ(a|s) = Unif(a) µ(a|s) = π(a|s) µ(a|s) = π(a|s)
performance regularizer value performance regularizer value

hopper-medium 97.2 -2035.9 52.6 -14.9
walker2d-medium 7.9 -106.8 81.9 -1991.2

Table 5: We include our automatic hyperparameter selection rule of µ(a|s) on the medium datasets in the
hopper and walker2d environments from D4RL. We follow the same convention defined in Table 4 and find that
our automatic selection rule can effectively select µ offline.

Task ρ(s) = dπ
M̂ ρ(s) = dπ

M̂ ρ(s) = df ρ(s) = df

performance regularizer value performance regularizer value

hopper-medium 97.2 -2035.9 56.0 -6.0
walker2d-medium 1.8 14617.4 81.9 -1991.2

Table 6: We include our automatic hyperparameter selection rule of ρ(s) on the medium datasets in the hopper
and walker2d environments from D4RL. We follow the same convention defined in Table 4 and find that our
automatic selection rule can effectively select ρ offline.

the reward is 1 when the door is fully closed and 0 otherwise. Hence, the offline RL agent is required
to learn the behavior that is different from the behavior policy in a sparse reward setting. We provide
the datasets in the following anonymous link1.

B.4 Details of image-based environments

Figure 3: Our image-based environments: The observations are 64 × 64 and 128 × 128 raw RGB images
for the walker-walk and sawyer-door tasks respectively. The sawyer-door-close environment used in in
Section 5.1 also uses the sawyer-door environment.

We visualize our image-based environments in Figure 3. We use the standard walker-walk envi-
ronment from Tassa et al. [61] with 64× 64 pixel observations and an action repeat of 2. Datasets
were constructed the same way as Fu et al. [12] with 200 trajectories each. For the sawyer-door we
use 128× 128 pixel observations. The medium-expert dataset contains 1000 rollouts (with a rollout
length of 50 steps) covering the state distribution from grasping the door handle to opening the door.
The expert dataset contains 1000 trajectories samples from a fully trained (stochastic) policy. The
data was obtained from the training process of a stochastic SAC policy using dense reward function
as defined in Yu et al. [66]. However, we relabel the rewards, so an agent receives a reward of 1
when the door is fully open and 0 otherwise. This aims to evaluate offline-RL performance in a
sparse-reward setting. All the datasets are from [48].

B.5 Computation Complexity

For the D4RL and generalization experiments, COMBO is trained on a single NVIDIA GeForce RTX
2080 Ti for one day. For the image-based experiments, we utilized a single NVIDIA GeForce RTX
2070. We trained the walker-walk tasks for a day and the sawyer-door-open tasks for about two
days.

B.6 License of datasets

We acknowledge that all datasets used in this paper use the MIT license.

1The datasets of the generalization environments are available at the anonymous link: https://drive.
google.com/file/d/1pn6dS5OgPQVp_ivGws-tmWdZoU7m_LvC/view?usp=sharing.

26

https://drive.google.com/file/d/1pn6dS5OgPQVp_ivGws-tmWdZoU7m_LvC/view?usp=sharing
https://drive.google.com/file/d/1pn6dS5OgPQVp_ivGws-tmWdZoU7m_LvC/view?usp=sharing

Task f = 0.5 f = 0.5 f = 0.8 f = 0.8
performance regularizer value performance regularizer value

hopper-medium 97.2 -2035.9 93.8 -21.3
walker2d-medium 70.9 -1707.0 81.9 -1991.2

Table 7: We include our automatic hyperparameter selection rule of f on the medium datasets in the hopper
and walker2d environments from D4RL. We follow the same convention defined in Table 4 and find that our
automatic selection rule can effectively select f offline.

Environment Batch
Mean

Batch
Max

COMBO
(Ours)

CQL+MBPO

halfcheetah-jump -1022.6 1808.6 5392.7±575.5 4053.4±176.9
ant-angle 866.7 2311.9 2764.8±43.6 809.2±135.4
sawyer-door-close 5% 100% 100%±0.0% 62.7%±24.8%

Table 8: Comparison between COMBO and CQL+MBPO on tasks that require out-of-distribution gener-
alization. Results are in average returns of halfcheetah-jump and ant-angle and average success rate of
sawyer-door-close. All results are averaged over 6 random seeds, ± the 95%-confidence interval.

C Comparison to the Naive Combination of CQL and MBPO
In this section, we stress the distinction between COMBO and a direct combination of two previous
methods CQL and MBPO (denoted as CQL + MBPO). CQL+MBPO performs Q-value regularization
using CQL while expanding the offline data with MBPO-style model rollouts. While COMBO
utilizes Q-value regularization similar to CQL, the effect is very different. CQL only penalizes the
Q-value on unseen actions on the states observed in the dataset whereas COMBO penalizes Q-values
on states generated by the learned model while maximizing Q values on state-action tuples in the
dataset. Additionally, COMBO also utilizes MBPO-style model rollouts for also augmenting samples
for training Q-functions.

To empirically demonstrate the consequences of this distinction, CQL + MBPO performs quite a bit
worse than COMBO on generalization experiments (Section 5.1) as shown in Table 8. The results
are averaged across 6 random seeds (± denotes 95%-confidence interval of the various runs). This
suggests that carefully considering the state distribution, as done in COMBO, is crucial.

27

	Proofs from Section 4
	A Useful Lemma and Its Proof
	Proof of Proposition 4.1
	Proof of Proposition 4.2
	Proof of Proposition 4.3

	Experimental details
	Practical algorithm implementation details
	Hyperparameter Selection
	Details of generalization environments
	Details of image-based environments
	Computation Complexity
	License of datasets

	Comparison to the Naive Combination of CQL and MBPO

