
(a) Single-step classroom setting. (b) Multi-step classroom setting.

Figure 3: Comparison between the single-step and multi-step scenarios in the hypothetical classroom
setting. The single-step formulation does not account for changes in the student’s internal state over
time. In the multi-step formulation, effort put towards studying accumulates in the form of knowledge.
Modeling this effort accumulation allows the teacher to incentivize the student to study across a
wider range of parameter values. The agent can invest effort in 3 actions: cheating on the test (CT),
studying (S), and cheating on the homework (CH). W values denote how much one unit of effort
translates to the two observable features, test score (T) and homework score (HW). The student’s
score (yt) at each time-step is a weighted average of these two observable features. In the multi-step
setting, st denotes the student’s internal knowledge state at time t.

A Formalizing the classroom example

Example A.1. We demonstrate this by revisiting the classroom example. Recall that a teacher assigns
a student an overall grade y = ✓TETE + ✓HWHW , where TE is the student’s test score HW is
their homework score, and ✓TE & ✓HW are the weight of each score in the student’s overall grade.
The student can invest effort into any of three activities: copying answers on the test (CT , improves
test score), studying (S, improves both test and homework score), and looking up homework answers
online (CH , improves homework score). Suppose the relationship between observable features and
effort e the agent chooses to spend is defined by the equations

TE = TE0 +WCTCT +WSTS

HW = HW0 +WSHS +WCHCH

where TE0 and HW0 are the test and homework scores the student would receive if they did not
expend any effort. If WCT = WCH = 3 and WST = WSH = 1, there is no combination of
✓TE , ✓HW values the teacher can deploy to incentivize the student to study, because the benefit of
cheating is just too great. (See [30] for more detail.)

Now consider a multi-step interaction between a teacher and student in which effort invested in
studying carries over to future time-steps in the form of knowledge accumulation. The relationships
between observable features and effort expended are now defined as

TEt = TE0 +WCTCTt +WST st

and
HWt = HW0 +WSHst +WCHCHt

where st =
P

t

i=1 Si is the agent’s internal knowledge state. Instead of assigning students a single
score y1, the teacher assigns the student a score yt at each round by picking ✓t,T , ✓t,HW at every
time-step. The student’s grade is then the summation of all scores across time. Suppose T � 3,
where T is the number of rounds of interaction. Consider WCT = WCH = 3, WST = WSH = 1,
and TE0 = HW0 = 0. Unlike in the single-round setting, it is easy to verify that students can now
be incentivized to study by picking ✓t,TE = ✓t,HW = 0.5 8t.
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B Equilibrium derivations

B.1 Agent’s best-response effort sequence

A rational agent solves the following optimization to determine his best-response effort policy:

{e⇤
t
}
T

t=1 = arg max
e1,...,eT

TX

t=1

(yt = ft(e1, . . . , et))

s.t. et,j � 0 8t, j,

dX

j=1

et,j  1 8t

Recall that the agent’s score yt at each time-step is a function of (e1, . . . , et), the sequence of effort
expended by the agent so far. Replacing the score yt and observable features ot with their respective
equations, we obtain the expression

{e⇤
t
}
T

t=1 = arg max
e1,...,eT

TX

t=1

✓>
t
�W (st + et)

s.t. et,j � 0 8t, j,

dX

j=1

et,j  1 8t

where the agent’s internal state st at time t is a function of the effort he expends from time 1 to time
t� 1. Replacing st with the expression for agent state, we get

{e⇤
t
}
T

t=1 = arg max
e1,...,eT

TX

t=1

✓>
t
�W

 
s0 + ⌦

t�1X

i=1

ei + et

!

s.t. et,j � 0 8t, j,

dX

j=1

et,j  1 8t

C Proof of Theorem 3.4

Proof. Let  be the optimal value of the following linear program:

V ({et}
T

t=1) = min
a1,a2,...,aT

TX

t=1

katk1

s.t. W

 
⌦

t�1X

i=1

ai + at

!
� W

 
⌦

t�1X

i=1

ei + et

!
, at � 0d, katk1  1, 8t

(2)

Optimization 2 can be thought of as trying to minimize the total effort {at}Tt=1 the agent spends
across all T time-steps, while achieving the same or greater feature values at every time t compared
to {et}Tt=1. Let {a⇤

t
}
T

t=1 denote the set of optimal effort profiles for Optimization 2. If {et}Tt=1 2

{a⇤
t
}
T

t=1, a value of  = T is obtained. A dominated effort policy is formally defined as follows:

Lemma C.1 (Dominated Effort Policy). An effort policy {et}Tt=1 is dominated by another effort
policy if  < T .

The Lagrangian of Optimization 2 can be written as

L =
TX

t=1

katk1 +
TX

t=1

�>
t
W

 
⌦

t�1X

i=1

(ei � ai) + et � at

!
+ �t (katk1 � 1)� µ>

t
at,

where �t � 0n, µt
� 0d, 8t
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In order for stationarity to hold, ratL(a
⇤
,�⇤

,µ⇤
,�⇤) = 0d 8t, where x⇤ denotes the optimal values

for variable x. Applying the stationarity condition to Lagrangian function, we obtain

1d �W
>�⇤

t
�

TX

i=t+1

⌦>
W

>�⇤
i
+ �

⇤
t
· 1d � µ⇤

t
= 0d, 8t (3)

Because of dual feasibility, µ
t
� 0d 8t. By rearranging Equation 3 and using this fact, we can obtain

the following bound on W
>�⇤

t
+
P

T

t=i+1 ⌦
>
W

>�⇤
t
:

W
>�⇤

t
+

TX

i=t+1

⌦>
W

>�⇤
i
 (1 + �

⇤
t
) · 1d, 8t (4)

Next we look at the complementary slackness condition. For complementary slackness to hold,
µ⇤>

t
a⇤
t
= 0 8t. If  = T , then {et}Tt=1 2 {a⇤

t
}
T

t=1 and therefore {et}Tt=1 is not dominated. If
{et}Tt=1 is not dominated, µ⇤>

t
et = 0 8t. This means that if et,j > 0, µt,j = 0, 8t, j. This, along

with Equation 3, implies that

"
W

>�⇤
t
+

TX

i=t+1

⌦>
W

>�⇤
i

#

j

= 1 + �
⇤
t

for all t, j where et,j > 0.

Switching gears, consider the set of linear assessment policies L for which {et}Tt=1 is incentivizable.
The set of linear assessment policies for which {et}Tt=1 is incentivizable is the set of linear assessment
policies for which the derivative of the total score with respect to the agent’s effort policy is maximal
at the coordinates which {et}Tt=1 has support on. Denote this set of coordinates as S, and the set of
coordinates which et has support on as St. Formally,

L =

8
<

:{✓t}
T

t=1

�����

"
rat

TX

i=1

�
yi = f

�
{at}

T

t=1, {✓t}
T

t=1

��
#

St

= max
j

 
rat

TX

i=1

yi

!
· 1|St|, 8t

9
=

;

Recall that
P

T

t=1 yt =
P

T

t=1 ✓
>
t
W

⇣
s0 + ⌦

P
t�1
i=1 ai + at

⌘
. Therefore, the gradient of

P
T

t=1 yt

with respect to at can be written as

rat

TX

t=1

yt = W
>✓t +

TX

i=t+1

⌦>
W

>✓i, 8t

Note that the form of rat

P
T

t=1 yt is the same as the LHS of Equation 4. We know that if {et}Tt=1 2

{a⇤
t
}
T

t=1 is incentivizable, the inequality in Equation 4 will hold with equality for all coordinates for
which {et}Tt=1 has positive support. Therefore, the derivative is maximal at those coordinates since it
is bounded to be at most 1 + �

⇤
t

, 8t (due to the KKT conditions for the dominated effort policy linear
program). Because of this, {�⇤

t
}
T

t=1 is in L, which means that {et}Tt=1 can be incentivized using a
linear mechanism.
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D Equilibrium characterization for fixed budget setting

D.1 Agent effort policy

Lemma D.1. Under linear assessment policy {✓1, . . . , ✓T }, a budget constrained agent will play an
effort profile from the following set at round t:

e⇤
t
= argmax

et

 
✓>
t
W +

 
T�tX

i=1

✓>
t+i

!
W⌦

!
et

s.t. et,j � 0,
TX

j=1

et,j  1 8j

Proof. The agent’s score at each time yt is a function of (e1, . . . , et). We can replace yt, ot, and st
with their respective equations to get an expression for the agent’s optimal effort policy {e⇤

t
}
T

t=1 that
depends on just {✓t}

T

t=1, s0, W , and ⌦:

{e⇤
t
}
T

t=1 = arg max
e1,...,eT

TX

t=1

✓>
t
W

 
s0 + ⌦

t�1X

i=1

ei + et

!

s.t. et,j � 0,
TX

j=1

et,j  1 8t, j

After expanding the outer sum over the principal assessment rules {✓t}
T

t=1, factoring based on the
agent’s effort at each t, and dropping the initial state terms (as they don’t depend on {e1, . . . , eT }),
we get

{e⇤
t
}
T

t=1 = arg max
e1,...,eT

 
✓>
1 W +

 
T�1X

i=1

✓>
i+1

!
W⌦

!
e1 +

 
✓>
2 W +

 
T�2X

i=1

✓>
i+2

!
W⌦

!
e2 + . . .+ ✓>

T
WeT

s.t. et,j � 0,
TX

j=1

et,j  1 8t, j

(5)

Note that the optimization step in (5) is linear in the agent effort policy and can be split into T

separate optimization problems, one for each et. Thus, the agent can optimize each effort profile
et separately by breaking the objective into T parts, each of which is given by the optimization in
Lemma D.1.

Since the above objective function is linear in et, the optimal solution for the agent consists of putting
his entire effort budget on the highest-coefficient element of ✓>

t
W +

⇣P
T�t

i=1 ✓>
t+i

⌘
W⌦. In the

classroom setting (Example 1.1), this corresponds to a situation in which the student only cheats or
only studies during each evaluation period. More precisely, let m denote the maximal element(s)
of ✓T

t
W +

P
T�t

i=1 ✓>
t+i

W⌦. We then characterize the set of optimal agent effort profiles at each
time-step as e⇤

t
= {j = m} (1  j  d). We assume that agents are rational and therefore play an

effort policy {et}Tt=1 2 {e⇤
t
}
T

t=1.
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D.2 Principal assessment policy

The goal of the principal is to pick an assessment policy {✓}T
t=1 in order to maximize the total

magnitude of the agent’s cumulative effort in desirable directions (parameterized by ⇤), subject to
the constraint that ✓t lie in the n-dimensional probability simplex, i.e.

{✓⇤
t
}
T

t=1 = arg max
✓1,...,✓T

k⇤
TX

t=1

et(✓t, . . . ,✓T )k1

s.t. ✓t 2 �n
8t

(6)

From Lemma D.1, we know the form a rational agent’s effort et will take for every t 2 {1, . . . , T}.
Substituting this into Equation 6, we obtain the following characterization of the principal’s assess-
ment policy:

{✓⇤
t
}
T

t=1 = arg max
✓1,...,✓T

�����⇤
TX

t=1

argmax
et

 
✓T

t
W +

T�tX

i=1

✓>
t+i

W⌦

!
et

�����
1

s.t. ✓t 2 �n
, et,j � 0,

TX

j=1

et,j  1 8t, j

E Proof of Theorem 4.4

E.1 The set of incentivizable effort policies is convex

Proof. Let the set of incentivizable effort policies be denoted by I =
�
{at}Tt=1|V

�
{at}Tt=1

�
= T

 
.

In order to show that I is convex, it suffices to show that for all effort policies {xt}
T

t=1 and {yt}
T

t=1 2

I , their element-wise average {zt}Tt=1 also belongs to the set I . Let the sets of all possible solutions
for for V ({x}T

t=1) and V ({y}T
t=1) be denoted by

�
{ex,t}Tt=1

 
✓ I and

�
{ey,t}Tt=1

 
✓ I . Since

{xt}
T

t=1 2
�
{ex,t}Tt=1

 
and {yt}

T

t=1 2
�
{ey,t}Tt=1

 
, we use {xt}

T

t=1 and {yt}
T

t=1 as the solutions
to V ({x}T

t=1) and V ({y}T
t=1) without loss of generality. Let the agent’s observable features at time

t when playing effort policy {at}Tt=1 be denoted by gt({at}Tt=1). If zt = xt+yt

2 for all t, we know
that 2gt({zt}Tt=1) = gt({xt}

T

t=1)+gt({yt}
T

t=1) for all t, due to the linearity of agent feature values.
Moreover, this holds for any combination of effort policies from

�
{ex,t}Tt=1

 
and

�
{ey,t}Tt=1

 
.

Suppose that the effort policy {z}T
t=1 is not incentivizable. By definition, this must mean that there

exists some other effort policy {⇣
t
}
T

t=1 such that an agent can achieve the same feature values at
every time-step as he would have received if he had played effort policy {z}T

t=1, while expending
less total effort at at least one time-step s, i.e.

gt({⇣t
}
T

t=1) = gt({zt}
T

t=1), 8t

and
k⇣

s
k1 < kzsk1, s 2 {1, . . . , T}.

By linearity, zs’s contribution to the agent’s feature values at time s is equal to the average of xs

and ys’s contributions to the agent’s feature values at time s. This means that 2W⇣
s
= 2Wzs =

Wxs + Wys. Let ⇣⇤
s

equal ⇣
s

rescaled such that k⇣⇤
s
k1 = 1. W⇣⇤

s
< W⇣

s
and there exists an

index ` such that [W⇣⇤
s
]
`
> [W⇣

s
]
`

(since we assume the effort conversion matrix W is monotonic).
Therefore, 2W⇣⇤

s
< Wxs + Wys and [W⇣⇤

s
]
`
> [Wxs +Wys]`. Denote the effort policy with

the rescaled version of ⇣
s

as {⇣⇤
}
T

t=1 = {⇣}T
t=1\⇣s

[ ⇣⇤
s
. It now follows that 2gs({⇣

⇤
}
T

t=1) <
gs({xt}

T

t=1) + gs({yt}
T

t=1) and
⇥
2gs({⇣

⇤
}
T

t=1)
⇤
`
>
⇥
gs({xt}

T

t=1) + gs({yt}
T

t=1)
⇤
`
, which means

that {⇣⇤
}
T

t=1 must dominate either {xt}
T

t=1 or {yt}
T

t=1. This is a contradiction, since the effort
policies {xt}

T

t=1 and {yt}
T

t=1 are both incentivizable. Therefore, the set of incentivizable effort
policies I must be convex.
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E.2 Membership oracle-based optimization

Now that we have shown that the set of incentivizable effort policies is convex, we can proceed
with our membership oracle-based optimization procedure. Our goal is find the incentivizable effort
policy which is most desirable to the principal. Therefore, the function we are trying to minimize is
f({at}Tt=1) = �k⇤

P
T

t=1 atk1, where {at}Tt=1 is an incentivizable effort policy and ⇤ is a diagonal
matrix where the element ⇤jj denotes how much the principal wants to incentivize the agent to
invest in effort component e(j). Note that this function is linear, as no element of {at}Tt=1 can
be negative. We also need a membership oracle to the convex set of inventivizable effort policies.
Fortunately, Optimization 2 gives us such an oracle. In particular, if a given effort policy {et}Tt=1 is
incentivizable, V ({et}Tt=1) will equal T . If {et}Tt=1 is not incentivizable, V ({et}Tt=1) will be some
value strictly less than T . Armed with these tools, all we need is an initial point {et,0}Tt=1 inside the
set of incentivizable effort policies to use a membership oracle-based convex optimization procedure
such as [28] to recover the agent effort policy which is most desirable to the principal. We can obtain
such a point by fixing an arbitrary assessment policy {✓t,0}

T

t=1 and solving the agent’s optimization
in Optimization 1 to recover {et,0}Tt=1.

Now that we’ve found the incentivizable agent effort policy that is (approximatley) most desirable to
the principal, we need to find the assessment policy which incentivizes it. Optimization 2 can help us
here as well. Recall that if an effort policy {et}Tt=1 is incentivizable, a subset of the dual variables
of Optimization 2 correspond to a linear assessment policy which can incentivize it. So given the
incentivizable effort policy which is most desirable to the principal, we can use the complementary
slackness conditions of Optimization 2 to recover the assessment policy which can incentivize it.

F (T, t)-Implementability

Proof. From Proposition 3.1, we know that the agent’s effort profile et at time t will be a basis vector
with weight 1 on the maximal element of ✓T

t
W +

⇣P
T�t

i=1 ✓>
t+i

⌘
W⌦. Therefore, if bj is the effort

profile induced at time t, then

nX

k=1

 
✓t,k + ⌦jj

 
T�tX

i=1

✓t+i,k

!!
Wkj �

nX

k=1

 
✓t,k + ⌦zz

 
T�tX

i=1

✓t+i,k

!!
Wkz, for 1  z  d

(7)

Since we are interested in deriving an upper bound on T , we can consider just assessment policies of
the form ✓t = ✓ 8t – that is, we limit the principal to employ the same assessment rule across all
time-steps. After making this assumption and collecting terms, Equation 7 becomes

nX

k=1

✓k ((Wkj �Wkz) + (T � t) (⌦jjWkj � ⌦zzWkz)) � 0, for 1  z  d

By solving for T , we obtain

T � t+

P
n

k=1 ✓k (Wkz �Wkj)P
n

k=1 ✓k (⌦jjWkj � ⌦zzWkz)
, for 1  z  d (8)

Since the principal employs the same assessment rule across all time-steps, it is optimal for the
principal to play ✓t,k = {k = m} 8t, where m is the (non-unique) index of ✓ which incentivizes bj

the most. In other words, m is the index that minimizes the RHS of Equation 8 while still satisfying
⌦jjWkj � ⌦zzWkz for all 1  z  d. Equation 8 now becomes

T � t+min
k

(Wkz �Wkj)

(⌦jjWkj � ⌦zzWkz)
, for 1  z  d (9)

Note that if ⌦jjWmj � ⌦zzWmz  0 for some z, then bj will never be incentivizable at some
generic time t, since this means an undesirable effort component accumulates at a rate faster than
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effort component j. While this claim only holds for static ✓-policies, a similar condition holds for the
general case - namely the denominator of the bound in Equation 8 must be greater than 0 for all z in
order for an effort profile to be incentivizable. In the classroom example, this would correspond to
(the somewhat unrealistic) situation in which a student gains knowledge by cheating faster than he
does from studying.

Finally, picking the z index which maximizes the RHS of Equation 9 suffices for Equation 9 to hold
for 1  z  d. Since T � t must hold, the numerator be at least 0.

T � t+max
z

min
m

max {0,Wmz �Wmj}

(⌦jjWmj � ⌦zzWmz)

G Alternative agent cost formulation

While we assume that each agent selects their action according to a fixed effort budget at every
time-step, another common agent cost model within the strategic classification literature is that of a
quadratic cost penalty. We now explore the use of such a cost formulation in our stateful setting.

G.1 Agent’s best-response effort sequence

Under the quadratic cost setting, a rational agent selects his effort policy in order to maximize his
total score minus the quadratic cost of exerting the effort over all time steps. Next, we obtain a
close-formed expression for the agent’s best-response to an arbitrary sequence of assessment rules
under a linear effort conversion function.
Proposition G.1. If the effort conversion function has the form �W = W , the set of agent
best-responses to a sequence of linear, monotonic assessment rules, {✓t}

T

t=1, is e⇤
t
= W

>✓t +

(W⌦)>
P

T�t

i=1 ✓t+i 8t.

Proof. The agent solves the following optimization to determine his best-response effort policy:

{e⇤
t
}
T

t=1 = arg max
e1,...,eT

TX

t=1

(yt = ft(e1, . . . , et))�
1

2
ketk

2
2

s.t. et,j � 0 8t, j

Recall that the agent’s score yt at each time-step is a function of (e1, . . . , et), the cumulative effort
expended by the agent so far. Replacing the score yt and observable features ot with their respective
equations, we obtain the expression

{e⇤
t
}
T

t=1 = arg max
e1,...,eT

TX

t=1

✓>
t
W (st + et)�

1

2
ketk

2
2

s.t. et,j � 0 8t, j

where the agent’s internal state st at time t is a function of the effort he expends from time 1 to time
t� 1. Replacing st with the expression for agent state, we get

{e⇤
t
}
T

t=1 = arg max
e1,...,eT

TX

t=1

✓>
t
W

 
s0 + ⌦

t�1X

i=1

ei + et

!
�

1

2
ketk

2
2

s.t. et,j � 0 8t, j

Our goal is to separate the above optimization into T separate optimization problems for computa-
tional tractability. As a first step towards this goal, we expand the sum over the principal’s assessment
policy, obtaining the following form:
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{e⇤
t
}
T

t=1 = arg max
e1,...,eT

✓>
1 W (s0 + e1) + ✓>

2 W (s0 + ⌦e1 + e2) + . . .+ ✓>
T
W

 
s0 + ⌦

T�1X

i=1

ei + eT

!

�
1

2

�
ke1k

2
2 + ke2k

2
2 + . . .+ keT k

2
2

�

s.t. et,j � 0 8t, j

Next, we factor the above based on et’s. Additionally, we drop the s0 terms, since they do not depend
on any et.

{e⇤
t
}
T

t=1 = arg max
e1,...,eT

 
✓>
1 W +

T�1X

i=1

✓>
i+1⌦W

!
e1 �

1

2
ke1k

2
2 +

 
✓>
2 W +

T�2X

i=1

✓>
i+2⌦W

!
e2

�
1

2
ke2k

2
2 + . . .+ ✓>

T
Wet �

1

2
keT k

2
2

s.t. at,j � 0 8t, j

(10)
Now Equation 10 can be separated based on agent effort profile at each time step t. In particular, for
et we have:

e⇤
t
= argmax

et

 
✓>
t
W +

T�tX

i=1

✓>
t+i

⌦W

!
et �

1

2
ketk

2
2

s.t. et,j � 0 8j

Finally, we can get a closed-form solution for each e⇤
t

by taking the gradient with respect to et and
setting it equal to 0d. Our final expression for e⇤

t
is

e⇤
t
= W

>✓t + (W⌦)>
T�tX

i=1

✓t+i (11)

Corollary G.2. The set of effort profiles the agent can play as a best-response to some linear
assessment policy at each time step t grows as the time horizon T increases.

Proof. Fix any time horizon T and time step t  T , the set of effort profiles the agent can play as a
best response is a polytope:

St(T ) =

(
W

>✓t + (W⌦)>
T�tX

i=1

✓t+i | ✓t, ✓t+1, . . . , ✓T 2 �n

)

The corollary then follows from the fact that St(T ) ⇢ St(T + 1).

G.2 Principal’s equilibrium assessment policy

Next, given the form of the agent’s best response to an arbitrary assessment policy, we can derive the
principal’s equilibrium strategy as follows:
Theorem G.3 (Stackelberg Equilibrium). Suppose the principal’s strategy space consists of all
sequences of linear monotonic assessment rules. The Stackelberg equilibrium of the stateful strategic
regression game,

�
{✓⇤

t
}
T

t=1, {e
⇤
t
}
T

t=1

�
, can be specified as follows:

8t : e⇤
t

= W
>✓⇤

t
+ (W⌦)>

T�tX

i=1

✓⇤
t+i

✓⇤
t

= {k = argmax k⇤
�
I + (t� 1)⌦>�

W
>
k1}.
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Proof. Proposition G.1 already calculates the agent’s best response an arbitrary assessment policy. It
only remains to characterize the principal’s best response to the agent.

The principal’s goal is to maximize the value of the agent’s internal state at time T . Writing this as an
optimization problem, we have

{✓⇤
t
}
T

t=1 = arg max
✓1,...,✓T

�����⇤
TX

t=1

e⇤
t
(✓t, ...,✓T )

�����
1

s.t. ✓t 2 �n
8t

(12)

The sequence {✓⇤
t
}
T

t=1 could correspond to a teacher designing a sequence of (test, homework) pairs
with different weights in order to maximize a student’s knowledge, or a bank designing a sequence of
evaluation metrics to determine the amount a loan applicant receives when applying for a sequence
of loans over time in order to encourage good business practices.

From Equation 11 we know the form of the effort profile at each time for a rational agent. Substituting
this into Equation 12, we obtain

{✓⇤
t
}
T

t=1 = arg max
✓1,...,✓T

�����⇤
TX

t=1

 
W

>✓t + (W⌦)>
T�tX

i=1

✓t+i

!�����
1

s.t. ✓t 2 �n
8t

As was the case with the agent’s optimal effort policy, we would like to separate the optimization for
the principal’s optimal assessment policy into T separate optimization problems. The current form
can be separated based on ✓ because we have closed-form solutions for each e⇤

t
(1  t  T ), which

are all linear in the principal’s assessment policy {✓t}
T

t=1:

{✓⇤
t
}
T

t=1 = arg max
✓1,...,✓T

1>
d
⇤W>✓1 + 1>

d
⇤
�
I + ⌦>�

W
>✓2 + . . .+ 1>

d
⇤
�
I + (T � 1)⌦>�

W
>✓T

s.t. ✓t 2 �n
8t

We can now solve a separate linear program for each ✓t:

✓⇤
t
= argmax

✓t

1>
d
⇤
�
I + (t� 1)⌦>�

W
>✓t

s.t. ✓t 2 �n

(13)

Our final solution for ✓⇤
t

has the form ✓⇤
t
= {k = m}, where m denotes the maximal element of

1>
d
⇤
�
I + (t� 1)⌦>�

W
>.

G.3 The dynamicity of equilibrium policies

Given our characterization above, one might wonder if the optimal solution for the principal is to
simply play a fixed ✓ for all t 2 {1, . . . , T}. We show that this is generally not the case—specifically,
due to the role of t in determining the maximal component of vector 1>

d
⇤
�
I + (t� 1)⌦>�

W
>.

Theorem G.4. The principal’s optimal assessment policy {✓⇤
t
}
T

t=1 can contain n distinct assessment
rules.

The general idea of the proof is as follows. The optimization problem for principal’s assessment rule
at each time t (Equation 13) is linear with respect to t, so any assessment rule ✓ which was optimal at
some time t

0
< t but is no longer optimal at time t will never again be optimal at any time t

00
> t.

(This is because 1>
d
⇤
�
I + (t� 1)⌦>�

W
> is growing at rate 1>

d
⇤⌦>

W
> with respect to t, so an

element which was maximal at some time t
0 but is not maximal anymore must have a smaller rate of

change than the current maximal element, and will therefore never be maximal again.) So we can
conclude that the number of optimal solutions of Equation 13 is at most n, since each assessment
rule ✓t in the assessment policy is a basis vector with dimensionality n.
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Figure 4: Left: Comparison of the two terms in each component of vector V. The first term decreases
as 1

k
, while the second term asymptotically approaches some value as k increases. Right: A scaled

version of vector V evaluated for different values of t. The blue circles denote the maximum
component of V for each time t. Elements of V become maximal one-after-another over time.

Next, we provide an example for which there are exactly n optimal solutions. In order to construct
such an example, we pick W , ⌦, and ⇤ to be square, diagonal matrices so that Equation 13 is
separable into two terms: one that linearly depends on t and one which has no dependence on
t. Equation 13 now takes the form argmax✓ V>✓, where the kth element of V takes the form
Wkk⌦kk + (t � 1)Wkk⌦2

kk
. Equation 13 is linear in ✓, so ✓ will be a basis vector with a 1 at the

index where V> is maximal and zeros elsewhere. We pick constants {Wkk}
n

k=1 and {⌦kk}
n

k=1 such
that each element V (k)

2 V becomes maximal one-after-one over time. Figure ?? shows how the
two terms of V (k) change with k. Figure ?? shows how different indices of V can be maximal for
different times.

Next we provide the full proof for the claim that the principal’s assessment policy contains n distinct
assessment rules.

Proof. (Theorem G.4) To show that Equation 13 can have up to n optimal solutions throughout time,
it suffices to provide a specific example for which this is the case. Let ✓, e 2 Rn, ⌦ = ⇤ =2 Rn⇥n,
and W =2 Rn⇥n, where W is a diagonal matrix. This corresponds to the case where effort invested
in one action corresponds to a change in exactly one observable feature. Under this setting, Equation
13 simplifies to

✓t = argmax
✓

[⌦11W11 + (t� 1)⌦2
11W11, . . . ,⌦kkWkk + (t� 1)⌦2

kk
Wkk, . . . ,

⌦nnWnn + (t� 1)⌦2
nn

Wnn]
>✓

s.t. ✓t 2 �n

(14)

Now let Wkk = 1
(k+1)2 and ⌦kk = k

100n3 (1  k  n). Equation 14 becomes

✓t = argmax
✓

V>✓

s.t. ✓t 2 �n
(15)

where

V =


1

400n3

✓
1 + (t� 1)

1

100n3

◆
,

2

900n3

✓
1 + (t� 1)

2

100n3

◆
, . . . ,

1

100n2(n+ 1)2

✓
1 + (t� 1)

1

100n2

◆�
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Since Equation 15 is linear in ✓, ✓ will be a basis vector with support on the element of V> which is
maximal. It is therefore sufficient to show that each element of V> is maximal at some point in time.
We show via proof by induction that there exists some time t 2 N for which each element of V> is
maximal.

Base case: V1 is the maximal value of V when t = 1: V> =
h

1
400n3 ,

2
900n3 , . . . ,

1
100n2(n+1)2

i>
.

Inductive step: Assume there is some time tk > 1 such that the kth element of V is maximal. To
show that element k+ 1 is maximal at some time tk + ⌧k (⌧k > 0), it suffices to show that there exist
some ⌧k values such that Vk < Vk+1 and Vk+1 > Vk+2+m for all m � 0. It suffices to show this
because if Vk is maximal at time tk, Vk0<k will never be optimal for times tk + ⌧k > tk due to the
linearity of the problem.

We first outline the condition for Vk < Vk+1:

k

100n3 (k + 1)2

✓
1 + (tk + ⌧k � 1)

k

100n3

◆
<

(k + 1)

100n3 (k + 2)2

✓
1 + (tk + ⌧k � 1)

k + 1

100n3

◆

Next we solve for ⌧k and simplify:

⌧k >
100n3

�
k
2 + k � 1

�

2k2 + 4k + 1
� (tk � 1) (16)

We outline a similar condition for Vk+1 > Vk+2+m, for all m � 0:
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100n3 (k + 2)2
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>

k + 2 +m
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✓
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We then solve for ⌧k:

⌧k <

100n3
⇣
(k + 1) (k + 3 +m)2 � (k + 2 +m) (k + 2)2

⌘

(k + 2 +m)2 (k + 2)2 � (k + 1)2 (k + 3 +m)2
� (tk � 1) (17)

Since Equation 17 needs to hold for all m � 0, it suffices to show that it holds for the value of m
which makes the RHS of Equation 17 maximal. To find this m value, we Take the derivative of
Equation 17 with respect to m and set it equal to 0. We find that the RHS of Equation 17 is minimized
when m is negative. However, m � 0, so within the constraints of m, the RHS of Equation 17 is
minimized when m = 0. Setting m = 0 and simplifying, we obtain

⌧k <
100n3

�
k
2 + 3k + 1

�

2k2 + 8k + 7
� (tk � 1) (18)

We now have sufficient conditions for Vk < Vk+1 (Equation 16) and Vk+1 > Vk+2+m (Equation 18).
Writing the two inequalities together, we see that

k
2 + k � 1

2k2 + 4k + 1
<

k
2 + 3k + 1

2k2 + 8k + 7

which holds for all values of k � 1. Therefore, Vk+1 will be the maximal element of V at time
tk + ⌧k, where

100n3
�
k
2 + k � 1

�

2k2 + 4k + 1
� (tk � 1) < ⌧k <

100n3
�
k
2 + 3k + 1

�

2k2 + 8k + 7
� (tk � 1) (19)

⌧k will be strictly greater than 0 for all values of k, since ⌧n > 1. (This is a sufficient condition for
⌧k > 0 8k because ⌧k decreases as k increases.) We can see this by subtracting the LHS of Equation
19 from the RHS at k = n to obtain
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100n3
�
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�

2n2 + 8n+ 7
�(tn � 1)�

 
100n3

�
n
2 + n� 1

�

2n2 + 4n+ 1
� (tn � 1)

!
= 200

n
5 + 4n4 + 4n3

(2n2 + 8n+ 7) (2n2 + 4n+ 1)

which is greater than 1 for all values of n � 1.

Now we characterize a sufficiently long time period for V> to switch to all n values. From Equation
19, we know that

T = tn�1 + ⌧n�1 > 1 +
100n3

⇣
(n� 1)2 + (n� 1)� 1

⌘

2 (n� 1)2 + 4 (n� 1) + 1

Therefore, picking a time horizon such that T > 100n3 is a sufficient condition for the optimal
solution of Equation 13 to switch to all n basis vectors.

G.4 Optimality of linear assessment policies

So far, for convenience we have focused on linear assessment policies for the principal. We next
show that this restriction is without loss of generality, that is, linear assessment policies are at least
as powerful as the larger class of Lipschitz assessment policies with constant K  1, where the
comparison is in terms of the effort policies each class can incentivize the agent to play.
Theorem G.5. Suppose K  1 is constant and f : Rn

⇥ Rn
�! R is a K-Lipschitz function.

For any effort policy {et}Tt=1, if there exists a sequence of assessment rules {f(✓0
t
, ·)}T

t=1 to which
{et}Tt=1 is the agent’s best-response, then there exists a linear assessment policy {✓t}

T

t=1 to which
{et}Tt=1 is also a best-response.

Here is the proof sketch. In order to show that linear assessment policies are optimal, we re-derive the
optimal effort policy a rational agent will play for some arbitrary assessment policy {f(✓t, ·)}Tt=1. We
find that an agent’s optimal effort policy is linear in {rotf(✓t, ·)}Tt=1, the gradient of the assessment
policy with respect to the agent’s observable features. Therefore, picking each decision rule to be
f(✓t,ot) = ✓>

t
ot is optimal, assuming no restrictions on ✓t. However, since we restrict each linear

decision rule ✓t to lie in the probability simplex �n, playing the optimal {✓t}
T

t=1 is at least as good as
any assessment policy in the set of Lipschitz continuous assessment policies with Lipschitz constant
K  1.

Proof. Recall that
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s.t. a
(j)
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� 0 8t, j

(20)

This is the generic optimization problem for the agent’s optimal effort policy {a⇤
t
}
T

t=1 from Section
G.1. However, instead of specifying the score yt achieved at each time step to be a linear function of
the agent’s observable features ot, we leave the relationship between observable features and score as
some generic function yt = f(✓t,ot), parameterized by ✓t. We can still obtain an expression for a⇤

t

by taking the gradient of Equation 20 with respect to at and setting it equal to 0d. By applying the
chain rule, we obtain
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= rat

TX
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TX
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TX
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roif(✓i,oi) (21)
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Figure 5: Left: T as a function of E . Larger ⌦jj and Wmj terms correspond to fewer time-steps to
incentivize E units of effort. Right: T as a function of E . While T is inversely proportional to both
⌦jj and Wmj , increasing ⌦jj decreases the time required to incentivize E units of effort more than
an equal increase in Wmj .

The goal of the principal is to maximize the agent’s internal state at time T ,
���⇤

P
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���
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. Assuming

the agent is rational and plays et = a⇤
t
, 8t, we can plug Equation 21 into this expression and simplify

to obtain
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Due to the linearity of the problem, the optimal rotf(✓t,ot) will be basis vectors for all t. Since we
restrict ✓t to be in �n, f(✓t, ·) = ✓t is at least as optimal as all Lipschitz continuous functions with
Lipschitz constant K  1.

Note that while linear optimality does not hold across the set of all assessment policies, this is a result
of our restrictions on ✓t and not due to some suboptimality of linear mechanisms. For example, if
we chose to restrict our choice of assessment rules to lie within a probability simplex rescaled by
� 2 R+, then there would exist a linear assessment policy which would be at least as optimal as all
Lipschitz functions with Lipschitz constant K  �.

G.5 What levels of effort can be incentivized within T rounds?

According to Corollary G.2, we know that longer time horizons always expand the set of imple-
mentable effort sequences. In what follows, we characterize the number of rounds sufficient for
reaching a cumulative effort level of E in a designated effort component.
Definition G.6 ((T, E)-Incentivizability). An effort component j is (T, E)-incentivizable if a rational
agent can be motivated to expend at least E units of effort in the direction of j over T rounds.
Theorem G.7. Let Wmj denote the maximal element in the jth column of W . Then if

T =

2

666
1

2
�

1

⌦jj

+
1

2

s✓
2

⌦jj

� 1

◆2

+
8E

⌦jjWmj

3

777
, (22)

effort component j is (T, E)-incentivizable for ⌦jj > 0.
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Proof. The relationship between total effort E and the minimum time horizon T required to induce
an agent to expend E units of effort in the direction of effort component j can be written as

min
✓1,...,✓T

T
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, ✓t 2 �n
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(23)
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(k)
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P

T�t

i=1 ✓
(k)
t+i

)Wkj (see Equation 11). Since we only care about the
effort accumulated in coordinate j at each time-step, the principal’s optimal assessment policy is
to pick the assessment rule ✓t that maximizes the effort the agent expends in coordinate j at time t.
This translates to picking ✓

(k)
t

= {Wkj = Wmj} 8t, where Wmk = maxk Wkj . In other words,
the principal wants to play the same basis vector at every time-step, which will have weight on the
observable feature that effort component j contributes the most to. Plugging in this expression for
✓
(k)
t

, the constraint in Equation 23 simplifies to
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Note that this will hold with equality if E =
P
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. After solving for T and simplifying, we get
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Since we want the time horizon to be as small as possible but need T to be an integer, we take the
ceiling of Equation 24 to get our final time horizon value.

Note that the time horizon T scales as
p
E because a⇤

t
, the optimal agent effort profile at time t,

has a linear dependence on T � t, and the total effort E expended by the agent is proportional toP
T

t=1 a
⇤(j)
t

. Intuitively, this can be seen as the agent choosing to put in most of the work “up front”
in order to reap the benefits of his effort across a longer period of time.

Note that the bound on T is tight for (T, E) pairs where E =
P

T

t=1 e
(j)
t

. For example, let j = 1

and ⌦ = W = I 2 R
2⇥2. If we pick ✓t = [1 0]

>, then e
(1)
t

= 1 + (T � t), from which it is
straightforward to see that with 2 total time-steps, the cumulative effort in the direction of j will be 3.
By setting E = 3 in Equation 22, we get T � 2, showing that our lower bound on T is indeed tight
for this example.

A natural question is if we can recover a similar definition of (T, E)-incentivizability if we want to
incentivize some arbitrary subset of effort eS over time. While we can obtain a bound for incentivizing
one index j 2 S using the above formulation, obtaining a tighter characterization may require playing
different assessment rules over time. Determining these optimal assessment rules requires solving an
optimization problem, so a closed-form bound for this setting is not easy to obtain.

G.6 Discussion: comparing the fixed budget and quadratic cost models

While the principal is able to incentivize a wider range of effort profiles under both the fixed budget
and quadratic cost setting, there are several differences in the optimal policies recovered in each
setting. In the fixed budget setting, the optimal agent effort policy under linear effort conversion
function is to play a basis vector at every time-step (see Proposition 4.1), while the principal’s optimal
decision rules are generally not basis vectors. Somewhat surprisingly, in the quadratic cost setting
the roles are exactly reversed. The principal’s optimal linear assessment policy is to play a sequence
of basis vectors, while the agent’s effort policy will generally involve spending effort in different
directions at the same time-step. While in settings such as our classroom example it may be desirable
to incentivize agents to play basis vectors (e.g. only study), the choice of constraint on agent effort
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is problem-specific and should be chosen based on what is most realistic under the specific setting
being studied.

Another difference between the two settings is the computational complexity of recovering the optimal
linear policies for the principal and agent. In the fixed budget setting, we can recover the agent’s
optimal effort policy by solving a sequence of linear programs, and we can recover the principal’s
optimal assessment policy by using a membership oracle-based method. On the other hand, we have
a simple closed-form solution for the agent’s optimal effort policy and can recover the principal’s
optimal linear assessment policy by solving a sequence of linear programs under the quadratic cost
formulation.
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