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Abstract

In recent years, the ML community has seen surges of interest in both adversarially
robust learning and implicit layers, but connections between these two areas have
seldom been explored. In this work, we combine innovations from these areas
to tackle the problem of N-k security-constrained optimal power flow (SCOPF).
N-k SCOPF is a core problem for the operation of electrical grids, and aims to
schedule power generation in a manner that is robust to potentially k simultaneous
equipment outages. Inspired by methods in adversarially robust training, we frame
N-k SCOPF as a minimax optimization problem – viewing power generation
settings as adjustable parameters and equipment outages as (adversarial) attacks
– and solve this problem via gradient-based techniques. The loss function of this
minimax problem involves resolving implicit equations representing grid physics
and operational decisions, which we differentiate through via the implicit function
theorem. We demonstrate the efficacy of our framework in solving N-3 SCOPF,
which has traditionally been considered as prohibitively expensive to solve given
that the problem size depends combinatorially on the number of potential outages.

1 Introduction

Robust optimization problems are pervasive across many applications and domains – such as electric
power systems, supply chain management, and civil engineering – where the goal is to construct
some solution that is robust under any allowable instantiation of uncertainty [1, 2]. While the
aim is generally that these solutions be provably robust, there unfortunately remain many settings
where it is either not easy or not possible to construct such solutions. This has often motivated the
use of heuristic approaches. For instance, many approaches in adversarially robust deep learning
formulate neural network training as a minimax game over neural network parameters and input
perturbations, optimizing this problem via gradient-based techniques that do not yield provable
robustness guarantees, but are nonetheless effective in practice [3].

In this work, we draw inspiration from adversarially robust training to address the problem of
N-k security-constrained optimal power flow (SCOPF). N-k SCOPF is a fundamental problem to
schedule power generation in a way that is robust to k potential equipment failures (e.g., generator or
line outages). Unfortunately, N-k SCOPF is prohibitively expensive to solve at scale, leading grid
operators to use rough approximations in practice. To address this challenge, we frame N-k SCOPF
as a minimax attacker-defender problem, where the “defender” aims to schedule power generation,
and the “attacker” aims to pick adversarial equipment failures. The loss function of this problem
requires solving implicit equations representing the physics of the electric grid as well as additional
operational decisions that are made after an attack has occurred. As such, we optimize this problem
using gradient-based techniques, and employ insights from the literature on implicit differentiation
and implicit layers to cheaply compute gradients through the loss function.

⇤These authors contributed equally.
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Our key contributions are:

• Formulation for minimax optimization with implicit variables. To streamline the pre-
sentation of concepts, we provide a generic formulation for gradient-based optimization of
minimax problems with implicitly-defined variables. While our main focus in this paper
is on N-k SCOPF, we believe this generic formulation may also be of broader interest for
minimax settings with physics in the loop, as well as for tri-level optimization settings.

• Formulation for gradient-based optimization of N-k SCOPF. We rewrite N-k SCOPF as
a continuous minimax optimization problem, and demonstrate how to efficiently compute
gradients through relevant implicit components. We also utilize the underlying structure of
our optimization solvers to further streamline the outer minimization procedure. Importantly,
the per-iteration cost of this approach is agnostic to the number of simultaneous outages k,
despite the combinatorial blowup in the number of associated “contingency scenarios.”

• Demonstration on N-1, N-2, and N-3 SCOPF. We demonstrate the efficacy of our method
in addressing SCOPF settings that allow for one, two, or three simultaneous outages on a
realistic 4622-node power system with over 38 billion potential N-3 outage scenarios. We
find that our method incurs 3-4⇥ fewer N-3 feasibility violations than a baseline optimal
power flow approach, and requires only 21 minutes to run on a standard laptop.

2 Related work

Adversarial robustness in deep learning. There has been a growing body of work that aims to
parameterize neural networks in a manner that is robust to particular perturbations of their inputs,
usually by casting neural network training as an attacker-defender game [3, 4]. While there have been
several promising approaches for certifiably robust neural network training [5–7], in general, these
approaches do not yet scale to large-sized networks and only address a limited set of threat models.
As a result, there has been a lot of research in this area that aims to train robust neural networks using
approximate, gradient-based training methods [8, 9], an approach we adopt in the context of SCOPF.
In addition, a key part of this literature has been on constructing strong but cheap-to-compute attacks
that can strengthen the outcomes of adversarially robust training, e.g., the fast gradient sign method
(FGSM) [8] and projected gradient descent (PGD) attacks [9]. In our experiments, we similarly
show how a gradient-based adversarial robustness approach can be used to identify potential grid
vulnerabilities, as an input to secure power system optimization.

Implicit layers. Implicit differentiation techniques [10, 11] have started to be used more widely
within deep learning workflows, largely in the context of implicit layers, i.e., neural network layers
that represent implicit functions [12]. These include differentiable optimization layers [13–19] and
physics-based layers [20, 21], among others [22, 23]. Given the large number of parameters within
any given deep network, a key aspect of this work has been in finding efficient ways to actually
compute the relevant derivatives, e.g., by strategically ordering multiplicative operations and reusing
the results of previous computations. We similarly employ these kinds of strategies when computing
implicit derivatives for our SCOPF optimization approach. We also note that some of the work on
implicit differentiation in deep learning and related areas has been in service of solving bi-level
optimization problems, e.g., for decision-driven forecasting [24, 25], hyperparameter tuning [26–29],
or system identification and control [30]. We similarly consider the use of implicit differentiation for
multi-level optimization (in particular, tri-level optimization) in the context of SCOPF.

Security-constrained optimal power flow. In the electric power systems community, there has
been a great deal of emphasis on optimizing power grid operations to be secure to sets of outages
(contingencies) that may be particularly high risk. For instance, many grid operators in the United
States require grids to be operated in a way that is N-1 secure (i.e., secure against any single outage),
which has led to a focus in the literature on addressing N-1 SCOPF [31–34]. However, ensuring
security against multiple simultaneous failures (i.e., solving N-k SCOPF for k > 1) is becoming
increasingly critical, both as evidenced by recent major blackout events [35, 36] and as climate
change drives weather extremes [37] that may lead to correlated outages [38]. That said, due to the
computational complexity of addressing N-k SCOPF in the general case, there have been few attempts
at developing methods geared towards this setting. In particular, the computational complexity of
N-k SCOPF grows combinatorially with k and the size of the system. Some previous attempts to
solve N-k SCOPF have employed exhaustive methods [39], Bender’s cuts to reduce the number of

2



contingencies analyzed [40], and bi-level optimization frameworks [40, 41]. In particular, [41] used
bi-level optimization to develop a systematic attacker-defender approach to address N-3 contingency
scenarios, but used a simplified, linear power grid model to attain convergence. We similarly adopt a
bi-level framework, but solve a realistic non-linear model of the grid by introducing fast gradient
calculation methods inspired by the implicit layers literature, which allows us to scale our approach
to a 4622-node system.

3 Generic problem formulation

Before diving into the details of our SCOPF formulation, we first provide a more generic formulation
for gradient-based minimax optimization over an implicit loss function, which we will later build upon
in the context of SCOPF. In particular, we consider the setting of continuous minimax optimization
problems over “defender” (minimizer) variables x 2 X and “attacker” (maximizer) variables y 2 Y;
these are also referred to as first-stage and second-stage decision variables, respectively, in the bi-level
optimization literature. In addition, we allow for “third-stage” decisions z 2 Z that are fully defined
via a set of implicit constraints on x, y, and z.

Specifically, we consider problems of the form

minimize
x2X

max
y2Y

`(x, y, z)

s. t. g(x, y, z) = 0, z 2 Z,
(1)

where X , Y , and Z are compact sets; ` : X ⇥ Y ⇥ Z ! R is a standard, continuously differentiable
loss function (e.g., softmax or mean squared error loss); and g : X ⇥ Y ⇥ Z ! Rm is defined such
that g(x, y, z) = 0 is an implicit function in z with some solution z 2 Z for all (x, y) 2 X ⇥ Y . We
further restrict ourselves to those functions g that are continuously differentiable with non-singular
Jacobians at their roots, i.e., those functions that are compatible with the implicit function theorem
[3, 42]. We note that this formulation covers a wide range of settings, e.g., many minimax problems
with non-linear physical constraints, or many tri-level optimization problems where z is a solution to
a continuous optimization problem parameterized by x and y (both of which notions we will use in
Section 4 for the setting of N-k SCOPF).

Inspired by the literature on adversarial robustness in deep learning, we propose to solve problem (1)
via gradient-based search on both the inner maximization and outer minimization problems. In
particular, this entails (a) obtaining some (approximately) optimal y for the inner maximization
problem via gradient-based techniques, given some initial value of x, (b) updating x using the
gradient at the optimum of the inner maximization problem, and (c) repeating these steps until
convergence. We now describe steps (a) and (b) in additional detail.

3.1 Solving the inner maximization problem

Let x̄ denote some fixed value for x. The inner maximization problem is then given by

max
y2Y

`(x̄, y, z) s. t. g(x̄, y, z) = 0, z 2 Z. (2)

We optimize this problem via projected gradient descent. Specifically, let y = y0 denote our initial
guess for the optimal attack, and let P denote the projection operator. Until convergence (or for some
fixed number of iterations), we then

(i) Obtain z? such that g(x̄, y, z?) = 0, z? 2 Z .

(ii) Update y  PY (y + �ry`(x̄, y, z?)) for step size �.

Notably, step (ii) entails obtaining the gradient ry`(x̄, y, z?). By the chain rule, this involves the
gradient through z?, which is the solution to a set of implicit equations. Specifically, using the
notation d to denote total derivatives (e.g., gradients) and @ to denote partial derivatives, we have

d`(x̄, y, z?)

dy
=

@`(x̄, y, z?)

@y
+

@`(x̄, y, z?)

@z?
dz?

dy
. (3)
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By the implicit function theorem, we can then obtain an expression for dz?/dy by noting that

dg(x̄, y, z?)

dy
=

@g(x̄, y, z?)

@y
+
@g(x̄, y, z?)

@z?
dz?

dy
= 0 =) dz?

dy
= �

⇣@g(x̄, y, z?)
@z?

⌘�1 @g(x̄, y, z?)

@y
,

(4)
which we can plug into Equation (3) to yield our full update.

We note that in practice, we seldom want to compute the Jacobian dz?/dy 2 Rdim(Z)⇥dim(Y) explicitly
due to the potentially large time and space complexity of doing so; instead, it is often desirable to
compute the left vector-matrix product (@ /̀@z?)(dz?/dy) 2 Rdim(Y) directly. We refer to this strategy
as the “vector-Jacobian product trick.” The details of the relevant computations may vary based on
the particular setting at hand, and we describe how we employ this trick for SCOPF in Section 4.3.

3.2 Taking a gradient step in the minimization problem

Given some (approximately) optimal y? and associated z? from the inner optimization under the
current value of x = x̄, the outer optimization problem then becomes

min
x2X

`(x, y?, z?) s. t. g(x, y?, z?) = 0. (5)

One option is to then update x via a projected gradient step x PX (x� �rx`(x, y?, z?)) for step
size �. To calculate the gradientrx`(x, y?, z?), we note that by Danskin’s theorem, we can disregard
the dependence of y? on x [3] (though we cannot ignore the dependence of z?). As such, we can
employ a similar process as in Equations (3) and (4), where we treat y? as constant when computing
gradients with respect to x.2 We note that while this is one potential process for updating x, we
actually employ a more efficient, domain-specific process for our SCOPF procedure (see Section 4.4).

4 Addressing N-k SCOPF via adversarially robust optimization

Having presented this generic formulation, we now introduce our approach, CAN@Y, for addressing
SCOPF.3 In particular, we consider the problem of N-k SCOPF, where power generation must
be scheduled so as to be feasible and low-cost both in the absence of equipment outages (“base
case”) as well as to be robust to any k simultaneous outages of power generators or lines that may
occur (“contingency cases”). We note that the set of contingencies – i.e., allowable combinations of
outages – is combinatorial in the number of potential outages, making the SCOPF problem extremely
computationally expensive. For instance, a realistic 4622 node system with 6133 potential single
outages has ~38.5 billion contingency scenarios to consider under the N-3 setting.

In the rest of this section, we first more formally define the N-k SCOPF problem. We then show how
we rewrite N-k SCOPF as a minimax problem of the form (1), in particular by forming a compact
outer approximation to the contingency space. Finally, we describe how we solve this problem using
a combination of gradient-based techniques and domain-specific enhancements, as summarized in
Algorithm 1.

4.1 Defining N-k SCOPF

Let x denote the dispatch – i.e., setpoints of real power4 and voltage magnitude – at all power
generators on the electricity system, and let X represent generator-wise box constraints on the
dispatch. Let C denote the set of potential contingencies, i.e., all sets of exactly k potential outages.

2Technically, Danskin’s theorem only holds when y? is a unique optimum of the inner maximization
problem. However, in the adversarially robust training literature, the conditions of Danskin’s theorem do not
necessarily hold – in particular, the inner maximization problem often does not have a unique optimum, and
many implementations tend to generate approximate (rather than exact) optima [8, 9] – but this method of
computing gradients is used in practice regardless [3].

3CAN@Y stands for “CMU Adversarial Networks with Differentiable contingencY.” This name is inspired
by that of SUGAR [43], whose power flow solver we differentiate through in this work.

4Modern electric power systems are generally alternating current (AC) systems, in which all electrical
quantities – e.g., powers and voltages – are considered to be complex-valued. In particular, the terms real power
and reactive power refer to the real and imaginary components, respectively, of complex power.
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Algorithm 1 CAN@Y
1: procedure MAIN(sys) // input: power system description
2: init dispatch x // e.g., via base case optimal power flow
3: while not converged do

4: y? = ATTACK(sys, x) // worst-case attack for current dispatch
5: update x via partial solve of Equation (12) using Gauss-Siedel
6: end while

7: end procedure

8:
9: procedure ATTACK(sys, x)

10: init attack y
11: while not converged or for fixed number of steps do

12: compute z?, s? via Equation (8c) // third-stage variables
13: compute ry`(x, y, z?, s?) via Equation (11) // gradient of attack objective
14: update y  PY (y + �ry`(x, y, z?, s?)) // for attack set Y , step size �
15: end while

16: return y
17: end procedure

Finally, let z(i) 2 Zi(x, c(i)) represent slightly adjusted settings of real power and voltage magnitude
that the power system operator can create after scheduling x and then observing some contingency
c(i) 2 C, where the Zi represent box constraints. Then, the N-k SCOPF problem can be expressed as

minimize
x2X

fbase(x) +
X

(z(i), c(i))

fcont(z
(i), c(i))

subject to gflow,base(x,wbase) = 0, wbase 2Wbase

z(i) 2
argminz(i)2Zi(x,c(i)) fcont(z(i), c(i))

s. t. gflow,cont(z(i), w(i), x) = 0, w(i) 2Wi(x, c(i))
8c(i) 2 C,

(6)

where fbase : X ! R represents base case power production costs; gflow,base : X ⇥Wbase ! Rnbus

represents the non-linear power flow equations in the base case, with nbus being the number of power
system nodes; wbase represents electrical quantities that result from solving the base case power flow
equations (e.g., reactive powers and voltage angles), with box constraints (device limits) represented
by Wbase; and fcont : Zi ⇥ C ! R, gflow,cont : Zi ⇥Wi ⇥X ! Rn, and w(i) 2Wi(x, c(i)) represent
their respective contingency-case counterparts. (See Appendix A for a more explicit formulation.)

4.2 Rewriting N-k SCOPF as a minimax problem

We reformulate the SCOPF problem (6) as an attacker-defender game, where the defender must
choose a dispatch that is robust to potential “worst-case” contingencies chosen by an attacker. In
particular, since the contingency set C is discrete, we create a continuous outer approximation to
this set in order to enable the use of gradient-based techniques. Specifically, let no be the number of
generators or power lines that can potentially experience an outage. Then, for any y 2 [0, 1]no , we
define the jth entry as follows:

yj =

8
<

:

1 iff outage j is fully active,
0 iff outage j is not active,
↵j 2 (0, 1) iff outage j is partially active with fraction ↵j .

(7)

The first two notions presented in Equation (7) are standard in power systems: the generator or line
pertinent to outage j is either fully operational or out of service. We newly define the notion of a
partial outage with fraction ↵j as one in which the power flowing through the outage device during
normal operation has been reduced by a factor of ↵j . For instance, we model a partial contingency on
a transmission line or transformer device as reducing its admittance (i.e., ability to conduct current)
by a factor of ↵j . Similarly, we restrict the power produced by a generator undergoing a partial
contingency by multiplying its power output by ↵j .
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Given these notions, we define our “threat model” for the N-k SCOPF setting to contain all vectors
y with an L1-norm of at most k, i.e., Y := {y : y 2 [0, 1]no , kyk1  k}. Notably, the original
contingency set C is fully represented within Y , and in fact, all scenarios with up to k simultaneous
potential outages are also represented. As such, Y represents a much broader set of potential
contingencies than specified in the original problem. (Relevantly for projected gradient descent, this
is also a convex set.) Using this set, we can then write our reformulation of the SCOPF problem as

minimize
x2X

max
y2Y

fbase(x) + fcont(z, y) +
1

2
ksk22 (8a)

subject to gflow,base(x,wbase) = 0, wbase 2Wbase (8b)

z, s 2
argminz2Z(x,y), s2Rnbus fcont(z, y) +

1
2ksk

2
2

s. t. gflow,cont(z, wcont, x) + s = 0, wcont 2Wcont(x, y),
(8c)

where s 2 S := R2nbus are slack variables representing potential infeasibilities in the third-stage
optimization problem, as necessitated by the expanded contingency set. In particular, the goal
of the attacker is to now to find a set of partial outages that not only increase the cost of power
generation, but also create instabilities in the grid, as captured by s. As we hinted at in Section 3, this
is a minimax optimization problem with implicit constraints over the third-stage variables z, wbase,
wcont, and s, incorporating both non-linear equality constraints (8b) as well as an optimization-based
constraint (8c).

4.3 Obtaining attack gradients

As described in Section 3.1, we aim to find the worst-case attack via projected gradient descent. In
particular, we must compute the gradient of the minimax loss with respect to y, which is given by

d`

dy
=

@fcont(z?, y)

@y
+

@fcont(z?, y)

@z?
dz?

dy
+

ds?

dy
. (9)

(As the base case power production cost and the base case power flow constraint (8b) have no
dependence on y, we do not need to consider these terms during the inner maximization.)

To calculate the terms dz?/dy and ds?/dy, we implicitly differentiate through the third-stage opti-
mization problem (8c). In order to do so inexpensively, we reuse the results of computations that
were executed when originally obtaining z? and s?. More specifically, in order to obtain z? and s?,
we solve the non-linear KKT conditions of optimization problem (8c) using a Newton solver (see
Appendix B), which entails linearizing these equations at each iteration. At convergence, we then
implicitly differentiate through the linear fixed-point equation obtained at the last iteration:

J

✓
z?

s?

◆
= b =) dJ

dy

✓
z?

s?

◆
+ J

 
dz?

dy
ds?

dy

!
=

db

dy
=)

 
dz?

dy
ds?

dy

!
= J�1

✓
�dJ

dy

✓
z?

s?

◆
+

db

dy

◆
,

(10)
where J 2 Rd⇥d is the Jacobian of the non-linear KKT system and b 2 Rd is the corresponding
right hand side vector, for d = dim(Z) + dim(S). We note that since the system Jacobian J is in
practice extremely sparse, the inverse term J�1 can be computed extremely efficiently using sparse
LU factorization; similarly, the higher-order derivative dJ/dy is extremely sparse and can be computed
efficiently. We refer the reader to [44] for more details.

Substituting this result into Equation (9), the overall gradient of the loss is then given by

d`

dy
=

@fcont(z?, y)

@y
+

 
@fcont(z

?,y)
@z?

1

!T

J�1

✓
�dJ

dy

✓
z?

s?

◆
+

db

dy

◆
. (11)

As hinted earlier, we employ the “vector-Jacobian product trick” in order to efficiently compute these
gradients (see, e.g., [11]). In particular, rather than computing the terms dz?/dy and ds?/dy explicitly
via Equation (10), we directly compute their left vector-matrix product with the relevant partial
derivatives of the loss – i.e., the blue term in Equation (11), with multiplications evaluated from left
to right to ensure we are always taking matrix-vector (rather than matrix-matrix) products. Inspired
by [13], we also reuse the LU factor from the last Newton solve we computed when obtaining z?
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and s? in order to avoid explicitly (re-)computing the matrix inverse J�1. Finally, we note that for
this specific problem, while the last term �dJ

dy

⇣
z?

s?

⌘
+ db

dy nominally involves tensor products, the
relevant terms are vastly sparse due to the structure of the underlying physics – with no more than 20
nonzero entries per potential outage – making these products relatively cheap to compute in practice.

4.4 Solving the defense minimization

After obtaining a worst-case attack y?, our next step is to adjust our dispatch x 2 X in response.
As described in Section 3.2 for the generic setting, one option to do this involves taking a projected
gradient step in x. However, we adopt a different approach for N-k SCOPF, due to the practical
requirements of this setting. In particular, a general system requirement is that the base case power
flow equations gflow,base(·) = 0 must remain feasible under the dispatch x 2 X , as the most likely
scenario is that no contingency will occur. However, projecting onto this (non-linear, non-convex) set
of constraints can be expensive.

As a result, we instead note that we can rewrite the N-k SCOPF minimax problem (8) as a single
minimization problem:

minimize
x2X , z2Z(x,y?), s2Rnbus

fbase(x) + fcont(z, y
?) +

1

2
ksk22

subject to gflow,base(x,wbase) = 0, wbase 2Wbase

gflow,cont(z, wcont, x) + s = 0, wcont 2Wcont(x, y
?).

(12)

To determine our next iterate of x, our strategy is then to partially solve this optimization problem by
running one step of a non-linear Gauss-Seidel method, and then keep the value of x obtained from
that step. This allows us to incrementally update x in a direction that is more robust to the worst-case
attack y?, while still maintaining the feasibility of the base case power flow equations.

Importantly, we are able to run this procedure efficiently, as we can reuse the results of existing
computations that were executed when obtaining the optimal attack y?. In particular, as we describe
in more detail in Appendix C, we can split the KKT conditions of the problem (12) into two groups:

✓
dL/dx

dL/d�base

◆
⌘ Fbase(x,wbase,�base) +

 
(@gflow,cont(z,wcont,x)/@x)T �cont

0

!
= 0 (13a)

0

@
dL/dz
dL/ds

dL/d�cont

1

A ⌘ Fcont(z, wcont,�cont) +

0

@
0

0

gflow,cont(z, wcont, x)

1

A = 0, (13b)

where L denotes the Lagrangian of problem (12), and �base and �cont are the dual variables on the
base case and contingency power flow constraints, respectively. We note that the two terms Fbase and
Fcont are independent in terms of their inputs, but are weakly coupled via the additional terms (which
represent a sparse set of ramping constraints and voltage setpoints that tie together the base and
contingency cases). This is an ideal setup for decoupling through non-linear Gauss-Seidel solution
methods. In addition, the contingency-related KKT conditions (13b) are actually identical to the
KKT conditions of the problem (8c) that we solved during the last iteration of the inner maximization
problem; as a result, we can reuse the result of this previous computation when executing our
Gauss-Seidel step. Together, this allows us to inexpensively identify an update direction for x that
nonetheless remains feasible with respect to the base case power flow constraints.

5 Experiments

We demonstrate the efficacy of our approach on the settings of N-1, N-2 and N-3 SCOPF. In particular,
noting that quality of adversarial attacks is likely to have a large effect on the success of our overall
procedure, we first visualize the attacks found by our inner maximization process (Sections 3.1, 4.4)
on a small power system test case. We then demonstrate the performance of our overall approach
on a realistic 4622-node power system with approximately 6 thousand potential N-1 contingencies,
almost 19 million N-2 contingencies, and over 38 billion N-3 contingencies. We show that CAN@Y
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Partial outage value

(a) Visualization of the worst-case contingency found,
with the degree of the associated partial outage on each
line indicated in blue. (Plot generated via PowerWorld.)

=

(b) Training curve for finding a worst-case contin-
gency. The process converges within 5 iterations,
and increases the loss by 3%.

Figure 1: Illustrative example of finding a worst-case N-2 contingency on a 14-node test system.

is able to efficiently find solutions that are competitive with other leading approaches in the N-1 case,
while reducing violations in the N-2 and N-3 scenarios compared to a base case optimal power flow.

All experiments are run on a single core of a Macbook Pro with a 2.6 GHz Core i7 CPU. We
implement our approach in Python, using a custom optimal power flow solver called SUGAR [45] to
compute optimization (8c), and CVXPY [46] to compute convex projections for projected gradient
descent. We evaluate all dispatch solutions using PowerWorld, a commercial power flow tool.

5.1 Illustrative adversarial attack

Finding worst-case contingencies is often beneficial to power systems engineers, who try to identify
fragile areas of their grid for future development. Traditionally, engineers use linear approximations
of the grid physics [47–49] to identify single outages that pose a significant risk to system stability.
However, given that the underlying physics are fundamentally non-linear, such linear approximations
quickly become inaccurate when trying to identify the risks associated with multiple simultaneous
outages. Our implicit differentiation approach, on the other hand, employs accurate gradient informa-
tion from the physics of the network to quickly identify contingencies that maximally increase our
loss function (or an alternative loss function of choice that also captures system infeasibilities).

For ease of visualization, we demonstrate this attack-identification approach on the IEEE 14-node test
system. In particular, we identify an adversarial N-2 contingency on this system in just 5 iterations
(approximately one minute), increasing the value of the loss function by 3% over the base case
scenario, as shown in Figure 1b. This worst-case contingency represents a combination of multiple
partial outages on different lines, and (perhaps surprisingly) does not include any generator outages,
as shown in Figure 1a. This is likely to present a stronger attack than those obtained via the “standard”
linear approximation approach, serving as a potential benefit to power system planners who are trying
to reinforce their grid, as well as to “adversarially robust training” procedures like ours.

5.2 Validating N-1 security

Today, most grid operators in the United States require that their dispatch be N-1 secure, i.e., secure
against any single outage, prompting the development of associated methods. In particular, the recent
Grid Optimization (GO) Competition [34], hosted by ARPA-E, focused on finding algorithms to
solve N-1 SCOPF. Each participating team used a variety of methods to produce a dispatch that was
evaluated on the basis of power cost and feasibility in both the base and contingency cases. In order to
validate that our method works well in the N-1 setting, we solve a particular case from the competition
– namely, the 4622-node test case with a sub-selection of 3071 N-1 potential contingencies, provided
as part of the Challenge 1 stage – by constructing our relaxed contingency set Y with k = 1.
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gollnl GO-SNIP GMI-GO BAT gravityx CAN@Y*

GO Challenge 1 Rank 1 2 3 4 5 -
Score for 5K network 546,302 553,152 553,328 545,783 550,020 552,032

Table 1: Comparison of the performance of our method against top-performing submissions to the
ARPA-E GO Competition, which addresses N-1 SCOPF (lower scores are better). Results are shown
for the 4622-node Challenge 1 test case (“5K network”). While the score comparisons shown are
inexact due to subtleties of the evaluation metric (see Appendix D), at a high level, we see that
CAN@Y performs competitively with all top-scoring methods.

=

Figure 2: Loss vs. iterations in adversarial
training. Each attack stage is at most 10
iterations and each defense stage is one iter-
ation. The loss value after the defense step
is in green.

Contingency type N-1 N-2 N-3

Scenarios tested 6,133 359,712 428,730

OPF viol. 59 10,572 4,086

PowerModels viol. 37 4,005 5,391

CAN@Y viol. (ours) 36 3,580 1,122

Table 2: Number of feasibility violations incurred by
the N-3 SCOPF version of our method, a baseline op-
timal power flow (OPF), and the PowerModels N-1
SCOPF solver [50] on randomly selected N-1, N-2, N-
3 contingency scenarios for a 4622-node test case. We
see that CAN@Y reduces the number of N-2 and N-3
violations by a factor of 3-4⇥ over the OPF baseline,
and the number of N-3 violations by a factor of 5⇥
over the PowerModels solution.

We find that our score is comparable against the top approaches submitted to the GO Competition,
as shown in Table 1. We note that these score comparisons are not exact, as our power flow solver
uses a more realistic model for coupling between the base and contingency cases than was posed
in Challenge 1, which affects the way that the evaluation metric is computed (see Appendix D).
Nonetheless, at a high level, these results demonstrate that our method performs competitively with
respect to the top-performing methods for solving N-1 SCOPF.

5.3 Improving N-3 SCOPF

We now describe the performance of our method on our main setting of interest: N-3 SCOPF. While
other competitive methods exist for solving N-1 SCOPF, previous work has struggled to approach
settings allowing for larger numbers of simultaneous outages (e.g., N-k SCOPF for k = 2 or 3) due
to the associated combinatorial explosion in problem size. Our method, however, scales gracefully
with respect to the number of allowable simultaneous outages, as we need only tweak the value of k
used within our attack set Y := {y : y 2 [0, 1]no , kyk1  k}. More specifically, each iteration of
the attack maximization and each defense step calculation take approximately the same amount of
time regardless of the value of k, given that the costs of the gradient computations, projections, and
(optimal) power flow solves are independent of k. (The total number of iterations it takes for our
method to converge may vary between settings, though we do not notice a substantive difference in
this respect between the N-1, N-2, and N-3 versions of our approach during our experiments.)

We use our method to attempt to solve N-3 SCOPF (i.e., set k = 3) on a 4622-node test case over all
6133 potential outages (i.e., over 38 billion N-3 contingency scenarios); the associated training curve
is shown in Figure 2. In total, our approach takes only 21 minutes to converge.

We evaluate the strength of our obtained dispatch in maintaining feasibility against a combination
of N-1, N-2, and N-3 contingency scenarios, which are all technically contained within the threat
model represented by our choice of Y . We note that while full security against all these contingencies
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is likely impossible with a single dispatch – e.g., we can very often construct an N-3 contingency
that isolates, or islands, some non-self-sustaining part of the electrical grid – we aim to demonstrate
that our method can improve upon existing methods in terms of providing robustness against a wide
variety of scenarios. As there remain a lack of available N-2 or N-3 SCOPF methods against which
we can readily compare, we compare our performance against that of a base case optimal power
flow (OPF) solver, as well as the open-source PowerModels N-1 SCOPF algorithm [50]. Due to
the intractability of evaluating these dispatches on all possible contingency scenarios, we randomly
sub-select the set of N-1, N-2, and N-3 scenarios on which we evaluate, and run these evaluations in
PowerWorld over the course of several days.

The results of our evaluation are shown in Table 2. Overall, we see that CAN@Y significantly reduces
the number of total contingency violations as compared to the OPF solution by a factor of 3-4⇥.
While the PowerModels baseline and our approach perform comparably with respect to N-1 and
N-2 contingency violations, our approach incurs nearly 5⇥ fewer N-3 violations as compared to
PowerModels. Analyzing the N-3 contingencies in more detail, we find that of the 4086 specific
violations incurred by OPF, 931 of those were also incurred by CAN@Y (while the remaining 191
violations incurred by our method were disjoint). Overall, these results indicate that our method is
much more effective than OPF and a benchmark N-1 SCOPF solver at guarding against N-2 and N-3
contingencies, though the actual distribution of specific contingencies that are guarded against may
differ between these methods.

6 Conclusion

In this paper, we have described our approach, CAN@Y, for N-k security-constrained optimal power
flow. Specifically, we formulate N-k SCOPF as a minimax problem over power system dispatches and
potential outages by forming a continuous outer approximation to the contingency space. This enables
us to compute “worst-case” contingencies via projected gradient descent (using tricks from the implicit
layers literature) and then employ these contingencies to update our proposed dispatch. Notably,
our formulation scales gracefully in the number of contingencies – requiring only a minor tweak to
the projection set during the attack step – even as the underlying problem scales combinatorially.
In particular, our approach takes only 21 minutes to converge on a standard laptop for a realistic
4622-node test case with over 38 billion potential N-3 contingencies. We show that our approach
reduces N-3 feasibility violations by a factor of 3-4⇥ compared to a baseline optimal power flow
method and by almost 5⇥ compared to a baseline N-1 SCOPF solver. Overall, we believe this
demonstrates the promise of our approach in enabling scalable N-k security-constrained optimization
on realistic-scale power grids.

We note that the success of our minimax optimization approach is likely highly reliant on the strength
of the adversarial attacks that we generate, just as in the adversarially robust training literature
[3, 4]. As such, a fruitful direction for future work may involve developing improved procedures
for obtaining adversarial attacks in the context of SCOPF. In addition, given the large scale of the
power networks we consider, it is generally impossible to evaluate proposed dispatches against the
full suite of potential contingencies in order to check whether they are indeed N-k secure. Given that,
another fruitful direction may entail developing better evaluation metrics or verification procedures to
inexpensively evaluate whether a proposed SCOPF dispatch is (likely) robust, perhaps again drawing
inspiration from the literature on verification methods for adversarially robust deep learning [51].

7 Broader impacts

To address climate and sustainability goals, many power grids are starting to integrate larger amounts
of time-varying renewable energy, such as solar and wind. As described in [52], this means power
systems optimization problems must generally be solved both more quickly and at larger scales. In
addition, weather extremes driven by climate change [37] yield a significant need for resilient power
system optimization. We believe our work makes an important contribution to this area by providing
a scalable and efficient method to address N-k SCOPF. One potential concern, however, is that our
method relies on identifying “worst-case” power system attacks, and our associated approach could
theoretically be exploited by adversarial actors; that said, we believe it unlikely that our method in
particular would be used for this purpose, as it employs a continuous “partial outage” approximation
that is useful for the purposes of our algorithm, but does not map neatly to actual real-world attacks.
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