
A Proof of Theorem 6

Throughout the proof, we consider the general case where the concentrability (Assumption 3) does
not necessarily hold, i.e., Σ may be singular. Note that the projections b♯, F ♯, w♯ and Q♯ may not be
uniquely defined in this setting. Thus, we redefine them as the least-norm projections, where the norms
are measured with ∥b♯∥2, ∥F ♯∥F, ∥w♯∥Fϕ and ∥Q♯∥Fϕ , respectively. Here, ∥A∥F :=

√
trAA⊤

denotes the Frobenius norm of matrix and ∥f∥Fϕ := infθ∈RK :θ⊤ϕ=f ∥θ∥2 denotes the natural norm
of Fϕ. Accordingly, we repeatedly use the following notation.
Definition 13 (Smallest nonzero eigenvalue and eivenvectors). We denote by c∗ := 1/λ1(Σ

+) > 0
the smallest nonzero eigenvalue of Σ.

Moreover, let K̃ = rankΣ. We denote by V ∈ RK×K̃ and WK×(K−K̃) the matrices of column
eigenvectors corresponding to nonzero and zero eigenvalues, respectively. That is, V and W are
column-maximal semi-orthogonal matrices satisfying

Σ̃ := V ⊤ΣV ≻ 0, ΣW = 0,

and we have c∗ = λK̃(Σ̃).

We also frequently use the explicit formula of the projected Q-function Q♯.
Proposition 12. Suppose Assumption 4 holds. Let θ♯ := F ♯⊤γ b♯. Then, θ♯ ∈ RK is the least-norm
parameter satisfying

θ♯ ∈ argmin
θ∈RK

LB(θ⊤ϕ),

where LB is given in Definition 7. Consequently, Q♯ = θ♯⊤ϕ.

Proof. According to the stationary-point condition, any θ ∈ argminθ∈RK LB(θ⊤ϕ) satisfies

0 =
∂

∂θ
|B(θ⊤ϕ)− θ⊤ϕ|2ϕ

= 2⟨rϕ⊤ + θ⊤(γPϕ− ϕ)ϕ⊤⟩µ
〈
γϕPϕ⊤ − ϕϕ⊤

〉
µ

= 2
{
(I − γF ♯)⊤θ − b♯

}⊤
Σ2(I − γF ♯).

The least-norm solution to the above equation is given by θ = θ♯.

To prove the main theorem, we exploit a more general form shown below. The notion of the
characteristic numbers (ϵ, ᾱ, β̄) is newly introduced, whose definitions are given in order.
Theorem 13. Let 0 < δ < 1 be a confidence parameter. Let (ϵ, ᾱ, β̄) ∈ R3 be the characteristic
numbers associated with (POPE, ϕ), given by Definition 15. Under Assumption 1, 2 and 4,∣∣∣∣Ĵ(π)− J(π)− ϵ

1− γ

∣∣∣∣ ≤ 1

1− γ

(ᾱ+
√
2G∗β̄

)√2 ln 12
δ

n

+

O

(
V̄ ρG∗ ln3/4 2

δ

c∗n3/4
+
V̄ ρ2G∗2 ln 2K

δ

c2∗n

)
. (7)

with probability 1− δ, where n ≥ 512G∗2ρ2

c2∗
ln(8K/δ), ρ :=

∥∥F ♯γ∥∥2 and V̄ := 1+2
∥∥F ♯⊤γ b♯

∥∥
2
. Here,

O(·) is hiding a universal constant.

Proof. (Sketch) Consider the policy value estimate of the projection, J♯(π) := b♯⊤F ♯x0, and
the associated approximation-estimation error decomposition Ĵ(π)− J(π) = (J♯(π) − J(π)) +
(Ĵ(π)− J♯(π)). The proof strategy is to evaluate these terms separately. In particular, the first term
is exactly evaluated as J♯(π)− J(π) = ϵ

1−γ and the second term is controlled with the martingale
concentration inequalities. The full proof is deferred to Section B.
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To define the characteristic numbers (ϵ, ᾱ, β̄), we need several auxiliary definitions.

Definition 14 (Bellman bias and variance functions). The Bellman bias function β(s, a) and variance
function α2(s, a) is given by

β(s, a) := E[R(s, a)], α2(s, a) := V[R(s, a)].

where R(s, a) := Q♯(s, a) − (R + γQ♯(S′, A′)) is a random function such that (R,S′, A′) ∼
pr(r|s, a)pT (s′|s, a)π(a′|s′).

Intuitively, the Bellman bias (variance) functions measures the bias (variance) in a single transition
(s, a, r, s′) relative to the projection (b♯, F ♯), respectively. In particular, these functions are trivial
if the environment M is realizable and/or deterministic; If M ∈ Hϕ, β(·, ·) ≡ 0. Moreover, if
pr(r|s, a) and pT (s′|s, a) are Dirac’s delta functions, α2(·, ·) ≡ 0.

Now we are prepared to state the definition of the characteristic numbers.

Definition 15 (Characteristic numbers). The characteristic numbers (ϵ, ᾱ, β̄) associated with
(POPE, ϕ) is given by

ϵ := ⟨β⟩ν , ᾱ :=
√
⟨σ2α2⟩µ, β̄ :=

√
⟨σ2β2⟩µ,

where σ(s, a) := (1− γ)x⊤0 (I − γF ♯)−1⊤Σ+ ϕ(s, a).

Now each of the characteristic numbers is evaluated as follows.

Proposition 14. Under Assumption 2 and 4, we have

ϵ = −⟨RBRχ⟩µ , ᾱ ≤ (1− γ)V̄ ρ
2
√
c∗

, β̄ ≤ (1− γ)V̄ ρ
√
c∗

.

Proof. Note that b♯ = Σ+ ⟨r̄ϕ⟩µ and F ♯ =
〈
(Pϕ)ϕ⊤

〉
µ
Σ+ by Corollary 22. Then, we have

Q♯ := b♯⊤F ♯γϕ

=
{
b♯⊤ + γb♯⊤F ♯γF

♯
}
ϕ (F ♯γ = (I − γF ♯)−1)

=
{〈
r̄ϕ⊤

〉
µ
Σ+ + γb♯⊤F ♯γ

〈
(Pϕ)ϕ⊤

〉
µ
Σ+
}
ϕ

=
{〈
r̄ϕ⊤

〉
µ
Σ+ + γ

〈
(PQ♯)ϕ⊤

〉
µ
Σ+
}
ϕ

=
〈
BQ♯ϕ

〉⊤
µ
Σ+ϕ.

According to Proposition 21, this implies RB = BQ♯ −Q♯ lies in the orthogonal complement of
Fϕ with respect to µ, i.e., RB ∈ F⊥

ϕ := {f̃ : S ×A → R | ⟨ff̃⟩µ = 0, ∀f ∈ Fϕ}. Now, since
β = −RB by definition,

ϵ = ⟨β⟩ν
= −⟨RB⟩ν

= −
〈
RB

ν

µ

〉
µ

= −
〈
RB

(
ν

µ
− f∗

)〉
µ

(RB ∈ F⊥
ϕ )

for any f∗ ∈ Fϕ. Taking f∗ = w♯ as in Definition 9 proves the equality of ϵ.

Now observe

∥α∥∞ ≤
V̄

2
, ∥β∥∞ ≤ V̄ ,
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since |R(s, a)| = |Q♯(s, a)−R−γQ♯(S′, A′)| ≤ 1+2∥Q♯∥∞ ≤ V̄ . Thus the remaining inequalities
are proved by〈

σ2
〉
µ
= (1− γ)2

〈(
x⊤0 (I − γF ♯)−1⊤Σ+ ϕ

)2〉
µ

= (1− γ)2x⊤0 (I − γF ♯)−1⊤Σ+
〈
ϕϕ⊤

〉
µ
Σ+(I − γF ♯)−1x0

= (1− γ)2x⊤0 (I − γF ♯)−1⊤Σ+(I − γF ♯)−1x0

≤ (1− γ)2ρ2
∥∥Σ+

∥∥
2

(∥x0∥ ≤ 1)

≤ (1− γ)2ρ2 1

c∗
(Definition 13)

Now, combining Theorem 13 and Proposition 14, we get

∣∣∣∣Ĵ(π)− J(π)− ϵ

1− γ

∣∣∣∣ ≤ V̄ ρ
(
1 + 2

√
2G∗

)
2
√
c∗

√
2 ln 12

δ

n
+O

(
V̄ ρG∗ ln3/4 2

δ

c∗n3/4
+
V̄ ρ2G∗2 ln 2K

δ

c2∗n

)
.

(8)

Noting that the RHS of (8) is independent of p0, we obtain the first desired result, i.e., the p0-uniform
convergence under the existence of F ♯γ , by the Borel–Cantelli lemma.

Finally, to show the π-uniform convergence, we need to uniformly bound the π-dependent quantities
on the RHS, i.e., ρ and V̄ . As for supπ ρ, it is directly bounded by the assumption of Theorem 6. As
for supπ V̄ , observe

V̄ = 1 + 2
∥∥F ♯⊤γ b♯

∥∥
2

≤ 1 + 2ρ
∥∥b♯∥∥

2

= 1 + 2ρ
∥∥∥Σ+ ⟨r̄ϕ⟩µ

∥∥∥
2

(Proposition 22)

≤ 1 +
2ρ

c∗

∥∥∥⟨r̄ϕ⟩µ∥∥∥
2

≤ 1 +
2ρ

c∗
⟨∥r̄ϕ∥2⟩µ

≤ 1 +
2ρ

c∗
, (Boundedness of reward and Assumption 2)

where the last expression is uniformly bounded as long as supπ ρ is uniformly bounded. This
concludes the proof.

B Proof of Theorem 13

Consider the decomposition Ĵ(π)− J(π) = (J♯(π) − J(π)) + (Ĵ(π) − J♯(π)), where J♯(π) is
defined as follows.

Definition 16. Let J♯(π) denote the projected policy value given by J♯(π) :=
〈
Q♯
〉
pπ0

= b♯⊤F ♯γx0.

Then, the approximation error J♯(π)− J(π) is evaluated as follows.

Lemma 15.

J♯(π)− J(π) = ϵ

1− γ
.
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Proof. Note that J♯(π) =
〈
Q♯
〉
pπ0

and J(π) =
〈
(I − γP )−1r̄

〉
pπ0

. Therefore,

J♯(π)− J(π) =
〈
(I − γP )−1((I − γP )Q♯ − r̄)

〉
pπ0

=
〈
(I − γP )−1β

〉
pπ0

=
1

1− γ
⟨β⟩ν (∵ ν = (1− γ)(I − γP †)−1pπ0 )

=
ϵ

1− γ
.

On the other hand, the estimation error Ĵ(π)− J♯(π) is bounded as follows, which concludes the
proof.
Lemma 16. Let 0 < δ < 1. Under Assumption 1 and 2, if ρ :=

∥∥F ♯γ∥∥2 < ∞ and

n ≥ 512G∗2ρ2

c2∗
ln(8K/δ),∣∣∣Ĵ(π)− J♯(π)∣∣∣ ≤ ᾱ+

√
2G∗β̄

1− γ

√
2 ln(12/δ)

n
+O

(
V̄ ρG∗ ln3/4 2

δ

c∗n3/4
+
V̄ ρ2G∗2 ln 2K

δ

c2∗n

)
. (9)

with probability 1− δ.

Proof. Consider the event E wherein the inequalities of Proposition 17, 18 and 20 are simultaneously
true. Note P(E) ≥ 1− 2δ and suppose E occurs.

By Proposition 20, F̂γ := (I − γF̂ )−1 is well-defined under E. Let θ♯ = F ♯⊤γ b♯ and observe that

Ĵ(π)− J♯(π) = b̂⊤F̂ ♯x0 − b♯⊤F ♯γx0
= (b̂− b♯)⊤F̂ ♯x0 + b♯⊤(F̂γ − F ♯γ)x0
= (b̂− b♯)⊤F̂ ♯x0 + γb♯⊤F ♯γ(F̂ − F ♯)F̂γx0
= (b̂+ γF̂⊤θ♯ − θ♯)⊤F̂γx0 (b♯ + γF ♯⊤θ♯ = θ♯). (10)

Moreover, since

b̂− b♯ = 1

n
Σ̂+Φ⊤r̄ − b♯

=
1

n
Σ̂+Φ⊤(r̄ − Φb♯),

and

F̂ − F ♯ = 1

n
Ψ⊤
πΦΣ̂

+ − F ♯

=
1

n
(Ψ⊤

π − F ♯Φ⊤)ΦΣ̂+, (11)

we have
Ĵ(π)− J♯(π) = ẑ⊤Σ̂+F̂γx0,

where ẑ := 1
nΦ

⊤ {r̄ + γΨπθ
♯ − Φθ♯

}
.

Now according to Proposition 17, 18 and 20, under E,

∥ẑ∥2 ≤ 2V̄ G∗

√
2 ln 4K

δ

n
,

∥∥∥Σ̂+ − Σ+
∥∥∥
2
≤ 4G∗

c2∗

√
2 ln 4K

δ

n
,

∥∥∥F̂γ − F ♯γ∥∥∥
2
≤ 16G∗ρ2

c∗

√
2 ln 8K

δ

n
,
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which implies Ĵ(π)− J♯(π) is well approximated by Z := ẑ⊤Σ+F ♯γx0 with probability 1− 2δ,∣∣∣Ĵ(π)− J♯(π)− Z∣∣∣ = ∣∣∣ẑ⊤(Σ̂+F̂γ − Σ+F ♯γ)x0

∣∣∣
≤ ∥ẑ∥2

(∥∥Σ+
∥∥
2
+
∥∥∥Σ̂+ − Σ+

∥∥∥
2

)(∥∥F ♯γ∥∥2 + ∥∥∥F̂γ − F ♯γ∥∥∥2)
≤ ∥ẑ∥2

(
c−1
∗ +

∥∥∥Σ̂+ − Σ+
∥∥∥
2

)(
ρ+

∥∥∥F̂γ − F ♯γ∥∥∥
2

)
= O

(
V̄ G∗2

∥∥F ♯γ∥∥22 ln 2K
δ

c2∗n

)
, (12)

where O(·) is hiding a universal constant.

To bound Z, note that Z = 1
(1−γ)n

∑n
i=1 ε(Ξi)σ(Si, Ai), where ε(ξi) := ri + γθ♯⊤ψπ(s

′
i) −

θ♯⊤ϕ(si, ai). Thus, letting f(ξi) = 1
(1−γ)nε(ξi)σ(si, ai), we learn from Proposition 26

|Z − E[Z]| ≤
√

2V[Z] ln(4/δ) +O
(
G∗ ∥f∥∞ n1/4 ln3/4(2/δ)

)
=
√
2V[Z] ln(4/δ) +O

(
V̄ G∗

∥∥F ♯γ∥∥2
c∗n3/4

ln3/4(2/δ)

)
. (13)

Now the proof is completed by evaluating E[Z] and V[Z]. Observe E[ẑ] = ⟨−βϕ⟩µ = 0 from
Proposition 23 and thus

E[Z] = E[ẑ]⊤Σ+F ♯γx0 = 0.

To bound V[Z], consider the decomposition

Z = Zα + Zβ ,

Zα :=
1

(1− γ)n

n∑
i=1

(εi − β(Si, Ai))σ(Si, Ai),

Zβ :=
1

(1− γ)n

n∑
i=1

β(Si, Ai)σ(Si, Ai),

which yields an upper bound
√
V[Z] ≤

√
V[Zα] +

√
V[Zβ ].

The first term V[Zα] is evaluated straightforwardly since E[(εi − β(Si, Ai))2|Ξi] = α2(Si, Ai),

V[Zα] = E

(
1

(1− γ)n

n∑
i=1

(εi − β(Si, Ai))σ(Si, Ai)

)2

=
1

(1− γ)2n2
n∑
i=1

E
[
(εi − β(Si, Ai))2 σ2(Si, Ai)

]
=

1

(1− γ)2n2
n∑
i=1

E
[
(σ2α2)(Si, Ai)

]
=

〈
σ2α2

〉
µ

(1− γ)2n

=
ᾱ2

(1− γ)2n
.
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On the other hand, the second term V[Zβ ] is bounded by Proposition 24,

V[Zβ ] = V

[
1

(1− γ)n

n∑
i=1

β(Si, Ai)σ(Si, Ai)

]

≤ 2G∗
n∑
i=1

V
[

1

(1− γ)n
β(Si, Ai)σ(Si, Ai)

]

=
2G∗

(1− γ)2n2
n∑
i=1

V [β(Si, Ai)σ(Si, Ai)]

≤ 2G∗

(1− γ)2n2
n∑
i=1

E
[
(σ2β2)(Si, Ai)

]
=

2G∗ 〈σ2β2
〉
µ

(1− γ)2n

=
2G∗β̄2

(1− γ)2n
.

Back to (13), we get

Z ≤
√
2V[Z] ln(4/δ) +O

(
V̄ G∗

∥∥F ♯γ∥∥2
c∗n3/4

ln3/4(2/δ)

)

≤ ᾱ+
√
2G∗β̄

(1− γ)

√
2 ln(4/δ)

n
+O

(
V̄ G∗

∥∥F ♯γ∥∥2
c∗n3/4

ln3/4(2/δ)

)

with probability 1− δ. Combining it with (12) and take δ ← δ/3 concludes the proof.

C Individual Concentration Bounds

C.1 Concentration of ∥ẑ∥2

Proposition 17. Let ẑ := 1
nΦ

⊤ {r̄ + γΨπθ
♯ − Φθ♯

}
and V̄ := 1 + 2

∥∥F ♯⊤γ b♯
∥∥
2
. Then, under

Assumption 1 and 2,

∥ẑ∥2 ≤ 2V̄ G∗

√
2 ln 4K

δ

n

with probability 1− δ.

Proof. Observe

ẑ =
1

n

n∑
i=1

R̃(Ξi)ϕ(Si, Ai),

where R̃(ξi) := ri + γθ♯⊤ψπ(s
′
i)− θ♯⊤ϕ(si, ai). Note E[R̃(Ξi)|Si = s,Ai = a] = E[R(s, a)] =

β(s, a) for 1 ≤ i ≤ n (Definition 14), which implies ẑ is centered, E[ẑ] = ⟨βϕ⟩µ = 0, according

to Proposition 23. Moreover, each summand is almost surely bounded by
∥∥∥R̃(Ξi)ϕ(Si, Ai)∥∥∥

2
≤∣∣∣R̃(Ξi)∣∣∣ ≤ V̄ , 1 ≤ i ≤ n.

Now consider the Doob martingale of ẑ, Yj := E[ẑ|Ξj ], 0 ≤ j ≤ n. Then, Proposition 25 with
f(ξi) = R̃(ξi)ϕ(si, ai)/n yields the desired result, where ∥f∥∞ = V̄ .
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C.2 Concentration of Σ̂.

Proposition 18. Under Assumption 1 and 2, we have

∥∥∥Σ̂− Σ
∥∥∥
2
≤ 2G∗

√
2 ln 4K

δ

n
(14)

with probability 1− δ. Moreover, we also have

∥∥∥Σ̂+ − Σ+
∥∥∥
2
≤ 4G∗

c2∗

√
2 ln 4K

δ

n

if n ≥ 16G∗2

c2∗
ln(4K/δ).

Proof. Consider the Doob martingale given by Yj := E[Σ̂|Ξj ], 0 ≤ j ≤ n. Then Proposition 25
yields the first inequality, where f(ξi) = ϕ(si, ai)ϕ(si, ai)

⊤ and ∥f∥∞ ≤ 1 (Assumption 2).

To prove the second inequality, observe that the first inequality with n ≥ 16G∗2

c2∗
ln(4K/δ) implies

∥Σ̂ − Σ∥2 ≤ c∗/2. Therefore, we have V ⊤Σ̂V ≻ 0. The concentration of the pseudo-inverse is
proved by

∥Σ̂+ − Σ+∥2 = ∥Σ+(Σ− Σ̂)Σ̂+∥2 (Σ+Σ̂Σ̂+ = Σ+ since V ⊤Σ̂V ≻ 0)

≤ ∥Σ+∥2∥Σ̂+∥2∥Σ̂− Σ∥2

≤ ∥Σ̂− Σ∥2
c∗(c∗ − ∥Σ̂− Σ∥2)

(V ⊤Σ̂V ≻ 0)

≤ 2∥Σ̂− Σ∥2
c2∗

. (∥Σ̂− Σ∥2 ≤ c∗/2)

This concludes the proof.

C.3 Concentration of F̂γ .

Proposition 19. Under Assumption 1 and 2, if n ≥ 16G∗2

c2∗
ln(8K/δ), we have

∥∥∥F̂ − F ♯∥∥∥
2
≤ 8G∗

c∗

√
2 ln 8K

δ

n

in addition to the inequalities of Proposition 18, with probability 1− δ.

Proof. Proposition 18 shows ∥Σ̂+∥2 = 1/λK(Σ̂) ≤ (c∗ − ∥Σ̂− Σn∥2)−1 ≤ 2/c∗ with probability
1− δ/2. Thus, combining it with the identity

F̂ − F ♯ = 1

n
Ψ⊤
πΦΣ̂

+ − F ♯ = 1

n
(Ψ⊤

π − F ♯Φ⊤)ΦΣ̂+,

we have ∥∥∥F̂ − F ♯∥∥∥
2
≤ 2

nc∗
∥Yn∥2 . (15)

where Yj := E[(Ψ⊤
π −FΦ⊤)Φ|Ξj ], 0 ≤ j ≤ n. Now, let f(ξi) = (ψπ(s

′
i)−F ♯ϕ(si, ai))ϕ(si, ai)⊤

and note ∥f∥∞ ≤ 2 by Assumption 2. Note also Y0 = n
〈
(Pϕ− Fϕ)ϕ⊤

〉
µ
= 0 owing to Proposi-

tion 23. Thus Proposition 25 yields

∥Yn∥2 ≤ 4G∗
√
2n ln

8K

δ
(16)

with probability 1− δ/2. This completes the proof.
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Proposition 20. Under Assumption 1 and 2, if ρ :=
∥∥F ♯γ∥∥2 <∞ and n ≥ 512G∗2ρ2

c2∗
ln(8K/δ), we

have ∥∥∥F̂γ − F ♯γ∥∥∥
2
≤ 16G∗ρ2

c∗

√
2 ln 8K

δ

n

in addition to the inequalities of Proposition 18 and 19, with probability 1− δ.

Proof. Consider the event E wherein Proposition 18 and 19 are simultaneously true. Note P(E) ≥
1− δ and suppose E occurs.

Observe
I − γF̂ = (I − γF ♯)(I + γF ♯γ(F̂ − F ♯)),

where F ♯γ = (I − γF ♯)−1. Since we have ∥F̂ − F ♯∥2 ≤ 1
2ρ (under E), it follows that∥∥∥F ♯γ(F̂ − F ♯)∥∥∥

2
≤ ρ

∥∥∥F̂ − F ♯∥∥∥
2
≤ 1/2,

which ensures the existence of (I+γF ♯γ(F̂−F ♯))−1, and therefore the existence of F̂γ := (I−γF̂ )−1.
Moreover, ∥∥∥F̂γ − F ♯γ∥∥∥

2
=
∥∥∥γF̂γ(F̂ − F ♯)F ♯γ∥∥∥

2

≤ γρ
∥∥∥F̂ − F ♯∥∥∥

2

∥∥∥F̂γ∥∥∥
2

(17)

≤ 1

2

∥∥∥F̂γ∥∥∥
2
.

Thus, the triangle inequality ∥F̂γ∥2 ≤ ∥F ♯γ∥2 + ∥F̂γ − F ♯γ∥2 shows that ∥F̂γ∥2 ≤ 2∥F ♯γ∥2 = 2ρ
Putting it back to (17), we get ∥∥∥F̂γ − F ♯γ∥∥∥

2
≤ 2γρ2

∥∥∥F̂ − F ♯∥∥∥
2
.

Finally, Proposition 19 under E yields the first desired result.

D Additional Definitions

Definition 17 (‘ϕ’-mixing coefficient, Bradley (2005)). The ‘ϕ’-mixing coefficients of Ξn, g(h), is
defined as

g(h) := sup
1≤i≤n−h

sup
D1⊂Di

sup
D2⊂Dn−i−h+1

|P(Ξ≥i+h ∈ D2 | Ξ≤i ∈ D1)− P(Ξ≥i+h ∈ D2)|

for all 1 ≤ h ≤ n − 1 and g(0) = 1, where D1 and D2 range over the measurable sets. Here,
Ξ≤i := (Ξ1, ...,Ξi) and Ξ≥j := (Ξj , ...,Ξn), respectively for all 1 ≤ i, j ≤ n.

E Additional Propositions

E.1 Explicit Formula for Least Squares Projections

Proposition 21. Let f be an arbitrary RK′
-valued function defined on S × A, K ′ ∈ N. Let

A∗ ∈ RK′×K be the least-Frobenius-norm solution to

min
A∈RK′×K

〈
∥f −Aϕ∥22

〉
µ
.

Then, we have

A∗ =
〈
fϕ⊤

〉
µ
Σ+

and thus, for any f̃(s, a) = v⊤ϕ(s, a), s ∈ S, a ∈ A,〈
(f −A∗ϕ)f̃

〉
µ
= 0.
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Proof. The solution A∗ satisfies the stationary point condition,

0 =
∂

∂A

〈
∥f −Aϕ∥22

〉
µ

=

〈
∂

∂A
∥f −Aϕ∥22

〉
µ

= 2
〈
(f −Aϕ)ϕ⊤

〉
µ

= 2
(〈
fϕ⊤

〉
µ
−A

〈
ϕϕ⊤

〉
µ

)
= 2

(〈
fϕ⊤

〉
µ
−AΣ

)
.

Thus, any stationary points can be written as A∗ =
〈
fϕ⊤

〉
µ
Σ+ +XW⊤ for some X ∈ RK×(K−K̃).

The least norm is attained if and only if X = 0.

Corollary 22. Let (b♯, F ♯) be given as in Definition 4. Then, we have the following.

b♯ = Σ+ ⟨r̄ϕ⟩µ , F ♯ =
〈
(Pϕ)ϕ⊤

〉
µ
Σ+,

Proof. It immediately follows from Proposition 21.

E.2 Zero-Bias Projection

Proposition 23. We have〈
(r̄ − b♯⊤ϕ)ϕ⊤

〉
µ
= 0,

〈
(Pϕ− F ♯ϕ)ϕ⊤

〉
µ
= 0, ⟨βϕ⟩µ = 0.

Proof. By Definition 4, the stationary-point condition on (b♯, F ♯) is given as

0 = E[Φ⊤r̂]− nΣb♯ = n
〈
(r̄ − b♯⊤ϕ)ϕ⊤

〉
µ
, (18)

0 = E[Ψ⊤
πΦ]− nF ♯Σ = n

〈
(Pϕ− F ♯ϕ)ϕ⊤

〉
µ
, (19)

which proves the first two equalities. To see the last equality, observe

β(s, a) = r̄(s, a)− b♯⊤ϕ(s, a) + γθ♯⊤
{
(Pϕ)(s, a)− F ♯ϕ(s, a)

}
by Definition 14, where θ♯ := F ♯γb

♯. Thus, adding (18) and (19) multiplied with γθ♯⊤ from left, we
get the desired result.

E.3 Concentration Bounds under G∗-mixing

Proposition 24 (Variance bound). Let f be a R-valued function on D and Y :=
∑n
i=1 f(Ξi). Then,

under Assumption 1,

V[Y |Ξj ] ≤ 2G∗
n∑

i=j+1

V[f(Ξi)|Ξj ]

for all 0 ≤ j ≤ n.

Proof. Let Covj [·, ·] denote Cov[·, · |Ξj ] and let fi := f(Ξi). Then

Vj [Y ] = Vj

[
n∑
i=1

fi

]

= Vj

 n∑
i=j+1

fi


=

n∑
i=j+1

n∑
ℓ=j+1

Covj [fi, fℓ].
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Note that Covj [fi, fℓ] ≤ 2
√
g(|i− ℓ|)Vj [fi]Vj [fℓ] by the domination of the ‘ϕ’-mixing over the

‘ρ’-mixing, Eq. (1.13) in Bradley (2005), which implies

Vj [Y ] =

n∑
i=j+1

n∑
ℓ=j+1

Covj [fi, fℓ]

≤
n∑

i=j+1

n∑
ℓ=j+1

2
√
g(|i− ℓ|)Vj [fi]Vj [fℓ]

≤
n∑

i=j+1

n∑
ℓ=j+1

√
g(|i− ℓ|) {Vj [fi] + Vj [fℓ]} (AM-GM inequality)

= 2

n∑
i=j+1

Vj [fi]
n∑

ℓ=j+1

√
g(|i− ℓ|)

≤ 2G∗
n∑

i=j+1

Vj [fi] (Assumption 1)

Proposition 25 (Hoeffding type, matrix form). Let f be a RK×K′
-valued function on D and let

Y :=
∑n
i=1 f(Ξi). Then, under Assumption 1,

∥Y − E[Y ]∥2 ≤ 2G∗ ∥f∥∞

√
2n ln

4(K ∨K ′)

δ

with probability 1− δ, where ∥f∥∞ := ess supξ∈D ∥f(ξ)∥2. Here, a ∨ b denotes max {a, b}.

Proof. Let Yj := E[Y |Ξj ]. Note Yj is a matrix martingale with difference bounded by

∥Yj − Yj−1∥2

≤
n∑
i=j

∥∥E[f(Ξi)|Ξj ]− E[f(Ξi)|Ξj−1]
∥∥
2

≤
n∑
i=j

2 ∥f∥∞ sup
D⊂D

∣∣P(Ξi ∈ D|Ξj)− P(Ξi ∈ D|Ξj−1)
∣∣

≤ 2 ∥f∥∞
n∑
i=j

{
sup
D⊂D

∣∣P(Ξi ∈ D|Ξj)− P(Ξi ∈ D)
∣∣+

sup
D⊂D

∣∣P(Ξi ∈ D)− P(Ξi ∈ D|Ξj−1)
∣∣}

≤ 2 ∥f∥∞

1 + 2

n∑
i=j+1

g(i− j) + g(n− j + 1)

 (Assumption 1)

≤ 2G∗ ∥f∥∞ . (20)

Here g(h) is given in Definition 17 and we exploited the fact that
√
g(h) ≤ 1 in the last inequality.

This concludes the proof owing to the Azuma inequality for rectangular matrices (Remark 7.3, Tropp
(2012)).

Proposition 26 (Bernstein type). Let f be a R-valued function on D and Y :=
∑n
i=1 f(Ξi). Then,

under Assumption 1,

|Y − E[Y ]| ≤
√
2(V[Y ] + C1) ln(4/δ) + 4G∗ ∥f∥∞ ln(4/δ)

with probability 1 − δ, where ∥f∥∞ := ess supξ∈D |f(ξ)| and C1 :=

4 (G∗ − 1)
2 ∥f∥2∞

√
2n ln(2/δ).
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Accordingly,

|Y − E[Y ]| ≤
√

2V[Z] ln(4/δ) +O
(
G∗ ∥f∥∞ n1/4 ln3/4(2/δ)

)
,

if ln(2/δ) = O(n).

Proof. Let Ej [·] and Vj [·] denote E[·|Ξj ] and V[·|Ξj ], 0 ≤ j ≤ n, respectively. Let Yj := Ej [Y ] and
Wj :=

∑j
i=1 Vi−1[Yi], 0 ≤ j ≤ n. Note |Yj − Yj−1| ≤ L := 2G∗ ∥f∥∞ by (20).

Freedman’s inequality (Theorem 1.6, Freedman (1975)) states that

P (|Yn − Y0| ≥ a ∧ Wn ≤ b) ≤ 2 exp

(
− a2

2(La+ b)

)
for all a, b > 0. Accordingly,

P(Wn ≤ b) ≥ 1− δ/2 ⇒ P(|Yn − Y0| ≤ a∗) ≥ 1− δ, (21)

where a∗ :=
√
2b ln(4/δ) + 2L ln(4/δ).

To show the concentration of Wn, consider the Doob martingale given by Zj := Ej [Wn], 0 ≤ j ≤ n.
Let fi := f(Ξi), 1 ≤ i ≤ n. Then, the difference sequence of {Zj} is bounded by

|Zj − Zj−1| = |(Ej − Ej−1)[Wn]|

=

∣∣∣∣∣(Ej − Ej−1)

n∑
i=1

Vi−1[Yi]

∣∣∣∣∣ (Definition of Wn)

=

∣∣∣∣∣∣(Ej − Ej−1)

n∑
i=j+1

Vi−1[Yi]

∣∣∣∣∣∣
= |(Ej − Ej−1)Vj [Y ]| (Law of total variance)

=

∣∣∣∣∣∣
∑

j+1≤i,ℓ≤n

(Ej − Ej−1)[(fi − Ejfi)(fℓ − Ejfℓ)]

∣∣∣∣∣∣
Note that

(Ej − Ej−1)[(fi − Ejfi)(fℓ − Ejfℓ)]

≤ (Ej − Ej−1)

[
θ(fi − Ejfi)2 +

1

θ
(fℓ − Ejfℓ)

]
(AM-GM inequality)

≤ 8 ∥f∥2∞

{
θg(i− j) + 1

θ
g(ℓ− j)

}
(Definition 17)

≤ 16 ∥f∥2∞
√
g(i− j)g(ℓ− j) (θ =

√
g(ℓ− j)/g(i− j))

and therefore

|Zj − Zj−1| ≤ 16 ∥f∥2∞
∑

j+1≤i,ℓ≤n

√
g(i− j)g(ℓ− j)

≤ 16 ∥f∥2∞

(
G∗ − 1

2

)2

(Assumption 1)

≤ 4 ∥f∥2∞ (G∗ − 1)
2

Finally, the Azuma inequality yields

Wn − V[Y ] = Zn − Z0 ≤ 4 (G∗ − 1)
2 ∥f∥2∞

√
2n ln(2/δ),

with probability 1− δ/2. Combining it with (21),

|Y − E[Y ]| ≤
√
2(V[Y ] + C1) ln(4/δ) + 4G∗ ∥f∥∞ ln(4/δ)

with probability 1− δ.
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F Proofs of Propositions in the Main Text

F.1 Proposition 1

Proof. The first argument is straightforward since all the pairs (Ξi,Ξj) with |i − j| ≥ H are
statistically mutually independent.

Let d(h) and d̄(h) be defined as in Section 4.4 of Levin and Peres (2017). The second argument
follows from the inequality

g(h) ≤ d̄(h)
≤ d̄(tmix)

⌊h/tmix⌋

≤ {2d(tmix)}⌊h/tmix⌋

≤ 2−⌊h/tmix⌋

for all h ≥ 1, where the first inequality is owing to the definition of g(h) and d̄(h), the second and
the third inequalities are shown by Lemma 4.12 and 4.11 of Levin and Peres (2017), respectively, and
the last inequality is owing to the definition of the mixing time.

F.2 Proposition 2

Proof. Let (b∗, F ∗) be the least-norm parameter that satisfy (2), where the norms are measured
in the ℓK2 - and the Frobenius metric. In the following, we prove the general case where the con-
centrability (Assumption 3) does not necessarily hold, J(π) = b∗⊤(I − γF ∗)x0. Then Proposi-
tion 2 immediately follows since the concentrability implies the uniqueness of the solution of (2),
(b∗, F ∗) = (b, F ).

Let V0 ∈ RK×K0 , K0 ≤ K, be a semi-orthogonal matrix such that spanV0 = spanϕ(S × A),
where spanX denotes the linear span of a vector set X and V0 is interpreted as a K ′-set of column
vectors. Let W0 ∈ RK×(K−K0) be the complement of V0, i.e., [V0,W0] ∈ RK×K is an orthogonal
matrix. Note that V0V ⊤

0 ϕ = ϕ and W0ϕ ≡ 0 by definition.

Since b∗ and F ∗ are the least-norm solutions, we have b∗ = V0b̃ and F ∗ = V0F̃ V0 for b̃ := V ⊤
0 b

∗

and F̃ := V ⊤
0 F

∗V0. Similarly, we have x0 = V0x̃0 for x̃0 := V ⊤
0 x0 since x0 = ⟨ϕ⟩pπ0 ∈ spanV0.

Let xh :=
〈
Phϕ

〉
pπ0

, i.e., the expected feature after h transitions starting from p0. Then, we can see

xh := F ∗hx0 from the recursion with the linear equations (2), and therefore
〈
Phr̄

〉
pπ0

= b∗⊤xh =

b∗⊤F ∗hx0 = b̃⊤F̃hx̃0. Substituting this to (1) yields the desired result,

J(π) = b̃⊤

( ∞∑
h=0

γhF̃h

)
x̃0

= b̃⊤(I − γF̃ )−1x̃0 (if the sum converges)

=

[
b̃
0

]⊤ [
V ⊤
0

W⊤
0

]
[V0,W0]

[
I − γF̃ 0

0 I

]−1 [
V ⊤
0

W⊤
0

]
[V0,W0]

[
x̃0
0

]
([V0,W0] is orthogonal)

= b∗⊤
{
[V0,W0]

[
I − γF̃ 0

0 I

] [
V ⊤
0

W⊤
0

]}−1

x0

= b∗⊤ (I − γF ∗)
−1
x0,

given
∑∞
h=0 γ

hF̃h converges.

The convergence of the infinite sum is shown as follows. Note that

∥F̃hV ⊤
0 ϕ(s, a)∥2 = ∥V0F̃hV ⊤

0 ϕ(s, a)∥2
= ∥F ∗hϕ(s, a)∥2
= ∥⟨Phϕ⟩pπ0 ∥2
≤ ⟨∥Phϕ∥2⟩pπ0 ≤ 1, (Assumption 2)
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for all s, a ∈ RK and arbitrarily large h ≥ 0. Thus, since V ⊤
0 ϕ is full rank, i.e., spanV ⊤

0 ϕ(S×A) =
RK0 , the spectral radius of F̃ is no larger than 1. This concludes the proof.

F.3 Proposition 3

Proof. Observe

E C(b, F ; Ξn)

=
1

n

n∑
i=1

E
[∣∣ri − b⊤ϕ(si, ai)∣∣2 + |ψπ(s′i)− Fϕ(si, ai)|2]

=
1

n

n∑
i=1

EE
[∣∣r̄(si, ai)− b⊤ϕ(si, ai)∣∣2 + |(Pϕ)(si, ai)− Fϕ(si, ai)|2 ∣∣∣ si, ai]+

1

n

n∑
i=1

{V [ri | si, ai] + V [ψπ(s
′
i) | si, ai]}

= D2(b, F ) +
1

n

n∑
i=1

{V [ri | si, ai] + V [ψπ(s
′
i) | si, ai]} ,

which yields the proposition since the second term is a constant with respect to (b, F ).

F.4 Proposition 4

Proof. Note that (b̂, F̂ ) is the least-norm solution to the stationary-point equation∇b,FC(b, F ; ξn) =
0. More concretely,

∇bC(b, F ; ξn) = 0⇔ Φ⊤(Φb− r̂) = 0,

∇FC(b, F ; ξn) = 0⇔ Φ⊤(ΦF⊤ −Ψπ) = 0.

It is straightforward to check if the explicit formulae in the proposition satisfy the above equations
and have the least norms.

F.5 Proposition 5

Proof. Observe the vector θh ∈ RK of the h-th iteration of Algorithm 2 is given by

θh =
1

n
Σ̂+Φ⊤(r̂ + γΨπθh−1) = b̂+ γF̂⊤θh−1.

Suppose θh converges to θ∗. Then we have θ∗ = b̂+γF̂⊤θ∗, which implies θ∗ = (I−γF̂⊤)b̂ = F̂⊤
γ b̂.

This completes the proof.

F.6 Proposition 7

Proof. We first show Qπ ∈ Fϕ if RB = 0. Observe that RB = 0 implies BQ♯ = Q♯, which is
exactly the Bellman equation and the solution is unique, Q♯ = Qπ. This implies Qπ ∈ Fϕ since
Q♯ ∈ Fϕ.

We now turn to the inverse direction, i.e., to showRB = 0 if Qπ ∈ Fϕ. Let θπ, θ♯ ∈ RK be the least-
norm coefficients ofQπ andQ♯, respectively, i.e., Qπ(s, a) = θπ⊤ϕ(s, a) andQ♯(s, a) = θ♯⊤ϕ(s, a)
for s ∈ S and a ∈ A. The true value function is the unique solution of the Bellman equation,

Qπ = BQπ = r̄ + γPQπ,

which implies

ϕ⊤θπ = r̄ + γP (ϕ⊤θπ).
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Multiplying ϕ and taking expectation with respect to the data marginal, we get〈
ϕϕ⊤

〉
µ
θπ =

〈
r̄ϕ+ γϕP (ϕ⊤θπ)

〉
µ

= ⟨r̄ϕ⟩µ + γ
〈
ϕψ⊤

π

〉
µ
θπ.

Note that b♯ = Σ+ ⟨r̄ϕ⟩µ, F ♯ =
〈
ϕψ⊤

π

〉
µ
Σ+ and Σ =

〈
ϕϕ⊤

〉
µ

by the definition of (b♯, F ♯).
Therefore, θπ is a solution of the following equation,

Σ+Σθπ = b♯ + γF ♯⊤θπ,

which is uniquely solved with θπ = (I − γF ♯⊤)−1b♯ = θ♯ under the concentrability condition.
Therefore Q♯ = Qπ . Finally, the Bellman equation yields the desired result,

RB = BQ♯ −Q♯ = BQπ −Qπ = 0.

F.7 Proposition 9

Proof. Let U be a linear mapping from K-vectors to functions over S × A such that Ux = x⊤ϕ,
x ∈ RK . Also, let Π be a linear mapping of functions on S × A such that Πf = UΣ+ ⟨fϕ⟩µ,
f : S ×A → R.

Now we have Π is non-expansive since, for all s ∈ S and a ∈ A,

|(Πf)(s, a)| =
∣∣∣〈fϕ⊤〉

µ
Σ+ϕ(s, a)

∣∣∣
≤
〈∣∣fϕ⊤Σ+ϕ(s, a)

∣∣〉
µ

(Jensen’s)

≤ ∥f∥∞
〈
ϕ⊤Σ+ϕ(s, a)

〉
µ

(Nonnegativity of ϕ(s′, a′)⊤Σ+ϕ(s, a))

= ∥f∥∞ ⟨ϕ⟩
⊤
µ Σ+ϕ(s, a)

= ∥f∥∞ v⊤0 ϕ(s, a)

= ∥f∥∞ ,

where the second last equality follows from Σv0 =
〈
ϕϕ⊤

〉
µ
v0 =

〈
(v⊤0 ϕ)ϕ

〉
µ
= ⟨ϕ⟩µ and the

invertibility of Σ.

Moreover, we have UF ♯⊤ = ΠPU since, for all x ∈ RK ,

UF ♯⊤x = UΣ−1
〈
ϕ(Pϕ)⊤

〉
µ
x (Corollary 22)

= UΣ−1
〈
ϕ(P (x⊤ϕ))

〉
µ

= UΣ−1 ⟨ϕ(PUx))⟩µ
= Π(PUx).

Thus, U(F ♯⊤)h is non-expansive for all h ≥ 1 since U(F ♯⊤)h = ΠPU(F ♯⊤)h−1 = ... = (ΠP )hU
and Π, P and U are all non-expansive. This implies∣∣x⊤F ♯hϕ(s, a)∣∣ = ∣∣(UF ♯⊤hx)(s, a)∣∣

≤
∥∥U(F ♯⊤)hx∥∥∞

≤ ∥x∥2

for all h ≥ 1, x ∈ RK , s ∈ S and a ∈ A, which implies
∥∥F ♯hϕ(s, a)∥∥

2
≤ 1 for all h ≥ 1, s ∈ S

and a ∈ A. Thus, we have λ1(F ♯) ≤ 1 and F ♯γ = (I − γF ♯)−1 exists.
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Observe

∥F ♯γ∥22 = tr
[
F ♯γF

♯⊤
γ

]
≤ tr

[
F ♯γ
(
c−1
∗ Σ+WW⊤)F ♯⊤γ ]

(c−1
∗ Σ+WW⊤ ⪰ I)

=
1

c∗
tr
[
F ♯γΣF

♯⊤
γ

]
+ (K − K̃) (F ♯γW =W )

=
1

c∗

〈
∥F ♯γϕ∥22

〉
µ
+ (K − K̃)

≤ 1

(1− γ)2c∗
+ (K − K̃),

where the RHS is independent of π. Here, the last inequality follows from

∥∥F ♯γϕ(s, a)∥∥2 =

∥∥∥∥∥∥
∑
h≥0

γhF ♯hϕ(s, a)

∥∥∥∥∥∥
2

(λ1(F
♯) ≤ 1)

≤
∑
h≥0

γh
∥∥F ♯hϕ(s, a)∥∥

2

≤ 1

1− γ
. (

∥∥F ♯hϕ(s, a)∥∥
2
≤ 1) (22)

F.8 Proposition 10

The proposition is a special case of the following result.
Definition 18 (Refining tabular sequence). We call ϕ as a refining tabular sequence if, for
all m ≥ 1, ϕ(m) is tabular with respect to an Km-partition {P(m)

k }Kmk=1 of S × A such that
limm→∞ mink∈[m]Km vol(P(m)

k ) > 0 and limm→∞ maxk∈[m] diam(P(m)
k ) = 0.

Proposition 27. (ϕ, m̂) is consistent for all refining tabular sequences ϕ if

1. Ξn is G∗-mixing for some G∗ <∞ (Assumption 1).

2. 0 < infs∈S,a∈A µ(s, a) and sups∈S,a∈A µ(s, a) <∞.

3. Km̂(n)/
√
n→ 0 as n→∞.

Proof. LetR(m)
B andR(m)

χ be the residual functions for ϕ(m). First, we show ∆m := Ĵ(π;ϕ(m))−
J(π) + ⟨R(m)

B R(m)
χ ⟩µ/(1− γ) converges to zero as n→∞, where m = m̂(n). Then, second, we

show ⟨R(m)
B R(m)

χ ⟩µ → 0 as m→∞.

For the first step, we examine the asymptotic behavior of the unbiased term ∆m̂(n). According to
Theorem 13 and Proposition 14, we have

∆m = O

(
V̄ (m)ρ(m)G∗ 1

2 ln
1
2 2
δ

c
(m) 1

2
∗ n

1
2

+
V̄ (m)ρ(m)G∗ ln

3
4 2
δ

c
(m)
∗ n

3
4

+
V̄ (m)ρ(m)2G∗2 ln 2K

δ

c
(m)2
∗ n

)
,

where V̄ (m), ρ(m) and c(m)
∗ are defined associated with each ϕ(m). An elementary calculation shows

V̄ (m) ≤ 1 + 2/(1 − γ) and ρ(m) ≤ 1/(1 − γ) for all tabular ϕ(m). Thus, the only m-dependent
factor is c(m)

∗ , lower bounded by

c
(m)
∗ = min

k∈[Km]

∫
P(m)
k

µ(s, a) dsda

≥ inf
s∈S,a∈A

µ(s, a) min
k∈[Km]

vol(P(m)
k )

≥ C2

Km
inf

s∈S,a∈A
µ(s, a) (Definition 18)
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for sufficiently large m. Hiding the dependencies on the variables other than n and m, we get

∆m = O

(
K

1/2
m

n1/2
+
Km

n3/4
+
K2
m

n

)
.

This implies ∆m̂(n) → 0 since Km/
√
n→ 0.

For the second step, we utilize Hölder’s inequality. Let f (m) := argminf∈F
ϕ(m)
∥ νµ − f∥µ,1, where

∥·∥µ,1 denotes the L1(µ)-norm. Then

⟨R(m)
B R(m)

χ ⟩µ =

〈
R(m)
B

(
ν

µ
− f (m)

)〉
µ

(R(m)
B ∈ Fϕ(m))

≤
∥∥∥R(m)

B

∥∥∥
∞

∥∥∥∥νµ − f (m)

∥∥∥∥
µ,1

≤
(
1 +

2

1− γ

)∥∥∥∥νµ − f (m)

∥∥∥∥
µ,1

,

where in the last inequality, we exploit
∥∥∥R(m)

B

∥∥∥
∞
≤ V̄ (m) ≤ 1 + 2/(1 − γ). The second step is

completed by showing ∥ νµ − f
(m)∥µ,1 → 0. Fix arbitrary ε > 0. Note that the set of continuous

functions on T := S ×A is dense in L1(T ) since T is a compact subset of a product of Euclidean
spaces and discrete spaces. This implies there exists a continuous function f̂ such that ∥ νµ − f̂∥1 < ε.
Every continuous function on T is uniformly continuous since it is compact. Every uniformly
continuous function is approximated in the uniform norm with some piecewise constant function
f (m)∗ ∈ Fϕ(m) arbitrarily well as m → ∞ since the largest diameter of the constant cells P(m)

k ,
k ∈ [Km], is shrinking. This implies there exists m0 ≥ 1 such that ∥f̂ − f (m)∗∥∞ < ε if m ≥ m0.
Finally, we get∥∥∥∥νµ − f (m)

∥∥∥∥
µ,1

≤
∥∥∥∥νµ − f∗(m)

∥∥∥∥
µ,1

(f (m) is the minimizer)

≤
∥∥∥∥νµ − f̂

∥∥∥∥
µ,1

+
∥∥∥f̂ − f∗(m)

∥∥∥
µ,1

≤ Cµ
∥∥∥∥νµ − f̂

∥∥∥∥
1

+
∥∥∥f̂ − f∗(m)

∥∥∥
∞

≤ (1 + Cµ)ε

for m ≥ m0.

F.9 Proposition 11

The proposition is a special case of the following result.
Proposition 28. Let

d∗ := 1 ∨ lim sup
m→∞

lnKm

mink∈[Km] ln
1

diam(P(m)
k )

.

Under the assumptions of Proposition 27, if ν/µ are Lipschitz continuous, then we have |Ĵ(π;ϕ, m̂)−
J(π)| = O(n−

1−ε
2d∗+1 ) for all ε > 0 with taking m̂(n) such that Km̂(n) = Θ(n

d∗
2d∗+1 ).

Proof. Without loss of generality, we assume ν/µ is 1-Lipschitz continuous. The strategy is similar
to Proposition 27. The error is decomposed as Ĵ(π;ϕ(m)) − J(π) = − 1

1−γ ⟨R
(m)
B R(m)

χ ⟩µ + ∆m.
The convergence rate of the unbiased term ∆m, m = m̂(n), is established as in the proof of
Proposition 27,

∆m = O

(
K

1/2
m

n1/2
+
Km

n3/4
+
K2
m

n

)

28



Taking m = m̂(n), the right-hand side is evaluated as O(n−
1

2d∗+1 ) since

K
1/2
m̂(n)

n1/2
+
Km̂(n)

n3/4
+
K2
m̂(n)

n
= n

d∗
2(2d∗+1)

− 1
2 + n

d∗
2d∗+1

− 3
4 + n

2d∗
2d∗+1

−1

= n−
1

2d∗+1
d∗+1

2 + n−
1

2d∗+1
2d∗+3

4 + n−
1

2d∗+1

= O(n−
1

2d∗+1 ). (d∗ ≥ 1)

For the bias term, we show ∥ νµ − f
(m)∥µ,1 = O(K−(1−ε)/d∗

m ) for all ε > 0, where ∥·∥µ,1 denotes
the L1(µ)-norm and f (m) := argminf∈F

ϕ(m)
∥ νµ − f∥µ,1. It then yields the desired rate by the same

calculation as the proof of Proposition 27,

⟨R(m̂(n))
B R(m̂(n))

χ ⟩µ ≤
(
1 +

2

1− γ

)∥∥∥∥νµ − f (m̂(n))

∥∥∥∥
µ,1

= O(K−(1−ε)/d∗
m̂(n) )

= O(n−
1−ε

2d∗+1 ).

To bound ∥ νµ − f
(m)∥µ,1, recall by its definition that f (m) is the best approximation of ν/µ in Fϕ(m)

with respect to the L1(µ)-norm. Since ν/µ is 1-Lipschitz continuous andFϕ(m) contains any function

having a constant value on each cell of the partition {P(m)
k }k∈[Km], we have, for sufficiently large m,∥∥∥∥νµ − f (m)

∥∥∥∥
µ,1

≤
∥∥∥∥νµ − f (m)

∥∥∥∥
∞

≤ max
k∈[Km]

diam(P(m)
k ).

= exp

(
− min
k∈[Km]

ln
1

diam(P(m)
k )

)
.

≤ exp

(
−1− ε

d∗
lnKm

)
(Definition of d∗)

= K−(1−ε)/d∗
m .
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