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Appendix A Derivations and Further Technical Details

A.1 Proof of Proposition 1

Proposition 1 (Exploding Gradients in KL-Regularized RL). Let π0(· | s) be a Gaussian behavioral
reference policy with mean µ0(s) and variance σ2

0(s), and let π(· | s) be an online policy with
reparameterization at = fφ(εt; st) and random vector εt. The gradient of the policy loss with respect
to the online policy’s parameters φ is then given by

∇̂φJπ(φ) =
(
α∇at log πφ(at | st)− α∇at log π0(at | st)
−∇atQ(st,at)

)
∇φfφ(εt; st) + α∇φ log πφ(at | st)

(A.1)

with

∇at log π0(at | st) = −at − µ0(st)

σ2
0(st)

. (A.2)

For fixed |at − µ0(st)|, ∇at log π0(at | st) grows as O(σ−2
0 (st)); thus,

| ∇̂φJπ(φ) | → ∞ as σ2
0(st)→ 0, (A.3)

when ∇φfφ(εt; st) 6= 0.

Proof. The policy loss, as given in Equation (3), is:

Jπ(φ) = Est∼D
[
DKL

(
πφ(· | st) ||π0(· | st)

)]
− Est∼D

[
Eat∼πφ [Qθ(st,at)]

]
. (A.4)

To obtain a lower-variance gradient estimator, the policy is reparameterized using a neural network
transformation

at = fφ(εt; st) (A.5)
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where εt is an input noise vector. Following Haarnoja et al. [13], we can now rewrite Equation (A.4)
as
Jπ(φ) = Est∼D,εt

[
α
(

log πφ(fφ(εt; st) | st)− log π0(fφ(εt; st) | st)
)
−Q(st, fφ(εt; st))

]
(A.6)

where D is a replay buffer and πφ is defined implicitly in terms of fφ. We can approximate the
gradient of Equation (A.6) with

∇̂φJπ(φ) =
(
α∇at log πφ(at | st)− α∇at log π0(at | st)
−∇atQ(st,at)

)
∇φfφ(εt; st) + α∇φ log πφ(at | st).

(A.7)

Next, consider the term∇at log π0(at | st) for a Gaussian policy:

log π0(at | st) = log

(
1

σ0(st)
√

2π

)
− 1

2

(
at − µ0(st)

σ0(st)(st)

)2

(A.8)

Thus,

∇at log π0(at | st) = −at − µ0(st)

σ2
0(st)

. (A.9)

For fixed |at − µ0(st)|, ∇at log(π0(at | st)) grows as O(σ−2
0 (st)), and so,

|∇̂φJπ(φ)| → ∞ as σ2
0(st)→ 0. (A.10)

whenever ∇φfφ(εt; st) 6= 0.

A.2 Laplace Parametric Behavioral Reference Policy

A Laplace behavioral reference policy may be able to mitigate some of the problems posed by Propo-
sition 1 due to the heavy tails of the distribution. The gradient for a Laplace behavioral reference
policy

π0(at | st) =̇
1

2σ0(st)
exp

(
−|at − µ0(st)|

σ0(st)

)
, (A.11)

increases linearly for a given distance between at and the mean µ0(st) as the scale σ0(st) tends to
zero.

A.3 Regularized Maximum Likelihood Estimation

To address the collapse in predictive variance away from the offline dataset under MLE training seen
in Figure 1, Wu et al. [51] in practice augment the usual MLE loss with an entropy bonus as follows:

π0 =̇ πψ? with ψ? =̇ arg max
ψ

{
E(s,a)∼D[log πψ(a | s) + βH(πψ(· | s))]

}
. (A.12)

where β is temperature tuned to an entropy constraint similar to Haarnoja et al. [13]. The entropy
bonus is estimated by sampling from the behavioral policy as

H(πψ(· | s)) = Ea∼πψ [− log πψ(a | s)] (A.13)

Figure 11 shows the predictive variances of behavioral policies trained on expert demonstrations for
the “door-binary-v0” environment with various entropy coefficients β. Whilst entropy regularization
partially mitigates the collapse of predictive variance away from the expert demonstrations, we
still observe the wrong trend similar to Figure 1 with predictive variances high near the expert
demonstrations and low on unseen data. The variance surface also becomes more poorly behaved,
with “islands” of high predictive variance appearing away from the data.

We may also add Tikhonov regularization [12] to the MLE objective, explicitly,

π0 =̇ πψ? with ψ? =̇ arg max
ψ

{
E(s,a)∼D[log πψ(a | s)− λψ>ψ]

}
. (A.14)

where λ is the regularization coefficient.

Figure 12 shows the predictive variances of behavioral policies trained on expert demonstrations for
the “door-binary-v0” environment with varying Tikhonov regularization coefficients λ. Similarly,
Tikhonov regularization does not resolve the issue with calibration of uncertainties. We also observe
that too high a regularization strength causes the model to underfit to the variances of the data.
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A.4 Comparison to Prior Works

To assess the usefulness of KL regularization for improving the performance and sample efficiency
of online learning with expert demonstrations, we compare our approach to methods that incorporate
expert demonstrations into online learning implicitly or explicitly via KL regularization as well as by
means other than KL regularization.

ABM [44]. ABM explicitly KL-regularizes the online policy against a behavioral policy. This
behavioral policy can be estimated via MLE, like BRAC, or alternatively via an “advantage-weighted
behavioral model” where the RL algorithm is biased to choose actions that are both supported by
the offline data and that are good for the current task. This objective filters trajectory snippets by
advantage-weighting, using an n-step advantage function. We show that no carefully chosen objective
with additional hyperparameters is required.

AWAC [27]. AWAC performs online fine-tuning of a policy pre-trained on offline. It achieves
state-of-the-art results on the dexterous hand manipulation and MuJoCo continuous locomotion tasks.
AWAC implicitly constrains the KL divergence of the online policy to be close to the behavioral
policy by sampling from the replay buffer, which is initially filled with the offline data. The method
requires additional off-policy data to be generated to saturate the replay buffer, thereby requiring
a hidden number of environment interactions that do not involve learning. Our approach does not
require the offline data to be added to the replay buffer before training.

AWR [31]. AWR approximates constrained policy search by alternating between supervised value
function and policy regression steps. The objective derived is similar to AWAC but instead estimates
the value function of the behavioral policy which was demonstrated to be less efficient than Q-
function estimation via bootstrapping [27]. The method may be converted to use offline data by
adding prior data to the replay buffer before training.

BEAR [19]. BEAR attempts to stabilize learning from off-policy data (such as offline data) by
tackling bootstrapping error from actions far from the training data. This is achieved by searching for
policies with the same support as the training distribution. This approach is too restrictive for the
problem considered in this paper, since only a small number of expert demonstrations is available,
which requires exploration. In contrast, our approach encourages exploration away from the data by
wider behavioral policy predictive variances. BEAR uses an alternate divergence measure to the KL
divergence, Maximum Mean Discrepancy [45]. Other divergences such as Wasserstein Distances [30]
have also been proposed for regularization in RL.

BRAC [51]. BRAC regularizes the online policy against an offline behavioral policy as our method
does. However, BRAC exhibits the pathologies we have shown by learning a poor behavioral policy
via MLE. To mitigate this, in practice, BRAC adds an entropy bonus to the supervised learning
objective which stabilizes the variance around the training set but has no guarantees away from
the data. We demonstrate that behavioral policy obtained via maximum likelihood estimation with
entropy regularization exhibit a collapse in predictive uncertainty estimates way from the training
data, resulting in the pathology described in Proposition 1.

DAPG [34]. DAPG incorporates offline data into policy gradients by initially pre-training with a
behaviorally cloned policy and then augmenting the RL loss with a supervised-learning loss. We
similarly pre-train the online policy at the start to avoid noisy KLs at the beginning of training.
However, training a joint loss that combines two disparate and often divergent terms can be unstable.

SAC+BC [26]. SAC+BC represents the approach of Nair et al. [26] but uses SAC instead of
DDPG [22] as the underlying RL algorithm. The method maintains a secondary replay buffer filled
with offline data that is sampled each update step, augmenting the policy loss with a supervised
learning loss that is filtered by advantage and hindsight experience replay. Our method requires far
fewer additional ad-hoc algorithmic design choices.

SACfD [13]. SACfD uses the popular Soft Actor–Critic (SAC) algorithm with offline data loaded
into the replay buffer before online training. Our algorithm uses the same approximate policy iteration
scheme as SAC with a modified objective. Nair et al. [27] show that including the offline data into
the replay buffer does not significantly improve the training performance over the unmodified SAC
objective and that pre-training the online policy with offline data results in catastrophic forgetting.
Thus, a different approach is needed to integrate offline data with SAC-style algorithms.
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Appendix B Further Experimental Results

B.1 Exploding Q-function Gradients

In Proposition 1 and Section 3.4, we showed that the policy gradient ∇̂φJπ(φ) explodes due to the
blow-up of the gradient of the behavioral reference policy’s log-density as the behavioral policy
predictive variance σ0(s) tends to zero. A similar relationship holds for the Q-function gradients
which we confirm empirically in Figure 8.
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Figure 8: Ablation study showing the effect of predictive variance collapse on the performance of KL-regularized
RL on MuJoCo benchmarks. Policies shown from dark to light in order of decreasing constant predictive variance,
simulating training under maximum likelihood estimation. The plots show the average return of the learned
policy, magnitude of the KL penalty, and magnitude of the Q-function gradients during online training.

B.2 Ablation Study on the Effect of KL Divergence Temperature Tuning

Figure 9 shows that unlike in standard SAC [13], tuning of the KL-temperature is not necessary to
achieve good online performance. For simplicity, we use a fixed value throughout our experiments.
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Figure 9: Ablation study on the effect of automatic KL temperature tuning on the performance of KL-regularized
RL with a non-parametric GP behavioral reference policy on MuJoCo locomotion tasks.
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B.3 Ablation Study: Performance under a Laplace Parametric Behavioral Reference Policy

We use a Laplace behavioral reference policy to assess whether it is more effective at incorporating
the expert demonstration data into online training. Figure 10 shows empirical results using the
Laplace behavioral reference policy compared against N-PPAC (in blue) and a SAC baseline (in green)
on three MuJoCo locomotion tasks. We use automatic KL-temperature tuning for this ablation. On
the Ant-v2 environment, the Laplace behavioral reference policy slightly improves upon the baseline
SAC performance, which does not use any prior information at all. On the door and pen environment,
the online policy learned under the Laplace behavioral reference policy does not learn any meaningful
behavior.

In both MuJoCo locomotion tasks and the “door-binary-v0” and “pen-binary-v0” dexterous hand
manipulation environments, N-NPAC significantly outperforms both the online policy learned under
the Laplace behavioral reference policy and the SAC baseline. We can understand the behavior under
the Laplace behavioral reference policy in terms of collapse of predictive variance away from data
for neural network parameterized policies, as it too has a decreasing variance away from the expert
trajectories.
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Figure 10: Ablation study using heavier-tailed Laplace behavioral reference policy on MuJoCo locomotion
tasks.
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B.4 Visualizations of Regularized Maximum Likelihood Parametric Behavioral Policies

Maximum Likelihood + Entropy Maximization
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Figure 11: Predictive variances of parametric neural network Gaussian behavioral policies πψ(· | s) =
N (µψ(s),σ

2
ψ(s)) trained with different entropy regularization coefficients β.
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Figure 12: Predictive variances of parametric neural network Gaussian behavioral policies πψ(· | s) =
N (µψ(s),σ

2
ψ(s)) trained with different Tikhonov regularization coefficients λ.
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B.5 Visualizations of Ensemble Maximum Likelihood Parametric Behavioral Policies

On the “door-binary-v0” environment, we consider an ensemble of parametric neural network
Gaussian policies πψ1:K (· | s) =̇ N (µψ1:K (s),σ2

ψ1:K (s)) with

µψ1:K (s) =̇
1

K

K∑
k=1

µψk(s), σ2
ψ1:K (s) =̇

1

K

K∑
k=1

(
σ2
ψk(s) + µ2

ψk(s)
)
− µ2

ψ1:K (s) (B.15)
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Figure 13: Predictive variances of ensembles of parametric neural network Gaussian behavioral policies
πψ1:K (· | s) with each neural network in the ensemble trained via MLE. The ensemble policies are marginally
better calibrated than parametric neural network policies in that their predictive variance only collapses in some
but not all regions away from the expert trajectories.
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B.6 Parametric vs. Non-Parametric Predictive Variance Visualizations Across
Environments

Figure 14 shows the predictive variances of non-parametric and parametric behavioral policies on
low dimensional representations of the environments considered in Figures 4 and 5 (excluding
“door-binary-v0”, which is shown in Figure 1).
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Figure 14: Predictive variances of non-parametric and parametric behavioral policies on low dimensional
representations of the environments considered in Figures 4 and 5 (excluding “door-binary-v0”, which
is shown in Figure 1). Left Column: Non-parametric Gaussian process posterior behavioral policy
πGP(· | s,D0) = GP(µ0(s),Σ0(s, s

′)). Right Column: Parametric neural network Gaussian behavioral pol-
icy πψ(· | s) = N (µψ(s),σ

2
ψ(s)). Expert trajectoriesD used to train the behavioral policies are shown in black.

As in Figure 1, the predictive variance of the GP is well-calibrated, whereas the predictive variance of the neural
network is not.
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B.7 Visual Comparison of Parametric vs. Non-Parametric Behavioral Policy Trajectories

To better understand the significance of the behavioral policy’s model class, we sample trajectories
from different behavioral policies on the door-opening task in Figure 15. We visualize the mean
trajectory and predictive variances of various behavioral policies showing a more sensible mean
trajectory and predictive variance from the non-parametric GP policy leading to better regularization
compared to a behavioral policy parameterized by a neural network and the implicit uniform prior in
SAC, a state-of-the-art RL algorithm. On a randomly sampled unseen goal, we can see in Figure 15b
that a neural network policy trained via MLE produces a confident but incorrect trajectory. The
starting position is shown in black and the goal position is shown in green. We also visualize a
uniform prior, which SAC implicitly regularizes against. Informative priors from offline data can
greatly accelerate the online performance of such actor-critic methods.

(a) (b) (c)

Nonparametric GP BC Policy (Exact Posterior) Parametric NN Gaussian BC Policy (MLE) Uniform Prior (SAC)

Figure 15: Left: challenging door opening task [35] which standard RL algorithms struggle on. Right and center:
3D plots of sampled mean trajectories and predictive variances from different behavioral policies from expert
demonstration π0, showing a more sensible mean trajectory and predictive variance from the non-parametric GP
policy leading to better regularization over both: (b) a behavioral policy using a poor model class, and (c) the
implicit uniform prior in SAC. Starting position shown in black and goal position shown in green.

Appendix C Further Implementation Details

C.1 Algorithmic Details

Pre-training On the dexterous hand manipulation tasks, before online training, the online policy is
pre-trained to minimize the KL divergence to the behavioral reference policy on the offline dataset:

JGP(φ) =̇ Es∼D0 [DKL(πφ(· | s) ‖ π0(· | s))] .

Algorithm 1 Non-Parametric Prior Actor–Critic

Input: offline dataset D0, initial parameters θ1, θ2, φ, GP π0(· | s) = GP
(
m(s), k(s, s′)

)
Condition π0(· | s) on D0 to obtain π0(· | s,D0)
for each offline batch do

φ← φ− λGP∇̂φJGP(φ) . Minimize KL between online and behavioral reference policy.
end for

θ̄1 ← θ1, θ̄2 ← θ2 . Initialize target network weights.
D ← ∅ . Initialize an empty replay pool.
for each iteration do

for each environment step do
at ∼ πφ(· | st)
st+1 ∼ p(· | st,at)
D ← D ∪ {(st,at, r(st,at), st+1)}

end for
for each gradient step do

θi ← θi − λQ∇̂θiJQ(θi) for i ∈ {1, 2}
φ← φ− λπ∇̂φJπ(φ) . Minimize JQ and Jπ using GP π0(· | s,D0).
θ̂i ← τθi + (1− τ)θ̂i for i ∈ {1, 2} . Update target network weights.

end for
end for
Output: Optimized parameters θ1, θ2, φ
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C.2 Hyperparameters

Table 2 lists the hyperparameters used for N-PPAC. For other hyperparameter values, we used the
default values in the RLkit repository. When multiple values are given, the former refer to MuJoCo
continuous control and the latter to dexterous hand manipulation tasks.

Table 2: N-PPAC hyperparameters.

Parameter Value(s)
optimizer Adam
learning rate 3 · 10−4

discount (γ) 0.99
reward scale 1
replay buffer size 106

number of hidden layers {2, 4}
number of hidden units per layer 256
number of samples per minibatch {256, 1024}
activation function ReLU
target smoothing coefficient (τ ) 0.005
target update interval 1
number of policy pretraining epochs 400
GP covariance function {RBF, Matérn}

Table 3 lists the hyperparameters used to train the Gaussian process on the offline data. The
hyperparameters are trained by maximizing the log-marginal likelihood. The offline data is provided
under the Apache License 2.0.

Table 3: GP optimization hyperparameters.

Parameter Value
optimizer Adam
learning rate 0.1
number of epochs 500

Hyperparameter Sweep for Section 5.4. For the BNN behavioral policy trained via Monte Carlo
dropout, a dropout probability of p = 0.1 and a weight decay coefficient 1e− 6 were used. These
values were found via a hyperparameter search over {0.1, 0.2} for p and {1e−4, 1e−5, 1e−6, 1e−7}
for the dropout probability and the weight decay coefficient, respectively.

For the deep ensemble behavioral policy, M = 15 ensemble members and a weight decay coefficient
of 1e − 6 were used. The weight decay coefficient was found via a hyperparameter search over
{5, 10, 15, 20} for M and {1e − 4, 1e − 5, 1e − 6, 1e − 7} for the weight decay coefficient. Each
ensemble member was trained on a different 80-20 training–validation split and initialized using
different random seeds.
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