
A Proofs for Section 4

A.1 Proof of Lemma 4.1

In this section we relate the SSP regret and the finite-horizon regret, which relies on Lemmas A.1
and A.2 below that compare the cost-to-go function in the SSPM to the value function in the finite-
horizon M̂. To that end, we define a cost-to-go function with respect to the finite-horizon MDP M̂
as: Ĵπh (s) = E

[∑H
h′=h c(sh′ , ah′ ) | sh = s

]
, for any deterministic finite-horizon policy π : S× [H] 7→ A.

Lemma A.1. Let π be a stationary policy. For every s ∈ Ŝ and h = 1, . . . , H + 1 it holds that

Ĵπh (s) ≤ Jπ(s) + 8B?P[sH+1 6= g | sh = s, P̂,π].

Proof.

Ĵπh (s) =
H∑

h′=h

∑
s′∈Ŝ

P[sh′ = s′ | sh = s, P̂,π] ĉ
(
s′,π(s′)

)
+
∑
s′∈Ŝ

P[sH+1 = s′ | sh = s, P̂,π] ĉf (s′)

=
H∑

h′=h

∑
s′∈S

P[sh′ = s′ | sh = s, P,π] c
(
s′,π(s′)

)
+ 8B? P[sH+1 6= g | sh = s, P̂,π]

≤
∞∑

h′=h

∑
s′∈S

P[sh′ = s′ | sh = s, P,π] c
(
s′,π(s′)

)
+ 8B? P[sH+1 6= g | sh = s, P̂,π]

= Jπ(s) + 8B? P[sH+1 6= g | sh = s, P̂,π].

Lemma A.2. For every s ∈ Ŝ, it holds that Jπ
?

(s) ≥ Ĵπ
?

1 (s) – B?

K .

Proof. The probability that π? does not reach the goal in H steps is at most 1/(8K) due to Chen et al.
[2020, Lemma 7]. Plugging that into Lemma A.1 yields the desired result.

Proof of Lemma 4.1. Consider the first interval of the first episode. If it ends in the goal state then
I1∑

i=1

C1
i =

H∑
h=1

C1
h + ĉf (g) =

H∑
h=1

C1
h + ĉf (s1

H+1).

If the agent did not reach g in the first interval, then the agent also suffered the 8B? terminal cost and
thus

I1∑
i=1

C1
i =

H∑
h=1

C1
h + ĉf (s1

H+1) +
I1∑

i=H+1

C1
i – ĉf (s1

H+1)

=
H∑

h=1

C1
h + ĉf (s1

H+1) +
I1∑

i=H+1

C1
i – 8B?

≤
H∑

h=1

C1
h + ĉf (s1

H+1) +
I1∑

i=H+1

C1
i – Ĵπ

?

1 (s1
H+1),

where the last inequality follows by combining Lemma A.2 with our assumption that Jπ
?

(s) ≤ B?.

Repeating this argument iteratively we get, for every episode k,
Ik∑

i=1

Ck
i – Jπ

?

(sinit) ≤
Ik∑

i=1

Ck
i – Ĵπ

?

1 (sm
1 ) +

B?
K

≤
∑

m∈Mk

H∑
h=1

Cm
h + ĉf (sm

H+1) – Ĵπ
?

1 (sm
1 ) +

B?
K

=
∑

m∈Mk

( H∑
h=1

Cm
h + ĉf (sm

H+1) – Ĵπ
m
(sm

1 )
)

+
∑

m∈Mk

(
Ĵπ

m
(sm

1 ) – Ĵπ
?

1 (sm
1 )
)

+
B?
K

,
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where Mk is the set of intervals that are contained in episode k, and the first inequality follows from
Lemma A.2. Summing over all episodes obtains

RK ≤
M∑

m=1

( H∑
h=1

Cm
h + ĉf (sm

H+1) – Ĵπ
m
(sm

1 )
)

+
M∑

m=1

(
Ĵπ

m
(sm

1 ) – Ĵπ
?

1 (sm
1 )
)

+
B?
K

.

Notice that the second summand in the bound above is exactly the expected finite-horizon regret over
the M intervals. We finish the proof of the lemma by using the regret guarantees of A (Definition 1).

A.2 Proof of Lemma 4.2

In this section we bound the deviation of the actual cost in each interval from its expected value.
To do that, we apply Lemma A.3 below to bound the second moment of the cumulative cost in an
interval up until an unknown state-action pair or the goal state were reached. Here Ūm denotes the
union of all information prior to the mth interval together with the first state of the mth interval (more
formally, {Ūm}m≥1 is a filtration). Moreover, we denote by hm the last time step before an unknown
state-action pair or the goal state were reached in interval m (or H if they were not reached).
Lemma A.3. Let m be an interval and assume that the reduction is performed using an admissible
algorithm A. If the good event of A holds until the beginning of interval m, then the agent reaches
the goal state or an unknown state-action pair with probability at least 1

2 . Moreover, denote by
Cm =

∑hm
h=1 Cm

h + ĉf (sm
H+1)I{hm = H} the cumulative cost in the interval until time hm. Then,

E[(Cm)2 | Ūm] ≤ 2 · 105B2
? + 4B?.

Proof. The result is given by bounding the total expected cost suffered by the agent in another MDP
(defined below) where all unknown state-action pairs are contracted with the goal state. The cost in
this MDP is exactly Cm by definition.

Let πm be the optimistic policy chosen by the algorithm for interval m. Consider the following
finite-horizon MDP M̂m = (Ŝ, A, P̂m, H, ĉ, ĉf ) that contracts unknown state-action pairs with the goal:

P̂m
h (s′ | s, a) =


0, (s′,πm

h+1(s′)) is unknown;
P(s′ | s, a), s′ 6= g and (s′,πm

h+1(s′)) is known;
1 –
∑

s′′∈Ŝ\{g} P̂m
h (s′′ | s, a), s′ = g.

Denote by Jm the cost-to-go function of πm in the finite-horizon MDP M̂m. Further, let P̃′m be the
transition function induced by P̃m in the MDP M̂m similarly to P̂m, and J̃m the cost-to-go function
of πm with respect to P̃′m (and with cost function c̃m). Notice that πm can only reach the goal state
quicker in M̂m than in M̂, so that J̃m

h (s) ≤ Jm
h (s) ≤ Ĵπ

?

h (s) for any s ∈ Ŝ. By the value difference
lemma (see, e.g., Shani et al., 2020), for every s, h such that (s,πm

h (s)) is known,

Jm
h (s) = J̃m

h (s) +
H∑

h′=h

E
[
ĉ(sh′ , ah′ ) – c̃m

h′ (sh′ , ah′ ) | sh = s, P̂m,πm
]

+
H∑

h′=h

E
[(

P̂m
h′ (· | sh′ , ah′ ) – P̃′mh′ (· | sh′ , ah′ )

)
· J̃m | sh = s, P̂m,πm

]
≤ J̃m

h (s) + H max
(s,πm

h′ (s))
known

|c(s,πm
h′ (s)) – c̃m

h′ (s,πm
h′ (s))| + H‖J̃m‖∞ max

(s,πm
h′ (s))

known

‖P̂m
h′ (·|s,πm

h′ (s)) – P̃′mh′ (·|s,πm
h′ (s))‖1

(a)
≤ Ĵπ

?

h (s) + H max
(s,πm

h′ (s))
known

|c(s,πm
h′(s)) – c̃m

h′ (s,πm
h′ (s))|

+ H‖Ĵπ
?

h (s)‖∞ max
(s,πm

h′ (s))
known

‖P̂(·|s,πm
h′ (s)) – P̃m(·|s,πm

h′ (s))‖1

≤ Ĵπ
?

h (s) + H max
(s,πm

h′ (s))
known

|c(s,πm
h′ (s)) – c̃m

h′ (s,πm
h′ (s))| + 9HB? max

(s,πm
h′ (s))

known

‖P̂(·|s,πm
h′ (s)) – P̃m(·|s,πm

h′ (s))‖1,
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where the last inequality follows by optimism and since Ĵπ
?

h (s) ≤ 9B? (Lemma A.1), and (a) follows
because

‖P̂m
h (·|s, a) – P̃′mh (·|s, a)‖1 =

∑
(s′,πm

h+1(s′))
known

|P̂m
h (s′|s, a) – P̃′mh (s′|s, a)| + |P̂m

h (g|s, a) – P̃′mh (g|s, a)|

=
∑

(s′,πm
h+1(s′))

known

|P̂(s′|s, a) – P̃m(s′|s, a)| +
∣∣∣ ∑
(s′,πm

h+1(s′))
unknown

P̂(s′|s, a) + P̂(g|s, a) – P̃m(s′|s, a) – P̃m(g|s, a)
∣∣∣

≤ ‖P̂(·|s, a) – P̃m(·|s, a)‖1.

Thus Jm
h (s) ≤ Ĵπ

?

h (s) + 2B? since the number of visits to each known state-action pair is at least
ωA log MH|S||A|

δ and by property (iv) of admissible algorithms (Definition 1). Also note that Jm
h (s) ≤

11B? by Lemma A.1, and for h = 1 in particular we use Lemma A.2 to obtain Jm
1 (s) ≤ 4B?.

By Markov inequality, the probability that the agent suffers a cost of more than 8B? in M̂m is at
most 1

2 . Notice that all costs are non-negative and there is a terminal cost of 8B? in all states but the
goal, therefore the agent cannot suffer a cost of less than 8B? unless she reaches the goal. So the
probability to reach the goal is at least 1

2 . Moreover, note that the probability to reach the goal in M̂m

is equal to the probability to reach the goal or an unknown state-action pair in M̂.

Similarly, we notice that E[(Cm)2 | Ūm] = E[(Ĉ)2], where Ĉ is the cumulative cost in M̂m, and we
override notation by denoting Ĉ =

∑H
h=1 Ch + ĉf (sH+1). We have that,

E[(Ĉ)2] = E
[( H∑

h=1

Ch + ĉf (sH+1)
)2]

= E
[(H–1∑

h=1

Ch + ĉ(sH , aH) + ĉf (sH+1)
)2]

+ 2E
[(H–1∑

h=1

Ch + ĉ(sH , aH) + ĉf (sH+1)
)

(CH – ĉ(sH , aH))
]

+ E[(CH – ĉ(sH , aH))2].

The second summand is zero since the realization of CH is independent of all other randomness given
sH . Also, since CH ∈ [0, 1], the third summand satisfies

E[(CH – ĉ(sH , aH))2] ≤ E[(CH)2] ≤ E[CH] = E[ĉ(sH , aH)].

Thus we arrived at

E[(Ĉ)2] ≤ E
[(H–1∑

h=1

Ch + ĉ(sH , aH) + ĉf (sH+1)
)2]

+ E[ĉ(sH , aH)],

and iterating this argument yields

E[(Ĉ)2] ≤ E
[( H∑

h=1

ĉ(sh, ah) + ĉf (sH+1)
)2]

+ E
[ H∑

h=1

ĉ(sh, ah)
]

.

Here, the second summand equals Jm
1 (s1) which is at most 4B?.

Next, for the first summand, we split the time steps into Q blocks as follows. We denote by t1 the first
time step in which we accumulated a total cost of at least 11B? (or H + 1 if it did not occur), by t2
the first time step in which we accumulated a total cost of at least 11B? after t1, and so on up until
tQ = H + 1. Then, the first block consists of time steps t0 = 1, . . . , t1 – 1, the second block consists
of time steps t1, . . . , t2 – 1, and so on. Since Jm

h (s) ≤ 11B? we must have ĉ(sh, ah) ≤ 11B? for all

15



h = 1, . . . , H and thus in every such block the total cost is between 11B? and 22B?. Thus,

E
[( H∑

h=1

ĉ(sh, ah) + ĉf (sH+1)
)2]
≥ E

[ H∑
h=1

ĉ(sh, ah) + ĉf (sH+1)
]2

= E
[Q–1∑

i=0

ti+1–1∑
h=ti

ĉ(sh, ah) + ĉf (sH+1)
]2

≥ E[11B?Q]2 = 121B2
?E[Q]2,

by Jensen’s inequality. On the other hand,

E
[( H∑

h=1

ĉ(sh, ah) + ĉf (sH+1)
)2]

= E
[( H∑

h=1

ĉ(sh, ah) + ĉf (sH+1) – Jm
1 (s1) + Jm

1 (s1)
)2]

≤ 2E
[( H∑

h=1

ĉ(sh, ah) + ĉf (sH+1) – Jm
1 (s1)

)2]
+ 2Jm

1 (s1)2

≤ 2E
[(Q–1∑

i=0

ti+1–1∑
h=ti

ĉ(sh, ah) – Jm
ti (sti ) + Jm

ti+1
(sti+1 )

)2]
+ 32B2

?

(a)
= 4E

[Q–1∑
i=0

(ti+1–1∑
h=ti

ĉ(sh, ah) – Jm
ti (sti ) + Jm

ti+1
(sti+1 )

)2]
+ 32B2

?

≤ 4E[Q · (33B?)2] + 32B2
? ≤ 4356B2

?E[Q] + 32B2
?.

For (a) we used the fact that E[
∑ti+1–1

h=ti ĉ(sh, ah) – Jti (sti ) + Jti+1 (sti+1 )] = 0 using the Bellman optimality
equations and conditioned on all past randomness up until time ti, and the fact that ti+1 is a (bounded)
stopping time by the optional stopping theorem, in the following manner,

E
[ti+1–1∑

h=ti

ĉ(sh, ah) – Jm
ti (sti ) + Jm

ti+1
(sti+1 )

]
= E
[ti+1–1∑

h=ti

ĉ(sh, ah) – Jm
h (sh) + Jm

h+1(sh+1)
]

= E
[ti+1–1∑

h=ti

E
[
ĉ(sh, ah) – Jm

h (sh) + Jm
h+1(sh+1)

∣∣ s1, . . . , sh

]]

= E
[ti+1–1∑

h=ti

ĉ(sh, ah) + E
[
Jm

h+1(sh+1) | sh

]
– Jm

h (sh)
]

= 0.

Thus, we have 121B2
?E[Q]2 ≤ 4356B2

?E[Q] + 32B2
?, and solving for E[Q] we obtain E[Q] ≤ 37, so

E
[( H∑

h=1

ĉ(sh, ah) + ĉf (sH+1)
)2]
≤ 2 · 105B2

?,

and therefore

E[(Ĉ)2] ≤ E
[( H∑

h=1

ĉ(sh, ah) + ĉf (sH+1)
)2]

+ E
[ H∑

h=1

ĉ(sh, ah)
]
≤ 2 · 105B2

? + 4B?.

Proof of Lemma 4.2. Recall that hm is the last time step before an unknown state-action pair or the
goal state were reached (or H if they were not reached) in interval m, and let Gm be the event that the
good event of algorithm A holds up to the beginning of interval m. We start by decomposing the sum
as follows

M∑
m=1

(
H∑

h=1

Cm
h + ĉf (sm

H+1) – Ĵπ
m

1 (sm
1 )

)
I{Gm} =

M∑
m=1

(
hm∑
h=1

Cm
h + cf (sm

H+1)I{hm = H} – Ĵπ
m

1 (sm
1 )

)
I{Gm}

+
M∑

m=1

(
H∑

h=hm+1

Cm
h + ĉf (sm

H+1)I{hm 6= H}

)
I{Gm}.
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The second term is trivially bounded by (H + 8B?)|S||A|ωA log MH|S||A|
δ since every state-action pair

becomes known after ωA log MH|S||A|
δ visits. Next, since

E

[(
hm∑
h=1

Cm
h + cf (sm

H+1)I{hm = H}

)
I{Gm}

∣∣∣∣ Ūm

]
= E

[
hm∑
h=1

Cm
h + cf (sm

H+1)I{hm = H}
∣∣∣∣ Ūm

]
I{Gm}

≤ Ĵπ
m

1 (sm
1 )I{Gm},

the first term is bounded by
∑M

m=1 Xm where

Xm =

(
hm∑
h=1

Cm
h + cf (sm

H+1)I{hm = H} – E

[
hm∑
h=1

Cm
h + cf (sm

H+1)I{hm = H}
∣∣∣∣ Ūm

])
I{Gm}

is a martingale difference sequence bounded by H + 8B? with probability 1. For any fixed M = m, by
Freedman’s inequality (Lemma E.1, we have with probability at least 1 – δ

8m(m+1) ,

m∑
m′=1

Xm′ ≤ η
m∑

m′=1

E[(Xm′ )2 | Ūm′ ] +
log(8m(m + 1)/δ)

η

for any η ∈ (0, 1/(H + 8B?)). By Lemma A.3, for some universal constant α > 0, that

m∑
m′=1

E[(Xm′)2 | Ūm′ ] ≤ αm(B2
? + B?),

and setting η = min
{√ log(8m(m+1)/δ)

(B2
?+B?)m , 1

H+8B?

}
obtains

m∑
m′=1

Xm′ ≤ O
(√

(B2
? + B?)m log

m
δ

+ (H + B?) log
m
δ

)
.

Taking a union bound on all values of m = 1, 2, . . . that the inequality above holds for all such values
of m simultaneously with probability at least 1 – δ/8. In particular, with probability at least 1 – δ/8,
we have

M∑
m=1

Xm ≤ O
(√

(B2
? + B?)M log

M
δ

+ (H + B?) log
M
δ

)
.

The proof is concluded via a union bound—both Freedman inequality and the good event of A hold
with probability at least 1 – 3

8δ, and this implies that I{Gm} = 1 for every m.

A.3 Proof of Lemma 4.3

In this section we bound the number of intervals M with high probability for any admissible algorithm.
To that end, we first define the notion of unknown state-action pairs. A state-action pair is defined as
unknown if the number of times it was visited is at most ωA log MH|S||A|

δ (and otherwise known).

Proof of Lemma 4.3. Let Gm be the event that the good event of algorithmA holds up to the beginning
of interval m, and define Xm to be 1 if an unknown state-action pair or the goal state were reached
during interval m (and 0 otherwise). Notice that E[XmI{Gm} | Ūm] = E[Xm | Ūm]I{Gm} ≥ I{Gm}/2
by Lemma A.3. Moreover, note that every state-action pair becomes known after ωA log MH|S||A|

δ

visits and therefore
∑M

m=1 XmI{Gm} ≤
∑M

m=1 Xm ≤ K + |S||A|ωA log MH|S||A|
δ . By Lemma E.2, which

is a consequence of Freedman’s inequality for bounded positive random variables, we have with
probability at least 1 – δ

8 for all M ≥ 1 simultaneously

M∑
m=1

E[XmI{Gm} | Ūm] ≤ 2
M∑

m=1

XmI{Gm} + 108 log
M
δ
≤ 2K + 110|S||A|ωA log

MH|S||A|
δ

.
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Using a union bound, this inequality and the good event of A both hold with probability at least
1 – 3

8δ. Then, I{Gm} = 1 for all m, and therefore

M
2
≤ 2K + 110|S||A|ωA log

MH|S||A|
δ

.

Using the fact that x ≤ a log(bx) + c→ x ≤ 6a log(abc) + c for a, b, c ≥ 1, this implies

M ≤ 4K + 4 · 104|S||A|ωA log
KT?|S||A|ωA

δ
.
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B Proofs for Section 5

Since all the proofs in this section refer to the finite-horizon setting (without a connection to SSP), we
use the simpler notationsM = (S, A, P, H, c, cf ) for the MDP, Jπh (s) for the value function of policy π,
and B? ≥ maxs,h J?h (s) for the upper bound on the value function of the optimal policy.

We define a state-action pair (s, a) to be known if it was visited at least αH4B–2
? |S| times (for some

universal constant α > 0 to be determined later), and otherwise unknown. In addition, we denote by
hm the last time step before an unknown state-action pair was reached (or H if they were not reached).

B.1 The good event, optimism and pessimism

Throughout this section we use the notation a ∨ 1 defined as max{a, 1}. In addition, we define the
logarithmic factor Lm = 3 log(6|S||A|Hm/δ). Define the following events:

Ec(m) =
{
∀(s, a) : |c̄m–1(s, a) – c(s, a)| ≤ bm

c (s, a)
}

Ecv(m) =

{
∀(s, a) :

∣∣∣∣√Var
m–1
s,a (C) –

√
Vars,a(c)

∣∣∣∣ ≤
√

12Lm

nm–1(s, a) ∨ 1

}

Ep(m) =

{
∀(s, a, s′) : |P

(
s′|s, a

)
– P̄m–1(s′|s, a

)
| ≤

√
2P(s′|s, a)Lm

nm–1(s, a) ∨ 1
+

2Lm

nm–1(s, a) ∨ 1

}

Epv1(m) =

{
∀(s, a, h) :

∣∣(P̄m–1(·|s, a) – P(·|s, a)
)
· J∗h+1

∣∣ ≤√2VarP(·|s,a)(J∗h+1)Lm

nm–1(s, a) ∨ 1
+

5B?Lm

nm–1(s, a) ∨ 1

}

Epv2(m) =

∀(s, a, h) :
∣∣∣√VarP(·|s,a)(J∗h+1) –

√
VarP̄m–1(·|s,a)(J∗h+1)

∣∣∣ ≤
√

12B2
?Lm

nm–1(s, a) ∨ 1


For brevity, we denote bm

pv1,h(s, a) =
√

2VarP(·|s,a)(J∗h+1)Lm

nm–1(s,a)∨1 + 5B?Lm
nm–1(s,a)∨1 . This good event, which is the

intersection of the above events, is the one used in Efroni et al. [2021]. The following lemma
establishes that the good event holds with high probability. The proof is supplied in Efroni et al.
[2021, Lemma 13] by applying standard concentration results.

Lemma B.1 (The First Good Event). Let G1 = ∩m≥1Ec(m) ∩m≥1 Ecv(m) ∩m≥1 Ep(m) ∩m≥1

Epv1(m) ∩m≥1 Epv2(m) be the basic good event. It holds that P(G1) ≥ 1 – 1
4δ.

Under the first good event, we can prove that the value is optimistic using standard techniques.

Lemma B.2 (Upper Value Function is Optimistic, Lower Value Function is Pessimistic). Conditioned
on the first good event G1, it holds that Jm

h (s) ≤ J∗h (s) ≤ Jπ
m

h (s) ≤ J̄m
h (s) for every m = 1, 2, . . . , s ∈ S

and h = 1, . . . , H + 1.

Proof. Since J∗h (s) ≤ Jπh (s) for any policy π, we only need to prove the leftmost and rightmost
inequalities of the claim. We prove this result via induction.

Base case, the claim holds for h = H + 1. Since we assume the terminal costs are known, for any
s ∈ S,

Jm
H+1(s) = J∗H+1(s) = Jπ

m

H+1(s) = J̄m
H+1(s) = cf (s).

Induction step, prove for h ∈ [H] assuming the claim holds for all h + 1 ≤ h′ ≤ H + 1.

Leftmost inequality, optimism. Let a∗(s) ∈ arg mina∈A Q∗h (s, a), then

J∗h (s) – Jm
h (s) = Q∗h (s, a∗(s)) – max

{
min
a∈A

Qm
h

(s, a), 0
}

. (3)
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Assume that mina Q̄m
h (s, a) > 0 (otherwise, the inequality is satisfied). Then,

(3) ≥ Q∗h (s, a∗(s)) – Qm
h

(s, a∗(s))

= c(s, a∗(s)) – c̄m–1(s, a∗(s)) + bm
c (s, a∗(s)) + bm

p (s, a∗(s))

+ (P – P̄m–1)(· | s, a∗(s)) · J∗h+1 + EP̄m–1(·|s,a∗(s))[ J∗h+1(s′) – Jm
h+1(s′)︸ ︷︷ ︸

≥0 Induction hypothesis

]

≥ –bm
pv1,h(s, a∗(s)) + bm

p (s, a∗(s)), (4)

where the last relation holds since the events ∩mEpv1(m) and ∩mEc(m) hold. We now analyze this
term.

(4) = –bm
pv1,h(s, a∗(s)) + bm

p (s, a∗(s))

(a)
≥ –

√
2VarP(·|s,a∗(s))(J∗h+1)Lm

nm–1(s, a∗(s)) ∨ 1
–

5B?Lm

nm–1(s, a∗(s)) ∨ 1

+

√
2VarP̄m–1(·|s,a∗(s))(J

m
h+1)Lm

nm–1(s, a∗(s)) ∨ 1
+

17H3B–1
? Lm

nm–1(s, a∗(s)) ∨ 1
+

B?
16H2 EP̄m–1(·|s,a)

[
J∗h+1(s′) – Jm

h+1(s′)
]

≥ –
√

2Lm

√
VarP(·|s,a∗(s))(J∗h+1) –

√
VarP̄m–1(·|s,a∗(s))(J

m
h+1)√

nm–1(s, a∗(s)) ∨ 1

+
B?

16H2 EP̄m–1(·|s,a)
[
J∗h+1(s′) – Jm

h+1(s′)
]

+
13H3B–1

? Lm

nm–1(s, a∗(s)) ∨ 1
(b)
≥ –

B?
16H2 EP̄m–1(·|s,a)

[
J∗h+1(s′) – Jm

h+1(s′)
]

–
13H2Lm

nm–1(s, a∗(s)) ∨ 1

+
B?

16H2 EP̄m–1(·|s,a)
[
J∗h+1(s′) – Jm

h+1(s′)
]

+
13H3B–1

? Lm

nm–1(s, a) ∨ 1
≥ 0,

where (a) holds by plugging the definition of the bonuses bm
pv1,h and bm

p (recall Eq. (2)), as |S| ≥ 1
by assumption, and by the induction hypothesis (J̄m

h+1(s) ≥ J∗h+1(s)). (b) holds by Lemma B.11 while
setting α = 16H2B–1

? and bounding (5 + α/2)B? ≤ 13H2. Combining all the above we conclude the
proof of the rightmost inequality since J∗h (s) – Jm

h (s) ≥ (3) ≥ (4) ≥ 0.

Rightmost inequality, pessimism. The following relations hold.

Jπ
m

h (s) – J̄m
h (s) = Qπ

m

h (s,πm
h (s)) – min

{
Q̄m

h (s,πm
h (s)), H

}
. (5)

Assume that Q̄m
h (s,πm

h (s)) < H (otherwise, the claim holds). Then,

(5) = Qπ
m

h (s,πm
h (s)) – Q̄m

h (s,πm
h (s))

= c(s,πm
h (s)) – c̄m–1(s,πm

h (s)) – bm
c (s,πm

h (s)) – bm
p (s,πm

h (s))

+ (P – P̄m–1)(· | s,πm
h (s)) · Jπ

m

h+1 + EP̄m–1(·|s,πm
h (s))[ Jπ

m

h+1(s′) – J̄m
h+1(s′)︸ ︷︷ ︸

≤0 Induction hypothesis

]

≤ –bm
p (s,πm

h (s)) + (P – P̄m–1)(· | s,πm
h (s)) · Jπ

m

h+1. (6)
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We now focus on the last term. Observe that

(P – P̄m–1)(· | s,πm
h (s)) · Jπ

m

h+1 = (P – P̄m–1)(· | s,πm
h (s)) · J∗h+1 + (P – P̄m–1)(· | s,πm

h (s)) · (Jπ
m

h+1 – J∗h+1)

≤ bm
pv1,h(s,πm

h (s)) + (P – P̄m–1)(· | s,πm
h (s)) · (Jπ

m

h+1 – J∗h+1) (∩mEpv1(m) holds)
(a)
≤ bm

pv1,h(s,πm
h (s)) +

36H3B–1
? |S|Lm

nm–1(s,πm
h (s)) ∨ 1

+
B?

32H2 EP̄m–1(·|s,πm
h (s))

[
(Jπ

m

h+1 – J∗h+1)(s′)
]

(b)
≤ bm

pv1,h(s,πm
h (s)) +

36H3B–1
? |S|Lm

nm–1(s,πm
h (s)) ∨ 1

+
B?

32H2 EP̄m–1(·|s,πm
h (s))
[
(J̄m

h+1 – Jm
h+1)(s′)

]
(c)
≤

√
2VarP(·|s,πm

h (s))(J∗h+1)Lm

nm–1(s,πm
h (s)) ∨ 1

+
41H3B–1

? |S|Lm

nm–1(s,πm
h (s)) ∨ 1

+
B?

32H2 EP̄m–1(·|s,πm
h (s))
[
(J̄t–1,h+1 – Jm

h+1)(s′)
]
,

where (a) holds by applying Lemma B.13 while setting α = 32H2B–1
? , C1 = 2, C2 = 2 and bounding

2C2 + α|S|C1/2 ≤ 36H2B–1
? |S| (assumption holds since ∩mEp(m) holds), (b) holds by the induction

hypothesis, and (c) holds by plugging in bm
pv1,h. Plugging this back into (6) and plugging the explicit

form of the bonus bm
p (s, a) we get

(6) ≤ –
√

2Lm

√
VarP̄m–1(·|s,πm

h (s))(J
m
h+1) –

√
VarP(·|s,πm

h (s))(J∗h+1)√
nm–1(s,πm

h (s)) ∨ 1

–
21H3B–1

? |S|Lm

nm–1(s,πm
h (s)) ∨ 1

–
B?

32H2 EP̄m–1(·|s,πm
h (s))
[
J̄m

h+1(s′) – Jm
h+1(s′)

]
≤ B?

32H2 EP̄m–1(·|s,πm
h (s))
[
J∗h+1(s′) – Jm

h+1(s′)
]

+
21H3B–1

? Lm

nm–1(s,πm
h (s))

–
B?

32H2 EP̄m–1(·|s,πm
h (s))
[
J̄m

h+1(s′) – Jm
h+1(s′)

]
–

21H3B–1
? |S|Lm

nm–1(s,πm
h (s))

= 0,

where the last inequality holds by Lemma B.11 while setting α = 32H2B–1
? and bounding (5+α/2)B? ≤

21H3B–1
? . Combining all the above we concludes the proof as

Jπ
m

h (s) – J̄m
h (s) ≤ (5) ≤ (6) ≤ 0.

Finally, using similar techniques to Efroni et al. [2021], we can prove an additional high probability
bounds which hold alongside the basic good event G1.

Lemma B.3 (The Good Event). Let G1 be the event defined in Lemma B.1, and define the following
random variables.

Ym
1,h = J̄m

h (sm
h ) – Jm

h (sm
h )

Ym
2,h = VarP(·|sm

h ,am
h )(Jπ

m

h+1)

Ym
3 =

(
H∑

h=1

c(sm
h , am

h ) + cf (sm
h+1)

)2

Ym
4 =

(
hm∑
h=1

c(sm
h , am

h ) + cf (sm
h+1)I{hm = H}

)2

Ym
5 =

hm∑
h=1

c(sm
h , am

h ) + cf (sm
h+1)I{hm = H}.
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The second good event is the intersection of two events G2 = EOP∩EVar∩ESec1∩ESec2∩Ecost defined
as follows.

EOP =

{
∀h ∈ [H], M ≥ 1 :

M∑
m=1

E[Ym
1,h | Ūm

h ] ≤ 68H2LM +
(

1 +
1

4H

) M∑
m=1

Ym
1,h

}

EVar =

{
∀M ≥ 1 :

M∑
m=1

H∑
h=1

Ym
2,h ≤ 16H3LM + 2

M∑
m=1

H∑
h=1

E[Ym
2,h|Ūm]

}

ESec1 =

{
∀M ≥ 1 :

M∑
m=1

E[Ym
3 | Ūm] ≤ 68H4LM + 2

M∑
m=1

Ym
3

}

ESec2 =

{
∀M ≥ 1 :

M∑
m=1

Ym
4 ≤ 16H4LM + 2

M∑
m=1

E[Ym
4 | Ūm]

}

Ecost =

{
∀M ≥ 1 :

M∑
m=1

Ym
5 ≤ 8HLM + 2

M∑
m=1

E[Ym
5 | Ūm]

}
.

Then, the good event G = G1 ∩G2 holds with probability at least 1 – δ.

Proof. Event EOP. Fix h and M. We start by defining the random variable Wm = I{J̄m
h (s) – Jm

h (s) ≥
0 ∀h ∈ [H], s ∈ S}. Observe that Ym

h is Ūm
h measurable and also notice that Wm is Ūm measurable,

as both πm and J̄m
h are Ūm-measurable. Finally, define Ỹm = WmYm

h . Importantly, notice that
Ỹm ∈ [0, 2H] almost surely, by definition of Wm and since J̄m

h (s), Jm
h (s) ∈ [0, 2H] by the update rule.

Thus, using Lemma E.2 with C = 2H ≥ 1, we get

M∑
m=1

E[Ỹm
h | Ūm

h ] ≤
(

1 +
1

4H

) M∑
m=1

Ỹm
h + 68H2 log

2HM(M + 1)
δ

,

with probability greater than 1 – δ, and since Wm is Ūm-measurable, we can write

M∑
m=1

WmE[Ym
h |Ūm

h ] ≤
(

1 +
1

4H

) M∑
m=1

WmYm
h + 68H2 log

2HM(M + 1)
δ

. (7)

Importantly, notice that under G1, it holds that Wm ≡ 1 (by Lemma B.2). Therefore, applying the
union bound and setting δ = δ/(2HM(M + 1)) we get

P(EO ∩G1) ≤

≤
H∑

h=1

∞∑
M=1

P

({
M∑

m=1

E[Ym
h |Ūm

h ] ≥
(

1 +
1

4H

) M∑
m=1

Ym
h + 68H2 log

2HM(M + 1)
δ

}
∩G1

)

=
H∑

h=1

∞∑
M=1

P

({
M∑

m=1

WmE[Ym
h |Ūm

h ] ≥
(

1 +
1

4H

) M∑
m=1

WmYm
h + 68H2 log

2HM(M + 1)
δ

}
∩G1

)

≤
H∑

h=1

∞∑
M=1

P

(
M∑

m=1

WmE[Ym
h |Ūm

h ] ≥
(

1 +
1

4H

) M∑
m=1

WmYm
h + 68H2 log

2HM(M + 1)
δ

)

≤
H∑

h=1

∞∑
M=1

δ

2HM(M + 1)
= δ/2,

where the first relation is by a union bound, the second relation follows because Wm ≡ 1 under G1,
and the last relation is by (7). Finally, we have

P(G) ≤ P(G2 ∩G1) + 2P(G1) ≤ δ

2
+

2δ
4

= δ.

Replacing δ → δ/5 implies that P(EOP ∩G1) ≤ δ
10 .
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Event EVar. Fix h ∈ [H]. Observe that Ym
2,h is Ūm measurable and that 0 ≤ Ym

2,h ≤ 4H2. Applying the
second statement of Lemma E.2 we get that

M∑
m=1

Ym
2,h ≤ 2

M∑
m=1

E[Ym
2,h|Ūm] + 16H2 log

1
δ

.

By taking union bound, as in the proof of the first statement of the lemma on all h ∈ [H] and summing
over h ∈ [H], we get that with probability at least 1 – δ/10 for all M ≥ 1 it holds that

M∑
m=1

H∑
h=1

Ym
2,h ≤ 2

M∑
m=1

H∑
h=1

E[Ym
2,h|Ūm] + 16H3LM .

Event ESec1. Observe that Ym
3 is Ūm measurable and that 0 ≤ Ym

3 ≤ 4H2. Applying the first statement
of Lemma E.2 we get that

M∑
m=1

E[Ym
3 |Ūm] ≤ 2

M∑
m=1

Ym
3 + 50H4 log

1
δ

.

By taking union bound we get that with probability at least 1 – δ/10 the event holds.

Event ESec2. Observe that Ym
4 is Ūm measurable and that 0 ≤ Ym

4 ≤ 4H2. Applying the second
statement of Lemma E.2 we get that

M∑
m=1

Ym
4 ≤ 2

M∑
m=1

E[Ym
4 |Ūm] + 16H2 log

1
δ

.

By taking union bound we get that with probability at least 1 – δ/10 the event holds.

Event Ecost. Observe that Ym
5 is Ūm measurable and that 0 ≤ Ym

5 ≤ 2H. Applying the second
statement of Lemma E.2 we get that

M∑
m=1

Ym
5 ≤ 2

M∑
m=1

E[Ym
5 |Ūm] + 8H log

1
δ

.

By taking union bound we get that with probability at least 1 – δ/10 the event holds.

Combining all the above. We bound the probability of G as follows:

P(G) ≤ P(G1) + P(EOP ∩G1) + P(EVar) + P(ESec1) + P(ESec2) + P(Ecost) ≤ δ

2
+ 5 · δ

10
= δ.

B.2 ULCVI is admissible

By the definition of the algorithm and its regret bound in Theorem 5.1, it is clear that properties
1,2,3 of the admissible algorithm definition hold. Thus, it remains to show property 4 by bounding
ωULCVI. In order to show that ωULCVI = O(H4B–2

? |S|), we need to show that if the number of
visits to (s, a) is at least αH4B–2

? |S| log MH|S||A|
δ (for a large enough universal constant α > 0) then

‖P(· | s, a) – P̃t(· | s, a)‖1 ≤ 1/(18H) and |c(s, a) – c̃t
h(s, a)| ≤ B?/H (under the good event), where

P̃, c̃ are the estimations used by the algorithm to compute its optimistic Q-function (i.e., these are the
empirical transition estimate and the empirical cost estimate plus the bonus).

Indeed, by event ∩m>0Ep(m),

‖P(· | s, a) – P̃(· | s, a)‖1 = ‖P(· | s, a) – P̄(· | s, a)‖1

≤

√
2|S| log 16M3H|S|2 |A|

δ

n(s, a)
+

2|S| log 16M3H|S|2 |A|
δ

n(s, a)

≤ 4B?√
αH2 +

16B2
?

αH4 ≤
1

18H
,
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for α > 5800, where the first inequality holds by Jensen inequality and since event ∩m>0Ep(m) holds.
By the definition of the exploration bonuses we have

|c(s, a) – c̃h(s, a)| ≤ |c(s, a) – c̄(s, a)| + bc(s, a) + bp(s, a)

≤ 3

√
2B2

? log 16M3H|S|2 |A|
δ

n(s, a)
+

72H3B–1
? |S| log 16M3H|S|2 |A|

δ

n(s, a)
+

B? maxs′ J̄h+1(s′) – Jh+1(s′)
16H2

≤ 12B2
?√

αH2 +
800B?
αH

+
B?

16H
≤ B?

H
,

for α > 5800.

Finally, note that although our algorithm does not update the policy in the beginning of every episode
(only when the number of visits to some state-action pair is doubled), this only implies that the
constant α needs to be doubled.

B.3 Proof of Theorem 5.1

As in the proof of UCBVI, before establishing the proof of Theorem 5.1 we establish the following
key lemma that bounds the on-policy errors at time step h by the on-policy errors at time step h + 1
and additional additive terms. Given this result, the analysis follows with relative ease.
Lemma B.4 (ULCBVI, Key Recursion Bound). Conditioning on the good event G, the following
bound holds for all h ∈ [H].

M∑
m=1

J̄m
h (sm

h ) – Jm
h (sm

h ) ≤ 68H2LM +
M∑

m=1

310H3B–1
? |S|Lm

nm–1(sm
h , am

h ) ∨ 1
+

M∑
m=1

4
√

Lm

√
c(sm

h , am
h )√

nm–1(sm
h , am

h ) ∨ 1

+
M∑

m=1

2
√

2Lm

√
VarP(·|sm

h ,am
h )(Jπ

m

h+1)√
nm–1(sm

h , am
h ) ∨ 1

+
(

1 +
1

2H

)2 M∑
m=1

(
J̄m

h+1(sm
h+1) – Jm

h+1(sm
h+1)
)
.

Proof. We bound each of the terms in the sum as follows.

J̄m
h (sm

h ) – Jm
h (sm

h ) = 2bm
c (sm

h , am
h ) + 2bm

p (sm
h , am

h ) + EP̄m–1(·|sm
h ,am

h )[J̄
m
h+1(sm

h+1) – Jm
h+1(sm

h+1)]

= 2bm
c (sm

h , am
h ) + 2bm

p (sm
h , am

h )

+ EP(·|sm
h ,am

h )[J̄m
h+1(sm

h+1) – Jm
h+1(sm

h+1)] + (P̄m–1 – P)(·|sm
h , am

h ) ·
(
J̄m

h+1 – Jm
h+1

)
≤ 2bm

c (sm
h , am

h ) + 2bm
p (sm

h , am
h )

+
8H2|S|Lm

nm–1(sm
h , am

h ) ∨ 1
+
(

1 +
1

4H

)
EP(·|sm

h ,am
h )[J̄m

h+1(sm
h+1) – Jm

h+1(sm
h+1)], (8)

where the last relation holds by Lemma B.13 which upper bounds

(P̄m–1 – P)(·|sm
h , am

h ) ·
(
J̄m

h+1 – Jm
h+1

)
≤ 8H2|S|Lm

nm–1(sm
h , am

h ) ∨ 1
+

1
4H

EP(·|sm
h ,am

h )[J̄m
h+1(sm

h+1) – Jm
h+1(sm

h+1)]

by setting α = 4H, C1 = C2 = 2 and bounding HLm(2C2 + α|S|C1/2) ≤ 8H2|S|Lm (the assumption of
the lemma holds since the event ∩mEp(m) holds). Taking the sum over m ∈ [M] we get that

M∑
m=1

J̄m
h (sm

h ) – Jm
h (sm

h ) ≤
M∑

m=1

2bm
c (sm

h , am
h ) +

M∑
m=1

2bm
p (sm

h , am
h )

+
M∑

m=1

8H2|S|Lm

nm–1(sm
h , am

h ) ∨ 1
+

M∑
m=1

(
1 +

1
4H

)
EP(·|sm

h ,am
h )[J̄m

h+1(sm
h+1) – Jm

h+1(sm
h+1)].

(9)

The first sum is bounded in Lemma B.5 by
M∑

m=1

bm
c (sm

h , am
h ) ≤

M∑
m=1

√
2c(sm

h , am
h )Lm

nm–1(sm
h , am

h ) ∨ 1
+

M∑
m=1

10Lm

nm–1(sm
h , am

h ) ∨ 1
,
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and the second sum is bounded in Lemma B.6 by

M∑
m=1

bm
p (sm

h , am
h ) ≤

M∑
m=1

139H3B–1
? |S|Lm

nm–1(sm
h , am

h ) ∨ 1
+

M∑
m=1

√
2Lm

√
VarP(·|sm

h ,am
h )(Jπ

m

h+1)√
nm–1(sm

h , am
h ) ∨ 1

+
1

8H

M∑
m=1

EP(·|sm
h ,am

h )[J̄m
h+1(sm

h+1) – Jm
h+1(sm

h+1)].

Plugging this into (9) and rearranging the terms we get

M∑
m=1

J̄m
h (sm

h ) – Jm
h (sm

h ) ≤
M∑

m=1

2
√

2c(sm
h , am

h )Lm√
nm–1(sm

h , am
h ) ∨ 1

+
M∑

m=1

2
√

2Lm

√
VarP(·|sm

h ,am
h )(Jπ

m

h+1)√
nm–1(sm

h , am
h ) ∨ 1

+
M∑

m=1

286H3B–1
? |S|Lm

nm–1(sm
h , am

h ) ∨ 1
+
(

1 +
1

2H

) M∑
m=1

EP(·|sm
h ,am

h )[J̄m
h+1(sm

h+1) – Jm
h+1(sm

h+1)]

≤ 68H2LM +
M∑

m=1

2
√

2Lm√
nm–1(sm

h , am
h ) ∨ 1

+
M∑

m=1

286H3B–1
? |S|Lm

nm–1(sm
h , am

h ) ∨ 1

+
M∑

m=1

2
√

2Lm

√
VarP(·|sm

h ,am
h )(Jπ

m

h+1)√
nm–1(sm

h , am
h ) ∨ 1

+
(

1 +
1

2H

)2 M∑
m=1

J̄m
h+1(sm

h+1) – Jm
h+1(sm

h+1),

where the last inequality follows since the second good event holds.

Proof of Theorem 5.1. Start by conditioning on the good event which holds with probability greater
than 1 – δ. Applying the optimism-pessimism of the upper and lower value function we get

M∑
m=1

Jπ
m

1 (sm
1 ) – J∗1 (sm

1 ) ≤
M∑

m=1

J̄m
1 (sm

1 ) – Jm
1 (sm

1 ). (10)

Iteratively applying Lemma B.4 and bounding the exponential growth by
(
1 + 1

2H

)2H ≤ e ≤ 3, the
following upper bound on the cumulative regret is obtained.

(10) ≤ 204H3B–1
? LM +

M∑
m=1

H∑
h=1

930H3B–1
? |S|Lm

nm–1(sm
h , am

h ) ∨ 1

+
M∑

m=1

H∑
h=1

12
√

c(sm
h , am

h )Lm√
nm–1(sm

h , am
h ) ∨ 1

+ 9
M∑

m=1

H∑
h=1

√
LmVarP(·|sm

h ,am
h )(Jπ

m

h+1)√
nm–1(sm

h , am
h )

. (11)

We now bound each of the three sums in Eq. (11). We bound the first sum in Eq. (11) via standard
analysis as follows:

M∑
m=1

H∑
h=1

H3B–1
? |S|Lm

nm–1(sm
h , am

h ) ∨ 1
≤ H3B–1

? |S|LM

M∑
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H∑
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1
nm–1(sm

h , am
h ) ∨ 1

= H3B–1
? |S|LM

M∑
m=1

∑
s,a

∑H
h=1 I{sm

h = s, am
h = a}

nm–1(s, a) ∨ 1

≤ H3B–1
? |S|LM

M∑
m=1

∑
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I{nm–1(s, a) ≥ H}
∑H

h=1 I{sm
h = s, am

h = a}
nm–1(s, a) ∨ 1

+ 2H4B–1
? |S|2|A|LM

≤ 3H3B–1
? |S|2|A|LM log(MH) + 2H4B–1

? |S|2|A|LM ,

where the last inequality is by Lemma B.12 that bounds
∑

m,s,a I{nm–1(s, a) ≥ H}
∑H

h=1 I{sm
h =s,am

h =a}
nm–1(s,a)∨1 ≤

3|S||A| log(MH).
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The second sum in Eq. (11) is bounded as follows.

M∑
m=1

H∑
h=1

√
c(sm

h , am
h )Lm√

nm–1(sm
h , am

h ) ∨ 1
≤

M∑
m=1

H∑
h=1

√
c(sm

h , am
h )Lm√

nm–1(sm
h , am

h ) ∨ 1
I{nm–1(sm

h , am
h ) ≥ H} + 2H|S||A|LM

(a)
≤
√

LM

√√√√ M∑
m=1

H∑
h=1

c(sm
h , am

h ) ·

√√√√ M∑
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H∑
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I{nm–1(sm
h , am

h ) ≥ H}
nm–1(sm

h , am
h ) ∨ 1

+ 2H|S||A|LM

(b)
≤
√

LM

√√√√ M∑
m=1

H∑
h=1

c(sm
h , am

h ) ·
√

3|S||A| log(MH) + 2H|S||A|LM

≤
√

3|S||A|LM

√√√√ M∑
m=1

H∑
h=1

c(sm
h , am

h ) + cf (sm
H+1) + 2H|S||A|LM

≤ O
(√

B?|S||A|MLM + H3B–1
? |S|2|A| log3/2 MH|S||A|

δ

)
.

where (a) is by Cauchy-Schwartz, (b) is by Lemma B.12, and the last inequality is by Lemma B.7.
The third sum in Eq. (11) is bounded in Lemma B.8 by

M∑
m=1

H∑
h=1

√
LmVarP(·|sm

h ,am
h )(Jπ

m

h+1)√
nm–1(sm

h , am
h )

≤
√

LM

M∑
m=1

H∑
h=1

√
VarP(·|sm

h ,am
h )(Jπ

m

h+1)√
nm–1(sm

h , am
h )

(Lm increasing in m)

≤
√

Lm · O
(√

B2
?|S||A|M log(MH) + H3B–1

? |S|2|A| log
MH|S||A|

δ

)
. (Lemma B.8)

B.4 Bounds on the cumulative bonuses

Lemma B.5 (Bound on the Cumulative Cost Function Bonus). Conditioning on the good event the
following bound holds for all h ∈ [H].

M∑
m=1

bm
c (sm

h , am
h ) ≤

M∑
m=1

√
2c(sm

h , am
h )Lm

nm–1(sm
h , am

h ) ∨ 1
+

M∑
m=1

10Lm

nm–1(sm
h , am

h ) ∨ 1
.

Proof. By definition of bm
c and since the event ∩mEcv(m) holds, we have

M∑
m=1

bm
c (sm

h , am
h ) =

M∑
m=1

√√√√ 2Var
m–1
sm

h ,am
h
(c)Lm

nm–1(sm
h , am

h ) ∨ 1
+

5Lm

nm–1(sm
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h ) ∨ 1

≤
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√
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nm–1(sm
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h ) ∨ 1
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√√√√2Lm |Varsm
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h
(c) – Var
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h ,am
h ,t–1(c)|

nm–1(sm
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h ) ∨ 1
+

5Lm

nm–1(sm
h , am

h ) ∨ 1

≤
M∑

m=1

√
2Varsm

h ,am
h
(c)Lm

nm–1(sm
h , am

h ) ∨ 1
+

10Lm

nm–1(sm
h , am

h ) ∨ 1
,

where the first inequality holds since
√

a + b ≤
√

|a|+
√

|b|. Finally, notice that for every (s, a) ∈ S×A
the variance of the cost is bounded by the second moment, which is bounded by the expected value
c(s, a) since the random cost value is bounded in [0, 1].
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Lemma B.6 (Bound on the Cumulative Transition Model Bonus). Conditioning on the good event
the following bound holds for all h ∈ [H].

M∑
m=1

bm
p (sm

h , am
h ) ≤

M∑
m=1

139H3B–1
? |S|Lm

nm–1(sm
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h ) ∨ 1
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h ) ∨ 1

+
1

8H
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EP(·|sm
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Proof. First, by applying Lemma B.13 with α = 8H, C1 = C2 = 2 and HLm(2C2 + α|S|C1/2) ≤
12H2|S|Lm, we have
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m
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8
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12H2|S|Lm

nm–1(s, a) ∨ 1
. (12)

Thus, the bonus bp
t (s, a) can be upper bounded as follows.

bm
p (s, a) ≤

√
2

√
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m
h+1)Lm

nm–1(s, a) ∨ 1
+

1
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m
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≤
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m
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We bound the first term of (13) to establish the lemma. It holds that√
2Lm

√
VarP̄m–1(·|s,a)(J

m
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m
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.

Term (i) is bounded by Lemma B.11 (by setting α = 32H and (5 + α/2)B? ≤ 21H2),√
2Lm

√
VarP̄m–1(·|s,a)(J

m
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+
21H2Lm
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.

Following the same steps as in (12), we get
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8
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+
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,

and thus,

(i) ≤ 9
256H
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+
33H2|S|Lm
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.

Term (ii) is bounded as follows.

(ii) ≤
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h+1)√
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(By Lemma E.3)

≤
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αa2 + α
4 b2 for α = 64H)
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Thus, applying J̄m
h ≥ Jπ

m

h ≥ J∗h ≥ Jm
h (Lemma B.2) in the bounds of (i) and (ii) we get
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p (s, a) ≤ 1
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√
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,

and summing over m concludes the proof.

Lemma B.7 (Bound on Cost Term). Conditioning on the good event, it holds that
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h ) + cf (sm
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B?M + H5B–2
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δ

)
.

Proof. Denote by hm the last time step before reaching an unknown state-action pair (or H if it was
not reached). By the event Ecost we have
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)

,

where the second inequality follows since every state-action pair becomes known after the number of
visits is αH4B–2

? |S| log MH|S||A|
δ , and the last one by Lemma B.10.

Lemma B.8 (Bound on Variance Term). Conditioning on the good event, it holds that
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.
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Proof. Applying Cauchy-Schwartz inequality we get
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]√
|S||A| log(MH)

+ 7
√

|S||A|H3 log(MH)LM + 2H2|S||A| (
√

a + b ≤
√

a +
√

b)

(a)
= 3

√√√√√ M∑
m=1

E

( H∑
h=1

c(sm
h , am

h ) + cf (sm
h+1) – Jπm

1 (s1)

)2 ∣∣∣∣ Ūm
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where (a) is by law of total variance Azar et al. [2017], see Lemma B.14, (b) is because the variance
is bounded by the second moment, and the last inequality is by Lemma B.9.

B.5 Bounds on the second moment

Lemma B.9. Conditioning on the good event, it holds that
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.
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Proof. Denote by hm the last time step before reaching an unknown state-action pair (or H if it was
not reached). By the event ESec1 we have
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where the third inequality follows since every state-action pair becomes known after the number of
visits is αH4B–2

? |S| log MH|S||A|
δ , the forth inequality by event ESec2, and the last one by Lemma B.10.

Lemma B.10. Let m be an episode and hm be the last time step before an unknown state-action pair
was reached (or H if they were not reached). Further, denote by Cm =

∑hm
h=1 c(sm

h , am
h )+cf (sm

H+1)I{hm =
H} the cumulative cost in the episode until time hm. Then, under the good event, E[Cm | Ūm] ≤ 3B?
and E[(Cm)2 | Ūm] ≤ 2 · 104B2

?.

Proof. Consider the following finite-horizon MDPMm = (S ∪ {g}, A, Pm, H, cm, cm
f ) that contracts

unknown state-action pairs with a new goal state, i.e., cm(s, a) = c(s, a)I{s 6= g} and cm
f (s) = cf (s)I{s 6=

g} and
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Denote by Jm the cost-to-go function of πm in the MDPMm. Moreover, we slightly abuse notation
to let P̃m be the transition function induced by P̄m–1 in the MDPMm similarly to Pm, and J̃m the
cost-to-go function of πm with respect to P̄m–1 (and cost function c̃m = c̄m–1 – bm

c – bm
p ). By the value

difference lemma (see, e.g., Shani et al., 2020), for every s, h such that (s,πm
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where the last inequality follows by optimism and since J?h (s) ≤ B?. Thus, by Appendix B.2 (since
all state-action pairs inMm are known), we have that Jm

h (s) ≤ J∗h (s) + 2B? ≤ 3B?. Notice that Cm is
exactly the cost in the MDPMm, so E[Cm | Ūm] ≤ 3B?.

Similarly, we notice that E[(Cm)2 | Ūm] = E[(Ĉ)2], where Ĉ is the cumulative cost inMm, and we
override notation by denoting Ĉ =

∑H
h=1 c(sh, ah) + cf (sH+1). We split the time steps into Q blocks as

follows. We denote by t1 the first time step in which we accumulated a total cost of at least 3B? (or
H + 1 if it did not occur), by t2 the first time step in which we accumulated a total cost of at least 3B?
after t1, and so on up until tQ = H + 1. Then, the first block consists of time steps t0 = 1, . . . , t1 – 1,
the second block consists of time steps t1, . . . , t2 – 1, and so on. Since Jm

h (s) ≤ 3B? we must have
c(sh, ah) ≤ 3B? for all h = 1, . . . , H and thus in every such block the total cost is between 3B? and
6B?. Thus,
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by Jensen’s inequality. On the other hand,
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For (a) we used the fact that E[
∑ti+1–1

h=ti c(sh, ah) – Jti (sti ) + Jti+1 (sti+1 )] = 0 using the Bellman optimality
equations and conditioned on all past randomness up until time ti, and the fact that ti+1 is a stopping
time, in the following manner,

E
[ti+1–1∑

h=ti

c(sh, ah) – Jm
ti (sti ) + Jm

ti+1
(sti+1 )

]
= E
[ti+1–1∑

h=ti

c(sh, ah) – Jm
h (sh) + Jm

h+1(sh+1)
]

= E
[ti+1–1∑

h=ti

E
[
c(sh, ah) – Jm

h (sh) + Jm
h+1(sh+1) | sh

]]

= E
[ti+1–1∑

h=ti

c(sh, ah) + E
[
Jm

h+1(sh+1) | sh

]
– Jm

h (sh)
]

= 0.

Thus, we have
9B2

?E[Q]2 ≤ 324B2
?E[Q] + 18B2

?,
and solving for E[Q] we obtain E[Q] ≤ 37, so

E[(Cm)2 | Ūm] = E
[( H∑

h=1

ĉ(sh, ah) + ĉf (sH+1)
)2]
≤ 2 · 104B2

?.
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Lemma B.11 (Variance Difference is Upper Bounded by Value Difference). Assume that the value at
time step h + 1 is optimistic, i.e., Jm

h+1(s) ≤ J∗h+1(s) for all s ∈ S. Conditioning on the event ∩mEpv2(m)
it holds for all (s, a) ∈ S× A that

√
2Lm

∣∣√VarP̄m–1(·|s,a)(J
m
h+1) –

√
VarP(·|s,a)(J∗h+1)

∣∣√
nm–1(s, a) ∨ 1

≤ 1
α
EP̄m–1(·|s,a)

[
J∗h+1(s′) – Jm

h+1(s′)
]

+
(5 + α/2)B?Lm

nm–1(s, a) ∨ 1
,

for any α > 0.

Proof. Conditioning on ∩mEpv2(m), the following relations hold.∣∣∣√VarP̄m–1(·|s,a)(J
m
h+1) –

√
VarP(·|s,a)(J∗h+1)

∣∣∣ ≤ ∣∣∣√VarP̄m–1(·|s,a)(J
m
h+1) –

√
VarP̄m–1(·|s,a)(J∗h+1)

∣∣∣
+

√
12B2

?Lm

nm–1(s, a) ∨ 1

≤
√

VarP̄m–1(·|s,a)(J∗h+1 – Jm
h+1) +

√
12B2

?Lm

nm–1(s, a) ∨ 1

≤
√
EP̄m–1

[
(J∗h+1(s′) – Jm

h+1(s′))2
]

+

√
12B2

?Lm

nm–1(s, a) ∨ 1

≤
√

B?EP̄m–1

[
J∗h+1(s′) – Jm

h+1(s′)
]

+

√
12B2

?Lm

nm–1(s, a) ∨ 1
,

where the second inequality is by Lemma E.3, and the last relation holds since J∗h+1(s′), Jm
h+1(s′) ∈

[0, B?] (the first, by model assumption, and the second, by the update rule) and since J∗h+1(s′) ≥ Jm
h+1(s′)

by the assumption the value is optimistic. Thus,

√
2Lm

∣∣√VarP̄m–1(·|s,a)(J
m
h+1) –

√
VarP(·|s,a)(J∗h+1)

∣∣√
nm–1(s, a)

≤
√

EP̄m–1

[
J∗h+1(s′) – Jm

h+1(s′)
]√ 2B?Lm

nm–1(s, a) ∨ 1

+

√
24B?Lm

nm–1(s, a) ∨ 1

≤ 1
α
EP̄m–1

[
J∗h+1(s′) – Jm

h+1(s′)
]

+
(5 + α/2)B?Lm

nm–1(s, a) ∨ 1
,

where the last inequality is by Young’s inequality, ab ≤ 1
αa2 + α

4 b2.

B.6 Useful results for reinforcement learning analysis

Lemma B.12 (Cumulative Visitation Bound for Stationary MDP, e.g., Efroni et al., 2020, Lemma
23). It holds that

M∑
m=1

∑
s,a

I{nm–1(s, a) ≥ H}
∑H

h=1 I{sm
h = s, am

h = a}
nm–1(s, a) ∨ 1

≤ 3|S||A| log(MH).

Proof. Recall that we recompute the optimistic policy only in the end of episodes in which the
number of visits to some state-action pair was doubled. In this proof we refer to a sequence of
consecutive episodes in which we did not perform a recomputation of the optimistic policy by the
name of epoch. Let E be the number of epochs and note that E ≤ |S||A| log(MH) because the number
of visits to each state-action pair (s, a) can be doubled at most log(MH) times. Next, denote by ñe(s, a)
the number of visits to (s, a) until the end of epoch e and by Ñe(s, a) the number of visits to (s, a)
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during epoch e. The following relations hold for any fixed (s, a) pair.

M∑
m=1

I{nm–1(s, a) ≥ H}
∑H

h=1 I{sm
h = s, am

h = a}
nm–1(s, a) ∨ 1

=

=
E∑

e=1

I{ñe–1(s, a) ≥ H}
Ñe(s, a)
ñe–1(s, a)

=
E∑

e=1

I{ñe–1(s, a) ≥ H}
Ñe(s, a)
ñe(s, a)

ñe(s, a)
ñe–1(s, a)

≤ 3
E∑

e=1

I{ñe–1(s, a) ≥ H}
Ñe(s, a)
ñe(s, a)

= 3
E∑

e=1

I{ñe–1(s, a) ≥ H}
ñe(s, a) – ñe–1(s, a)

ne(s, a)

≤ 3
E∑

e=1

I{ñe–1(s, a) ≥ H} log
(

ñe(s, a)
ñe–1(s, a)

)
≤ 3I{ñE(s, a) ≥ H}(log ñE(s, a) – log(H))

≤ 3 log
(
ñE(s, a) ∨ 1

)
,

where the first inequality follows since ñe(s,a)
ñe–1(s,a) ≤

2ñe–1(s,a)+H
ñe–1(s,a) ≤ 3 for ñe–1(s, a) ≥ H, and the second

inequality follows by the inequality a–b
a ≤ log a

b for a ≥ b > 0. Applying Jensen’s inequality we
conclude the proof:

M∑
m=1

∑
s,a

I{nm–1(s, a) ≥ H}
∑H

h=1 I{sm
h = s, am

h = a}
nm–1(s, a) ∨ 1

≤ 3
∑
s,a

log
(
ñE(s, a) ∨ 1

)
≤ 3|S||A| log

(∑
s,a

ñE(s, a)

)
≤ 3|S||A| log(MH).

Lemma B.13 (Transition Difference to Next State Expectation, Efroni et al., 2021, Lemma 28). Let
Y ∈ R|S| be a vector such that 0 ≤ Y(s) ≤ 2H for all s ∈ S. Let P1 and P2 be two transition models
and n ∈ R|S||A|

+ . Let ∆P(· | s, a) ∈ R|S| and ∆P(s′|s, a) = P1(s′|s, a) – P2(s′|s, a). Assume that

∀(s, a, s′) ∈ S× A× S, h ∈ [H] : |∆P(s′|s, a)| ≤

√
C1LmP1(s′|s, a)

n(s, a) ∨ 1
+

C2Lm

n(s, a) ∨ 1
,

for some C1, C2 > 0. Then, for any α > 0.

|∆P(· | s, a) · Y| ≤ 1
α
EP1(·|s,a)

[
Y(s′)

]
+

HLm(2C2 + α|S|C1/2)
n(s, a) ∨ 1

.

Lemma B.14 (Law of Total Variance, e.g., Azar et al., 2017). For any π the following holds.

E

[
H∑

h=1

VarP(·|sh,ah)(Jπh+1) | π

]
= E

( H∑
h=1

c(sh, ah) + cf (sH+1) – Jπ1 (s1)

)2

| π

.
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C Extending the reduction to unknown B?

In this section we assume B? ≥ 1 to simplify presentation, but the results work similarly for B? < 1.
To handle unknown B?, we leverage techniques from the adversarial SSP literature [Rosenberg and
Mansour, 2020, Chen and Luo, 2021] for learning the diameter of an SSP problem. Recall that
the SSP-diameter D [Tarbouriech et al., 2020] is defined as D = maxs∈S minπ:s→A Tπ(s). So to
compute D we can find the optimal policy with respect to the constant cost function c1(s, a) = 1, and
compute its cost-to-go function. Rosenberg and Mansour [2020] utilize this observation to estimate
the SSP-diameter. They show that one can estimate the expected time from a state s to the goal
state g by running the Bernstein-SSP algorithm of Rosenberg et al. [2020] with unit costs for
L = Õ(D2|S|2|A|) episodes and setting the estimator to be the average cost per episode times 10.

Inspired by their approach, we use the Bernstein-SSP algorithm on the the actual costs, in
order to estimate the expected cost of the optimal policy. Although Bernstein-SSP suffers from
sub-optimal regret, we run it only for a small number of episodes and therefore we will only suffer
from a slightly larger additive factors in our regret bound, but keep minimax optimal regret for large
enough K.

By similar proofs to Lemmas 26 and 27 from Rosenberg and Mansour [2020, Appendix J], we
can show that the cost-to-go from state s can be estimated up to a constant multiplicative factor by
running Bernstein-SSP for L = Õ(T2

? |S|2|A|) episodes. This is demonstrated in the following
lemma, where the upper bound follows from the regret guarantees of Bernstein-SSP and the
lower bound follows from concentration arguments (and noticing that the regret is minimized by
playing the optimal policy, but even then it is not zero).

Lemma C.1. Let s ∈ S and L ≥ 2400T2
? |S|2|A| log3 KT? |S||A|

δ . Run Bernstein-SSP with initial
state s for L episodes and denote by B̃s the average cost per episode times 10. Then, with probability
1 – δ,

Jπ
?

(s) ≤ B̃s ≤ O(B?).

Thus, we use the first L visits to each state in order to estimate its cost-to-go. A state which was
visited at least L times will be called B?-known, and otherwise B?-unknown (not to be confused with
our previous definition of known state-action pair). To that end, we split the total time steps into E
epochs. In epoch e, we apply our reduction to a virtual MDPMe that is identical toM in B?-known
states, but turns B?-unknown states into zero-cost sinks (like the goal state). For every state s ∈ S we
maintain a Bernstein-SSP algorithm Bs. Every time we reach a B?-unknown state s, we run an
episode of Bs until the goal is reached.

Note that in the virtual MDPMe we can compute an upper bound on the optimal cost-to-go using
our estimates. Epoch e ends once some B?-unknown state s is visited L times and thus becomes
B?-known. Therefore the number of epochs E is bounded by |S|. The important change, introduced by
Chen and Luo [2021], is to not completely initialize our finite-horizon algorithm A in the beginning
of a new epoch as this leads to an extra |S| factor in the regret. Instead, algorithm A inherits the
experience (i.e., visit counters and accumulated costs) of the previous epoch in B?-known states.

The reduction without knowledge of B? is presented in Algorithm 4, and next we prove that it
maintains the same regret bound up to a slightly larger additive factor.

Theorem C.2. Let A be an admissible algorithm for regret minimization in finite-horizon MDPs
and denote its regret in M episodes by R̂A(M). Then, running Algorithm 4 with A ensures that, with
probability at least 1 – 2δ,

RK ≤ R̂A
(

4K + 4 · 104|S||A|ωA log
KT?|S||A|ωA

δ
+ 4 · 104T2

? |S|3|A| log3 KT?|S||A|
δ

)
+ O

(
B?

√
K log

KT?|S||A|ωA
δ

+ T?ωA|S||A| log2 KT?|S||A|ωA
δ

+ T3
? |S|3|A| log4 KT?|S||A|

δ

)
,

where ωA is a quantity that depends on the algorithm A and on |S|, |A|, H.

Using the reduction with the ULCVI algorithm, we can again obtain optimal regret for SSP.
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Theorem C.3. Running the reduction in Algorithm 4 with the finite-horizon regret minimization
algorithm ULCVI ensures, with probability at least 1 – 2δ,

RK = O
(

B?
√

|S||A|K log
KT?|S||A|

δ
+ T5

? |S|2|A| log6 KT?|S||A|
δ

+ T3
? |S|3|A| log4 KT?|S||A|

δ

)
.

Algorithm 4 REDUCTION FROM SSP TO FINITE-HORIZON MDP WITH UNKNOWN B?
1: input: state space S, action space A, initial state sinit, goal state g, confidence parameter δ, number

of episodes K, bound on the expected time of the optimal policy T? and algorithm A for regret
minimization in finite-horizon MDPs.

2: initialize a Bernstein-SSP algorithm Bs with initial state s and confidence parameter δ/|S|
for every s ∈ S.

3: set L = 104T2
? |S|2|A| log3 KT? |S||A|

δ , S1
known = {sinit} and Nf (s) = LI{s = sinit} for every s ∈ S.

4: run Bsinit for L episodes and set B̃sinit to be the average cost per episode times 10.
5: initialize A with state space Ŝ = S ∪ {g}, action space A, horizon H = 8T? log(8K), confidence

parameter δ
4|S| , terminal costs ĉf (s) = 8I{s = sinit}B̃sinit and bound on the expected cost of the

optimal policy 9B̃sinit .
6: initialize intervals counter m← 0, time steps counter t← 1 and epochs counter e← 1.
7: for k = L + 1, . . . , K do
8: set st ← sinit.
9: while st 6= g do

10: set m← m + 1, feed initial state st to A and obtain policy πm = {πm
h : Ŝ→ A}H

h=1.
11: for h = 1, . . . , H do
12: play action at = πm

h (st), suffer cost Ct ∼ c(st, at), and set sm
h = st, am

h = at, Cm
h = Ct.

13: observe next state st+1 ∼ P(· | st, at) and set t← t + 1.
14: if st = g or st 6∈ Se

known then
15: pad trajectory to be of length H and BREAK.
16: end if
17: end for
18: set sm

H+1 = st.
19: feed trajectory Um = (sm

1 , am
1 , . . . , sm

H , am
H , sm

H+1) and costs {Cm
h }H

h=1 to A.
20: if st 6∈ Se

known then
21: set Nf (st)← Nf (st) + 1 and run an episode of Bst .
22: if Nf (st) = L then
23: set e← e + 1 and Se

known ← Se–1
known ∪ {st}.

24: set B̃st to be the average cost per episode of Bst times 10.
25: reinitialize A by updating the terminal costs as ĉf (s) = 8I{s ∈ Se

known} maxs̃∈Se
known

B̃s̃,
updating the bound on the expected cost of the optimal policy 9 maxs̃∈Se

known
B̃s̃ and

deleting the history of A only in state st.
26: end if
27: end if
28: end while
29: end for

C.1 Proof of Theorem C.2

We follow the analysis of the known B? case under the event that Lemma C.1 holds for all states
(which happens with probability at least 1 – δ), i.e., Jπ

?

(s) ≤ B̃s ≤ O(B?) for every s ∈ S. We start
by decomposing the regret similarly to Lemma 4.1. Note that now there is an additional term that
comes from the regret of the |S| Bernstein-SSP algorithms that are used to estimate B?.
Lemma C.4. For H = 8T? log(8K), we have the following bound on the regret of Algorithm 4:

RK ≤ R̂A(M) +
M∑

m=1

(
H∑

h=1

Cm
h + ĉf (sm

H+1) – Ĵπ
m

1 (sm
1 )

)
+ O

(
T2
?B?|S|3|A| log3 KT?|S||A|

δ

)
, (14)

where M is the total number of intervals.
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Remark 6. Note that now each interval is considered in the context of the current epoch, i.e., the
current B?-known states. The finite-horizon cost-to-go Ĵπ

m
is with respect to the MDP of B?-known

states. Moreover, for interval m that ends in a B?-unknown state, the last state in the trajectory sm
H+1

will be a B?-unknown state and the length of the interval may be shorter than H (just like intervals
that end in the goal state).

Proof. Every interval ends either in the goal state, in a B?-known state or in a B?-unknown state. The
first two cases are similar to the proof of Lemma 4.1 because our estimates B̃s in all B?-known states
s are upper bounds on Jπ

?

(s). Importantly, we do not initialize A in the end of an epoch and this
allows us to get its regret bound without an extra |S| factor. The reason is that A is an admissible (and
thus optimistic) algorithm, so it operates based on the observations it collected. Another important
note is that the cost in the virtual MDPMe is always bounded by the cost in the actual MDPM.

We now focus on the last case. Recall that if interval m ends in a B?-unknown state s, then the
terminal cost is 0 and we run an episode of the Bernstein-SSP algorithm Bs. Thus, the excess
cost of running Bernstein-SSP algorithms is bounded by |S| times the Bernstein-SSP regret
plus |S|B?L, i.e., we can bound it as follows

|S|B?L + O
(

B3/2
? |S|2

√
|A|L log

KT?|S||A|
δ

+ T3/2
? |S|3|A| log2 KT?|S||A|

δ

)
.

To finish the proof we plug in the definition of L.

Next, we bound the number of intervals. Again, we get a similar bound to Lemma 4.3 but with an
additional term for all the intervals that ended in a B?-unknown state (there are at most |S|L such
intervals).
Lemma C.5. Assume that the reduction is performed using an admissible algorithm A. Then, with
probability at least 1 – 3δ/8,

M ≤ 4
(

K + 104|S||A|ωA log
KT?|S||A|ωA

δ
+ 104T2

? |S|3|A| log3 KT?|S||A|
δ

)
.

Proof. The proof is based on the claim that in every interval there is a probability of at least 1/2 that
the agent reaches either the goal state, an unknown state-action pair or a B?-unknown state. This
is proved similarly to Lemma A.3 since we can look at the MDP of B?-known states, and then the
claim of Lemma A.3 is equivalent to reaching either the goal state, an unknown state-action pair or a
B?-unknown state.

With this claim the proof follows easily by following the proof of Lemma 4.3. We simply define
Xm to be 1 if an unknown state-action pair or the goal or a B?-unknown state were reached during
interval m (and 0 otherwise). Then, we have

M∑
m=1

Xm ≤ K + |S||A|ωA log
MH|S||A|

δ
+ |S|L,

which implies the Lemma following the same argument based on Freedman’s inequality.

Finally, we bound the deviation of the actual cost in each interval from its expected value. The proof
is exactly the same as Lemma 4.2. The second moment of the accumulated cost until reaching the
goal, an unknown state-action pair or a B?-unknown state is of order B2

?, and therefore in almost all
intervals (except for a finite number) the accumulated cost will be of order B? with high probability
(in other intervals the cost is trivially bounded by H + O(B?)).
Lemma C.6. Assume that the reduction is performed using an admissible algorithm A. Then, the
following holds with probability at least 1 – 3δ/8,

M∑
m=1

(
H∑

h=1

Cm
h + ĉf (sm

H+1) – Ĵπ
m

1 (sm
1 )

)
= O

(
B?

√
M log

M
δ

+ (H + B?)ωA|S||A| log
MKT?|S||A|

δ

)

+ O
(

(H + B?)T2
? |S|3|A| log3 KT?|S||A|

δ

)
.

The proof of the theorem is finished by combining Lemmas C.4 to C.6 together with the guarantees
of the admissible algorithm A and Lemma C.1, similarly to Theorem 3.1.
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D Lower bound

In this section we prove Theorem 2.3 which lower bounds the expected regret of any learning
algorithm for the case B? < 1. It complements the lower bound found in Rosenberg et al. [2020] for
the case B? ≥ 1.

By Yao’s minimax principle, in order to derive a lower bound on the learner’s regret, it suffices to
show a distribution over MDP instances that forces any deterministic learner to suffer a regret of
Ω(
√

B?|S||A|K) in expectation.

To construct this distribution, we follow Rosenberg et al. [2020] with a few modifications. We initially
consider the simpler setting with two states: an initial state and the goal state. We now embed a hard
MAB instance into our problem where the optimal action has an expected cost of B?. To that end,
consider a distribution over MDPs where a special action a? is chosen a-priori uniformly at random.
Then, all actions lead to the goal state g with probability 1. The cost Ck(sinit, a?) chosen at episode k
is 1 w.p. B? and 0 otherwise. The cost of any other action a 6= a? is 1 w.p. B? + ε and 0 otherwise,
where ε ∈ (0, 1/8) is a constant to be determined. Thus the optimal policy will always play a? and we
have Jπ

?

(sinit) = B?.

Fix any deterministic learning algorithm, we shall now quantify the regret of the learner in terms of
the number of times that it plays a?. Indeed, we have that the optimal cost is B?, and the learner loses
ε in the regret each time she plays an action other than a?. Therefore,

E[RK] ≥ ε · (K – E[N]),

where N is the number of times a? was chosen in sinit.

We now introduce an additional distribution of the costs which denote by Punif. Punif is identical to
the distribution over the costs defined above, and denoted by P, except that P[Ck(sinit, a) = 1] = B? + ε
for all actions a ∈ A regardless of the choice of a?. We denote expectations over Punif by Eunif,
and expectations over P by E. The following lemma uses standard lower bound techniques used
for multi-armed bandits (see, e.g., Jaksch et al., 2010, Theorem 13) to bound the difference in the
expectation of N when the learner plays in P compared to when it plays in Punif.
Lemma D.1. Suppose that B? ≤ 1

2 . Denote by Punif,a, Eunif,a, Pa, Ea the distributions and expectations
defined above conditioned on a? = a. For any deterministic learner we have that Ea[N] ≤ Eunif,a[N] +
εK
√
Eunif,a[N]/B?.

Proof. Fix any deterministic learner. Let us denote by C(k) the sequence of costs observed by the
learner up to episode k and including. Now, as N ≤ K and the fact that N is a deterministic function
of C(K), Ea[N] ≤ Eunif,a[N] + K · TV(Punif,a[C(K)],P[C(K)]), and Pinsker’s inequality yields

TV(Punif,a[C(K)],P[C(K)]) ≤
√

1
2

KL(Punif,a[C(K)] ‖ Pa[C(K)]). (15)

Next, the chain rule of the KL divergence obtains

KL(Punif,a[C(K)] ‖ Pa[C(K)])

=
K∑

k=1

∑
C(k)

Punif,a[C(k)] · KL(Punif,a[Ck(sinit, ak) | C(k)] ‖ Pa[Ck(sinit, ak) | C(k)]),

where ak is the action chosen by the learner at episode k. (Recall that after which the model transition
to the goal state and the episode ends.)

Observe that at any episode, since the learning algorithm is deterministic, the learner chooses an
action given C(k) regardless of whether C(k) was generated under P or under Punif,a. Thus, the
KL(Punif,a[Ck(sinit, ak) | C(k)] ‖ Pa[Ck(sinit, ak) | C(k)]) is zero if ak 6= a?, and otherwise

KL(Punif,a[Ck(sinit, ak) | C(k)] ‖ Pa[Ck(sinit, ak) | C(k)])

= (B? + ε) log
(

1 +
ε

B?

)
+ (1 – B? – ε) log

(
1 –

ε

1 – B?

)
≤ ε2

B?(1 – B?)
,
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where we used that log(1 + x) ≤ x for all x > –1, and since we assume B? ≤ 1
2 and ε < 1

8 that imply
–ε/(1 – B?) ≥ – 1

4 > –1. Plugging the above back into Eq. (15) and using B? ≤ 1
2 gives the lemma.

In the following result, we combine the lemma above with standard techniques from lower bounds of
multi-armed bandits (see Auer et al., 2002 for example).
Theorem D.2. Suppose that B? ≤ 1

2 , ε ∈ (0, 1
8 ) and |A| ≥ 2. For the problem described above we

have that

E[RK] ≥ εK
(

1
2

– ε
√

K
|A|B?

)
.

Proof of Theorem D.2. Note that as under Punif the cost distributions of all actions are identical.
Denote by Na the number of times that the learner chooses action a in sinit. Therefore,∑

a∈A

Eunif,a[N] =
∑
a∈A

Eunif[Na] = Eunif

[∑
a∈A

Na

]
= K. (16)

Recall that a? is sampled uniformly at random before the game starts. Then,

E[RK] =
1

|A|

∑
a∈A

Ea[RK]

≥ K –
1

|A|

∑
a∈A

Ea[N]

≥ K –
1

|A|

∑
a∈A

(
Eunif,a[N] + εK

√
Eunif,a[N]/B?

)
(Lemma D.1)

≥ K –
1

|A|

∑
a∈A

Eunif,a[N] + εK

√
1

|A|B?

∑
a∈A

Eunif,a[N] (Jensen’s inequality)

= K –
K
|A|

+ εK
√

K
|A|B?

, (Eq. (16))

The theorem follows from |A| ≥ 2 and by rearranging.

Proof of Theorem 2.3. Consider the following MDP. Let S be the set of states disregarding g. The
initial state is sampled uniformly at random from S. Each s ∈ S has its own special action a?s . All
actions transition to the goal state with probability 1. The cost Ck(s, a) of action a 6= a?s in episode k
and state s is 1 with probability B? + ε and 0 otherwise. The cost of Ck(s, a?s ) is 1 with probability B?
and 0 otherwise.

Note that for each s ∈ S, the learner is faced with a simple problem as the one described above from
which it cannot learn about from other states s′ 6= s. Therefore, we can apply Theorem D.2 for each
s ∈ S separately and lower bound the learner’s expected regret the sum of the regrets suffered at
each s ∈ S, which would depend on the number of times s ∈ S is drawn as the initial state. Since
the states are chosen uniformly at random there are many states (constant fraction) that are chosen
Θ(K/|S|) times. Summing the regret bounds of Theorem D.2 over only these states and choosing ε
appropriately gives the sought-after bound.

Denote by Ks the number of episodes that start in each state s ∈ S.

E[RK] ≥
∑
s∈S

E
[
εKs

(1
2

– ε
√

Ks

|A|B?

)]
=
εK
2

– ε2

√
1

|A|B?

∑
s∈S

E[K3/2
s ]. (17)

Applying Cauchy-Schwartz inequality gives∑
s∈S

E[K3/2
s ] ≤

∑
s∈S

√
E[Ks]

√
E[K2

s ] =
∑
s∈S

√
E[Ks]

√
E[Ks]2 + Var[Ks]

=
∑
s∈S

√
K
|S|

√
K2

|S|2
+

K
|S|

(
1 –

1
|S|

)
≤ K

√
2K
|S|

,
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where we have used the expectation and variance formulas of the Binomial distribution. The lower
bound is now given by applying the inequality above in Eq. (17) and choosing ε = 1

8

√
B?|A||S|/K.
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E General useful results

Lemma E.1 (Freedman’s Inequality). Let {Xt}t≥1 be a real valued martingale difference sequence
adapted to a filtration {Ft}t≥0. If |Xt | ≤ R a.s. then for any η ∈ (0, 1/R), T ∈ N it holds with
probability at least 1 – δ,

T∑
t=1

Xt ≤ η
T∑

t=1

E[X2
t |Ft–1] +

log(1/δ)
η

.

Lemma E.2 (Consequences of Freedman’s Inequality for Bounded and Positive Sequence of Random
Variables, e.g., Efroni et al., 2021, Lemma 27). Let {Yt}t≥1 be a real valued sequence of random
variables adapted to a filtration {Ft}t≥0. Assume that for all t ≥ 1 it holds that 0 ≤ Yt ≤ C a.s., and
T ∈ N. Then, each of the following inequalities hold with probability at least 1 – δ.

T∑
t=1

E[Yt |Ft–1] ≤
(

1 +
1

2C

) T∑
t=1

Yt + 2(2C + 1)2 log
1
δ

T∑
t=1

Yt ≤ 2
T∑

t=1

E[Yt |Ft–1] + 4C log
1
δ

.

Lemma E.3 (Standard Deviation Difference, e.g., Zanette and Brunskill, 2019). Let V1, V2 : S→ R
be fixed mappings. Let P(s) be a probability measure over the state space. Then,

√
Var(V1) –√

Var(V2) ≤
√

Var(V1 – V2).
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