
Supplementary for: Momentum Centering and
Asynchronous Update for Adaptive Gradient Methods

Contents

1 Analysis on convergence conditions 2
1.1 Convergence analysis for Problem 1 in the main paper 2

1.1.1 Numerical validations . 6
1.2 Convergence analysis for Problem 2 in the main paper 7
1.3 Numerical experiments . 9

2 Convergence Analysis for stochastic non-convex optimization 13
2.1 Problem definition and assumptions . 13
2.2 Convergence analysis of Async-optimizers in stochastic non-convex optimization 13

2.2.1 Validation on numerical accuracy of sum of generalized harmonic series 15
2.3 Convergence analysis of Async-moment-optimizers in stochastic non-convex

optimization . 16

3 Experiments 20
3.1 Centering of second momentum does not suffer from numerical issues 20
3.2 Image classification with CNN . 21
3.3 Neural Machine Translation with Transformers 24
3.4 Generative adversarial networks . 24

1

1 Analysis on convergence conditions

1.1 Convergence analysis for Problem 1 in the main paper

Lemma 1.1. There exists an online convex optimization problem where Adam (and RM-
Sprop) has non-zero average regret, and one of the problem is in the form

ft(x) =

{
Px, if t mod P = 1

−x, Otherwise
x ∈ [−1, 1],∃P ∈ N, P ≥ 3 (1)

Proof. See [1] Thm.1 for proof.

Lemma 1.2. For the problem defined above, there’s a threshold of β2 above which RMSprop
converge.

Proof. See [2] for details.

Lemma 1.3 (Lemma.3.3 in the main paper). For the problem defined by Eq. (1), ACProp
algorithm converges ∀β1, β2 ∈ (0, 1),∀P ∈ N, P ≥ 3.

Proof. We analyze the limit behavior of ACProp algorithm. Since the observed gradient
is periodic with an integer period P , we analyze one period from with indices from kP to
kP + P , where k is an integer going to +∞.

From the update of ACProp, we observe that:

mkP = (1− β1)
kP∑
i=1

βkP−i1 × (−1) + (1− β1)
k−1∑
j=0

β
kP−(jP+1)
1 (P + 1) (2)(

For each observation with gradient P,we break it into P = −1 + (P + 1)
)

= −(1− β1)
kP∑
i=1

βkP−i1 + (1− β1)(P + 1)β−11

k−1∑
j=0

β
P (k−j)
1 (3)

= −(1− βkP1) + (1− β1)(P + 1)βP−11

1− β(k−1)P
1

1− βP1
(4)

lim
k→∞

mkP = −1 + (P + 1)(1− β1)βP−11

1

1− βP1
=

(P + 1)βP−11 − PβP1 − 1

1− βP1
(5)(

Since β1 ∈ [0, 1)
)

Next, we derive limk→∞ SkP . Note that the observed gradient is periodic, and limk→∞mkP =
limk→∞mkP+P , hence limk→∞ SkP = limk→∞ SkP+P . Start from index kP , we derive vari-
ables up to kP + P with ACProp algorithm.

index = kP,

mkP , SkP (6)

2

index = kP + 1,

mkP+1 = β1m0 + (1− β1)P (7)

SkP+1 = β2SkP + (1− β2)(P −mkP)2 (8)

index = kP + 2,

mkP+2 = β1mkP+1 + (1− β1)× (−1) (9)

= β2
1mkP + (1− β1)β1P + (1− β1)× (−1) (10)

SkP+2 = β2SkP+1 + (1− β2)(−1−mkP+1)
2 (11)

= β2
2SkP + (1− β2)β2(P −mkP)2 + (1− β2)

[
β1(P −mkP)− (P + 1)

]2
(12)

index = kP + 3,

mkP+3 = β1mkP+2 + (1− β1)× (−1) (13)

= β3
1mkP + (1− β1)β2

1P + (1− β1)β1 × (−1) + (1− β1)× (−1) (14)

SkP+3 = β2S2 + (1− β2)(−1−mkP+2)
2 (15)

= β3
2SkP + (1− β2)β2

2(P −mkP)2

+ (1− β2)β2
[
β1(P −mkP)− (P + 1)

]2
(β2 + β2

1) (16)

index = kP + 4,

mkP+4 = β4
1mkP + (1− β1)β3

1P + (−1)(1− β1)(β2
1 + β1 + 1) (17)

SkP+4 = β2SkP+3 + (1− β2)(−1−mkP+3)
2 (18)

= β4
2SkP + (1− β2)β3

2(P −mkP)2

+ (1− β2)β2
[
β1(P −mkP)− (P + 1)

]2
(β2

2 + β2β
2
1 + β4

1) (19)

· · ·
index = kP + P,

mkP+P = βP1 mkP + (1− β1)βP−11 P + (−1)(1− β1)
[
βP−21 + βP−31 + ...+ 1

]
(20)

= βP1 mkP + (1− β1)βP−11 P + (β1 − 1)
1− βP−11

1− β1
(21)

SkP+P = βP2 SkP + (1− β2)βP−12 (P −mkP)2

+ (1− β2)
[
β1(P −mkP)− (P + 1)

]2(
βP−22 + βP−32 β2

1 + ...+ β0
2β

2P−4
1

)
(22)

= βP2 SkP + (1− β2)βP−12 (P −mkP)2

+ (1− β2)
[
β1(P −mkP)− (P + 1)

]2
βP−22

1− (β2
1/β2)

P−1

1− (β2
1/β2)

(23)

As k goes to +∞, we have

lim
k→∞

mkP+P = lim
k→∞

mkP (24)

lim
k→∞

SkP+P = lim
k→∞

SkP (25)

3

From Eq. (21) we have:

mkP+P =
(P + 1)βP−11 − PβP1 − 1

1− βP1
(26)

which matches our result in Eq. (6). Similarly, from Eq. (23), take limit of k → ∞, and
combine with Eq. (25), we have

lim
k→∞

SkP =
1− β2
1− βP2

[
βP−12 (P − lim

k→∞
mkP)2 +

[
β1(P − lim

k→∞
mkP)− (P + 1)

]2
βP−22

1− (β2
1/β2)

P−1

1− (β2
1/β2)

]
(27)

Since we have the exact expression for the limit, it’s trivial to check that

Si ≥ SkP , ∀i ∈ [kP + 1, kP + P], i ∈ N, k →∞ (28)

Intuitively, suppose for some time period, we only observe a constant gradient -1 without
observing the outlier gradient (P); the longer the length of this period, the smaller is the
corresponding S value, because S records the difference between observations. Note that
since last time that outlier gradient (P) is observed (at index kP + 1 − P), index kP has
the longest distance from index kP + 1 − P without observing the outlier gradient (P).
Therefore, SkP has the smallest value within a period of P as k goes to infinity.

For step kP + 1 to kP + P , the update on parameter is:

index = kP + 1,−∆kP+1
x =

α0√
kP + 1

P√
SkP + ε

(29)

index = kP + 2,−∆kP+2
x =

α0√
kP + 2

−1√
SkP+1 + ε

(30)

...

index = kP + P,−∆kP+P
x =

α0√
kP + P

−1√
SkP+P−1 + ε

(31)

So the negative total update within this period is:

α0√
kP + 1

P√
SkP + ε

−

[
α0√
kP + 2

1√
SkP+1 + ε

+ ...+
α0√

kP + P

1√
SkP+P + ε

]
︸ ︷︷ ︸

P−1 terms

(32)

≥ α0√
kP + 1

P√
SkP + ε

−

[
α0√
kP + 1

1√
SkP + ε

+ ...+
α0√
kP + 1

1√
SkP + ε

]
︸ ︷︷ ︸

P−1 terms

(33)(
Since SkP is the minimum within the period

)
=

α0√
SkP + ε

1√
kP + 1

(34)

4

where α0 is the initial learning rate. Note that the above result hold for every period of
length P as k gets larger. Therefore, for some K such that for every k > K, mkP and SkP
are close enough to their limits, the total update after K is:

∞∑
k=K

α0√
SkP + ε

1√
kP + 1

≈ α0√
limk→∞ SkP + ε

1√
P

∞∑
k=K

1√
k

If K is sufficiently large (35)

where limk→∞ SkP is a constant determined by Eq. (27). Note that this is the negative
update; hence ACProp goes to the negative direction, which is what we expected for this
problem. Also considering that

∑∞
k=K

1√
k
→∞, hence ACProp can go arbitrarily far in the

correct direction if the algorithm runs for infinitely long, therefore the bias caused by first
K steps will vanish with running time. Furthermore, since x lies in the bounded region of
[−1, 1], if the updated result falls out of this region, it can always be clipped. Therefore,
for this problem, ACProp always converge to x = −1,∀β1, β2 ∈ (0, 1). When β2 = 1, the
denominator won’t update, and ACProp reduces to SGD (with momentum), and it’s shown
to converge.

Lemma 1.4. For any constant β1, β2 ∈ [0, 1) such that β1 <
√
β2, there is a stochastic

convex optimization problem for which Adam does not converge to the optimal solution. One
example of such stochastic problem is:

ft(x) =

{
Px with probability 1+δ

P+1

−x with probability P−δ
P+1

x ∈ [−1, 1] (36)

Proof. See Thm.3 in [1].

Lemma 1.5. For the stochastic problem defined by Eq. (36), ACProp converge to the optimal
solution, ∀β1, β2 ∈ (0, 1).

Proof. The update at step t is:

∆t
x = −α0√

t

gt√
St−1 + ε

(37)

Take expectation conditioned on observations up to step t− 1, we have:

E∆t
x = −α0√

t

Etgt√
St−1 + ε

(38)

= − α0
√
t
(√

St−1 + ε
)Etgt (39)

= − α0
√
t
(√

St−1 + ε
)[P 1 + δ

P + 1
− P − δ
P + 1

]
(40)

= − α0δ
√
t
(√

St−1 + ε
) (41)

5

Figure 1: Behavior of St and gt in ACProp of multiple periods for problem (1). Note that
as k →∞, the behavior of ACProp is periodic.

≤ − α0δ
√
t
(
P + 1 + ε

) (42)

where the last inequality is due to St ≤ (P +1)2, because St is a smoothed version of squared
difference between gradients, and the maximum difference in gradient is P + 1. Therefore,
for every step, ACProp is expected to move in the negative direction, also considering that∑∞

t=1
1√
t
→∞, and whenever x < −1 we can always clip it to -1, hence ACProp will drift x

to -1, which is the optimal value.

1.1.1 Numerical validations

We validate our analysis above in numerical experiments, and plot the curve of St and gt for
multiple periods (as k → ∞) in Fig. 1 and zoom in to a single period in Fig. 2. Note that
the largest gradient P (normalized as 1) appears at step kP + 1, and S takes it minimal
at step kP (e.g. SkP is the smallest number within a period). Note the update for step
kP + 1 is gkP+1/

√
SkP , it’s the largest gradient divided the smallest denominator, hence the

net update within a period pushes x towards the optimal point.

6

Figure 2: Behavior of St and gt in ACProp of one period for problem (1).

1.2 Convergence analysis for Problem 2 in the main paper

Lemma 1.6 (Lemma 3.4 in the main paper). For the problem defined by Eq. (43), consider
the hyper-parameter tuple (β1, β2, P), there exists cases where ACProp converges but AdaShift
with n = 1 diverges, but not vice versa.

ft(x) =

P/2× x, t%P == 1

−x, t%P == P − 2

0, otherwise

P > 3, P ∈ N, x ∈ [0, 1]. (43)

Proof. The proof is similar to Lemma. 1.3,we derive the limit behavior of different methods.

index = kP,

mkP , vkP , skP

index = kP + 1,

mkP+1 = mkPβ1 + (1− β1)P/2 (44)

vkP+1 = vkPβ2 + (1− β2)P 2/4 (45)

skP+1 = skPβ2 + (1− β2)(P/2−mkP)2 (46)

...

index = kP + P − 2,

mkP+P−2 = mkPβ
P−2
1 + (1− β1)

P

2
βP−31 + (1− β1)× (−1) (47)

vkP+P−2 = vkPβ
P−2
2 + (1− β2)

P 2

4
βP−32 + (1− β2) (48)

7

skP+P−2 = skPβ
P−2
2 + (1− β2)βP−32 (

P

2
−mkP)2 + (1− β2)βP−42 m2

kP+1 + ...

+ (1− β2)β2m2
kP+P−4 + (1− β2)(mkP+P−3 + 1)2 (49)

index = kP + P − 1,

mkP+P−1 = mkP+P−1β1 (50)

vkP+P−1 = vkP+P−2β2 (51)

skP+P−1 = skPβ
P−1
2 + (1− β2)βP−12 (

P

2
−mkP)2 + (1− β2)βP−32 m2

kP+1 + ...

+ (1− β2)β2
2m

2
kP+P−4 + (1− β2)β2(mkP+P−3 + 1)2 + (1− β2)m2

kP+P−2
(52)

index = kP + P,

mkP+P = mkPβ
P
1 + (1− β1)

P

2
βP−11 + (1− β1)(−1)β2

1 (53)

vkP+P = vkPβ
P
2 + (1− β2)

P 2

4
βP−12 + (1− β2)β2

2 (54)

skP+p = skPβ
P
2 + (1− β2)βP−12 (

P

2
−mkP)2 + (1− β2)βP−22 m2

kP+1 + ...

+ (1− β2)β3
2m

2
kP+P−4 + (1− β2)β2

2(mkP+P−3 + 1)2

+ (1− β2)m2
kP+P−2β2 + (1− β2)m2

kP+P−1 (55)

Next, we derive the exact expression using the fact that the problem is periodic, hence
limk→∞mkP = limk→∞mkP+P , limk→∞ skP = limk→∞ skP+P , limk→∞ vkP = limk→∞ vkP+P ,
hence we have:

lim
k→∞

mkP = lim
k→∞

mkPβ
P
1 + (1− β1)

P

2
βP−11 + (1− β1)(−1)β2

1 (56)

lim
k→∞

mkP =
1− β1
1− βP1

[P
2
βP−11 − β2

1

]
(57)

lim
k→∞

mkP−1 =
1

β1
lim
k→∞

mkP (58)

lim
k→∞

mkP−2 =
1

β1

[
lim
k→∞

mkP−1 − (1− β1)0
]

(59)

lim
k→∞

mkP−3 =
1

β1

[
lim
k→∞

mkP−2 − (1− β1)(−1)
]

(60)

Similarly, we can get

lim
k→∞

vkP =
1− β2
1− βP2

[P 2

4
βP−12 + β2

2

]
(61)

lim
k→∞

vkP−1 =
1

β2
lim
k→∞

vkP (62)

lim
k→∞

vkP−2 =
1

β2
lim
k→∞

vkP−1 (63)

lim
k→∞

vkP−3 =
1

β2

[
lim
k→∞

vkP−2 − (1− β2)× 12
]

(64)

8

Figure 3: Value of s+

s−
− v+

v−
when β1 = 0.2 Figure 4: Value of s+

s−
− v+

v−
when β1 = 0.9

For ACProp, we have the following results:

lim
k→∞

skP = lim
k→∞

1− β2
1− βP2

[
βP−42 (

P

2
−mkP)2 + β3

2

βP−52 − β2(P−4)
1 β2

1− β2
1β2

+ β2
2(mkP+P−3 + 1)2

+ β2m
2
kP+P−2 +m2

kP+P−1

]
(65)

lim
k→∞

skP−1 = lim
k→∞

1

β2

[
skP − (1− β2)m2

kP

]
(66)

lim
k→∞

skP−2 = lim
k→∞

1

β2

[
skP−1 − (1− β2)m2

kP−1

]
(67)

lim
k→∞

skP−3 = lim
k→∞

1

β2

[
skP−2 − (1− β2)(mkP−2 + 1)2

]
(68)

(69)

Within each period, ACprop will perform a positive update P/(2
√
s+) and a negative update

−1/
√
s−, where s+ (s−) is the value of denominator before observing positive (negative)

gradient. Similar notations for v+ and v− in AdaShift, where s+ = skP , s
− = skP−3, v

+ =
vkP , v

− = vkP−3. A net update in the correct direction requires P

2
√
s+

> 1√
s−

, (or s+/s− <

P 2/4). Since we have the exact expression for these terms in the limit sense, it’s trivial to
verify that s+/s− ≤ v+/v− (e.g. the value s+

s−
− v+

v−
is negative as in Fig. 3 and 4), hence

ACProp is easier to satisfy the convergence condition.

1.3 Numerical experiments

We conducted more experiments to validate previous claims. We plot the area of convergence
for different β1 values for problem (1) in Fig. 5 to Fig. 7, and validate the always-convergence
property of ACProp with different values of β1. We also plot the area of convergence for
problem (2) defined by Eq. (43), results are shown in Fig. 8 to Fig. 10. Note that for
this problem the always-convergence does not hold, but ACProp has a much larger area of
convergence than AdaShift.

9

Figure 5: Numerical experiments on problem (1) with β1 = 0.5

Figure 6: Numerical experiments on problem (1) with β1 = 0.5

Figure 7: Numerical experiments on problem (1) with β1 = 0.9

10

Figure 8: Numerical experiments on problem (43) with β1 = 0.85

Figure 9: Numerical experiments on problem (43) with β1 = 0.9

Figure 10: Numerical experiments on problem (43) with β1 = 0.95

11

(a) Trajectories of AdaShift with various n for
problem (1). Note that optimal is x∗ = −1.
Note that convergence of problem (1) requires a
small delay step n, but convergence of problem
(2) requires a large n, hence there’s no good
criterion to select an optimal n.

(b) Trajectories of AdaShift with various n for
problem (43). Note that optimal is x∗ = 0.0,
and the trajectories are oscillating at a high fre-
quency hence appears to be spanning an area.

12

2 Convergence Analysis for stochastic non-convex op-

timization

2.1 Problem definition and assumptions

The problem is defined as:
minx∈Rd f(x) = E[F (x, ξ)] (70)

where x typically represents parameters of the model, and ξ represents data which typically
follows some distribution.

We mainly consider the stochastic non-convex case, with assumptions below.

A.1 f is continuously differentiable, f is lower-bounde by f ∗. ∇f(f) is globalluy Lipschitz
continuous with constant L:

||∇f(x)−∇f(y)|| ≤ L||x− y|| (71)

A.2 For any iteration t, gt is an unbiased estimator of ∇f(xt) with variance bounded by
σ2. The norm of gt is upper-bounded by Mg.

(a) Egt = ∇f(xt) (72)

(b) E
[
||gt −∇f(xt)||2

]
≤ σ2 (73)

2.2 Convergence analysis of Async-optimizers in stochastic non-
convex optimization

Theorem 2.1 (Thm.4.1 in the main paper). Under assumptions A.1-2, assume f is upper
bounded by Mf , with learning rate schedule as

αt = α0t
−η, α0 ≤

Cl
LC2

u

, η ∈ [0.5, 1) (74)

the sequence generated by
xt+1 = xt − αtAtgt (75)

satisfies

1

T

T∑
t=1

∣∣∣∣∣∣∇f(xt)
∣∣∣∣∣∣2 ≤ 2

Cl

[
(Mf − f ∗)α0T

η−1 +
LC2

uσ
2α0

2(1− η)
T−η

]
(76)

where Cl and Cu are scalars representing the lower and upper bound for At, e.g. ClI � At �
CuI, where A � B represents B − A is semi-positive-definite.

Proof. Let
δt = gt −∇f(xt) (77)

then by A.2, Eδt = 0.

f(xt+1) ≤ f(xt) +
〈
∇f(xt), xt+1 − xt

〉
+
L

2

∣∣∣∣∣∣xt+1 − xt
∣∣∣∣∣∣2 (78)

13

(
by L-smoothness of f(x)

)
= f(xt)− αt

〈
∇f(xt), Atgt

〉
+
L

2
α2
t

∣∣∣∣∣∣Atgt∣∣∣∣∣∣2 (79)

= f(xt)− αt
〈
∇f(xt), At

(
δt +∇f(xt)

)〉
+
L

2
α2
t

∣∣∣∣∣∣Atgt∣∣∣∣∣∣2 (80)

≤ f(xt)− αt
〈
∇f(xt), At∇f(xt)

〉
− αt

〈
∇f(xt), Atδt

〉
+
L

2
α2
tC

2
u

∣∣∣∣∣∣gt∣∣∣∣∣∣2 (81)

Take expectation on both sides of Eq. (81), conditioned on ξ[t−1] = {x1, x2, ...xt−1}, also
notice that At is a constant given ξ[t−1], we have

E
[
f(xt+1)|x1, ...xt

]
≤ f(xt)− αt

〈
∇f(xt), At∇f(xt)

〉
+
L

2
α2
tC

2
uE
∣∣∣∣∣∣gt∣∣∣∣∣∣2 (82)(

At is independent of gt given {x1, ...xt−1}, and Eδt = 0
)

In order to bound RHS of Eq. (82), we first bound E
[
||gt||2

]
.

E
[∣∣∣∣∣∣gt∣∣∣∣∣∣2∣∣∣x1, ...xt] = E

[∣∣∣∣∣∣∇f(xt) + δt

∣∣∣∣∣∣2∣∣∣x1, ...xt] (83)

= E
[∣∣∣∣∣∣∇f(xt)

∣∣∣∣∣∣2∣∣∣x1, ...xt]+ E
[∣∣∣∣∣∣∇δt∣∣∣∣∣∣2∣∣∣x1, ...xt]+ 2E

[〈
δt,∇f(xt)

〉∣∣∣x1, ...xt]
(84)

≤
∣∣∣∣∣∣∇f(xt)

∣∣∣∣∣∣2 + σ2 (85)(
By A.2, and ∇f(xt) is a constant given xt

)
Plug Eq. (85) into Eq. (82), we have

E
[
f(xt+1)

∣∣∣x1, ...xt] ≤ f(xt)− αt
〈
∇f(xt), At∇f(xt)

〉
+
L

2
C2
uα

2
t

[∣∣∣∣∣∣∇f(xt)
∣∣∣∣∣∣2 + σ2

]
(86)

= f(xt)−
(
αtCl −

LC2
u

2
α2
t

)∣∣∣∣∣∣∇f(xt)
∣∣∣∣∣∣2 +

LC2
uσ

2

2
α2
t (87)

By A.5 that 0 < αt ≤ Cl
LC2

u
, we have

αtCl −
LC2

uα
2
t

2
= αt

(
Cl −

LC2
uαt
2

)
≥ αt

Cl
2

(88)

Combine Eq. (87) and Eq. (88), we have

αtCl
2

∣∣∣∣∣∣∇f(xt)
∣∣∣∣∣∣2 ≤ (αtCl − LC2

uα
2
t

2

)∣∣∣∣∣∣∇f(xt)||2 (89)

≤ f(xt)− E
[
f(xt+1)

∣∣∣x1, ...xt]+
LC2

uσ
2

2
α2
t (90)

Then we have

Cl
2

∣∣∣∣∣∣∇f(xt)
∣∣∣∣∣∣2 ≤ 1

αt
f(xt)−

1

αt
E
[
f(xt+1)

∣∣∣x1, ...xt]+
LC2

uσ
2

2
αt (91)

14

Perform telescope sum on Eq. (91), and recursively taking conditional expectations on the
history of {xi}Ti=1, we have

Cl
2

T∑
t=1

||∇f(xt)
∣∣∣∣∣∣2 ≤ T∑

t=1

1

αt

(
Ef(xt)− Ef(xt+1)

)
+
LC2

uσ
2

2

T∑
t=1

αt (92)

=
Ef(x1)

α1

− Ef(xT+1)

αT
+

T∑
t=2

(1

αt
− 1

αt−1

)
Ef(xt) +

LC2
uσ

2

2

T∑
t=1

αt (93)

≤ Mf

α1

− f ∗

αT
+Mf

T∑
t=1

(1

αt
− 1

αt−1

)
+
LC2

uσ
2

2

T∑
t=1

αt (94)

≤ Mf − f ∗

αT
+
LC2

uσ
2

2

T∑
t=1

αt (95)

≤ (Mf − f ∗)α0T
η +

LC2
uσ

2α0

2

(
ζ(η) +

T 1−η

1− η
+

1

2
T−η

)
(96)(

By sum of generalized harmonic series,

n∑
k=1

1

ks
∼ ζ(s) +

n1−s

1− s
+

1

2ns
+O(n−s−1), (97)

ζ(s) is Riemann zeta function.
)

Then we have

1

T

T∑
t=1

∣∣∣∣∣∣∇f(xt)
∣∣∣∣∣∣2 ≤ 2

Cl

[
(Mf − f ∗)α0T

η−1 +
LC2

uσ
2α0

2(1− η)
T−η

]
(98)

2.2.1 Validation on numerical accuracy of sum of generalized harmonic series

We performed experiments to test the accuracy of the analytical expression of sum of har-
monic series. We numerically calculate

∑N
i=1

1
iη

for η varying from 0.5 to 0.999, and for N
ranging from 103 to 107 in the log-grid. We calculate the error of the analytical expression
by Eq. (97), and plot the error in Fig. 12. Note that the y-axis has a unit of 10−7, while the
sum is typically on the order of 103, this implies that expression Eq. (97) is very accurate
and the relative error is on the order of 10−10. Furthermore, note that this expression is
accurate even when η = 0.5.

15

Figure 12: The error between numerical sum for
∑N

i=1
1
iη

and the analytical form.

2.3 Convergence analysis of Async-moment-optimizers in stochas-
tic non-convex optimization

Lemma 2.2. Let mt = β1mt−1 + (1− β1)gt, let At ∈ Rd, then〈
At, gt

〉
=

1

1− β1

(〈
At,mt

〉
−
〈
At−1,mt−1

〉)
+
〈
At−1,mt−1

〉
+

β1
1− β1

〈
At−1 − At,mt−1

〉
(99)

Theorem 2.3. Under assumptions 1-4, β1 < 1, β2 < 1, also assume At+1 ≤ At element-wise
which can be achieved by tracking maximum of st as in AMSGrad, f is upper bounded by
Mf , ||gt||∞ ≤Mg, with learning rate schedule as

αt = α0t
−η, α0 ≤

Cl
LC2

u

, η ∈ (0.5, 1] (100)

the sequence is generated by
xt+1 = xt − αtAtmt (101)

then we have
1

T

T∑
t=1

∣∣∣∣∣∣∇f(xt)
∣∣∣∣∣∣2 ≤ 1

α0Cl
T η−1

[
Mf − f ∗ + EM2

g

]
(102)

where

E =
β2
1

4L(1− β1)2
+

1

1− β1
α0Mg +

(β1
1− β1

+
1

2

)
Lα2

0C
2
u

1

1− 2η
(103)

16

Proof. Let At = αtAt∇f(xt) and let A0 = A1, we have

T∑
t=1

〈
At, gt

〉
=

1

1− β1

〈
AT ,mT

〉
+

T∑
t=1

〈
At−1,mt−1

〉
+

β1
1− β1

T∑
t=1

〈
At−1 − At,mt−1

〉
(104)

=
β1

1− β1

〈
AT ,mT

〉
+

T∑
t=1

〈
At,mt

〉
+

β1
1− β1

T−1∑
t=0

〈
At − At+1,mt

〉
(105)

First we derive a lower bound for Eq. (105).〈
At, gt

〉
=
〈
αtAt∇f(xt), gt

〉
(106)

=
〈
αtAt∇f(xt)− αt−1At−1∇f(xt), gt

〉
+
〈
αt−1At−1∇f(xt), gt

〉
(107)

=
〈
αt−1At−1∇f(xt), gt

〉
−
〈

(αt−1At−1 − αtAt)∇f(xt), gt

〉
(108)

≥
〈
αt−1At−1∇f(xt), gt

〉
−
∣∣∣∣∣∣∇f(xt)

∣∣∣∣∣∣
∞

∣∣∣∣∣∣αt−1At−1 − αtAt∣∣∣∣∣∣
1

∣∣∣∣∣∣gt∣∣∣∣∣∣
∞

(109)(
By Hölder’s inequality

)
≥
〈
αt−1At−1∇f(xt), gt

〉
−M2

g

(∣∣∣∣∣∣αt−1At−1∣∣∣∣∣∣
1
−
∣∣∣∣∣∣αtAt∣∣∣∣∣∣

1

)
(110)(

Since
∣∣∣∣∣∣gt∣∣∣∣∣∣

∞
≤Mg, αt−1 ≥ αt > 0, At−1 ≥ At > 0 element-wise

)
(111)

Perform telescope sum, we have

T∑
t=1

〈
At, gt

〉
≥

T∑
t=1

〈
αt−1At−1∇f(xt), gt

〉
−M2

g

(∣∣∣∣∣∣α0H0

∣∣∣∣∣∣
1
−
∣∣∣∣∣∣αTAt∣∣∣∣∣∣

1

)
(112)

Next, we derive an upper bound for
∑T

t=1

〈
At, gt

〉
by deriving an upper-bound for the RHS

of Eq. (105). We derive an upper bound for each part.

〈At,mt

〉
=
〈
αtAt∇f(xt),mt

〉
=
〈
∇f(xt), αtAtmt

〉
(113)

=
〈
∇f(xt), xt − xt+1

〉
(114)

≤ f(xt)− f(xt+1) +
L

2

∣∣∣∣∣∣xt+1 − xt
∣∣∣∣∣∣2(By L-smoothness of f

)
(115)

Perform telescope sum, we have

T∑
t=1

〈
At,mt

〉
≤ f(x1)− f(xT+1) +

L

2

T∑
t=1

∣∣∣∣∣∣αtAtmt

∣∣∣∣∣∣2 (116)

〈At − At+1,mt

〉
=
〈
αtAt∇f(xt)− αt+1At+1∇f(xt+1),mt

〉
(117)

17

=
〈
αtAt∇f(xt)− αtAt∇f(xt+1),mt〉

+
〈
αtAt∇f(xt+1)− αt+1At+1∇f(xt+1),mt〉 (118)

=
〈
∇f(xt)−∇f(xt+1), αtAtmt

〉
+
〈

(αtAt − αt+1At+1)∇f(xt),mt

〉
(119)

=
〈
∇f(xt)−∇f(xt+1), xt − xt+1

〉
+
〈
∇f(xt), (αtAt − αt+1At+1)mt

〉
(120)

≤ L
∣∣∣∣∣∣xt+1 − xt

∣∣∣∣∣∣2 +
〈
∇f(xt), (αtAt − αt+1At+1)mt

〉
(121)(

By smoothness of f
)

≤ L
∣∣∣∣∣∣xt+1 − xt

∣∣∣∣∣∣2 +
∣∣∣∣∣∣∇f(xt)

∣∣∣∣∣∣
∞

∣∣∣∣∣∣αtAt − αt+1At+1

∣∣∣∣∣∣
1

∣∣∣∣∣∣mt

∣∣∣∣∣∣
∞

(122)(
By Hölder’s inequality

)
≤ L

∣∣∣∣∣∣xt+1 − xt
∣∣∣∣∣∣2 +M2

g

(∣∣∣∣∣∣αtAt∣∣∣∣∣∣
1
−
∣∣∣∣∣∣αt+1At+1

∣∣∣∣∣∣
1

)
(123)(

Since αt ≥ αt+1 ≥ 0, At ≥ At+1 ≥ 0, element-wise
)

(124)

Perform telescope sum, we have

T−1∑
t=1

〈
At − At+1,mt〉 ≤ L

T−1∑
t=1

∣∣∣∣∣∣αtAtmt

∣∣∣∣∣∣2 +M2
g

(∣∣∣∣∣∣α1H1

∣∣∣∣∣∣
1
−
∣∣∣∣∣∣αTAt∣∣∣∣∣∣

1

)
(125)

We also have 〈
AT ,mT

〉
=
〈
αTAt∇f(xT),mT

〉
=
〈
∇f(xT), αTAtmT

〉
(126)

≤ L
1− β1
β1

∣∣∣∣∣∣αTAtmT

∣∣∣∣∣∣2 +
β1

4L(1− β1)

∣∣∣∣∣∣∇f(xT)
∣∣∣∣∣∣2 (127)(

By Young’s inequality
)

= L
1− β1
β1

∣∣∣∣∣∣αTAtmT

∣∣∣∣∣∣2 +
β1

4L(1− β1)
M2

g (128)

Combine Eq. (116), Eq. (125) and Eq. (128) into Eq. (105), we have

T∑
t=1

〈
At, gt

〉
≤ β1

1− β1

〈
AT ,mT

〉
+ f(x1)− f(xT+1) +

L

2

T∑
t=1

∣∣∣∣∣∣αtAtmt

∣∣∣∣∣∣2
+

β1
1− β1

L

T−1∑
t=1

∣∣∣∣∣∣αtAtmt

∣∣∣∣∣∣2 +
β1

1− β1
M2

g

(∣∣∣∣∣∣α1H1

∣∣∣∣∣∣
1
−
∣∣∣∣∣∣αTAt∣∣∣∣∣∣

1

)
(129)

≤ f(x1)− f(xT+1) +
(β1

1− β1
+

1

2

)
L

T∑
t=1

∣∣∣∣∣∣αtAtmt

∣∣∣∣∣∣2

18

+
(β2

1

4L(1− β1)2
+

β1
1− β1

∣∣∣∣∣∣α1H1

∣∣∣∣∣∣
1

)
M2

g (130)

Combine Eq. (112) and Eq. (130), we have

T∑
t=1

〈
αt−1At−1∇f(xt), gt

〉
−M2

g

(∣∣∣∣∣∣α0H0

∣∣∣∣∣∣
1
−
∣∣∣∣∣∣αTAt∣∣∣∣∣∣

1

)
≤

T∑
t=1

〈
At, gt

〉
≤ f(x1)− f(xT+1) +

(β1
1− β1

+
1

2

)
L

T∑
t=1

∣∣∣∣∣∣αtAtmt

∣∣∣∣∣∣2
+
(β2

1

4L(1− β1)2
+

β1
1− β1

∣∣∣∣∣∣α1H1

∣∣∣∣∣∣
1

)
M2

g (131)

Hence we have

T∑
t=1

〈
αt−1At−1∇f(xt), gt

〉
≤ f(x1)− f(xT+1) +

(β1
1− β1

+
1

2

)
L

T∑
t=1

∣∣∣∣∣∣αtAtmt

∣∣∣∣∣∣2
+
(β2

1

4L(1− β1)2
+
∣∣∣∣∣∣α0H0

∣∣∣∣∣∣
1

+
β1

1− β1

∣∣∣∣∣∣α1H1

∣∣∣∣∣∣
1

)
M2

g (132)

≤ f(x1)− f ∗ +
(β1

1− β1
+

1

2

)
Lα2

0M
2
gC

2
u

T∑
t=1

t−2η

+
(β2

1

4L(1− β1)2
+
∣∣∣∣∣∣α0H0

∣∣∣∣∣∣
1

+
β1

1− β1

∣∣∣∣∣∣α1H1

∣∣∣∣∣∣
1

)
M2

g (133)

≤ f(x1)− f ∗

+M2
g

[β2
1

4L(1− β1)2
+
∣∣∣∣∣∣α0H0

∣∣∣∣∣∣
1

+
β1

1− β1

∣∣∣∣∣∣α1H1

∣∣∣∣∣∣
1

+
(β1

1− β1
+

1

2

)
Lα2

0C
2
u

T 1−2η

1− 2η

]
(134)

≤ f(x1)− f ∗ +M2
g

[β2
1

4L(1− β1)2
+

1

1− β1
α0Mg +

(β1
1− β1

+
1

2

)
Lα2

0C
2
u

1

1− 2η

]
︸ ︷︷ ︸

E

(135)

Take expectations on both sides, we have

T∑
t=1

〈
αt−1At−1∇f(xt),∇f(xt)

〉
≤ Ef(x1)− f ∗ + EM2

g ≤Mf − f ∗ + EM2
g (136)

Note that we have αt decays monotonically with t, hence

T∑
t=1

〈
αt−1At−1∇f(xt),∇f(xt)

〉
≥ α0T

−η
T∑
t=1

〈
At−1∇f(xt),∇f(xt)

〉
(137)

≥ α0T
1−ηCl

[1

T

T∑
t=1

∣∣∣∣∣∣∇f(xt)
∣∣∣∣∣∣2] (138)

19

Figure 13: Behavior of ACProp for optimization of the function f(x) = |x| with lr = 0.00001.

Figure 14: Behavior of ACProp for optimization of the function f(x) = |x| with lr = 0.01.

Combine Eq. (136) and Eq. (138), assume f is upper bounded by Mf , we have

1

T

T∑
t=1

∣∣∣∣∣∣∇f(xt)
∣∣∣∣∣∣2 ≤ 1

α0Cl
T η−1

[
Mf − f ∗ + EM2

g

]
(139)

3 Experiments

3.1 Centering of second momentum does not suffer from numeri-
cal issues

Note that the centered second momentum st does not suffer from numerical issues in practice.
The intuition that “st is an estimate of variance in gradient” is based on a strong assumption
that the gradient follows a stationary distribution, which indicates that the true gradient
∇ft(x) remains a constant function of t. In fact, st tracks EMA((gt−mt)

2), and it includes
two aspects: the change in true gradient ||∇ft+1(x) − ∇ft(x)||2, and the noise in gradient
observation ||gt−∇ft(x)||2. In practice, especially in deep learning, the gradient suffers from
large noise, hence st does not take extremely small values.

20

Table 1: Hyper-parameters for ACProp in various experiments

lr beta1 beta2 eps
ImageNet 1e-3 0.9 0.999 1e-12
GAN 2e-4 0.5 0.999 1e-16
Transformer 5e-4 0.9 0.999 1e-16

Next, we consider an ideal case that the observation gt is noiseless, and conduct exper-
iments to show that centering of second-momentum does not suffer from numerical issues.
Consider the function f(x) = |x| with initial value x0 = 100, we plot the trajectories and
stepsizes of various optimizers in Fig. 13 and Fig. 14 with initial learning rate lr = 0.00001
and lr = 0.01 respectively. Note that ACProp and AdaBelief take a large step at the initial
phase, because a constant gradient is observed without noise. But note that the gradient re-
mains constant only within half of the plane; when it cross the boundary x = 0, the gradient
is reversed, hence ||∇ft+1(x)−∇ft(x)||2 6= 0, and st becomes a non-zero value when it hits
a valley in the loss surface. Therefore, the stepsize of ACProp and AdaBelief automatically
decreases when they reach the local minimum. As shown in Fig. 13 and Fig. 14, ACProp
and AdaBelief does not take any extremely large stepsizes for both a very large (0.01) and
very small (0.00001) learning rates, and they automatically decrease stepsizes near the opti-
mal. We do not observe any numerical issues even for noise-free piecewise-linear functions.
If the function is not piecewise linear, or the gradient does not remain constant within any
connected set, then ||∇ft+1(x) −∇ft(x)||2 6= 0 almost everywhere, and the numerical issue
will never happen.

The only possible case where centering second momentum causes numerical issue has
to satisfy two conditions simultaneously: (1) ||∇ft+1(x) − ∇ft(x)||2 = 0,∀t and (2) gt is a
noise-free observation of ∇f(x). This is a trivial case where the loss surface is linear, and
gradient is noise-free. This is case is almost never encountered in practice. Furthermore, in
this case, st = 0 and ACProp reduces to SGD with stepsize 1/ε. But note that the optimal is
−∞ and achieved at ∞ or −∞, taking a large stepsize 1/ε is still acceptable for this trivial
case.

3.2 Image classification with CNN

We performed extensive hyper-parameter tuning in order to better compare the performance
of different optimizers: for SGD we set the momentum as 0.9 which is the default for many
cases, and search the learning rate between 0.1 and 10−5 in the log-grid; for other adap-
tive optimizers, including AdaBelief, Adam, RAdam, AdamW and AdaShift, we search the
learning rate between 0.01 and 10−5 in the log-grid, and search ε between 10−5 and 10−10 in
the log-grid. We use a weight decay of 5e-2 for AdamW, and use 5e-4 for other optimizers.
We conducted experiments based on the official code for AdaBound and AdaBelief 1.

We further test the robustness of ACProp to values of hyper-parameters β1 and β2.
Results are shown in Fig. 17 and Fig. 19 respectively. ACProp is robust to different values
of β1, and is more sensitive to values of β2.

1https://github.com/juntang-zhuang/Adabelief-Optimizer

21

(a) VGG11 on Cifar10 (b) ResNet34 on Cifar10 (c) DenseNet121 on Cifar10

(d) VGG11 on Cifar10 (e) ResNet34 on Cifar10 (f) DenseNet121 on Cifar10

Figure 15: Training (top row) and test (bottom row) accuracy of CNNs on Cifar10 dataset.

Figure 17: The training and test accuracy curve of VGG11 on CIFAR10 with different β1
values.

22

Figure 19: The training and test accuracy curve of VGG11 on CIFAR10 with different β2
values.

Figure 20: Test accuracy of VGG-11 on CIFAR10 trained under various hyper-parameter
settings with different optimizers

23

Figure 21: BLEU score on validation set of a Transformer-base trained with ACProp and
Adam

3.3 Neural Machine Translation with Transformers

We conducted experiments on Neural Machine Translation (NMT) with transformer models.
Our experiments on the IWSLT14 DE-EN task is based on the 6-layer transformer-base
model in fairseq implementation 2. For all methods, we use a learning rate of 0.0002, and
standard invser sqrt learning rate schedule with 4,000 steps of warmup. For other tasks,
our experiments are based on an open-source implementation3 using a 1-layer Transformer
model. We plot the BLEU score on validation set varying with training epoch in Fig. 21,
and ACProp consistently outperforms Adam throughout the training.

3.4 Generative adversarial networks

The training of GANs easily suffers from mode collapse and numerical instability [3], hence
is a good test for the stability of optimizers. We conducted experiments with Deep Con-
volutional GAN (DCGAN) [4], Spectral-Norm GAN (SNGAN) [5], Self-Attention GAN
(SAGAN) [6] and Relativistic-GAN (RLGAN) [7]. We set β1 = 0.5, and search for β2 and ε
with the same schedule as previous section. Our experiments are based on an open-source
implementation 4.

2https://github.com/pytorch/fairseq
3https://github.com/DevSinghSachan/multilingual nmt
4https://github.com/POSTECH-CVLab/PyTorch-StudioGAN

24

Figure 22: Generated figures by the SN-GAN trained with ACProp.

Figure 23: Generated figures by the SA-GAN trained with ACProp.

Figure 24: Generated figures by the DC-GAN trained with ACProp.

25

Figure 25: Generated figures by the RL-GAN trained with ACProp.

26

References

[1] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar, “On the convergence of adam and
beyond,” arXiv preprint arXiv:1904.09237, 2019.

[2] Shi Naichen, Li Dawei, Hong Mingyi, and Sun Ruoyu, “Rmsprop can converge with
proper hyper-parameter,” ICLR, 2021.

[3] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen, “Improved techniques for training gans,” in Advances in neural information
processing systems, 2016, pp. 2234–2242.

[4] Alec Radford, Luke Metz, and Soumith Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv preprint
arXiv:1511.06434, 2015.

[5] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida, “Spectral
normalization for generative adversarial networks,” arXiv preprint arXiv:1802.05957,
2018.

[6] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena, “Self-attention gen-
erative adversarial networks,” in International conference on machine learning. PMLR,
2019, pp. 7354–7363.

[7] Alexia Jolicoeur-Martineau, “The relativistic discriminator: a key element missing from
standard gan,” arXiv preprint arXiv:1807.00734, 2018.

27

	Analysis on convergence conditions
	Convergence analysis for Problem 1 in the main paper
	Numerical validations

	Convergence analysis for Problem 2 in the main paper
	Numerical experiments

	Convergence Analysis for stochastic non-convex optimization
	Problem definition and assumptions
	Convergence analysis of Async-optimizers in stochastic non-convex optimization
	Validation on numerical accuracy of sum of generalized harmonic series

	Convergence analysis of Async-moment-optimizers in stochastic non-convex optimization

	Experiments
	Centering of second momentum does not suffer from numerical issues
	Image classification with CNN
	Neural Machine Translation with Transformers
	Generative adversarial networks

