Supplementary Material

A Missing proofs

Proposition A.1. For any arbitrary non-negative real numbers a_{1}, \ldots, a_{T}, we have

$$
\sum_{t=1}^{T} \frac{a_{t}}{1+a_{1: t}} \leq \log \left(1+a_{1: T}\right)
$$

Proof. For any $a, b>0$, we have

$$
\begin{equation*}
\frac{a}{b+a}=\int_{x=0}^{a} \frac{1}{b+a} d x \leq \int_{x=0}^{a} \frac{1}{b+x} d x=\log (b+a)-\log (b) \tag{8}
\end{equation*}
$$

The proof now follows from induction. The base case of $t=1$ follows directly from (8) with a set to a_{1} and b set to 1 . Assuming that the inequality holds for $T-1$, let us consider the induction step.

$$
\sum_{t=1}^{T} \frac{a_{t}}{1+a_{1: t}}=\frac{a_{T}}{1+a_{1: T}}+\sum_{t=1}^{T-1} \frac{a_{t}}{1+a_{1: t}} \leq \frac{a_{T}}{1+a_{1: T}}+\log \left(1+a_{1: T-1}\right) \leq \log \left(1+a_{1: T}\right)
$$

where the last inequality again follows from (8) with a set to a_{T} and b set to $1+a_{1: T-1}$.
Proposition A.2. Consider any $c \in \mathbb{R}^{d}$ and $r \geq 0$ and let $y=\operatorname{argmin}_{\|x\| \leq 1} \frac{r}{2}\|x\|^{2}+\langle c, x\rangle$. Then, if $\|c\| \geq r$, we have $y=\frac{-c}{\|c\|}$.

Proof. Consider $f(x)=\frac{r}{2}\|x\|^{2}+\langle c, x\rangle$. For any $\|x\| \leq 1$, we have the following.

$$
f(x) \geq \frac{r}{2}\|x\|^{2}-\|c\|\|x\| \geq \min _{\|z\| \leq 1}\left(\frac{r}{2}\|z\|^{2}-\|c\|\|z\|\right)
$$

since $\|c\| \geq r$, it is an easy exercise to verify that the RHS is minimized at $\|z\|=1$ and thus

$$
f(x) \geq \frac{r}{2}-\|c\|
$$

On the other hand, substituting $y=\frac{-c}{\|c\|}$, we have $f(y)=\frac{r}{2}-\|c\|$ and the proposition follows.
Lemma A.3. Let c_{1}, \ldots, c_{n} be independent random unit vectors in \mathbb{R}^{d} (distributed uniformly on the sphere), for some parameters n, d, and let $Z=\sum_{t=1}^{n} c_{t}$ Then we have $\mathbb{E}[\|Z\|] \geq \Omega(\sqrt{n})$.

Proof. First, we note that since c_{t} are independent, we have

$$
\mathbb{E}\left[\|Z\|^{2}\right]=\sum_{t=1}^{n}\left\|c_{t}\right\|^{2}=n
$$

We also have

$$
\mathbb{E}\left[\left(\|Z\|^{2}\right)^{2}\right]=\mathbb{E}\left[\left(\sum_{i}\left\|c_{i}\right\|^{2}+\sum_{i \neq j}\left\langle c_{i}, c_{j}\right\rangle\right)^{2}\right] \leq n^{2}+\sum_{i \neq j} \mathbb{E}\left[\left\langle c_{i}, c_{j}\right\rangle^{2}\right] \leq 2 n^{2}
$$

Thus by applying the Paley-Zygmund inequality to the random variable $\|Z\|^{2}$, we have $\operatorname{Pr}\left[\|Z\|^{2} \geq\right.$ $n / 4]=\Omega(1)$, and thus $\operatorname{Pr}[\|Z\| \geq \sqrt{n} / 2]=\Omega(1)$. Thus the expected value is $\Omega(\sqrt{n})$.

B A sharper analysis of FTRL

Our goal in this section is to prove Theorem 3.1. As a first step, let us define $\psi_{t}(x)=\left\langle c_{t}, x\right\rangle+$ $\frac{r_{t}}{2}\|x\|^{2}$, (with the understanding that $c_{0}=0$) so that by definition, we have

$$
x_{t+1}=\underset{\|x\| \leq 1}{\operatorname{argmin}} \psi_{0: t}(x) .
$$

Lemma B.1. Let ψ_{t}, x_{t} be as defined above. Then for any $m \in[T]$ and any vector u with $\|u\| \leq 1$, we have

$$
\psi_{0: m}\left(x_{m+1}\right)+\sum_{t=m+1}^{T} \psi_{t}\left(x_{t+1}\right) \leq \psi_{0: T}(u)
$$

When $m=0$, the lemma is usually referred to as the FTL lemma (see e.g., [14]), and is proved by induction. Our proof follows along the same lines.

Proof. From the definition of x_{T+1} (as the minimizer), we have

$$
\psi_{0: T}(u) \geq \psi_{0: T}\left(x_{T+1}\right)
$$

Now, we can clearly write $\psi_{0: T}\left(x_{T+1}\right)=\psi_{T}\left(x_{T+1}\right)+\psi_{0: T-1}\left(x_{T+1}\right)$. Next, observe that from the definition of x_{T}, we have $\psi_{0: T-1}\left(x_{T+1}\right) \geq \psi_{0: T-1}\left(x_{T}\right)$. Plugging this above,

$$
\psi_{0: T}(u) \geq \psi_{T}\left(x_{T+1}\right)+\psi_{0: T-1}\left(x_{T}\right)
$$

Once again, writing $\psi_{0: T-1}\left(x_{T}\right)=\psi_{T-1}\left(x_{T}\right)+\psi_{0: T-2}\left(x_{T}\right)$ and now using the definition of x_{T-1}, we obtain

$$
\psi_{0: T}(u) \geq \psi_{T}\left(x_{T+1}\right)+\psi_{T-1}\left(x_{T}\right)+\psi_{0: T-2}\left(x_{T-1}\right)
$$

Using the same reasoning again, and continuing until we reach the subscript 0:m in the last term of the RHS, we obtain the desired inequality.

We are now ready to prove Theorem 3.1.
Proof of Theorem 3.1. Let us focus on Part 2 for now (see Lemma B. 4 for Part 1). Note that we can rearrange the bound we wish to prove, i.e., (3), as follows. Let z be the unit vector in the direction of $-c_{1: S}$, so that $-\left\|c_{1: S}\right\|=\sum_{t=1}^{S}\left\langle c_{t}, z\right\rangle$. Then (3) can be rewritten as

$$
\sum_{t=1}^{S}\left\langle c_{t}, z-u\right\rangle+\sum_{t>S}\left\langle c_{t}, x_{t}-u\right\rangle \leq \frac{\sqrt{1+\sigma_{1: S}}}{2}+\frac{18+8 \log \left(1+\sigma_{1: T}\right)}{\alpha}
$$

As a first step, we observe that $\left\langle c_{1: S}, z\right\rangle \leq\left\langle c_{1: S}, x_{S+1}\right\rangle$; indeed, $\left\|x_{S+1}\right\| \leq 1$ by definition. Thus, it will suffice to prove that

$$
\begin{equation*}
\sum_{t=1}^{S}\left\langle c_{t}, x_{S+1}-u\right\rangle+\sum_{t>S}\left\langle c_{t}, x_{t}-u\right\rangle \leq \frac{\sqrt{1+\sigma_{1: S}}}{2}+\frac{18+8 \log \left(1+\sigma_{1: T}\right)}{\alpha} \tag{9}
\end{equation*}
$$

For proving this, we first appeal to Lemma B.1. Instantiating the lemma with $m=S$ and plugging in the definition of ψ, we get

$$
\left\langle c_{0: S}, x_{S+1}\right\rangle+\frac{r_{0: S}}{2}\left\|x_{S+1}\right\|^{2}+\sum_{t>S}\left\langle c_{t}, x_{t+1}\right\rangle+\frac{r_{t}}{2}\left\|x_{t+1}\right\|^{2} \leq\left\langle c_{0: T}, u\right\rangle+\frac{r_{0: T}}{2}\|u\|^{2}
$$

Noting that $c_{0}=0$ and rearranging, we get:

$$
\begin{aligned}
& \sum_{t=1}^{S}\left\langle c_{t}, x_{S+1}-u\right\rangle+\sum_{t>S}\left\langle c_{t}, x_{t}-u\right\rangle \\
& \quad \leq \frac{r_{0: S}}{2}\left(\|u\|^{2}-\left\|x_{S+1}\right\|^{2}\right)+\sum_{t>S}\left(\frac{r_{t}}{2}\left(\|u\|^{2}-\left\|x_{t+1}\right\|^{2}\right)+\left\langle c_{t}, x_{t}-x_{t+1}\right\rangle\right) \\
& \quad \leq \frac{r_{0: S}}{2}+\sum_{t>S}\left(\frac{r_{t}}{2}\left(\|u\|^{2}-\left\|x_{t+1}\right\|^{2}\right)+\left\langle c_{t}, x_{t}-x_{t+1}\right\rangle\right)
\end{aligned}
$$

The LHS matches the quantity we wish to bound in (9), and thus let us analyze the RHS quantity, which we denote by Q .

The next observation is that if $t>S$ and $\sqrt{1+\sigma_{1: t}} \geq \frac{4}{\alpha}$, then the vector x_{t+1} has norm exactly 1 . This can be shown as follows. If $t>S$, by the definition of S, we have $\left\|c_{1: t}\right\|>\frac{\alpha}{4}\left(1+\sigma_{1: t}\right)$. Thus, the vector $-c_{1: t} / \sqrt{1+\sigma_{1: t}}$ has norm ≥ 1. From the definition of x_{t+1} (see (2)), this means that the global minimizer (without the constraint $\|x\| \leq 1$) of the quadratic form is a point outside the ball, and thus the minimizer of the constrained problem is its projection, which is thus a unit vector. See Proposition A. 2 for further details. We next have the following claim.
Claim. Let M be the smallest index $>S$ for which $\sqrt{1+\sigma_{1: M}} \geq \frac{4}{\alpha}$. Then

$$
\sqrt{1+\sigma_{1: M-1}} \leq \max \left\{\sqrt{1+\sigma_{1: S}}, \frac{4}{\alpha}\right\}
$$

The claim follows by a simple case analysis. If $M=S+1$, then clearly the LHS is $\sqrt{1+\sigma_{1: S}}$. Otherwise, from the definition of M, we have the desired bound.

Let us get back to bounding the quantity Q defined above. We split the sum into indices $\leq M-1$ and $\geq M$. The nice consequence of the observation above is that for all $t \geq M$, as $\left\|x_{t+1}\right\|=1$, we have $\|u\|^{2}-\left\|x_{t+1}\right\|^{2} \leq 0$, thus the term disappears. Also, for $t<M$, we use the simple bound $\frac{r_{t}}{2}\left(\|u\|^{2}-\left\|x_{t+1}\right\|^{2}\right) \leq \frac{r_{t}}{2}$. This gives

$$
\mathrm{Q} \leq \frac{r_{0: M-1}}{2}+\sum_{t=S+1}^{T}\left\langle c_{t}, x_{t}-x_{t+1}\right\rangle
$$

Thus we only need to analyze the summation on the RHS. To bound the summation $\sum_{t=S+1}^{T}\left\langle c_{t}, x_{t}-\right.$ $\left.x_{t+1}\right\rangle$ consider two cases for M separately: either $M=S+1$ or $M>S+1$. If $M=S+1$, then by Proposition B.3, $\sum_{t=S+1}^{T}\left\langle c_{t}, x_{t}-x_{t+1}\right\rangle \leq \frac{8}{\alpha} \log \left(1+\sigma_{1: T}\right)$. Alternatively, if $M>S+1$, let us break the summation into terms with $t \leq M-1$ and terms with $t \geq M$. Proposition B. 2 lets us bound the sum of the terms corresponding to $t \leq M-1$ by $4 \sqrt{\sigma_{1: M-1}}<4 r_{0: M-1} \leq \frac{16}{\alpha}$, where the last step is by definition of M and using the fact that $M-1>S$. Then Proposition B. 3 lets us bound the sum of the terms with $t \geq M$ by $\frac{8}{\alpha} \log \left(1+\sigma_{1: T}\right)$. Thus in all cases we have:

$$
\mathrm{Q} \leq \frac{r_{0: M-1}}{2}+\frac{16}{\alpha}+\frac{8}{\alpha} \log \left(1+\sigma_{1: T}\right) \leq \frac{\sqrt{1+\sigma_{1: S}}}{2}+\frac{18}{\alpha}+\frac{8}{\alpha} \log \left(1+\sigma_{1: T}\right)
$$

where in the last step we used the claim and bounded the maximum with a sum.

B. 1 Auxiliary lemmas

Proposition B.2. For any time step $t \leq T$, the iterates of the FTRL procedure satisfy:

$$
\left\|x_{t}-x_{t+1}\right\| \leq \frac{2\left\|c_{t}\right\|}{\sqrt{1+\sigma_{1: t-1}}}
$$

Furthermore, in any time interval $[A, B]$ with $1 \leq A \leq B \leq T$, we have

$$
\sum_{t=A}^{B}\left\langle c_{t}, x_{t}-x_{t+1}\right\rangle \leq 4\left(\sqrt{\sigma_{1: B}}-\sqrt{\sigma_{1: A-1}}\right)
$$

Proof. Let us first show the first part. Define $\psi_{t}(x)=\left\langle c_{t}, x\right\rangle+\frac{r_{t}}{2}\|x\|^{2}$. We will invoke [20, Lemma 7], using $\phi_{1}=\psi_{0: t-1}$ and $\phi_{2}=\psi_{0: t}$. We have that ϕ_{1} is 1-strongly convex with respect to the norm given by $\|x\|_{t-1}^{2}=r_{0: t-1}\|x\|^{2}$ and $\psi_{t}=\phi_{2}-\phi_{1}$ is convex and $2\left\|c_{t}\right\|$ Lipschitz. Then, since $x_{t}=\operatorname{argmin} \phi_{1}$ and $x_{t+1}=\operatorname{argmin} \phi_{2},[20$, Lemma 7] implies:

$$
\left\|x_{t}-x_{t+1}\right\| \leq \frac{2\left\|c_{t}\right\|}{r_{0: t-1}}=\frac{2\left\|c_{t}\right\|}{\sqrt{1+\sigma_{1: t-1}}}
$$

We can then use this to show the "furthermore" part as follows. For any t in the range, we have

$$
\left\langle c_{t}, x_{t}-x_{t+1}\right\rangle \leq\left\|c_{t}\right\|\left\|x_{t}-x_{t+1}\right\| \leq \frac{2 \sigma_{t}}{\sqrt{1+\sigma_{1: t-1}}} \leq \frac{2 \sigma_{t}}{\sqrt{\sigma_{1: t}}} \leq 2 \int_{\sigma_{1: t-1}}^{\sigma_{1: t}} \frac{d y}{\sqrt{y}}
$$

where in the third inequality, we used the fact that $\sigma_{t} \leq 1$, and in the last inequality, we upper bounded the term via an integral over an interval of length σ_{t}. Summing this over t in the interval $[A, B]$ thus gives

$$
\sum_{t=A}^{B}\left\langle c_{t}, x_{t}-x_{t+1}\right\rangle \leq 2 \int_{\sigma_{1: A-1}}^{\sigma_{1: B}} \frac{d y}{\sqrt{y}}=4\left(\sqrt{\sigma_{1: B}}-\sqrt{\sigma_{1: A-1}}\right)
$$

Proposition B.3. Let S be an index such that for all $t>S,\left\|c_{1: t}\right\| \geq \frac{\alpha}{4}\left(1+c_{1: t}\right)$, and let $t>S$ be an index for which the iterates x_{t} and x_{t+1} of the FTRL procedure are both unit vectors. Then,

$$
\left\|x_{t}-x_{t+1}\right\| \leq \frac{8\left\|c_{t}\right\|}{\alpha\left(1+\sigma_{1: t}\right)}
$$

Furthermore, let $M>S$ be an index such that $\left\|x_{t}\right\|=1$ for all $t \geq M$. Then,

$$
\sum_{t=M}^{T}\left\langle c_{t}, x_{t}-x_{t+1}\right\rangle \leq \frac{8}{\alpha} \log \left(1+\sigma_{1: T}\right)
$$

Proof. For simplicity, let us denote $g_{t}=c_{1: t-1}$ and $g_{t+1}=c_{1: t}$. If the iterates of FTRL are unit vectors, we have

$$
x_{t}=-\frac{g_{t}}{\left\|g_{t}\right\|} ; x_{t+1}=-\frac{g_{t+1}}{\left\|g_{t+1}\right\|}
$$

Thus their difference can be bounded as

$$
x_{t+1}-x_{t}=\left(\frac{g_{t}}{\left\|g_{t}\right\|}-\frac{g_{t}}{\left\|g_{t+1}\right\|}\right)+\left(\frac{g_{t}}{\left\|g_{t+1}\right\|}-\frac{g_{t+1}}{\left\|g_{t+1}\right\|}\right) .
$$

The second term clearly has norm $\leq \frac{\left\|c_{t}\right\|}{\left\|g_{t+1}\right\|}$. Let us bound the first term:

$$
\left\|g_{t}\right\|\left|\frac{1}{\left\|g_{t}\right\|}-\frac{1}{\left\|g_{t+1}\right\|}\right|=\frac{\left|\left\|g_{t+1}\right\|-\left\|g_{t}\right\|\right|}{\left\|g_{t+1}\right\|} \leq \frac{\left\|c_{t}\right\|}{\left\|g_{t+1}\right\|}
$$

Note that in the last step, we used the triangle inequality. Combining the two, we get

$$
\left\|x_{t+1}-x_{t}\right\| \leq \frac{2\left\|c_{t}\right\|}{\left\|c_{1: t}\right\|} \leq \frac{8\left\|c_{t}\right\|}{\alpha\left(1+\sigma_{1: t}\right)}
$$

as desired. Let us now show the "furthermore" part. From our assumptions about M, we can appeal to the first part of the proposition, and as before, we have for any $t \geq M$,

$$
\left\langle c_{t}, x_{t}-x_{t+1}\right\rangle \leq\left\|c_{t}\right\|\left\|x_{t}-x_{t+1}\right\| \leq \frac{8 \sigma_{t}}{\alpha\left(1+\sigma_{1: t}\right)} \leq \frac{8}{\alpha} \int_{1+\sigma_{1: t-1}}^{1+\sigma_{1: t}} \frac{d y}{y}
$$

Now, summing this inequality over $t \in[M, T]$ gives us

$$
\sum_{t=M}^{T}\left\langle c_{t}, x_{t}-x_{t+1}\right\rangle \leq \frac{8}{\alpha} \int_{1+\sigma_{1: M-1}}^{1+\sigma_{1: M}} \frac{d y}{y} \leq \frac{8}{\alpha} \log \left(1+\sigma_{1: T}\right)
$$

The next lemma is a consequence of the standard FTRL analysis. We include its proof for completeness. This is also Part (1) of Theorem 3.1.
Lemma B.4. For the FTRL algorithm described earlier, for all $N \in[T]$ and for any vector u with $\|u\| \leq 1$, we have

$$
\sum_{t=1}^{N}\left\langle c_{t}, x_{t}-u\right\rangle \leq 4.5 \sqrt{1+\sigma_{1: N}}
$$

Proof. Suppose we use Lemma B. 1 with $m=0$ and $T=N$, then we get:

$$
\sum_{t=0}^{N} \psi_{t}\left(x_{t+1}\right) \leq \psi_{0: N}(u)
$$

Plugging in the value of ψ_{t},

$$
\sum_{t=1}^{N}\left\langle c_{t}, x_{t}-u\right\rangle \leq \sum_{t=0}^{N} \frac{r_{t}}{2}\left(\|u\|^{2}-\left\|x_{t+1}\right\|^{2}\right)+\sum_{t=1}^{N}\left\langle c_{t}, x_{t}-x_{t+1}\right\rangle
$$

Now, we use the naive bound of $r_{0: N}$ for the first summation on the RHS, and use Proposition B. 2 to bound the second summation by $r_{0: N}$. This completes the proof.

C Switch-once dynamic regret

Theorem 3.3. Let $\lambda \geq 1$ be a given parameter, and $\left(z_{t}\right)_{t=1}^{T}$ be any sequence of cost values satisfying $z_{t}^{2} \leq 4 \sigma_{t}$. Let $\left(q_{t}\right)_{t=1}^{T}$ be a valid-in-hindsight sequence. The points p_{t} produced by $\mathcal{A}_{o g d}$ then satisfy:

$$
\sum_{t=1}^{T} z_{t}\left(p_{t}-q_{t}\right) \leq \lambda\left(1+3 \log \left(1+\sigma_{1: T}\right)\right)
$$

Proof. The proof is analogous to that of OGD (e.g., [30]), but we need fresh ideas specific to our setup. First, observe that since q is a valid-in-hindsight sequence, we have $q_{t} \in D_{t}$ for all t.
Thus, we have

$$
\begin{align*}
\left(p_{t+1}-q_{t}\right)^{2} & \leq\left(p_{t}-\eta_{t} z_{t}-q_{t}\right)^{2} \quad(\text { since projection only shrinks distances) } \\
& =\left(p_{t}-q_{t}\right)^{2}-2 \eta_{t} z_{t}\left(p_{t}-q_{t}\right)+\eta_{t}^{2} z_{t}^{2} . \\
\Longrightarrow z_{t}\left(p_{t}-q_{t}\right) & \leq \frac{\left(p_{t}-q_{t}\right)^{2}-\left(p_{t+1}-q_{t}\right)^{2}}{2 \eta_{t}}+\frac{\eta_{t}}{2} z_{t}^{2} . \tag{10}
\end{align*}
$$

We now need to sum (10) over t. Note that the second term is easier to bound:

$$
\begin{equation*}
\sum_{t=1}^{T} \frac{\eta_{t}}{2} z_{t}^{2} \leq \frac{\lambda}{2} \sum_{t=1}^{T} \frac{4 \sigma_{t}}{1+\sigma_{1: t}} \leq 2 \lambda \log \left(1+\sigma_{1: T}\right) \tag{11}
\end{equation*}
$$

where the last inequality uses Proposition A.1. Suppose S is the time step at which the switch occurs in the sequence q, and let δ be q_{1} (i.e., the value in the non-zero segment). We split the first term as:

$$
\begin{equation*}
\sum_{t=1}^{T} \frac{\left(p_{t}-q_{t}\right)^{2}-\left(p_{t+1}-q_{t}\right)^{2}}{2 \eta_{t}}=\sum_{t \leq S} \frac{\left(p_{t}-\delta\right)^{2}-\left(p_{t+1}-\delta\right)^{2}}{2 \eta_{t}}+\sum_{t>S} \frac{p_{t}^{2}-p_{t+1}^{2}}{2 \eta_{t}} \tag{12}
\end{equation*}
$$

Next, by setting $\eta_{0}=\lambda$, writing

$$
\frac{\left(p_{t}-\delta\right)^{2}-\left(p_{t+1}-\delta\right)^{2}}{2 \eta_{t}}=\frac{\left(p_{t}-\delta\right)^{2}}{2 \eta_{t-1}}-\frac{\left(p_{t+1}-\delta\right)^{2}}{2 \eta_{t}}+\frac{\left(p_{t}-\delta\right)^{2}}{2}\left(\frac{1}{\eta_{t}}-\frac{1}{\eta_{t-1}}\right)
$$

and noting that $\frac{1}{\eta_{t}}-\frac{1}{\eta_{t-1}}=\frac{\sigma_{t}}{\lambda}$, we can make the summation telescope. Doing a similar manipulation for the sum over $t>S$, the RHS of (12) simplifies to:

$$
\begin{align*}
& \frac{\left(p_{1}-\delta\right)^{2}}{2 \eta_{0}}-\frac{\left(p_{S+1}-\delta\right)^{2}}{2 \eta_{S}}+\frac{p_{S+1}^{2}}{2 \eta_{S}}-\frac{p_{T+1}^{2}}{2 \eta_{T}}+\sum_{t \leq S} \frac{\left(p_{t}-\delta\right)^{2} \sigma_{t}}{2 \lambda}+\sum_{t>S} \frac{p_{t}^{2} \sigma_{t}}{2 \lambda} \\
& \leq \frac{1}{2 \eta_{0}}+\frac{\left|D_{S}\right|^{2}}{2 \eta_{S}}+\sum_{t=1}^{T} \frac{\left|D_{t}\right|^{2} \sigma_{t}}{2 \lambda} \tag{13}
\end{align*}
$$

where $\left|D_{t}\right|$ is the length/diameter of the domain at time t, i.e., $\left|D_{t}\right|^{2}=\min \left(1, \frac{\lambda^{2}}{1+\sigma_{1: t}}\right)$. The inequality holds because for all t, both p_{t} and q_{t} are in D_{t}. Plugging in the values of $\left|D_{t}\right|$ and η_{t}, the first two terms in (13) are at most $\lambda / 2$ (because $\lambda \geq 1$). Thus plugging this back into (12), we get

$$
\sum_{t=1}^{T} \frac{\left(p_{t}-q_{t}\right)^{2}-\left(p_{t+1}-q_{t}\right)^{2}}{2 \eta_{t}} \leq \lambda\left(1+\sum_{t=1}^{T} \frac{\sigma_{t}}{2\left(1+\sigma_{1: t}\right)}\right)
$$

Finally, using Proposition A.1, the RHS above can be upper bounded by $\lambda\left(1+\frac{1}{2} \log \left(1+\sigma_{1: T}\right)\right)$.
Plugging this back into (10), summing over t, and using (11), we get

$$
\sum_{t} z_{t}\left(p_{t}-q_{t}\right) \leq \lambda\left(1+3 \log \left(1+\sigma_{1: T}\right)\right)
$$

D Proofs for Section 4

Theorem 4.1. For any \mathcal{B},

$$
\begin{aligned}
\mathbb{E}\left[\mathcal{R}_{\mathcal{A}_{\text {hinss }}, \alpha}(\vec{c})\right] & \leq \frac{78+38 \log \left(1+\|c\|_{1: T}^{2}\right)}{\alpha}+40 \sqrt{\sum_{t \in \mathcal{B}}\left\|c_{t}\right\|^{2}}+\frac{20}{\alpha} \sqrt{\sum_{t \in \mathcal{B}}\left\|h_{t}\right\|^{2}} \sqrt{\log \left(1+\|c\|_{1: T}^{2}\right)} \\
& =O\left(\frac{\sqrt{|\mathcal{B}|} \log T}{\alpha}\right), \text { and } \quad \mathbb{E}\left[\mathcal{Q}_{\mathcal{A}_{\text {hinss }}, \alpha}(\vec{c})\right] \leq 20 \sqrt{\|c\|_{1: T}^{2}} .
\end{aligned}
$$

Proof. In the proof of Theorem 3.4, we exploited the fact that Lemma 3.5 actually bounds the expected regret when $\mathcal{B}=\emptyset$. However, when $\mathcal{B} \neq \emptyset$, we have a more complicated relationship:

$$
\begin{aligned}
\sum_{t=1}^{T} \mathbb{E}\left[\left\langle c_{t}, \hat{x}_{t}-u\right\rangle\right] & =\sum_{t=1}^{T} p_{t}\left\langle c_{t},-h_{t}-x_{t}\right\rangle+\left\langle c_{t}, x_{t}-u\right\rangle \\
& \leq \sum_{t \notin \mathcal{B}} p_{t}\left(-\alpha\left\|c_{t}\right\|^{2}-\left\langle c_{t}, x_{t}\right\rangle\right)+\left\langle c_{t}, x_{t}-u\right\rangle+\sum_{t \in \mathcal{B}} p_{t}\left\langle c_{t},-h_{t}-x_{t}\right\rangle+\left\langle c_{t}, x_{t}-u\right\rangle \\
& =\sum_{t=1}^{T} p_{t}\left(-\alpha\left\|c_{t}\right\|^{2}-\left\langle c_{t}, x_{t}\right\rangle\right)+\left\langle c_{t}, x_{t}-u\right\rangle+\sum_{t \in \mathcal{B}}-p_{t}\left(\left\langle c_{t}, h_{t}\right\rangle-\alpha\left\|c_{t}\right\|^{2}\right) \\
& \leq \sum_{t=1}^{T} p_{t}\left(-\alpha\left\|c_{t}\right\|^{2}-\left\langle c_{t}, x_{t}\right\rangle\right)+\left\langle c_{t}, x_{t}-u\right\rangle+\sum_{t \in \mathcal{B}}\left|D_{t-1}\right|\left(\left\|c_{t}\right\|\left\|h_{t}\right\|+\alpha\left\|c_{t}\right\|^{2}\right),
\end{aligned}
$$

where $\left|D_{t-1}\right|=\frac{10}{\alpha \sqrt{1+\|c\|_{1: t-1}^{2}}}$, and the last line follows from the restrictions on p_{t} in Algorithm 2. The first sum in the above expression is already controlled by Lemma 3.5. For the second sum,

$$
\begin{aligned}
\sum_{t \in \mathcal{B}}\left|D_{t-1}\right|\left(\left\|c_{t}\right\|\left\|h_{t}\right\|+\alpha\left\|c_{t}\right\|^{2}\right) & \leq 2 \sum_{t \in \mathcal{B}}\left|D_{t}\right|\left(\left\|c_{t}\right\|\left\|h_{t}\right\|+\alpha\left\|c_{t}\right\|^{2}\right) \\
& \leq 2 \sum_{t \in \mathcal{B}} \frac{10\left\|c_{t}\right\|^{2}}{\sqrt{1+\sum_{\tau \in \mathcal{B}, \tau \leq t}\left\|c_{\tau}\right\|^{2}}}+\left|D_{t}\right|\left\|c_{t}\right\|\left\|h_{t}\right\| \\
& \leq 40 \sqrt{\sum_{t \in \mathcal{B}}\left\|c_{t}\right\|^{2}}+2 \sum_{t \in \mathcal{B}}\left|D_{t}\right|\left\|c_{t}\right\|\left\|h_{t}\right\| \\
\text { (by Cauchy-Schwarz) } & \leq 40 \sqrt{\sum_{t \in \mathcal{B}}\left\|c_{t}\right\|^{2}}+2 \sqrt{\sum_{t \in \mathcal{B}}\left\|h_{t}\right\|^{2}} \sqrt{\sum_{t \in \mathcal{B}}\left\|c_{t}\right\|^{2}\left|D_{t}\right|^{2}} \\
& \leq 40 \sqrt{\sum_{t \in \mathcal{B}}\left\|c_{t}\right\|^{2}}+\frac{20}{\alpha} \sqrt{\sum_{t \in \mathcal{B}}\left\|h_{t}\right\|^{2}} \sqrt{\log \left(1+\|c\|_{1: T}^{2}\right)}
\end{aligned}
$$

Theorem 4.2. Set $\alpha=\frac{1}{4}$. Then

$$
\begin{aligned}
\mathbb{E}\left[\mathcal{R}_{\mathcal{A}_{\text {hins }}, \alpha}(\vec{c})\right] & \leq 312+152 \log \left(1+\|c\|_{1: T}^{2}\right)+80\left(1+\sqrt{\log \left(1+\|c\|_{1: T}^{2}\right)}\right) \sqrt{\sum_{t \in \mathcal{B}}\left\|c_{t}-h_{t}\right\|^{2}} \\
& =O\left(\log (T)+\sqrt{\sum_{t=1}^{T}\left\|c_{t}-h_{t}\right\|^{2} \log (T)}\right), \text { and } \quad \mathbb{E}\left[\mathcal{Q}_{\mathcal{A}_{\text {hins }}, \alpha}(\vec{c})\right] \leq 20 \sqrt{\|c\|_{1: T}^{2}}
\end{aligned}
$$

Proof. The idea is to get a bound in terms of $\left\|c_{t}-h_{t}\right\|^{2}$. Since $\alpha=\frac{1}{4}, t \in \mathcal{B}$ is equivalent to $\left\langle c_{t}, h_{t}\right\rangle \leq \frac{\left\|c_{t}\right\|^{2}}{4}$. Thus if $t \in \mathcal{B}:$

$$
\left\|c_{t}-h_{t}\right\|^{2}=\left\|c_{t}\right\|^{2}-2\left\langle c_{t}, h_{t}\right\rangle+\left\|h_{t}\right\|^{2} \geq \frac{\left\|c_{t}\right\|^{2}}{2}+\left\|h_{t}\right\|^{2}
$$

Therefore, we have:

$$
40 \sqrt{\sum_{t \in \mathcal{B}}\left\|c_{t}\right\|^{2}}+80 \sqrt{\sum_{t \in \mathcal{B}}\left\|h_{t}\right\|^{2} \log \left(1+\|c\|_{1: T}^{2}\right)} \leq 80\left(1+\sqrt{\log \left(1+\|c\|_{1: T}^{2}\right)}\right) \sqrt{\sum_{t \in \mathcal{B}}\left\|c_{t}-h_{t}\right\|^{2}} .
$$

Now, by Theorem 4.1 we have:

$$
\begin{aligned}
\mathbb{E}\left[\mathcal{R}_{\mathcal{A}, \alpha}(\vec{c})\right] & \leq \frac{78+38 \log \left(1+\|c\|_{1: T}^{2}\right)}{\alpha}+40 \sqrt{\sum_{t \in \mathcal{B}}\left\|c_{t}\right\|^{2}}+\frac{20}{\alpha} \sqrt{\sum_{t \in \mathcal{B}}\left\|h_{t}\right\|^{2}} \sqrt{\log \left(1+\|c\|_{1: T}^{2}\right)} \\
& \leq \frac{78+38 \log \left(1+\|c\|_{1: T}^{2}\right)}{\alpha}+80\left(1+\sqrt{\log \left(1+\|c\|_{1: T}^{2}\right)}\right) \sqrt{\sum_{t \in \mathcal{B}}\left\|c_{t}-h_{t}\right\|^{2} .}
\end{aligned}
$$

E Proofs for Section 5

Theorem 5.2. Let \mathcal{A} be any deterministic algorithm for $O L O$ with hints that makes at most $C \sqrt{T}<$ $T / 2$ queries, for some parameter $C>0$. Then there is a sequence cost vectors c_{t} and hints h_{t} of unit length such that (a) $h_{t}=c_{t}$ whenever \mathcal{A} makes a hint query, and (b) the regret of \mathcal{A} on this input sequence is at least $\frac{\sqrt{T}}{2(1+C)}$.

Proof. The main limitation of a deterministic algorithm \mathcal{A} is that even if it adapts to the costs seen so far, the adversary always knows if \mathcal{A} is going to make a hint query in the next step, and in steps where a query will not be made, the adversary knows which x_{t} will be played by \mathcal{A}.
Using this intuition, we define the following four-dimensional instance. For convenience, let e_{0} be a unit vector in \mathbb{R}^{4}, and let S be the space orthogonal to e_{0}. The adversary constructs the instance iteratively, doing the following for $t=1,2, \ldots$:

1. If the algorithm makes a hint query at time t, set $h_{t}=c_{t}=e_{0}$.
2. If the algorithm does not make a hint query, then if x_{t} is the point that will be played by the algorithm, set c_{t} to be a unit vector in S that is orthogonal to x_{t} and to $c_{1}+\cdots+c_{t-1}$. (Note that since S is a three-dimensional subspace of \mathbb{R}^{4}, this is always feasible.)
For convenience, define I_{t} to be the set of indices $\leq t$ in which the algorithm has asked for a hint. Then we first observe that for all t,

$$
\begin{equation*}
\left\|\sum_{j \in[t] \backslash I_{t}} c_{j}\right\|^{2}=t-\left|I_{t}\right| . \tag{14}
\end{equation*}
$$

This is easy to see, because c_{t} is always orthogonal to e_{0}, and thus is also orthogonal to $\sum_{j \in[t-1] \backslash I_{t-1}} c_{j}$. The equality (14) then follows from the Pythagoras theorem.
Thus, suppose the algorithm makes K queries in total (over the course of the T steps). By assumption $K \leq C \sqrt{T}<T / 2$. Then we have that

$$
\left\|\sum_{j \in[T]} c_{j}\right\|^{2}=K^{2}+\left\|\sum_{j \in[T] \backslash I_{T}} c_{j}\right\|^{2}=K^{2}+T-K
$$

Thus the optimal vector in hindsight (say u) achieves $\sum_{j \in[T]}\left\langle c_{j}, u\right\rangle=-\sqrt{T-K+K^{2}}$.
Let us next look at the cost of the algorithm. In every step where it makes a hint query, the best cost that \mathcal{A} can achieve is -1 (by playing $-e_{0}$). In the other steps, the construction ensures that the cost is 0 . Thus the regret is at least

$$
-K+\sqrt{T-K+K^{2}}=\frac{T-K}{K+\sqrt{T-K+K^{2}}}>\frac{T / 2}{K+\sqrt{T}} \geq \frac{\sqrt{T}}{2(1+C)}
$$

F Proofs for Section 6

In order to prove Theorems 6.1 and 6.2, we first provide the following technical statement that allows us to unify much the analysis:
Lemma F.1. Suppose that $\mathcal{A}_{\text {unc }}$ is an unconstrained online linear optimization algorithm that outputs $w_{t} \in \mathbb{R}^{d}$ in response to costs $c_{1}, \ldots, c_{t-1} \in \mathbb{R}^{d}$ satisfying $\left\|c_{\tau}\right\| \leq 1$ for all τ and guarantees for some constants A and B for all $u \in \mathbb{R}^{d}$:

$$
\mathcal{R}_{\mathcal{A}_{\text {unc }}}(u, \vec{c}) \leq \epsilon+A\|u\| \sqrt{\sum_{t=1}^{T}\left\|c_{t}\right\|^{2} \log (\|u\| T / \epsilon+1)}+B\|u\| \log (\|u\| T / \epsilon+1)
$$

where ϵ is an arbitrary user-specified constant. Further, suppose $\mathcal{A}_{\text {unc-1D }}$ is an unconstrained online linear optimization algorithm that outputs $y_{t} \in \mathbb{R}$ in response to $g_{1}, \ldots, g_{t-1} \in \mathbb{R}$ satisfying $\left|g_{\tau}\right| \leq$ 1 for all τ and guarantees for all $y_{\star} \in \mathbb{R}$:

$$
\sum_{t=1}^{T} g_{t}\left(y_{t}-y_{\star}\right) \leq \epsilon+A\left|y_{\star}\right| \sqrt{\sum_{t=1}^{T} g_{t}^{2} \log \left(\left|y_{\star}\right| T / \epsilon+1\right)}+B\left|y_{\star}\right| \log \left(\left|y_{\star}\right| T / \epsilon+1\right)
$$

Finally, suppose also that $\mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}_{t}\left|\left\langle c_{t}, h_{t}\right\rangle\right|\right] \geq M \sqrt{1+\|c\|_{1: T}^{2}}-N$ and $\mathbb{E}\left[\sum_{t \in \mathcal{B}} \mathbb{1}_{t}\left|\left\langle c_{t}, h_{t}\right\rangle\right|\right] \leq H$ and $\mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}_{t}\left\langle c_{t}, h_{t}\right\rangle^{2}\right] \leq F \sqrt{1+\|c\|_{1: T}^{2}}$ for some constant M, N, H, F. Then both the deterministic and randomized version of Algorithm 4 guarantee:

$$
\begin{aligned}
\mathbb{E}\left[\mathcal{R}_{\mathcal{A}_{\text {unc }}}(u, \vec{c})\right] \leq 2 \epsilon & +B\|u\| \log (\|u\| T / \epsilon+1)+\frac{4 A\|u\|(H+N) \sqrt{\log (\|u\| T / \epsilon+1)}}{M} \\
& +\frac{2 A B\|u\| \sqrt{\log (\|u\| T / \epsilon+1)} \log (2 A\|u\| T \sqrt{\log (\|u\| T / \epsilon+1)} /(M \epsilon)+1)}{M} \\
& +\frac{2 A^{3} F\|u\| \sqrt{\log (\|u\| T / \epsilon+1) \log (2 A\|u\| T \sqrt{\log (\|u\| T / \epsilon+1)} /(M \epsilon)+1)}}{M^{2}} .
\end{aligned}
$$

Proof of Lemma F.1. Some algebraic manipulation of the regret definition yields:

$$
\begin{aligned}
& \mathbb{E}\left[\mathcal{R}_{\mathcal{A}_{\text {unc }}}(u, \vec{c})\right] \leq \mathbb{E}\left[\inf _{y_{\star}} \sum_{t=1}^{T}\left\langle c_{t}, w_{t}-u\right\rangle-y_{\star} \sum_{t=1}^{T} \mathbb{1}_{t}\left\langle h_{t}, c_{t}\right\rangle-\sum_{t=1}^{T} \mathbb{1}_{t}\left\langle h_{t}, c_{t}\right\rangle\left(y_{t}-y_{\star}\right)\right] \\
& \leq \mathbb{E}\left[\inf _{y_{\star} \geq 0} \sum_{t=1}^{T}\left\langle c_{t}, w_{t}-u\right\rangle-y_{\star} \sum_{t=1}^{T} \mathbb{1}_{t}\left|\left\langle h_{t}, c_{t}\right\rangle\right|+2 y_{\star} \sum_{t \in \mathcal{B}} \mathbb{1}_{t}\left|\left\langle h_{t}, c_{t}\right\rangle\right|-\sum_{t=1}^{T} \mathbb{1}_{t}\left\langle h_{t}, c_{t}\right\rangle\left(y_{t}-y_{\star}\right)\right]
\end{aligned}
$$

Now using the hypothesized bounds we have

$$
\begin{aligned}
& \mathbb{E}\left[\mathcal{R}_{\mathcal{A}_{\text {unc }}}(u, \vec{c})\right] \leq \mathbb{E}\left[\inf _{y_{\star} \geq 0} \sum_{t=1}^{T}\left\langle c_{t}, w_{t}-u\right\rangle-y_{\star} M \sqrt{1+\|c\|_{1: T}^{2}}+2 y_{\star} H+y_{\star} N-\sum_{t=1}^{T} \mathbb{1}_{t}\left\langle h_{t}, c_{t}\right\rangle\left(y_{t}-y_{\star}\right)\right] \\
& \leq \inf _{y_{\star} \geq 0} \mathbb{E}\left[2 \epsilon+A\|u\| \sqrt{\sum_{t=1}^{T}\left\|c_{t}\right\|^{2} \log (\|u\| T / \epsilon+1)+B\|u\| \log (\|u\| T / \epsilon+1)}\right. \\
& \left.\quad-y_{\star} M \sqrt{1+\|c\|_{1: T}^{2}}+2 y_{\star} H+y_{\star} N+A y_{\star} \sqrt{\sum_{t=1}^{t} g_{t}^{2} \log \left(y_{\star} T / \epsilon+1\right)}+B y_{\star} \log \left(y_{\star} T / \epsilon+1\right)\right]
\end{aligned}
$$

using Jensen inequality,

$$
\begin{aligned}
& \leq \inf _{y_{\star} \geq 0} 2 \epsilon+A\|u\| \sqrt{\sum_{t=1}^{T}\left\|c_{t}\right\|^{2} \log (\|u\| T / \epsilon+1)}+B\|u\| \log (\|u\| T / \epsilon+1)-y_{\star} M \sqrt{1+\|c\|_{1: T}^{2}} \\
& \quad+2 y_{\star} H+y_{\star} N+A y_{\star} \sqrt{\mathbb{E}\left[\sum_{t=1}^{t} \mathbb{1}_{t}\left\langle c_{t}, h_{t}\right\rangle^{2}\right] \log \left(y_{\star} T / \epsilon+1\right)}+B y_{\star} \log \left(y_{\star} T / \epsilon+1\right) \\
& \leq \inf _{y_{\star} \geq 0} 2 \epsilon+A\|u\| \sqrt{\sum_{t=1}^{T}\left\|c_{t}\right\|^{2} \log (\|u\| T / \epsilon+1)}+B\|u\| \log (\|u\| T / \epsilon+1)-y_{\star} M \sqrt{1+\|c\|_{1: T}^{2}} \\
& \quad+2 y_{\star} H+y_{\star} N+A y_{\star} \sqrt{F \sqrt{1+\|c\|_{1: T}^{2}} \log \left(y_{\star} T / \epsilon+1\right)}+B y_{\star} \log \left(y_{\star} T / \epsilon+1\right)
\end{aligned}
$$

with a little rearrangement,

$$
\begin{aligned}
& \leq \inf _{y_{\star} \geq 0} 2 \epsilon+A\|u\| \sqrt{\sum_{t=1}^{T}\left\|c_{t}\right\|^{2} \log (\|u\| T / \epsilon+1)}+B\|u\| \log (\|u\| T / \epsilon+1)-\frac{y_{\star}}{2} M \sqrt{\|c\|_{1: T}^{2}} \\
& \quad+2 y_{\star} H+y_{\star} N+B y_{\star} \log \left(y_{\star} T / \epsilon+1\right) \\
& \quad+A y_{\star} \sqrt{F \sqrt{1+\|c\|_{1: T}^{2}} \log \left(y_{\star} T / \epsilon+1\right)}-\frac{y_{\star}}{2} M \sqrt{1+\|c\|_{1: T}^{2}} \\
& \leq \inf _{y_{\star} \geq 0} 2 \epsilon+A\|u\| \sqrt{\sum_{t=1}^{T}\left\|c_{t}\right\|^{2} \log (\|u\| T / \epsilon+1)}+B\|u\| \log (\|u\| T / \epsilon+1)-\frac{y_{\star}}{2} M \sqrt{\|c\|_{1: T}^{2}} \\
& \quad+2 y_{\star} H+y_{\star} N+B y_{\star} \log \left(y_{\star} T / \epsilon+1\right)+\sup _{X} A y_{\star} \sqrt{F X \log \left(y_{\star} T / \epsilon+1\right)}-\frac{y_{\star}}{2} M X \\
& \leq \\
& \inf _{y_{\star} \geq 0} 2 \epsilon+A\|u\| \sqrt{\sum_{t=1}^{T}\left\|c_{t}\right\|^{2} \log (\|u\| T / \epsilon+1)}+B\|u\| \log (\|u\| T / \epsilon+1)-\frac{y_{\star}}{2} M \sqrt{\|c\|_{1: T}^{2}} \\
& \quad+2 y_{\star} H+y_{\star} N+B y_{\star} \log \left(y_{\star} T / \epsilon+1\right)+\frac{y_{\star} A A^{2} F \log \left(y_{\star} T / \epsilon+1\right)}{2 M}
\end{aligned}
$$

Now, we set

$$
y_{\star}=\frac{2 A\|u\| \sqrt{\log (\|u\| T / \epsilon+1)}}{M} .
$$

This yields

$$
\begin{aligned}
& \mathbb{E}\left[\mathcal{R}_{\mathcal{A}_{\text {unc }}}(u, \vec{c})\right] \\
& \leq 2 \epsilon+B\|u\| \log (\|u\| T / \epsilon+1)+2 y_{\star} H+y_{\star} N+B y_{\star} \log \left(y_{\star} T / \epsilon+1\right)+\frac{y_{\star} A^{2} F \log \left(y_{\star} T / \epsilon+1\right)}{2 M} \\
& \leq 2 \epsilon+B\|u\| \log (\|u\| T / \epsilon+1)+\frac{4 A\|u\|(H+N) \sqrt{\log (\|u\| T / \epsilon+1)}}{M} \\
& \quad+\frac{2 A B\|u\| \sqrt{\log (\|u\| T / \epsilon+1)} \log (2 A\|u\| T \sqrt{\log (\|u\| T / \epsilon+1)} /(M \epsilon)+1)}{M} \\
& \quad+\frac{2 A^{3} F\|u\| \sqrt{\log (\|u\| T / \epsilon+1) \log (2 A\|u\| T \sqrt{\log (\|u\| T / \epsilon+1)} /(M \epsilon)+1)}}{M^{2}}
\end{aligned}
$$

Now, to prove Theorem 6.1, it suffices to instantiate the Lemma. We restate the Theorem below for convenience:

Theorem 6.1. The randomized version of Algorithm 4 guarantees an expected regret at most:

$$
2 \epsilon+\tilde{O}\left(\frac{\|u\| \sqrt{\log (\|u\| T / \epsilon)}\left[K+\frac{\log (\|u\| T / \epsilon) \log \log (T\|u\| / \epsilon)}{K}+\sqrt{\sum_{t \in \mathcal{B}}\left\|h_{t}\right\|^{2} \log (T)}\right]}{\alpha}\right)
$$

with expected query cost at most $2 K \sqrt{\|c\|_{1: T}^{2}}$.

Proof. Define

$$
p_{t}=\min \left(1, \frac{K}{\alpha \sqrt{1+\|c\|_{1: t}^{2}}}\right)
$$

so that in the randomized version of Algorithm 4, at round t, we ask for a hint with probability p_{t-1}. Clearly, the expected query cost is:

$$
\mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}_{t}\left\langle c_{t}, h_{t}\right\rangle\right]=\sum_{t=1}^{T} \alpha p_{t-1}\left\|c_{t}\right\|^{2} \leq K \sum_{t=1}^{T} \frac{\left\|c_{t}\right\|^{2}}{\sqrt{\|c\|_{1: t}^{2}}} \leq 2 K \sqrt{\|c\|_{1: T}^{2}}
$$

Now, to bound the regret we consider two cases. First, if $1+\|c\|_{1: T}^{2} \leq \frac{K^{2}}{\alpha^{2}}$, then we have:

$$
\begin{aligned}
\mathbb{E}\left[\mathcal{R}_{\mathcal{A}_{\text {unc }}}(u, \vec{c})\right] & \leq \mathbb{E}\left[\sum_{t=1}^{T}\left\langle c_{t}, w_{t}-u\right\rangle-\sum_{t=1}^{T} \mathbb{1}_{t}\left\langle c_{t}, h_{t}\right\rangle y_{t}\right] \leq \mathbb{E}\left[\sum_{t=1}^{T}\left\langle c_{t}, w_{t}-u\right\rangle+\sum_{t=1}^{T} g_{t}\left(y_{t}-0\right)\right] \\
& \leq 2 \epsilon+A\|u\| \sqrt{\sum_{t=1}^{T}\left\|c_{t}\right\|^{2} \log (\|u\| T / \epsilon+1)}+B\|u\| \log (\|u\| T / \epsilon+1) \\
& \leq 2 \epsilon+\frac{A\|u\| K \sqrt{\log (\|u\| T / \epsilon+1)}}{\alpha}+B\|u\| \log (\|u\| T / \epsilon+1)
\end{aligned}
$$

and so the result follows. Thus, we may assume $1+\|c\|_{1: T}^{2}>\frac{K^{2}}{\alpha^{2}}$. In this case, we will calculate values for M, H, and F to use in tandem with Lemma F.1. First,

$$
\mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}_{t}\left\langle c_{t}, h_{t}\right\rangle^{2}\right] \leq \sum_{t=1}^{T} p_{t-1}\left\|c_{t}\right\|^{2} \leq \frac{K}{\alpha} \sum_{t=1}^{T} \frac{\left\|c_{t}\right\|^{2}}{\sqrt{\|c\|_{1: t}^{2}}} \leq \frac{2 K}{\alpha} \sqrt{1+\|c\|_{1: T}^{2}}
$$

So that we may take $F=\frac{2 K}{\alpha}$. Next, note that $p_{T}=\frac{K}{\alpha \sqrt{1+\|c\|_{1: T}^{2}}}$ by our casework assumption. Therefore:

$$
-\alpha p_{T}\|c\|_{1: T}^{2} \leq \alpha-\alpha p_{T}\left(1+\|c\|_{1: T}^{2}\right) \leq \alpha-K \sqrt{\|c\|_{1: T}^{2}},
$$

so that we may take $M=K$ and $N=\alpha$. Finally,
$\sum_{t \in \mathbb{B}} p_{t}\left|\left\langle c_{t}, h_{t}\right\rangle\right| \leq K \sum_{t \in \mathbb{B}} \frac{\left\|c_{t}\right\|\left\|h_{t}\right\|}{\alpha \sqrt{\left\|c_{t}\right\|_{1: t}^{2}}} \leq \frac{K}{\alpha} \sqrt{\sum_{t \in \mathbb{B}} \frac{\left\|c_{t}\right\|^{2}}{\left\|c_{t}\right\|_{1: t}^{2}} \sum_{t \in \mathbb{B}}\left\|h_{t}\right\|^{2}} \leq \frac{K}{\alpha} \sqrt{\sum_{t \in \mathbb{B}}\left\|h_{t}\right\|^{2} \log \left(1+\|c\|_{1: T}^{2}\right)}$,
so that we may take $H=\frac{K}{\alpha} \sqrt{\sum_{t \in \mathbb{B}}\left\|h_{t}\right\|^{2} \log \left(1+\|c\|_{1: T}^{2}\right)}$. Then Lemma F. 1 implies

$$
\begin{aligned}
& \mathbb{E}\left[\mathcal{R}_{\mathcal{A}_{\text {unc }}}(u, \vec{c})\right] \leq 2 \epsilon \\
&+B\|u\| \log (\|u\| T / \epsilon+1)+\frac{4 A\|u\|(H+\alpha) \sqrt{\log (\|u\| T / \epsilon+1)}}{M} \\
&+\frac{2 A B\|u\| \sqrt{\log (\|u\| T / \epsilon+1)} \log (2 A\|u\| T \sqrt{\log (\|u\| T / \epsilon+1)} /(M \epsilon)+1)}{M} \\
& \leq 2 \epsilon+B\|u\| \sqrt{\log (\|u\| T / \epsilon+1) \log (2 A\|u\| T \sqrt{\log (\|u\| T / \epsilon+1)} /(M \epsilon)+1)} \\
& M^{2} \\
&+\frac{4 A\|u\| \alpha \sqrt{\log (\|u\| T / \epsilon+1)+\frac{4 A\|u\| / \epsilon+1)}{\log (\|u\| T / \epsilon+1) \sum_{t \in \mathbb{B}}\left\|h_{t}\right\|^{2} \log \left(1+\|c\|_{1: T}^{2}\right)}}}{\alpha} \\
&+\frac{2 A B\|u\| \sqrt{\log (\|u\| T / \epsilon+1)} \log (2 A\|u\| T \sqrt{\log (\|u\| T / \epsilon+1)} /(K \epsilon)+1)}{K} \\
&+\frac{2 A^{3}\|u\| \sqrt{\log (\|u\| T / \epsilon+1) \log (2 A\|u\| T \sqrt{\log (\|u\| T / \epsilon+1)} /(K \epsilon)+1)}}{K \alpha} .
\end{aligned}
$$

Simplifying the expression yields

$$
\begin{aligned}
& \mathbb{E}\left[\mathcal{R}_{\mathcal{A}_{\mathrm{umc}}}(u, \vec{c})\right] \\
& \leq 2 \epsilon+\tilde{O}\left(\frac{\|u\|\left(\frac{\log (\|u\| T / \epsilon)^{3 / 2} \log \log (T\|u\| / \epsilon)}{K}+\sqrt{\left.\log (\|u\| T / \epsilon) \sum_{t \in \mathbb{B}}\left\|h_{t}\right\|^{2} \log \left(1+\|c\|_{1: T}^{2}\right)\right)}\right.}{\alpha}\right) .
\end{aligned}
$$

F. 1 Deterministic version

Before providing the proof of Theorem 6.2, we need the following auxiliary statement.
Lemma F.2. Suppose $\mathbb{B}=\emptyset$. Then for all t, the deterministic version of Algorithm 4 guarantees:

$$
\sqrt{\|c\|_{1: T-1}^{2}}-K-1-\frac{K}{2 \alpha} \leq \sum_{t=1}^{T} \mathbb{1}_{t}\left\langle c_{t}, h_{t}\right\rangle \leq K \sqrt{1+\|c\|_{1: T-1}^{2}} .
$$

Proof. Define $Z_{t}=1+\sum_{t=1}^{T} \mathbb{1}_{t}\left\langle c_{t}, h_{t}\right\rangle$ with $Z_{0}=1$. We will instead prove the equivalent bound:

$$
K \sqrt{\|c\|_{1: T-1}^{2}}-K-\frac{K}{2 \alpha} \leq Z_{T} \leq 1+K \sqrt{1+\|c\|_{1: T-1}^{2}} .
$$

The upper bound is immediate from the definition of Z_{T} and the fact that $\left\langle c_{t}, h_{t}\right\rangle \leq 1$. For the lower bound, we will prove a slightly different statement that we will later show implies the desired result:

$$
\text { for all } t \geq 0, Z_{t} \geq K \sqrt{1+\|c\|_{1: t}^{2}}-K \sum_{t^{\prime} \leq t \left\lvert\, \sqrt{\|c\|_{1: t^{\prime}}^{2} \leq \frac{1}{2 \alpha}}\right.} \frac{\left\|c_{t^{\prime}}\right\|^{2}}{2 \sqrt{\|c\|_{1: t^{\prime}}^{2}}} .
$$

We proceed by induction. The base case for $t=0$ is clear from definition of Z_{t}. Suppose the statement holds for some t. Then consider two cases, either $Z_{t}<K \sqrt{1+\|c\|_{1: t}^{2}}$ or not. If $Z_{t} \geq$ $K \sqrt{1+\|c\|_{1: t}^{2}}$, then $Z_{t+1}=Z_{t} \geq K \sqrt{1+\|c\|_{1: t}^{2}} \geq K \sqrt{1+\|c\|_{1: t+1}^{2}}-K$ and so the statement holds. Alternatively, suppose $Z_{t}<K \sqrt{1}+\|c\|_{1: t}^{2}$. Then:

$$
\begin{aligned}
Z_{t+1} & =Z_{t}+\left\langle c_{t+1}, h_{t+1}\right\rangle \\
& \geq K \sqrt{1+\|c\|_{1: t}^{2}}-K-\sum_{t^{\prime} \leq t \left\lvert\, \sqrt{\|c\|_{1: t}^{2}} \leq \frac{K}{2 \alpha}\right.} \frac{\left\|c_{t^{\prime} \|^{2}}^{2 \sqrt{\|c\|_{1: t^{\prime}}^{2}}}+\alpha\right\| c_{t+1} \|^{2}}{} \\
\geq K \sqrt{1+\|c\|_{1: t+1}^{2}}-\frac{K\left\|c_{t+1}\right\|^{2}}{2 \sqrt{1+\|c\|_{1: t}^{2}}}-K-\sum_{t^{\prime} \leq t \left\lvert\, \sqrt{\|c\|_{1: t}^{2} \leq \frac{K}{2 \alpha}}\right.} \frac{\left\|c_{t^{\prime} \|^{2}}^{2 \sqrt{\|c\|_{1: t^{\prime}}^{2}}}+\alpha\right\| c_{t+1} \|^{2}}{} & \geq K \sqrt{1+\|c\|_{1: t+1}^{2}}-\frac{K\left\|c_{t+1}\right\|^{2}}{2 \sqrt{\|c\|_{1: t+1}^{2}}}-K-\sum_{t^{\prime} \leq t \left\lvert\, \sqrt{\|c\|_{1: t^{\prime}}^{2}} \leq \frac{K}{2 \alpha}\right.} \frac{\left\|c_{t^{\prime}}\right\|^{2}}{2 \sqrt{\|c\|_{1: t^{\prime}}^{2}}}+\alpha\left\|c_{t+1}\right\|^{2} \\
& \geq \sqrt{1+\|c\|_{1: t+1}^{2}}-K-\sum_{t^{\prime} \leq t+1 \left\lvert\, \sqrt{\|c\|_{1: t^{\prime}}^{2} \leq \frac{K}{2 \alpha}}\right.}^{\frac{\left\|c_{t^{\prime}}^{2}\right\|^{2}}{2 \sqrt{\|c\|_{1: t^{\prime}}^{2}}}}
\end{aligned}
$$

so that the induction is complete.
Finally, observe that if τ is the largest index such that $\sqrt{\|c\|_{1: t}^{2}} \leq \frac{K}{2 \alpha}$, then

$$
\sum_{t^{\prime} \leq t+1 \left\lvert\, \sqrt{\|c\|_{1: t^{\prime}}^{2}} \leq \frac{K}{2 \alpha}\right.} \frac{\left\|c_{t^{\prime}}\right\|^{2}}{2 \sqrt{\|c\|_{1: t^{\prime}}^{2}}} \leq \sum_{t^{\prime}=1}^{\tau} \frac{\left\|c_{c^{\prime}}\right\|^{2}}{2 \sqrt{\|c\|_{1: t^{\prime}}^{2}}} \leq \sqrt{\|c\|_{1: \tau}^{2}} \leq \frac{K}{2 \alpha}
$$

Now we can prove Theorem 6.2:
Theorem 6.2. If $\mathcal{B}=\emptyset$, then the deterministic version of Algorithm 4 guarantees:

$$
\sum_{t=1}^{T}\left\langle c_{t}, x_{t}-u\right\rangle \leq 2 \epsilon+O\left(\frac{\|u\| \sqrt{\log (\|u\| T / \epsilon+1)}}{\alpha}+\frac{\|u\| \log ^{3 / 2}(\|u\| T / \epsilon) \log \log (\|u\| T / \epsilon)}{K}\right)
$$

with a query cost at most $2 K \sqrt{\|c\|_{1: T}^{2}}$.

Proof. From Lemma F. 2 we have that the query cost is at most $K \sqrt{\|c\|_{1: T}^{2}}$. To bound the regret, we will appeal to Lemma F.1, which requires finding values for M, N, H, F. First, again by Lemma F.2, we have:

$$
K \sqrt{1+\|c\|_{1: T}^{2}}-3 K-1-\frac{K}{2 \alpha} \leq K \sqrt{\|c\|_{1: T-1}^{2}}-K-1-\frac{K}{2 \alpha} \leq \sum_{t=1}^{T} \mathbb{1}_{t}\left\langle c_{t}, h_{t}\right\rangle .
$$

So that we may set $M=K$ and $N=3 K+1+\frac{K}{2 \alpha}$. Next, since $\mathbb{B}=\emptyset, H=0$. Finally, since all hints are α-good, we have

$$
\sum_{t=1}^{T} \mathbb{1}_{t}\left\langle c_{t}, h_{t}\right\rangle^{2} \leq \sum_{t=1}^{T} \mathbb{1}_{t}\left\langle c_{t}, h_{t}\right\rangle \leq K \sqrt{\|c\|_{1: T}^{2}}
$$

so that we may take $F=K$. Therefore, noticing that the expected regret is the actual regret since the algorithm is deterministic, we have

$$
\left.\begin{array}{rl}
\mathcal{R}_{\mathcal{A}_{\text {unc }}}(u, \vec{c}) \leq & 2 \epsilon \\
+B\|u\| \log (\|u\| T / \epsilon+1)+\frac{4 A\|u\|(H+N) \sqrt{\log (\|u\| T / \epsilon+1)}}{M} \\
& +\frac{2 A B\|u\| \sqrt{\log (\|u\| T / \epsilon+1)} \log (2 A\|u\| T \sqrt{\log (\|u\| T / \epsilon+1)} /(M \epsilon)+1)}{M} \\
& +\frac{2 A^{3} F\|u\| \sqrt{\log (\|u\| T / \epsilon+1) \log (2 A\|u\| T \sqrt{\log (\|u\| T / \epsilon+1)} /(M \epsilon)+1)}}{M^{2}} \\
\leq & 2 \epsilon
\end{array}+B\|u\| \log (\|u\| T / \epsilon+1)+4 A\|u\|\left(\frac{4}{\alpha}+\frac{1}{K}\right) \sqrt{\log (\|u\| T / \epsilon+1)}\right)
$$

