
A Methods

A.1 Open source attention module

We have open-sourced a Jax/Haiku implementation of our Hierarchical Attention Module,
which can be found at: https://github.com/deepmind/deepmind-research/tree/master/
hierarchical_transformer_memory/hierarchical_attention

We have also released our Ballet and Rapid Word Learning environments, and include links to those
and the released versions of other environments we used below.

A.2 Agent architecture and training

Table 1: Hyperparameters used in main experiments. Where only one value is listed across multiple
columns, it applies to all. Where hyperparameters were swept, parameters used for HCAM and TrXL
are reported separately.

Ballet Objects Words Image Streets Associative
All activation fns ReLU
State dimension 512

Memory dimension 512
Memory layers 4

Memory num. heads 8
HCAM chunk size 32 16 16 16 4 2

HCAM chunk overlap - 1 -
HCAM top-k 8 8 16 16 32 32

HCAM total num. chunks always greater than max episode length // chunk size
Local Attention Window 64 128 128 128 64 NA

TrXL extra length 256 512 256 NA 200 (full) NA
Visual encoder CNN ResNet

Vis. enc. channels (16, 32, 32)
Vis. enc. filt. size (9, 3, 3) (3, 3, 3)

Vis. enc. filt. stride (9, 1, 1) (2, 2, 2)
Vis. enc. num. blocks NA (2, 2, 2)

Language encoder 1-layer LSTM NA
Lang. enc. dimension 256 NA

Word embed. dimension 32 NA
Policy & value nets MLP with 1 hidden layer with 512 units.

Reconstruction decoders Architectural transposes of the encoders, with independent weights.
Recon. loss weight (HCAM) 1. 0.3 1. 0.3 NA

Recon. loss weight TrXL 1. NA 1. NA
V -trace loss weight (HCAM) 0.1 0.3 0.1 1. NA
V -trace loss weight (TrXL) 0.3 0.1 NA 1. NA

V -trace baseline weight (HCAM) 1. 0.3 1. 0.3 NA
V -trace baseline weight (TrXL) 1. 0.3 1. NA 1. NA

Entropy weight 1 · 10−3 1 · 10−4 NA
Batch size 32

Training unroll length 64 128 128 128 64 NA
Optimizer Adam [27]

LR 2 · 10−4 4 · 10−4 1 · 10−4

15

https://github.com/deepmind/deepmind-research/tree/master/hierarchical_transformer_memory/hierarchical_attention
https://github.com/deepmind/deepmind-research/tree/master/hierarchical_transformer_memory/hierarchical_attention

Table 2: Hyperparameter sweeps used in main experiments. The One-Shot StreetLearn and Paired
Associative Inference tasks used different chunk size sweeps due to the different task lengths and
demands. The Paired Associative Inference tasks do not use RL losses and so did not use the
corresponding loss sweeps.

Reconstruct. loss weight {0.1, 0.3, 1.}
V -trace loss weight {0.1, 0.3, 1.}

V -trace baseline weight {0.1, 0.3, 1.}
HCAM chunk size {16, 32, 64}, except Streets=(2, 4, 8, 16) and Associative=None

LR None, except Streets and Associative={1, 2, 4}·10−4

In Table 1 we show the hyperparameters used for all experiments, and in Table 2 we show the
hyperparameters sweeps used, although we generally used a subset of the full sweep. We swept each
hyperparameter with a single seed per condition, and then reran the best parameter settings for each
condition with more seeds to get a more robust estimate of the performance of each approach.

In most cases the hyperparameters that were not swept were taken from other sources without tuning
for our architecture. In particular, the first tasks we considered were the rapid word learning tasks,
and many parameters were taken directly from the hyperparameters of the original paper on which the
tasks were based [19]. These hyperparameters were therefore tuned directly by prior researchers for
other models, but we found them to work well for our memory as well. The visual encoder, language
encoder, unsupervised reconstruction loss etc. were copied from those described in the prior work.

Since we ran all other experiments after the initial word learning experiments, we used many of these
same hyperparameters on other experiments, such as the visual and language encoder architecture
across all experiments. However, some hyperparameters do differ across tasks due to specific task
features. For example, the visual encoder for the ballet tasks is set to have a filter size of 9 because
this is the resolution of each square in the grid, and the entropy cost for the ballet tasks was chosen
from our prior work [18] which used a similar grid world action space. These decisions were shared
across all architectures, so should not favor our model over the baselines.

Self-supervised reconstruction loss We used the same reconstruction loss as Hill et al. [19],
namely reconstructing the language with a softmax cross-entropy loss, and reconstructing the image
pixels (normalized to range [0, 1] on each color channel) with a sigmoid cross-entropy loss. The image
reconstruction loss was averaged across all pixels and channels, while the language reconstruction
loss was summed across the sequence.

A.2.1 Bug fixed between original and revised versions of this paper

Shortly before the camera-ready deadline for NeurIPS, we discovered a bug in the configuration of
the HCAM in the Ballet, Words, and Passive Visual Match domains: the local attention window was
much longer than intended. Fixing this bug did not substantially alter results in the Ballet or Passive
Visual Match tasks, but did change our results somewhat in the Rapid Word Learning tasks. The
qualitative patterns of extrapolation and generalization to multiple episodes remain the same, but
generalization of HCAM is somewhat worse, although still much better than the baseline models.
This does not substantially affect the conclusions of the paper. We have revised the Rapid Word
Learning plots in the main text to reflect these updated results, and included evaluation on the original
levels in Fig. 7. However, note that our supplemental analyses in this domain were carried out with
the longer attention window.

A.3 Plotting methods

In all plots, each curve is an average across multiple runs. The x-axis is always the number of
agent steps (actions taken/frames seen) during training. The number of learner updates is generally
2000− 4000× smaller with a batch size of 32 trajectories per update, and unroll lengths of 64-128.
The dark regions around the curve show ±SD across runs, the light regions show the total range. The
plots are smoothed by interpolation with a triangular window, with width and sampling frequency
chosen to present results clearly depending on the speed and variability of learning the different tasks.
All figures were made with seaborn [59] and matplotlib [22].

16

A.4 Compute resources

All experiments were run using Google TPU v2, v3, and v4 devices. Each run lasted between a
few hours and a few days depending on the experiment. We ran actors/evaluators on CPUs. We
estimate the total time needed to reproduce all experiments (including baselines and experiments in
appendices) to be around 1000 TPU-hours + 300000 CPU hours.

B Tasks

We have uploaded selected video recordings of the HCAM-based agent performing our main tasks at
https://www.youtube.com/playlist?list=PLE5lx5-YU_Hr8Q9IgTAfisJ6XCy3Jhh6F

B.1 Open source or released tasks

We have open-sourced our Ballet environment at: https://github.com/deepmind/
deepmind-research/tree/master/hierarchical_transformer_memory/hierarchical_
attention

We have released our rapid-word-learning tasks in the repository for the paper they were based upon
https://github.com/deepmind/dm_fast_mapping

The environments from other papers that we used also have corresponding releases:

1. Passive Visual Match: https://github.com/deepmind/deepmind-research/tree/
master/tvt

2. Paired Associative Inference: https://github.com/deepmind/deepmind-research/
tree/master/memo

3. One-Shot StreetLearn https://github.com/deepmind/deepmind-research/tree/
master/rapid_task_solving

B.2 Ballet

The tasks took place in a 9 × 9 tile room with an extra 1 tile wall surrounding on all sides, for a
total of 11 × 11 tiles. This was upsampled at a resolution of 9 pixels per tile to form a 99 × 99
image as input to the agent. The agent was placed in the center of the room, and the dancers were
placed randomly in 8 possible locations around it. The dancers always had distinct colors and shapes,
selected from 15 shapes and 19 colors. These features merely served to distinguish the dancers. The
agent always appeared as a white square. The agent received egocentric inputs (that is, its visual
input was centered on its location), as this can improve generalization [18].

In Listing 1 we show the dance sequences used for the ballet tasks. All dances are 16 steps long. We
trained all agents with levels uniformly sampled to have 16 or 48 steps of delay between dances, and
2, 4, or 8 dances. The number of dancers in the room corresponded to the number of dances, such
that if there were only 2 dances, there were only 2 dancers, while if there were 8 dances there were 8
dancers. This is why chance-level performance is 50% with 2 dances, but 12.5% with 8. The agent
was given a reward of 1 for a correct choice, and 0 for an incorrect choice.

B.3 Object permanence

The tasks took place within a 3D environment created with Unity. The agent received a visual
observation of 96× 72× 3 pixel RGB images, and a language observation that was tokenized at the
word-level. The agent was initially placed in a fixed position near one wall of the room facing toward
the center, and the boxes were randomly placed within the agent’s field of view. When each object
appeared, it jumped out of its box three times in succession. If there was a delay period, it began after
the object returned to its box for the third time. The delay periods we used for the varying length
training were 0, 10, 20, and 30 seconds. After the last presentation and delay phase, the lids of the
boxes closed.

After the lids of the boxes closed, the agent was allowed to move and look around, and was given the
instruction “look backward.” The agent was rewarded 0.3 for looking backwards (far enough that the

17

https://www.youtube.com/playlist?list=PLE5lx5-YU_Hr8Q9IgTAfisJ6XCy3Jhh6F
https://github.com/deepmind/deepmind-research/tree/master/hierarchical_transformer_memory/hierarchical_attention
https://github.com/deepmind/deepmind-research/tree/master/hierarchical_transformer_memory/hierarchical_attention
https://github.com/deepmind/deepmind-research/tree/master/hierarchical_transformer_memory/hierarchical_attention
https://github.com/deepmind/dm_fast_mapping
https://github.com/deepmind/deepmind-research/tree/master/tvt
https://github.com/deepmind/deepmind-research/tree/master/tvt
https://github.com/deepmind/deepmind-research/tree/master/memo
https://github.com/deepmind/deepmind-research/tree/master/memo
https://github.com/deepmind/deepmind-research/tree/master/rapid_task_solving
https://github.com/deepmind/deepmind-research/tree/master/rapid_task_solving

{
" c i r c l e _ c w " : [0 , 2 , 4 , 4 , 6 , 6 , 0 , 0 , 2 , 2 , 4 , 4 , 6 , 6 , 0 , 2] ,
" c i r c l e _ c c w " : [0 , 6 , 4 , 4 , 2 , 2 , 0 , 0 , 6 , 6 , 4 , 4 , 2 , 2 , 0 , 6] ,
" up_down " : [0 , 4 , 4 , 0 , 0 , 4 , 4 , 0 , 0 , 4 , 4 , 0 , 0 , 4 , 4 , 0] ,
" l e f t _ r i g h t " : [2 , 6 , 6 , 2 , 2 , 6 , 6 , 2 , 2 , 6 , 6 , 2 , 2 , 6 , 6 , 2] ,
" d i a g o n a l _ u l d r " : [7 , 3 , 3 , 7 , 7 , 3 , 3 , 7 , 7 , 3 , 3 , 7 , 7 , 3 , 3 , 7] ,
" d i a g o n a l _ u r d l " : [1 , 5 , 5 , 1 , 1 , 5 , 5 , 1 , 1 , 5 , 5 , 1 , 1 , 5 , 5 , 1] ,
" p lus_cw " : [0 , 4 , 2 , 6 , 4 , 0 , 6 , 2 , 0 , 4 , 2 , 6 , 4 , 0 , 6 , 2] ,
" p lus_ccw " : [0 , 4 , 6 , 2 , 4 , 0 , 2 , 6 , 0 , 4 , 6 , 2 , 4 , 0 , 2 , 6] ,
" t imes_cw " : [1 , 5 , 3 , 7 , 5 , 1 , 7 , 3 , 1 , 5 , 3 , 7 , 5 , 1 , 7 , 3] ,
" t imes_ccw " : [7 , 3 , 5 , 1 , 3 , 7 , 1 , 5 , 7 , 3 , 5 , 1 , 3 , 7 , 1 , 5] ,
" zee " : [1 , 6 , 6 , 2 , 2 , 5 , 1 , 5 , 5 , 2 , 2 , 6 , 6 , 1 , 5 , 1] ,
" chevron_down " : [7 , 4 , 3 , 1 , 0 , 5 , 1 , 5 , 1 , 4 , 5 , 7 , 0 , 3 , 7 , 3] ,
" chevron_up " : [3 , 0 , 7 , 5 , 4 , 1 , 5 , 1 , 5 , 0 , 1 , 3 , 4 , 7 , 3 , 7] ,
}

Listing 1: Dances used in the ballet task. 0-7 refer to directions of movement, clockwise from 0 = up.

boxes were out of view), and looking backward allowed it to advance to the choice phase of the task.
In the choice phase, the agent was told “go to the box containing the [duck]” and was rewarded 1 for
making the correct choice, and 0 for an incorrect choice.

B.4 Rapid word learning with distractors

We used the tasks created by Hill et al. [19] with the following modifications. First, we removed three
of the possible objects (trains, robots, and rockets) to be used in the distractor task. We then added 0-
20 distractor phases between the word binding and test phases. In each distractor phase, the agent and
the three distractor objects were randomly placed in the room, and the agent was asked to lift one of
them, e.g. “lift the rocket.” The agent received a reward of 0.1 for successfully lifting the right object,
and was allowed to progress to the next distractor task. If the agent lifted the wrong object, it was
neither rewarded nor allowed to progress until it had lifted the correct object or until 20 seconds had
passed. All agents rapidly learned to solve these distractor tasks. A fixed time limit of 450 seconds
was used across all episodes, after which the episode terminated with reward 0 regardless of what
phase the agent was in.

For the multi-episode evaluation tasks, we simply combined the number of episodes we wished to
test across into a single “super-episode.” For the final test phase, where we tested earlier words, the
distractor objects were always taken from the same learning phase as the target object (to ensure that
the agent remembered the exact name-object pairings, rather than simply which name appeared with
which group of objects). We set a time limit of 450 seconds to complete all the sub-episodes. Agents
with HCAM and TrXL memories were able to consistently complete the super-episodes within this
time limit—even though TrXL could not choose the correct objects, it was consistently reaching the
end and choosing some object for a chance at the final reward. However, the LSTM-based agents
often timed out on these multi-episode evaluations.

B.5 Comparisons to other papers

The Passive Visual Match and Paired Associative Inference tasks were used unmodified. The
StreetLearn [40] images and maps we used for the One-Shot StreetLearn were a more recent version
than those used by Ritter et al. [49]. Because the task difficulty is fixed through the sampling of
neighborhoods from the larger city graph, this should not substantially alter the difficulty of the tasks.
We received permission from an author on each paper to use their tasks.

All three tasks from other papers have been released under Apache licenses, and the open source
code can be found at:

• Passive visual match: https://github.com/deepmind/deepmind-research/tree/
master/tvt/dmlab

18

https://github.com/deepmind/deepmind-research/tree/master/tvt/dmlab
https://github.com/deepmind/deepmind-research/tree/master/tvt/dmlab

• Paired Associative Inference: https://github.com/deepmind/deepmind-research/
tree/master/memo

• One-Shot StreetLearn: https://github.com/deepmind/deepmind-research/tree/
master/rapid_task_solving.

The PAI task In order to apply HCAM to the supervised PAI task, we took the following steps. We
embedded all the input memories and probes using a single shared embedding layer. The structure
of the memories for the PAI task matches the structure of HCAM’s contents, where each pair of
associated images corresponds to a single chunk in memory (of length 2). We therefore created a
HCAM-style memory containing these embedded contents, and keyed by their summaries (averages
across each chunk). We then provided the embedded query as input to the multi-layer HCAM
model, but used the same set of embedded task memories at every layer. After 4 HCAM layers, we
averaged-pooled across the sequence of resulting embeddings, and then performed a linear projection
to produce a final output embedding. We then compared this ouptut embedding to the embeddings
of the two possible choices using dot products. These dot products were used as logits in a softmax
to choose the answer, and the model was trained using a cross-entropy loss. We did not use a self-
supervised reconstruction loss for this setting.

C Detailed results

In Table 3 we show the mean performance and standard deviation across runs from our main
experiments.

Table 3: Numerical results from main experiments/figures—mean ± standard deviation across 3 runs
per condition. Results are average performance (% correct) across evaluations during the last 1% of
training, except for the One-Shot StreetLearn tasks, where they are average reward during the last 1%
of training. (Note that on some levels LSTMs were not consistently completing the task before the
episode time limit. Incomplete episodes are scored as 0.)

Experiment Level Fig. HCAM TrXL LSTM

Ballet
2 dances, delay 16 3a 99.8± 0.3 96.9± 1.4 97.4± 1.8
8 dances, delay 16 3b 98.1± 3.3 65.7± 13.7 25.2± 2.7
8 dances, delay 48 3c 97.2± 2.5 49.2± 13.0 29.7± 9.4

Objects
No delay, varying train 4b 96.7± 0.9 82.2± 28.7 33.2± 6.6

Long delay, varying train 4c 91.7± 8.3 46.1± 20.0 34.8± 5.5
Long delay, long-only train 4d 82.9± 16.4 31.1± 0.6 -

Words
10 distractors 5d 93.0± 4.0 76.7± 12.5 21.0± 18.3

4 episodes, 0 distractor each 5e 82.8± 6.4 49.3± 16.5 19.8± 17.4
2 episodes, 5 distractors each 5f 71.1± 8.0 48.7± 13.2 22.9± 20.1

Image 6a 97.0± 2.8 - -
Associative 6b 97.5± 0.9 - -

Streets 6c 26.8± 0.44 19.9± 0.65 -

D Supplemental experiments

In this section we present some supplemental experiments and analyses. However, we make several
notes here. First, these supplemental analyses were mostly run with a longer local attention window
than used in the main text, see App. A.2.1, which could potentially affect results, particularly in the
rapid word learning domain. Second, we use the original acronym HTM instead of HCAM in most
of these plots, because we revised it only after a reviewer pointed out a name clash.

D.1 Fast-binding performance on harder hold-out tasks

In our original version of this paper, we presented generalization results on a harder set of evaluation
tasks. Unfortunately, the high generalization performance on these results seemed to be at least in
part due to a bug causing our HCAM memory to have a large local attention window (see above).
We therefore changed the main text figures to show performance on slightly easier task variations.

19

https://github.com/deepmind/deepmind-research/tree/master/memo
https://github.com/deepmind/deepmind-research/tree/master/memo
https://github.com/deepmind/deepmind-research/tree/master/rapid_task_solving
https://github.com/deepmind/deepmind-research/tree/master/rapid_task_solving

However, in Fig. 7 we show performance on the original evaluation tasks. HCAM still achieves off-
chance performance in 2 out of 3 cases, with fairly decent performance in one case, and performance
continues to improve as training goes on.

0 2 4 6 8 10 12
Training steps 1e9

0

25

50

75

100
Ac

cu
ra

cy
 (%

)

Chance

(a) Eval. 20 dist.

0 2 4 6 8 10 12
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

(b) Eval. 4 eps., 1 dist.

0 2 4 6 8 10 12
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

(c) Eval. 3 eps., 5 dist.

Figure 7: Evaluating HCAM on the harder generalization tasks we considered in the original version
of this paper, after longer training (note horizontal axis). HCAM achieves off-chance performance,
and continues to improve as training goes on. (3 seeds per condition.)

D.2 Ballet generalization

In the main text Ballet experiments (Fig. 3), we compared differences only in training performance.
In Fig. 8, we show that HCAM is also able to generalize well from training on 2, 4, or 6 dances, to
evaluation on 8 dances with either short or long delays.

0 1 2 3 4
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

HTM
TrXL

(a) Evaluate 8 dances, short
delays.

0 1 2 3 4
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

(b) Evaluate 8 dances, long
delays.

Figure 8: HCAM (labeled as HTM) trained on 2, 4, or 6 dance ballets generalizes well to 8 dance
ballets, while TrXL does not. Results are from two seeds in each condition.

D.3 Analyzing memory attention in the rapid word learning tasks

In this section, we show that the HCAM agent’s extrapolation to cross-episode evaluation (Fig. 5b)
in the rapid word learning tasks is supported by selective patterns of memory access. In summary,
we show that when the agent is asked to recall a word from many episodes before, all layers of its
memory exhibit significantly higher attention to phase when it learned that word, compared to its
attention patterns when tested on a more recent word.

Specifically, we considered the case of evaluation across 4 episodes, with 1 distractor each. To lay
out the “super-episode” structure of this setting very explicitly, it proceeds through 4 episodes, each
of which has three distinct phases. In other words, the episodes proceed as: learn 1, distract 1, test
1, learn 2, distract 2, test 2, learn 3, distract 3, test 3, learn 4, distract 4, test 4. Tests 1-3 evaluate
memory for a word learned in their respective learn phases 1-3, but test 4 tests surprises the agent by
asking about a word learned in learning phase 1 (Fig. 5b). As shown in the main text (Fig. 5e), the
HCAM-based agent achieves above 90% performance on test 4, despite never being evaluated on
words from earlier episodes during training.

To investigate the attention patterns underlying this result, we analyzed what chunks of memory the
agent was attending to in test phase 4 (Fig. 9). In particular, we ran the agent on 100 of these episodes,

20

and saved its attention weights for each phase of the experiment. In 93 of these episodes, the agent
chose correctly in test 4. Within those 93 episodes, we then evaluated the agent’s attention to the first
memory chunk of learn 1, the learning phase of the first episode (which generally contained most, if
not all, of that learn phase). We compare the attention weight on this chunk when the agent is tested
on one of these words in test phase 4 to a within-episode control: the relative weight when the agent
is tested on a word from learn 3 during test phase 3. Is the agent attending more to its memory of
learn phase 1 in test 4, when that memory is relevant, compared to test 3, when it is irrelevant? In
fact, we find that across all four layers of the agent’s memory, the agent is attending more strongly
to the memory when it is relevant than when it is not. That is, the agent is distributing its attention
intelligently, in a query-dependent way. It is attending most strongly to memories of the learn 1 phase
when it is asked to recall a word from it, compared to a within-super-episode control where it is asked
to recall a word from another phase (learn 3).

(a) Analysis sketch.

0

1

2

Re
la

tiv
e

at
te

nt
io

n
to

 fi
rs

t m
em

or
y

layer = 3 layer = 2

test 3 test 4
Phase

0

1

2
Re

la
tiv

e
at

te
nt

io
n

to
 fi

rs
t m

em
or

y
layer = 1

test 3 test 4
Phase

layer = 0

(b) Results.

Figure 9: The HCAM-based agent selectively attends to relevant memories in the rapid-word-learning
generalization tasks. (a) We analyze the relative weight of attention to the first memory from the
first learning phase, when the agent is asked to recall a word form the first phase in test 4 vs. when
it is asked to recall a word from a later phase in test 3. (b) Across all 4 memory layers, the agent
attends more strongly to its memory of this first learning phase when that memory is relevant—in
test 4—compared to when that memory is irrelevant—in test 3. (This plot shows relative attention
weights—that is, attention weights divided by average attention weight, so that if the agent were
attending uniformly to all memories, their relative attention weights would be 1, indicated by the
dotted line. This plot shows averages and 95%-CIs across the 93 episodes where the agent made a
correct choice in test 4, out of 100 total super-episodes run.)

The results above involve several levels of aggregation: averaging within phases, and across many
super-episodes. To give a flavor for the complexity of the full patterns of attention, in Fig. 10 we
show the average attention weights for every layer across all the stored memories, in the final four
phases of two super-episodes.

D.4 Varying chunk sizes

In Fig. 11 we show that the performance of the HCAM model is robust to varying chunk sizes in the
ballet task; therefore its advantage in this task is not due to having additional information about the
correct segmentation of the episodes. Furthermore, HCAM performs well even when its chunk size is
12, and so the total number of timepoints it can attend to at each layer is smaller than the number that
the TrXL can attend to at each layer. Thus its advantage in these tasks is not due to attending to more
of the episode, but rather to attending more effectively.

21

0

2

4

Re
la

tiv
e

at
te

nt
io

n

phase = test 3 phase = learn 4 phase = distract 4

layer = 3

phase = test 4

0

1

2

Re
la

tiv
e

at
te

nt
io

n
layer = 2

0

2

4

6

Re
la

tiv
e

at
te

nt
io

n
layer = 1

0 5 10 15 20 25
Memory index

0

5

10

15

Re
la

tiv
e

at
te

nt
io

n

0 5 10 15 20 25
Memory index

0 5 10 15 20 25
Memory index

0 5 10 15 20 25
Memory index

layer = 0

(a) Example super-episode 1

0

1

2

3

4

Re
la

tiv
e

at
te

nt
io

n

phase = test 3 phase = learn 4 phase = distract 4

layer = 3

phase = test 4

0.0

0.5

1.0

1.5

Re
la

tiv
e

at
te

nt
io

n
layer = 2

0

2

4

Re
la

tiv
e

at
te

nt
io

n
layer = 1

0 5 10 15
Memory index

0

2

4

6

Re
la

tiv
e

at
te

nt
io

n

0 5 10 15
Memory index

0 5 10 15
Memory index

0 5 10 15
Memory index

layer = 0

(b) Example super-episode 2

Figure 10: Patterns of attention within four phases of two example (randomly chosen) super-episodes
on the rapid-word-learning generalization tasks. The higher layers of the network show clear shifts in
attention patterns between the different phases, although with some consistent biases within each
super-episode, especailly at the lower layers. The pink bar shows the weight on the first chunk from
learn phase 1—the analyis shown in Fig. 9 corresponds to comparing the pink bars in the first and
last column, aggregated across many more episodes. (This plot shows relative attention weights—
that is, attention weights divided by average attention weight, so that chance level relative attention
would be 1, indicated by the dotted line. Note that these were computed before the top-k operation
on the attention weights, which is why more than 16 weights are active. The two super-episodes had
different lengths, which is why more memories were stored in the first.)

22

0 1 2 3 4 5
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance
HTM (chunk=12)
HTM (chunk=28)
HTM (chunk=32)
TrXL

(a) 2 dances, short delays.

0 1 2 3 4 5
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

(b) 4 dances, short delays.

0 1 2 3 4 5
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

(c) 8 dances, short delays.

0 1 2 3 4 5
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

(d) 2 dances, long delays.

0 1 2 3 4 5
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

(e) 4 dances, long delays.

0 1 2 3 4 5
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

(f) 8 dances, long delays.

Figure 11: Comparison of HCAM (labeled as HTM) with different chunk sizes to TrXL across
the different ballet levels. The performance of the HCAM model is robust to varying chunk size,
indicating that HCAM does not need a task-relevant segmentation to perform well. The results
reported in the main text use chunk size 32; panels a, c, and f correspond to main text Fig. 3. These
comparisons were run before a minor bug was fixed in HCAM memory writing. Results are from
three seeds in each condition.

D.5 Varying k for memory selection

In Fig. 12 we show that HCAM is robust to varying the number k of memory chunks selected in the
top-k step of the hierarchical attention at each layer. Specifically, while the main text experiments
used k = 16, we show that HCAM is able to perform the ballet and object permanence tasks well
even with k = 4, and can perform the shorter tasks even with k = 2 or even k = 1. While it
initially surprised us that hard memory selection with k = 1 did not harm the optimization process, it
resonates with recent results from the Switch Transformer [12], which found that hard selection of a
single expert was effective in a mixture-of-experts style model.

D.6 The importance of self-supervised learning

In Fig. D.6, we show that the self-supervised loss (image + language reconstruction at the agent
output) that we used as an auxiliary loss during training is necessary for our model to achieve good
performance on the ballet and fast-binding tasks. This is presumably because this loss forces the
model to encode the input in detail, and therefore that information is in-principle retrievable from the
state representations stored in the agent memory.

D.7 Memory layer gating

In Fig. 14, we show that HCAM’s performance is not enhanced by the gating mechanism proposed by
Parisotto et al. [44], and in fact HCAM actually learns slightly more slowly when its layers are gated.
This is potentially because HCAM already has some notion of gating in its selection of relevant chunks,
and additional gating therefore only interferes with the optimization process. Thus, we did not use
gating for HCAM in our main experiments. Furthermore, we found that gating was not necessary to
train the TrXL memory on our tasks, although we used it in our main experiments to match Parisotto
et al. [44]. However, HCAM with or without gating outperforms TrXL with or without gating.

23

0 1 2 3 4 5
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

k=1
k=2
k=4

(a) Ballet, 2 dances, short delays.

0 1 2 3 4 5
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

(b) Ballet, 8 dances, long delays.

0 1 2 3 4 5
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

(c) Object permanence, no delays.

0 1 2 3 4 5
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

(d) Object permanence, 30s delays.

Figure 12: Varying the number k of memory chunks selected in the top-k step of hierarchical attention.
Performance is relatively robust to k smaller than used in the main experiments (k = 16), in fact
shorter tasks can be learned even with k = 1, while longer tasks require k ≥ 4. (a-b) On the ballet
tasks, HCAM can learn fairly well even with k = 1, both for the shorter and longer tasks. (c-d) On
the object permanence tasks, HCAM can learn the shortest tasks well even with k = 1, but struggles
to learn the longer tasks unless k ≥ 4. (One seed per condition.)

D.8 Comparing a TrXL that is 2× wider/deeper than HCAM

Because our HCAM-based agents have an added HCAM attention block in each memory layer
compared to our TrXL-based ones, it might seem that they have somewhat more parameters and
greater total depth. However, as noted in Section D.7, HCAM does not use the gating layers used
by the TrXL memory [44] and because of this HCAM uses about 20% fewer parameters and is in
some sense shallower than our TrXL baselines. However, it does have more layers of attention. To
ensure that this or other simple factors were not the primary driver of HCAM’s advantage, we ran
comparisons where we either made the TrXL twice as wide (i.e. each layer had twice as many hidden
units, including the attention projections etc.) or twice as deep (i.e. an 8-layer TrXL memory instead
of 4-layers as we used for our main experiments). Both of these have substantially more parameters
than our HCAM-based models, and the latter is substantially deeper as well. However, we show in
Fig. 15 that these much larger TrXL models were also unable to match the performance of HCAM on
the rapid word-learning tasks. Thus the advantage of HCAM is not due to parameters or depth alone.

D.9 Sparsity without hierarchy: a top-k TrXL

One possible explanation of our results would be that sparsity alone is sufficient—perhaps the TrXL is
suffering from spreading its attention across too many points in the past, but if it were restricted to only
a few points hierarchy would not be necessary. To evaluate this possibility, we created a modified TrXL
where we imposed sparsity of attention, by truncating its attention to only the top-k most relevant
timepoints. We chose k = 16 to match HCAM. We show the results in Fig. D.9. The top-k TrXL
performs comparably to a standard TrXL on the ballet tasks (i.e. does not perform as well as HCAM),
and fails to learn properly on the rapid word-learning tasks, even if allowed to attend to a larger number
of points (k = 32). Thus, sparsity without hierarchy does not suffice, and may actually harm learning.

D.10 Compute efficiency assessed by learner FPS

One goal of HCAM is that sparser attention might be more efficient than full attention. This is
especially true when comparing HCAM without gating to the more computationally intense Gated

24

0 1 2 3 4 5
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

HTM
HTM -SSL

(a) Ballet, 2 dances, short delays.

0 1 2 3 4 5
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

(b) Ballet, 8 dances, long delays.

0 1 2 3 4 5 6
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

HTM
HTM -SSL

(c) Rapid word learning, no distrac-
tors.

0 1 2 3 4 5 6
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

(d) Rapid word learning, 2 distrac-
tors.

Figure 13: The self-supervised loss (SSL) is necessary for the model to learn appropriate repre-
sentations. When the SSL is disabled, the model either fails to achieve substantially-above-chance
performance, for example in the ballet tasks (a-b), or fails to learn the tasks to even chance level, as
in the rapid word learning tasks (c-d). (HTM refers to HCAM, see note above. 3 runs per condition
for main results, 2 runs per condition for results without SSL.)

0 1 2 3 4 5 6
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

HTM
HTM+gating
TrXL
TrXL-gating

(a) Train 0-2 distractors,
evaluate 20.

0 1 2 3 4 5 6
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

(b) Evaluate 4 episodes,
1 distractor each.

0 1 2 3 4 5 6
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

(c) Evaluate 3 episodes,
5 distractors each.

Figure 14: HCAM (labeled as HTM) performs better without gating [44] than with gating. On the
fast-binding tasks HCAM with gating learns slightly more slowly and generalizes slightly worse than
without gating. Gating of memory layers does not appear necessary for TrXL in our tasks, unlike the
experiments of Parisotto et al. [44]. However, neither gated nor ungated TrXL are able to extrapolate
to the tasks that gated or ungated HCAM does. (3 seeds per condition for main runs, 2 per condition
for alternatives.)

TrXL [44]. Correspondingly, we show in Fig. 17 that HCAM generally runs ∼30-40% faster than
TrXL.

25

0 1 2 3 4 5 6
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

HTM
TrXL
2x wider TrXL
2x deeper TrXL

(a) Train 0-2 distractors,
evaluate 20.

0 1 2 3 4 5 6
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

(b) Evaluate 4 episodes,
1 distractor each.

0 1 2 3 4 5 6
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

(c) Evaluate 3 episodes,
5 distractors each.

Figure 15: Comparing agents with TrXL memories that have more parameters than HCAM on the
rapid word-learning tasks. Neither a TrXL model that is twice as wide, nor one that is twice as deep
are able to perform as well as HCAM. Thus, HCAM’s advantage is not due to the added blocks or
slightly more parameters than our TrXL baseline. (HTM refers to HCAM, see note above. 3 seeds
per main condition, 2 seeds per condition for supplemental.)

0 1 2 3 4 5
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

HTM
TrXL
TrXL k=16

(a) Ballet, 2 dances, short delays.

0 1 2 3 4 5
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

(b) Ballet, 8 dances, long delays.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

TrXL k=16
TrXL k=32

(c) Word learning, train:
no distractors.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

(d) Word learning, train:
2 distractors.

Figure 16: Sparsity alone is not sufficient—a TrXL restricted to attend to only the top-k timepoints
performs comparably to a standard TrXL at the ballet tasks (a-b), but collapses and fails to learn in
the rapid word learning tasks (c-d), even if given a larger k. The advantage of HCAM is not due
to sparsity alone. (HTM refers to HCAM, see note above. 3 seeds per main condition, 2 seeds per
condition for supplemental.)

Ballet Words
Task Domain

0

20000

40000

60000

Le
ar

ne
r F

PS

HTM
TrXL

Figure 17: HCAM (labeled as HTM) runs at a higher speed (measured in average learner frames
processed per second) than TrXL. Results on TPUv3, error bars show 95%-CI across 3 runs.

26

D.11 Results are robust to reviewer-suggested hyperparameter sweeps

Our reviewers evaluated the paper carefully, and expressed concerns that there might be bias in our
hyperparameter selection. In particular, one reviewer raised a concern that TrXL might learn tasks
like Ballet if given a different learning rate. To address these concerns, we ran a set of follow-up
hyperparameter sweeps. We swept the learning rate and entropy weight (which we had not varied
previously from the values used in prior work) on both the Ballet and Word tasks. We ran a full
product of three learning rates above/below our original values (5e-4, 5e-5, 1e-5) and entropy weights
5× more or less than the original value, with 2 seeds per condition (for a total of 24 hyper × seed
× memory type combinations per task domain). We emphasize that the same hyperparameters
were tested for both models, and that these sweeps centered on hyperparameter settings that were
previously untuned (sourced from prior papers), and that this sweep focuses on learning rate, which a
reviewer suggested might particularly benefit TrXL. Our results show that HCAM is more robust
to variation in these hyperparameters than TrXL, and generally sweeping these parameters does not
improve TrXL’s performance substantially beyond the results reported in the main text.

Ballet results: HCAM substantially outperforms TrXL in this sweep as well. First, HCAM is far
more robust to varying the hyperparameters—in every hyperparameter setting, agents with HCAM
achieved off chance performance (measured as window-averaged performance >5 percentage points
above chance-level) on the hard 8-dance tasks within 1 billion steps. By contrast, 58% of the TrXL
jobs did not attain off chance performance on even the easiest task within 1.5 billion steps (when
we stopped the training). In addition, 66% of the HCAM jobs achieved above-75% performance on
the easiest tasks before any of the TrXL jobs achieved above-chance performance on any task. The
performance of the best TrXL jobs from this sweep is comparable to the performance at the same
point in training from our original experiments: about 40-50% performance on the 8 dance, short
delays task, and 25-35% on the 8 dance, long delays task at 1.5 billion steps. HCAM performed
much better than TrXL, with 75% of the HCAM jobs outperforming even the best TrXL agents on
the hardest task, and the best HCAM jobs comparable to the results in the paper, achieving 80-90%
performance on the hardest tasks at 1.5 billion steps. In both 8 dance levels, the advantage of the
two HCAM seeds with the best hyperparams over the two TrXL seeds with the best hyperparams
is significant by a paired1 t-test, respectively t(1) = 21, p = 0.03 and t(1) = 101, p = 0.006. In
summary, TrXL’s performance at these tasks does not seem to be improved by varying learning rates
or entropy weight, and HCAM seems much more robust to variation in these hyperparameters.

0.0 0.5 1.0 1.5 2.0
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

HCAM
TrXL

(a) Ballet, 2 dances, short delays.

0.0 0.5 1.0 1.5 2.0
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

(b) Ballet, 8 dances, short delays.

0.0 0.5 1.0 1.5 2.0
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

(c) Ballet, 8 dances, long delays.

Figure 18: Sweeping hyperparameters (learning rate and entropy weight) in the Ballet tasks: HCAM
is substantially more robust to variation in these hyperparameters, and the conclusions of our main
text experiments are unaltered. The thick line plots the mean, while the thin lines plot individual
sweep values. (The wide variability in early accuracy values should be disregarded—it is due to
smoothing artifacts due to sparse data in this region as evaluation jobs are starting.)

Rapid word learning results: The results are similar to the above. First, HCAM is more robust to
varying hyperparameters: In these more challenging tasks, only 17% of the TrXL jobs achieve high
training performance within 5 billion steps, while 50% of the HCAM jobs achieve high performance
on the training tasks. HCAM also generalizes better than TrXL. However, unlike our original
experiments, one set of these TrXL jobs does achieve somewhat above-chance performance at one of

1paired reflecting the non-independence of the encoder initialization when the agents are initialized with the
same random seed, but results are similar with an unpaired test, respectively t(2) = 29, p = 0.001; t(2) = 9.5,
p = 0.01)

27

the the evaluation tasks we considered. We performed a replication with three new random seeds
in the best hyperparameters from this sweep for each memory (as in the main results), and in this
replication the TrXL did not achieve significantly off chance performance. However, HCAM did
achieve significantly off-chance performance, (though not as high as the main text results using the
hyperpareters tuned in our original sweeps). Thus, HCAM again appears to be both more robust
across hyperparameters, and better when comparing best-hyperparameter configurations.

28

0 1 2 3 4 5 6
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

HCAM
TrXL

(a) Sweep: Train 0-2 distrac-
tors, evaluate 2 distractors.

0 1 2 3 4 5 6
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

HTM
TrXL

(b) Sweep: Train 0-2 distrac-
tors, evaluate 20 distractors.

0 1 2 3 4 5 6
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

(c) Sweep: Train 0-2 distrac-
tors, evaluate 4 eps, 1 dist.
each.

0 1 2 3 4 5 6
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

(d) Sweep: Train 0-2 distrac-
tors, evaluate 3 eps, 5 dist.
each.

0 1 2 3 4 5 6
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

(e) Replication: Evaluate 2
distractors.

0 1 2 3 4 5 6
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

HCAM
TrXL

(f) Replication: Evaluate 20
distractors.

0 1 2 3 4 5 6
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

(g) Replication: Evaluate 4
eps, 1 dist. each.

0 1 2 3 4 5 6
Training steps 1e9

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Chance

(h) Replication: Evaluate 3
eps, 5 dist. each.

Figure 19: Sweeping hyperparameters (learning rate and entropy weight) in the Words tasks: HCAM
is again more robust to variation in these hyperparameters. (a-d) The sweep results. The thick line
plots the mean, while the thin lines plot individual sweep values. While HCAM is much more robust
overall, as shown in the number of hyperparameter settings that learn the train tasks (a), a few TrXL
jobs show above chance generalization on some tasks in the sweep. (e-h) To follow-up on the above
result, we ran a replication of the best hyperparameters from the sweep with three new random seeds
(as we did for all our main text results). This replication does not show substantially above-chance
generalization performance from TrXL and shows some collapse in performance on the train tasks.
HCAM’s performance remains substantially above chance in a replication of the best values in the
sweep, although note that the best results from the sweep are worse than the results with the tuned
hyperparameters used in the original experiments. (Note also that these experiments were run with a
longer attention window for HCAM than intended, see App. A.2.1.)

29

