
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

An Empirical Investigation of Domain Generalization with Empirical Risk
Minimizers
(Appendix)

1. Clarification on Notation
To be consistent with the theory, we denoted the test error
and source error as εT (ĥ) and εS(ĥ) in the main paper, but
this obscures the fact that the theory derives bounds given
a representation R (Ben-David et al., 2010). In order to
make the detailed exposition of measures more clear, for
the rest of this document, we instead refer to the empirical
risk minimizer as ĉ, and the source and target errors as εS(ĉ)
and εT (ĉ) respectively, and use h to refer only to mappings
from the representation spaceR to the label space Y .

2. Variance of Estimates ofH-divergence and
H∆H-divergence

In this section we detail the variance exhibited by the estima-
tors for theH-divergence andH∆H-divergence, which are
core divergence measures studied by the theory from (Ben-
David et al., 2010; 2007). For algorithmic details of how we
estimate these measures, see section 7.

In order to estimate the variance, we pick a random subset
of 10 models on VLCS and RotatedMNIST, and estimate
the divergence measure of interest by bootstrapping with
80% of the original data. We then compute the mean µ and
standard deviation σ for the bootstrapped estimates, and
report the Signal to Noise Ratio (SNR) as µ

σ . We repeat this
process across multiple models, and report the mean SNR
for each of the estimators we use. See table 1 for the results.

We note that -divergence has the highest signal to noise
ratio across both the datasets, whereas theH∆H-divergence
based measures are estimated with a lower signal to noise
ratio. These trends indicate that the bounds and measures
estimated with H-divergence might be more accurate and
any good or bad performance is due to the measure being
good or bad, as opposed to the H∆H-divergence, where
there might be significant estimation error. Interestingly,
we notice that across both datasets, the multi source (MS)
versions have a higher SNR than single source (SS) versions.

.

Table 1: Different divergence measures (rows) and the
Signal-to-Noise Ratio (SNR) (columns) on VLCS and Rotat-
edMNIST. We notice thatH∆H-divergence MS estimates
have better SNR thanH∆H-divergence SS but both of them
are worse thanH-divergence, echoing the theoretical results
from (Ben-David et al., 2010).

Measure SNR

VLCS RotatedMNIST

H-divergence 22.59 22.20
H∆H-divergence SS 9.10 1.95
H∆H-divergence MS 15.48 3.10

3. Additional Results
Comparison of the CORAL algorithm to ERM. How
does the choice of algorithm for domain generalization in-
fluence the trends discussed in the main paper? To obtain
a sense for this question, we train 3000 models using the
Deep CORAL (Sun & Saenko, 2016) approach on VLCS
and repeat the analysis from the main paper on the models
trained with CORAL. The Deep CORAL approach essen-
tially matches the mean and variance of the intermediate
layers across input domains, and thus offers a counterpoint
to ERM which does not use any per-domain information.
Further, to the best of our knowledge, it is the only approach
to outperform ERM overall on DomainBed making it a good
candidate for this analysis.

We find that the performance of most of the measures re-
mains consistent across both the training algorithms, which
is encouraging (fig. 1).

Results with multiple variables for regression We next
perform regression in the Joint setting (Sec.5.3, main pa-
per) where we fit a regression model across all environ-
ments, with 5 features instead of 2 reported in the main
paper. We find that it is possible to get an Spearman’s ρ of
80.4 when using Entropy-Source, Entropy-Target, MMD-
Gaussian, MMD-Mean-Cov, Sharpness, and εS(ĉ) as fea-

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Figure 1: Spearman’s ρ (y-axis) plotted against measure (x-axis) for the ERM and CORAL algorithms for VLCS. We
note that the performance of most of the measures remains consistent across ERM and CORAL, except MMD-Gaussian,
MMD-Mean-Cov and Jacobian based measures.

tures for the regression.

Scatter plots of different measures and observed test er-
ror εT (ĉ). We next present scatter plots of different mea-
sures with respect to the error on the test domain, to provide
an intuitive sense of the data on which we perform our
regressions that use one measure at a time to predict gen-
eralization (fig. 5-fig. 15, at the end of the document). In
order to show these scatter plots, we drop all the datapoints
for which a measure has a value greater than 1e3, which
clears all the outliers from the plots and allows better visual-
ization. However, for quantitative analysis we retain all the
datapoints.

4. Performance of All Measures Considered
We considered a set of 40 metrics overall and report only
a small subset of them in the main paper. In table 2 we
provide detailed results of all the measures we study. See
section 7 for detailed algorithmic explanations of the imple-
mentations of each of the measures listed here. Also shown
in fig. 2 is a distance matrix computed based on Spearman’s
ρ visualizing the dependencies of the measures with each
other.

5. Canonicalization of the Measures
fig. 3 provides details of the canonicalization performed
on each of the measures as explained in the main paper.
Interestingly, for measures such as the path norm, we find
that the canonicalization in this setting is opposite of what
is conventionally understood. In general, a high path norm
should indicate higher test error, but here the opposite seems
to be true.

6. Connection of DA-GM to theoretical results
from Ben-David et al. (2007)

We were inspired by results from the theory and practice of
domain adaptation to construct generalization measures in
this category. In particular, (Ben-David et al., 2007) prove

bounds on the target domain performance that depend on
the ability of a classifier to distinguish samples from the
source and target domains. As described in the main text,
they find that the target domain error can be bounded by
the source domain error plus a term that is related to the
sampleH-distance between the source and target domains
with respect to the hypothesis class of the model plus the
degree of λ-closeness of the hypothesis family. This H-
distance, dH(D̃S , D̃T), in turn can be calculated by finding
the optimal performance of a classifier trained to distinguish
samples from the source and target domains. Here, D̃S

(D̃T) are the induced distribution of source (target) domains
pushed to the representational space. (Note that in this sec-
tion we use this notation to make contact with the existing
theory, but in subsequent sections, these distributions are
called Sztr and T ztr, respectively.) We emphasize that these
results assume a fixed representational space and that the
entire classifier c is composed of an encoding into this space
followed by a decoder h ∈ H that takes encodings and pre-
dicts target labels. Specifically, the target domain test error
is upper bounded by

εT (c) ≤ εS(c) + dH(D̃S , D̃T) + λ, (1)

where λ = minh∈H(εT (h) + εS(h)).

We also develop measures based on follow-up theoretical
work in (Ben-David et al., 2010) on divergence measures
using the symmetric difference hypothesis space. H∆H,
which is defined as the set of hypothesis of the form
g = h(x) ⊕ h′(x), where h, h′ ∈ H and ⊕ is the XOR
function. That is, the symmetric difference hypothesis space
is the set of all disagreements between hypotheses in our
hypothesis class. This object is important for the theory to
bound the target domain test error in multiple settings, i.e.
when multiple different environments are used for training.
Here we summarize a result from (Ben-David et al., 2010),
similar to a specialization of their Theorem 4, which focuses
on multi-source training. (Ben-David et al., 2010) proves
that if we train an ERM, ĉ, on (equally-weighted) source do-
mains j = 1...N , resulting in an (equally-weighted) source

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

H
H-

di
ve

rg
en

ce
 (t

ra
in

) S
S

H
H-

di
ve

rg
en

ce
 (t

ra
in

) S
S

+
So

ur
ce

 E
rro

r
H-

di
ve

rg
en

ce
 (t

ra
in

)
H-

di
ve

rg
en

ce
 (t

ra
in

) M
S

H-
di

ve
rg

en
ce

 (t
ra

in
) +

 S
ou

rc
e

Er
ro

r
c2

st
_t

ra
in

_p
er

_e
nv

_p
er

r
H

H-
di

ve
rg

en
ce

 S
S

H
H-

di
ve

rg
en

ce
 S

S
+

So
ur

ce
 E

rro
r

H+
H+

-d
iv

er
ge

nc
e

SS
H+

H+
-d

iv
er

ge
nc

e
SS

 +
 S

ou
rc

e
Er

ro
r

H
H-

di
ve

rg
en

ce
 M

S
H

H-
di

ve
rg

en
ce

 M
S

+
So

ur
ce

 E
rro

r
H+

H+
-d

iv
er

ge
nc

e
M

S
H+

H+
-d

iv
er

ge
nc

e
M

S
+

So
ur

ce
 E

rro
r

H-
di

ve
rg

en
ce

H-
di

ve
rg

en
ce

 +
 S

ou
rc

e
Er

ro
r

H+
-d

iv
er

ge
nc

e
SS

H+
-d

iv
er

ge
nc

e
SS

 +
 S

ou
rc

e
Er

ro
r

H+
-d

iv
er

ge
nc

e
M

S
H+

-d
iv

er
ge

nc
e

M
S

+
So

ur
ce

 E
rro

r
H-

di
ve

rg
en

ce
 M

S
H-

di
ve

rg
en

ce
 M

S
+

So
ur

ce
 E

rro
r

M
ix

up
 D

iff
M

ix
up

 R
at

io
M

ix
up

 L
og

 R
at

io
Ja

co
bi

an
Ja

co
bi

an
 D

iff
Ja

co
bi

an
 L

og
 R

at
io

M
M

D-
M

ea
n-

Co
v

Fi
sh

er
-A

lig
n

or
 F

ish
er

 (m
ai

n
pa

pe
r)

L2
-P

at
h-

No
rm

.
M

ix
up

Fi
sh

er
-E

ig
va

l
Ja

co
bi

an
 R

at
io

En
tro

py
-T

ar
ge

t
En

tro
py

-S
ou

rc
e

So
ur

ce
 E

rro
r

M
M

D-
Ga

us
sia

n
Fi

sh
er

-E
ig

va
l-D

iff
Sh

ar
pn

es
s

H H-divergence (train) SS
H H-divergence (train) SS + Source Error
H-divergence (train)
H-divergence (train) MS
H-divergence (train) + Source Error
nan
H H-divergence SS
H H-divergence SS + Source Error
H+ H+-divergence SS
H+ H+-divergence SS + Source Error
H H-divergence MS
H H-divergence MS + Source Error
H+ H+-divergence MS
H+ H+-divergence MS + Source Error
H-divergence
H-divergence + Source Error
H+-divergence SS
H+-divergence SS + Source Error
H+-divergence MS
H+-divergence MS + Source Error
H-divergence MS
H-divergence MS + Source Error
Mixup Diff
Mixup Ratio
Mixup Log Ratio
Jacobian
Jacobian Diff
Jacobian Log Ratio
MMD-Mean-Cov
Fisher-Align or Fisher (main paper)
L2-Path-Norm.
Mixup
Fisher-Eigval
Jacobian Ratio
Entropy-Target
Entropy-Source
Source Error
MMD-Gaussian
Fisher-Eigval-Diff
Sharpness

0.0
0.2
0.4
0.6
0.8
1.0

Figure 2: Distances (1-Spearman’s ρ) matrix plotting the relationship between the ith row and jth column. Rows and
columns are organized and grouped on the basis of hierarchical clustering of the measures based on similarity.

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Table 2: Measure (rows) against Spearman’s ρ (column) for
all the measures considered in the analysis for the paper.
The main paper contains results with a subset of promising
results, whereas here we provide results for a more exhaus-
tive set of measures. See section 7 for more details on the
meaures.

Spearman’s ρ
measure

Entropy-Target 0.733858
Source Error 0.711895
Entropy-Source 0.598143
Fisher-Align or Fisher (main paper) 0.441314
Jacobian 0.419960
Jacobian Ratio 0.397433
L2-Path-Norm. 0.389819
Fisher-Eigval 0.298458
MMD-Gaussian 0.283357
Mixup 0.278850
H∆H-divergence (train) SS + Source Error 0.154016
H∆H-divergence SS + Source Error 0.152128
H-divergence (train) MS 0.151395
H∆H-divergence MS + Source Error 0.136513
H+∆H+-divergence SS + Source Error 0.124091
Sharpness 0.117217
H+-divergence MS 0.113737
H-divergence (train) 0.106712
H-divergence MS 0.105065
MMD-Mean-Cov 0.099831
H+∆H+-divergence MS 0.079718
Fisher-Eigval-Diff 0.078561
Jacobian Log Ratio 0.068404
H+-divergence SS 0.064583
H+∆H+-divergence MS + Source Error 0.063797
Mixup Diff 0.061810
H∆H-divergence MS 0.057434
H-divergence (train) + Source Error 0.057375
H+∆H+-divergence SS 0.055414
H-divergence 0.049011
H∆H-divergence (train) SS 0.045932
H+-divergence MS + Source Error 0.042193
H∆H-divergence SS 0.038274
H-divergence MS + Source Error 0.029553
H-divergence + Source Error 0.027533
Jacobian Diff 0.018869
Mixup Ratio 0.017812
Mixup Log Ratio 0.017766
H+-divergence SS + Source Error 0.006798

<latexit sha1_base64="kcdscts8BKG8jX3lKfpNDLankWw=">AAACEXicbVA9SwNBFNzz2/gVtbRZDEIsEu6CqGXQxkZQNFHIhbC3eZcs2ds7dt+J4chfsPGv2FgoYmtn579xE1No4sDCMPMe+2aCRAqDrvvlzMzOzS8sLi3nVlbX1jfym1t1E6eaQ43HMta3ATMghYIaCpRwm2hgUSDhJuidDv2bO9BGxOoa+wk0I9ZRIhScoZVa+aIfMexyJrOzgY9wj1mpLexCBxQHWkTNhNovnV8NWvmCW3ZHoNPEG5MCGeOilf/02zFPI1DIJTOm4bkJNjOmUXAJg5yfGkgY77EONCxVLALTzEaJBnTPKm0axto+hXSk/t7IWGRMPwrs5PB+M+kNxf+8RorhcTMTKknRJvz5KEwlxZgO66FtoYGj7FvCuBb2Vsq7TDOOtsScLcGbjDxN6pWyd1iuXB4UqifjOpbIDtklReKRI1IlZ+SC1AgnD+SJvJBX59F5dt6c95/RGWe8s03+wPn4BpPTnXY=</latexit> H
-d

iv
er

ge
n
ce

(t
ra

in
)-

M
S

<latexit sha1_base64="LbxSbw6uRN+dwAK4EHwZ3FExQ5E=">AAAB/nicbVDLSsNAFJ34rPUVFVdugkVwY0mKqMuiCC4r2ge0oUymk3boZCbM3IghFPwVNy4Ucet3uPNvnKZdaOuBC4dz7p259wQxZxpc99taWFxaXlktrBXXNza3tu2d3YaWiSK0TiSXqhVgTTkTtA4MOG3FiuIo4LQZDK/GfvOBKs2kuIc0pn6E+4KFjGAwUtfe7wB9hOxagJJxenKXvzvq2iW37OZw5ok3JSU0Ra1rf3V6kiQRFUA41rrtuTH4GVbACKejYifRNMZkiPu0bajAEdV+lq8/co6M0nNCqUwJcHL190SGI63TKDCdEYaBnvXG4n9eO4Hwws+YiBOggkw+ChPugHTGWTg9pigBnhqCiWJmV4cMsMIETGJFE4I3e/I8aVTK3lm5cntaql5O4yigA3SIjpGHzlEV3aAaqiOCMvSMXtGb9WS9WO/Wx6R1wZrO7KE/sD5/AAS9liw=</latexit> E
n
tr

op
y
-S

ou
rc

e
<latexit sha1_base64="lpDUmX3PK397ahpX0xl0/Gt/lNY=">AAAB/nicbVBNS8NAEN34WetXVTx5CRbBiyUpoh6LInis0C9oQ9lsp+3SzSbsTsQQCv4VLx4U8erv8Oa/cdvmoK0PBh7vzTAzz48E1+g439bS8srq2npuI7+5tb2zW9jbb+gwVgzqLBShavlUg+AS6shRQCtSQANfQNMf3Uz85gMozUNZwyQCL6ADyfucUTRSt3DYQXjE9FaiCqPkrEbVAHDcLRSdkjOFvUjcjBRJhmq38NXphSwOQCITVOu260TopVQhZwLG+U6sIaJsRAfQNlTSALSXTs8f2ydG6dn9UJmSaE/V3xMpDbROAt90BhSHet6biP957Rj7V17KZRQjSDZb1I+FjaE9ycLucQUMRWIIZYqbW202pIoyNInlTQju/MuLpFEuuRel8v15sXKdxZEjR+SYnBKXXJIKuSNVUieMpOSZvJI368l6sd6tj1nrkpXNHJA/sD5/APUsliI=</latexit> E
n
tr

op
y
-T

ar
ge

t
<latexit sha1_base64="xEX235SkWVcc88qRLd3fSHAy//g=">AAAB/HicbVDLSgNBEJyNrxhfqzl6GQyCp7AbRD1GBfEYwTwgCWF20kmGzM4uM71iWOKvePGgiFc/xJt/4+Rx0MSChqKqm+6uIJbCoOd9O5mV1bX1jexmbmt7Z3fP3T+omSjRHKo8kpFuBMyAFAqqKFBCI9bAwkBCPRheT/z6A2gjInWPoxjaIesr0ROcoZU6br6F8IjpjTAD0PRSir4ad9yCV/SmoMvEn5MCmaPScb9a3YgnISjkkhnT9L0Y2ynTKLiEca6VGIgZH7I+NC1VLATTTqfHj+mxVbq0F2lbCulU/T2RstCYURjYzpDhwCx6E/E/r5lg76KdChUnCIrPFvUSSTGikyRoV2jgKEeWMK6FvZXyAdOMo80rZ0PwF19eJrVS0T8rlu5OC+WreRxZckiOyAnxyTkpk1tSIVXCyYg8k1fy5jw5L8678zFrzTjzmTz5A+fzB+7ylPU=</latexit> F
is
h
er

A
li
gn

<latexit sha1_base64="alxf8j+gmgKXA18dNow+Br65bP8=">AAACH3icbVA9SwNBEN3zM8avqKXNYhC0MNwFiZZBLVIqGCMkIcxtJnFxb+/YnRPDkX9i41+xsVBE7Pw3bmIKjT5YeLw3MzvzwkRJS77/6c3Mzs0vLOaW8ssrq2vrhY3NKxunRmBdxCo21yFYVFJjnSQpvE4MQhQqbIS3pyO/cYfGylhf0iDBdgR9LXtSADmpU6i0IqAbASqrDVtnqAh+CoT3lB10pZvQRy2Q75EBqfeHnULRL/lj8L8kmJAim+C8U/hodWORRqhJKLC2GfgJtTMwJIXCYb6VWkxA3EIfm45qiNC2s/F9Q77rlC7vxcY9TXys/uzIILJ2EIWucrS8nfZG4n9eM6XecTuTOknJnff9US9VnGI+Cot3pUFBauAICCPdrlzcgAFBLtK8CyGYPvkvuSqXgkqpfHFYrJ5M4sixbbbD9ljAjliV1dg5qzPBHtgTe2Gv3qP37L1579+lM96kZ4v9gvf5BaICo/E=</latexit> H
�

H
-d

iv
er

ge
n
ce

(t
ra

in
)

<latexit sha1_base64="52byfxCoKYXHzotb9m3W7HekBwM=">AAAB+HicbVBNSwMxEM36WetHVz16CRbBU9ktoh6LXsRTBfsB7VKyabYNzSZLMivWpb/EiwdFvPpTvPlvTNs9aOuDgcd7M8zMCxPBDXjet7Oyura+sVnYKm7v7O6V3P2DplGppqxBlVC6HRLDBJesARwEayeakTgUrBWOrqd+64Fpw5W8h3HCgpgMJI84JWClnlvqAnuE7JZQFXIiJz237FW8GfAy8XNSRjnqPfer21c0jZkEKogxHd9LIMiIBk4FmxS7qWEJoSMyYB1LJYmZCbLZ4RN8YpU+jpS2JQHP1N8TGYmNGceh7YwJDM2iNxX/8zopRJdBxmWSApN0vihKBQaFpyngPteMghhbQqjm9lZMh0QTCjarog3BX3x5mTSrFf+8Ur07K9eu8jgK6Agdo1PkowtUQzeojhqIohQ9o1f05jw5L8678zFvXXHymUP0B87nDzwMk3g=</latexit> J
ac

ob
ia

n

<latexit sha1_base64="9P7Jp5mBagKeh4Gt0GXqtAqSxgs=">AAAB83icbVBNSwMxEM3Wr1q/qh69BIvgqewWUY9FL16ECvYDukvJptk2NJsNyay0LP0bXjwo4tU/481/Y9ruQVsfDDzem2FmXqgEN+C6305hbX1jc6u4XdrZ3ds/KB8etUySasqaNBGJ7oTEMMElawIHwTpKMxKHgrXD0e3Mbz8xbXgiH2GiWBCTgeQRpwSs5PvAxpDd83Gqpr1yxa26c+BV4uWkgnI0euUvv5/QNGYSqCDGdD1XQZARDZwKNi35qWGK0BEZsK6lksTMBNn85ik+s0ofR4m2JQHP1d8TGYmNmcSh7YwJDM2yNxP/87opRNdBxqVKgUm6WBSlAkOCZwHgPteMgphYQqjm9lZMh0QTCjamkg3BW355lbRqVe+yWnu4qNRv8jiK6ASdonPkoStUR3eogZqIIoWe0St6c1LnxXl3PhatBSefOUZ/4Hz+ALvSkiU=</latexit> M
ix

u
p

<latexit sha1_base64="CCfEl7wWQqrh07CWfRFpKX1w4dQ=">AAAB/HicbVBNS8NAEN34WetXtEcvi0XwYkmKqMeigl4KFewHtKFstpt26WYTdidiCfWvePGgiFd/iDf/jds2B219MPB4b4aZeX4suAbH+baWlldW19ZzG/nNre2dXXtvv6GjRFFWp5GIVMsnmgkuWR04CNaKFSOhL1jTH15N/OYDU5pH8h5GMfNC0pc84JSAkbp2oQPsEdJq9frkhiRacyLHXbvolJwp8CJxM1JEGWpd+6vTi2gSMglUEK3brhODlxIFnAo2zncSzWJCh6TP2oZKEjLtpdPjx/jIKD0cRMqUBDxVf0+kJNR6FPqmMyQw0PPeRPzPaycQXHgpl3ECTNLZoiARGCI8SQL3uGIUxMgQQhU3t2I6IIpQMHnlTQju/MuLpFEuuWel8t1psXKZxZFDB+gQHSMXnaMKukU1VEcUjdAzekVv1pP1Yr1bH7PWJSubKaA/sD5/ALIylM8=</latexit> M
M

D
-G

au
ss

ia
n

<latexit sha1_base64="EvycTOnEWduq4VSLv/Rw2aOX9fw=">AAAB+3icbVBNSwJRFH1jX2ZfZss2QxK0SWYkqqVkizaCQX6Airx5XvXhmzfDe3dEGfwrbVoU0bY/0q5/01NnUdqBC4dz7uXee7xQcI2O822lNja3tnfSu5m9/YPDo+xxrq6DSDGosUAEqulRDYJLqCFHAc1QAfU9AQ1vVJ77jTEozQP5hNMQOj4dSN7njKKRutlcG2GCcaVyf1kBKsvBeNbN5p2Cs4C9TtyE5EmCajf71e4FLPJBIhNU65brhNiJqULOBMwy7UhDSNmIDqBlqKQ+6E68uH1mnxulZ/cDZUqivVB/T8TU13rqe6bTpzjUq95c/M9rRdi/7cRchhGCZMtF/UjYGNjzIOweV8BQTA2hTHFzq82GVFGGJq6MCcFdfXmd1IsF97pQfLzKl+6SONLklJyRC+KSG1IiD6RKaoSRCXkmr+TNmlkv1rv1sWxNWcnMCfkD6/MHqC+UMw==</latexit> M
M

D
-M

ea
n
C

ov

L
2
-P

at
h

N
or

m
.

<latexit sha1_base64="78nhSwqD8knm+zwI236srwx9OPA=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4MaQFEGXRTcuRCrYB7QhTKaTdujkwcyNWEI2/oobF4q49TPc+TdO2yy09cCFwzn3cu89fiK4Atv+NkpLyyura+X1ysbm1vaOubvXUnEqKWvSWMSy4xPFBI9YEzgI1kkkI6EvWNsfXU389gOTisfRPYwT5oZkEPGAUwJa8syDGy+r5T1gj5CdNggM8W0sQyv3zKpt2VPgReIUpIoKNDzzq9ePaRqyCKggSnUdOwE3IxI4FSyv9FLFEkJHZMC6mkYkZMrNpg/k+FgrfRzEUlcEeKr+nshIqNQ49HVnqG9U895E/M/rphBcuBmPkhRYRGeLglRgiPEkDdznklEQY00IlVzfiumQSEJBZ1bRITjzLy+SVs1ybMu5O6vWL4s4yugQHaET5KBzVEfXqIGaiKIcPaNX9GY8GS/Gu/Exay0Zxcw++gPj8wcz8ZYj</latexit><latexit sha1_base64="s0gCrDGlvhfc0JuY8Etb5bP4DTE=">AAACJXicjVDLSsNAFJ34rPUVdeHCzWAR3BiSIuiy6MaFSAX7gDaEyXTSDp08mLkRS8jXuHDjr7gpIrjyV5y2WWjrwgMDh3Pu5c45fiK4Atv+NJaWV1bX1ksb5c2t7Z1dc2+/qeJUUtagsYhl2yeKCR6xBnAQrJ1IRkJfsJY/vJ74rUcmFY+jBxglzA1JP+IBpwS05JmHt15WzbvAniA7qxMY4LtYhlbumRXbsqfAi8QpSAUV+N+4Z467vZimIYuACqJUx7ETcDMigVPB8nI3VSwhdEj6rKNpREKm3GyaMscnWunhIJb6RYCn6s+NjIRKjUJfT4Y6iJr3JuJfXieF4NLNeJSkwCI6OxSkAkOMJ5XhHpeMghhpQqjk+q+YDogkFHSxZR3dmQ+6SJpVy7Et5/68UrsqOiuhI3SMTpGDLlAN3aA6aiCKcvSMXtHYeDHejHfjYza6ZBQ7B+gXjK9vziidnA==</latexit><latexit sha1_base64="s0gCrDGlvhfc0JuY8Etb5bP4DTE=">AAACJXicjVDLSsNAFJ34rPUVdeHCzWAR3BiSIuiy6MaFSAX7gDaEyXTSDp08mLkRS8jXuHDjr7gpIrjyV5y2WWjrwgMDh3Pu5c45fiK4Atv+NJaWV1bX1ksb5c2t7Z1dc2+/qeJUUtagsYhl2yeKCR6xBnAQrJ1IRkJfsJY/vJ74rUcmFY+jBxglzA1JP+IBpwS05JmHt15WzbvAniA7qxMY4LtYhlbumRXbsqfAi8QpSAUV+N+4Z467vZimIYuACqJUx7ETcDMigVPB8nI3VSwhdEj6rKNpREKm3GyaMscnWunhIJb6RYCn6s+NjIRKjUJfT4Y6iJr3JuJfXieF4NLNeJSkwCI6OxSkAkOMJ5XhHpeMghhpQqjk+q+YDogkFHSxZR3dmQ+6SJpVy7Et5/68UrsqOiuhI3SMTpGDLlAN3aA6aiCKcvSMXtHYeDHejHfjYza6ZBQ7B+gXjK9vziidnA==</latexit><latexit sha1_base64="s0gCrDGlvhfc0JuY8Etb5bP4DTE=">AAACJXicjVDLSsNAFJ34rPUVdeHCzWAR3BiSIuiy6MaFSAX7gDaEyXTSDp08mLkRS8jXuHDjr7gpIrjyV5y2WWjrwgMDh3Pu5c45fiK4Atv+NJaWV1bX1ksb5c2t7Z1dc2+/qeJUUtagsYhl2yeKCR6xBnAQrJ1IRkJfsJY/vJ74rUcmFY+jBxglzA1JP+IBpwS05JmHt15WzbvAniA7qxMY4LtYhlbumRXbsqfAi8QpSAUV+N+4Z467vZimIYuACqJUx7ETcDMigVPB8nI3VSwhdEj6rKNpREKm3GyaMscnWunhIJb6RYCn6s+NjIRKjUJfT4Y6iJr3JuJfXieF4NLNeJSkwCI6OxSkAkOMJ5XhHpeMghhpQqjk+q+YDogkFHSxZR3dmQ+6SJpVy7Et5/68UrsqOiuhI3SMTpGDLlAN3aA6aiCKcvSMXtHYeDHejHfjYza6ZBQ7B+gXjK9vziidnA==</latexit>

<latexit sha1_base64="CVaA6I59XDZsEDrYhiQ+BWZIJlQ=">AAAB+XicbVBNS8NAEN3Ur1q/oh69BIvgqSRF1GPRi8eK9gPaUDbbSbt0swm7k2IJ/SdePCji1X/izX/jts1BWx8MPN6bYWZekAiu0XW/rcLa+sbmVnG7tLO7t39gHx41dZwqBg0Wi1i1A6pBcAkN5CignSigUSCgFYxuZ35rDErzWD7iJAE/ogPJQ84oGqln212EJ8wehlQlErSe9uyyW3HncFaJl5MyyVHv2V/dfszSCCQyQbXueG6CfkYVciZgWuqmGhLKRnQAHUMljUD72fzyqXNmlL4TxsqURGeu/p7IaKT1JApMZ0RxqJe9mfif10kxvPYzLpMUQbLFojAVDsbOLAanzxUwFBNDKFPc3OowkwFlaMIqmRC85ZdXSbNa8S4r1fuLcu0mj6NITsgpOSceuSI1ckfqpEEYGZNn8krerMx6sd6tj0VrwcpnjskfWJ8/Wt2UIg==</latexit> S
h
ar

p
n
es

s
<latexit sha1_base64="jNXTWEHjaJGQ3dvkgfcsCELmuV0=">AAAB/nicbZDLSsNAFIYn9VbrLSqu3AwWoW5KUkRdFt24rGgv0IQymZ40QycXZiZCCQFfxY0LRdz6HO58G6dtFtr6w8DHf87hnPm9hDOpLOvbKK2srq1vlDcrW9s7u3vm/kFHxqmg0KYxj0XPIxI4i6CtmOLQSwSQ0OPQ9cY303r3EYRkcfSgJgm4IRlFzGeUKG0NzCMHEsm4xuw+rzkBUVmQnw3MqlW3ZsLLYBdQRYVaA/PLGcY0DSFSlBMp+7aVKDcjQjHKIa84qYSE0DEZQV9jREKQbjY7P8en2hliPxb6RQrP3N8TGQmlnISe7gyJCuRibWr+V+unyr9yMxYlqYKIzhf5KccqxtMs8JAJoIpPNBAqmL4V04AIQpVOrKJDsBe/vAydRt2+qDfuzqvN6yKOMjpGJ6iGbHSJmugWtVAbUZShZ/SK3own48V4Nz7mrSWjmDlEf2R8/gB0O5XO</latexit> ✏ S

(ĥ
)

+

-

Figure 3: Sign multiplied to the measure (+1 or -1) to canon-
icalize the measure to have a positive correlation with εT (ĉ).
This canonicalization is used to report the results in Sec. 5
of the main paper.

domain test error εS(ĉ), then the target domain test error of
ĉ can be bounded by

εT (ĉ) ≤ εS(ĉ) +
1

N

N∑
j=1

(
λj +

1

2
dH∆H(D̃j , D̃T)

)
. (2)

Here, λj = minh∈H(εT (h) + εj(h)) is the degree of λ-
closeness between the source domain j and the target do-
main T and D̃j is the distribution of source domain j pushed
to the representational space.

7. Algorithmic Details
In this section we provide more details on some of the gen-
eralization measures we compute in the main paper along
with a more comprehensive set of measures we study, and
provide algorithm-level details. Before diving into the de-
tails of the measures, we first explain notation (which is
slightly different from the main paper, but more specific and
detailed to enable a more precise characterization of what is
done in the various generalization measures).

7.1. Notation

GivenN examples Str = {(Xi, yi)}Ni=1 ∼ p(y|X)ptrain(X),
a trained ERM ĉ : X → P(Y) which computes probabilistic
predictions in the label spaceY , andM examples of held out
data Ttr = {X ′

i}Mi=1 ∼ ptest(X), a generalization measure
for domain generalization aims to predict how well ĉ will
generalize to Tte = {X†i , y†i } ∼ p(y|X)ptest(X). We will
often decompose the function as c(·) = h(e(·)) where e
is an encoder X → Z , z ∈ Z is a representation, and
h : Z → Y is a classifier in a hypothesis class . Unless
stated otherwise we set z as the last layer of the network.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

7.2. Measures based on theory

H-divergence: We explain in more detail how we compute
the classifier two sample test measure below. Most of the
explanation is derived from (Lopez-Paz & Oquab, 2016),
which we reproduce in our notation for convenience. Given
an encoder R : X → Z , which encodes inputs X into a
representation Z, a chosen function family for classification
H : Z → P(Y), we follow the steps in algorithm 1.

Algorithm 1 ComputingH-divergence measure

1: Given: encoder e, Str, Ttr, classifier familyH
2: compute Sztr = {e(X) ∀X, y ∈ Str} and T ztr =
{e(X) ∀X, y ∈ Ttr}

3: ensure that Str and Ttr have the same number of data-
points, drop any additional / extra datapoints at random
if there are more datapoints in either of the sets

4: Given an indicator function for the set I, con-
struct a dataset U = {Z, I [Z ∈ Str] : ∀X ∈
Str}

⋃{Z, I [Z ∈ Str] : ∀X ∈ Ttr}.
5: Split U into two disjoint sets (deterministically) Utr, Ute

such that Utr
⋃Ute = U

6: Fit H on Utr using log-loss
minh∈H

∑
Z,y∈Utr

log h(Z)[y]
7: Return:

∑
Z,y∈Ute

I [argmax(h(Z)) = y]

H+-divergence: We get the C2ST-Big measure when we
setH = H+ in the above algorithm to be a larger function
class (H+) than H† used in the ERM ĉ, where ĉ(X) =
h+(e(X)) and h+ ∈ H†. In practice our original function
family H† is set to the linear function family, while the
larger function familyH+ is set to an MLP with layer sizes
(num features/2, num features/4, num features/4) and ReLU
nonlinearity.

H∆H-divergence: As explained in the main paper, this di-
vergence measure was proposed in (Ben-David et al., 2010).
Denoting by Sz the featurized version of the source data
and T z the featurized version of the test data, I the indicator
function, theH∆H-divergence is defined as follows:

dH∆H = min
h,h′∈H

ESzI[h(z) 6= h′(z)]−ET zI[h(z) = h′(z)]

(3)

Intuitively, this means that two domains are more different
if one can find two members h, h′ ∈ H such that they
maximally disagree on the source domain and maximally
agree on the test domain.

We estimate this divergence measure by training two net-
works h, h′ as shown in algorithm 2.

H+∆H+-divergence: Similar toH-divergence, when we
use a larger function family H+ we obtain a version of
H∆H divergence calledH+∆H+-divergence.

Algorithm 2 ComputingH∆H-divergence measure
.

1: Given: encoder e, Str, Ttr, classifier family H,
rand(Y), a random label generator in the space Y

2: compute Sztr = {e(X) ∀X, y ∈ Str} and T ztr =
{e(X) ∀X, y ∈ Ttr}

3: ensure that Str and Ttr have the same number of data-
points, drop any additional / extra datapoints at random
if there are more datapoints in either of the sets

4: Construct a dataset U = {z, rand(Y) : z ∈
Sztr}

⋃{z, argmax(h′(z)) : z ∈ T ztr } and U ′ =
{z, rand(Y) : z ∈ Sztr}

⋃{z, argmax(h(z)) : z ∈
T ztr }.

5: Split U into two disjoint sets (deterministically) Utr, Ute
such that Utr

⋃Ute = U
6: Split U ′ into two disjoint sets (deterministically) U ′tr, U ′te

such that U ′tr
⋃U ′te = U ′

7: Take a gradient step updating h on Utr using log-loss
minh∈H

∑
Z,y∈Utr

log h(Z)[y] and h′ on U ′ using log-
loss minh′∈H

∑
Z,y∈U ′

tr
log h(Z)[y]

8: Repeat from Step 4 until convergence
9: Return: 1

|Ute|
∑
z,y∈Ute I[h(z) = y] +

1
|Ute|

∑
z,y∈U ′

te
I[h′(z) = y]

H-divergence (train): We use algorithm 3 for H-
divergence (train), with a modification to the last line of
the algorithm forH-divergence.

Algorithm 3 ComputingH-divergence (train) Measure

1: Given: encoder e, Str, Ttr, classifier familyH
2: compute Sztr = {e(X) ∀X, y ∈ Str} and T ztr =
{e(X) ∀X, y ∈ Ttr}

3: ensure that Str and Ttr have the same number of data-
points, drop any additional / extra datapoints at random
if there are more datapoints in either of the sets

4: Given an indicator function for the set I, con-
struct a dataset U = {Z, I [Z ∈ Str] : ∀X ∈
Str}

⋃{Z, I [Z ∈ Str] : ∀X ∈ Ttr}.
5: Split U into two disjoint sets (deterministically) Utr, Ute

such that Utr
⋃Ute = U

6: Fit H on Utr using log-loss
minc∈H

∑
Z,y∈Utr

log c(Z)[y]
7: Return:

∑
Z,y∈Utr

I [argmax(c(Z)) = y]

H∆H-divergence (train) We use a nearly identical al-
gorithm (algorithm 4) to that for H∆H-divergence, with
change to the last line (in blue).

Multi-Source (MS) versus. Single-Source (SS). In the
presence of multiple source environments, we usually treat
all the source environments as one environment and com-
pute the measures as explained above. However, based on
the theory from (Ben-David et al., 2010) we also consider

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Algorithm 4 ComputingH∆H-divergence (train) measure

1: Given: encoder e, Str, Ttr, classifier family H,
rand(Y), a random label generator in the space Y

2: compute Sztr = {e(X) ∀X, y ∈ Str} and T ztr =
{e(X) ∀X, y ∈ Ttr}

3: ensure that Str and Ttr have the same number of data-
points, drop any additional / extra datapoints at random
if there are more datapoints in either of the sets

4: Construct a dataset U = {z, rand(Y) : z ∈
Sztr}

⋃{z, argmax(h′(z)) : z ∈ T ztr } and U ′ =
{z, rand(Y) : z ∈ Sztr}

⋃{z, argmax(h(z)) : z ∈
T ztr }.

5: Split U into two disjoint sets (deterministically) Utr, Ute
such that Utr

⋃Ute = U
6: Split U ′ into two disjoint sets (deterministically) U ′tr, U ′te

such that U ′tr
⋃U ′te = U ′

7: Take a gradient step updating h on Utr using log-loss
minh∈H

∑
Z,y∈Utr

log h(Z)[y] and h′ on U ′ using log-
loss minh′∈H

∑
Z,y∈U ′

tr
log h(Z)[y]

8: Repeat from Step 4 until convergence
9: Return: 1

|Utr|
∑
z,y∈Ute I[h(z) = y] +

1
|Utr|

∑
z,y∈U ′

te
I[h′(z) = y]

measures which study things at the level of multiple sources.
To do this, we follow the theory section 6 and compute the
divergence measure between each source domain and target
domain, and report the overall measure as the mean of the
divergence measures for each source domain, taken in turn,
relative to a given target domain. Measures computed in this
fashion are suffixed with Multi Source (MS). By default,
all measures are computed and reported in a Single Source
(SS) manner.

Divergence + Source Error. Finally, we also compute
measures of generalization which take one of the theory
inspired divergences above and consider the sum of the
divergence and the error on the source domain εS(ĉ) as the
measure, in line with the bounds from theory section 6.

7.3. Other Empirical Measures

L2-Path Norm: The path norm is computed following the
procedure from (Jiang et al., 2019). Let the ERM ĉθ be
parameterized by θ ∈ RK , where K is the number of pa-
rameters of the model. One can then compute the path norm
by squaring the parameters of the network, passing an all 1
input through the network and computing the L2 norm of
the logits from the network. That is, given inputs X ∈ RD,
ĉ(·) = softmax (g∗(·)), we compute path norm as follows:

Sharpness: We compute the sharpness bound using Al-
gorithm 3 in Apppendix D from Jiang et al. (2019), with
the suggested changes for magnitude aware perturbation.

Algorithm 5 L2-Path Norm

1: Given: g∗θ , D
2: θ ← θ2

3: X1 ← 1 ∈ RD
4: Y ← g∗θ(X1)

5: Return: sqrt
(∑

yi∈Y yi

)

Note that there is an errata in the heading of Algorithm 3, it
should be α not σ.

MMD-Gaussian and MMD-Mean-Cov: Similar to H-
divergence measures, the MMD measure also works in the
representation space, Z , where given Sztr = {e(X) Xi, yi ∈
Str} and T ztr = {e(X) ∀X, y ∈ Ttr}, we use a kernel based
measure to compute the similarity between the domains.
Since these measures do not use classification, we do not
drop any datapoints which are extra in the source or the tar-
get domains, unlike Step 3 in algorithm 3. Accordingly, let
M be the number of datapoints in Sztr and N be the number
of datapoints in T ztr .

MMD-Gaussian: We compute three kernels matrices,
namely K(Sztr ,Sztr) ∈ RM×M , K(T ztr , T ztr) ∈ RN×N , and
K(Sztr , T ztr) ∈ RM×N . The MMD-Gaussian measure is
then given by:

MMD-Gaussian =
1

M2

M∑
i=1

M∑
j=1

K(Sztr ,Sztr)ij+

1

N2

N∑
i=1

N∑
j=1

K(T ztr , T ztr)ij−

2

M ×N
M∑
i=1

N∑
j=1

K(Sztr , T ztr)ij (4)

A kernel function k is used to compute each of the entries
in the kernel matrices above. For example, given Zi ∈ Sztr ,
the ith datapoint in the set and Zj ∈ T ztr , the jth datapoint
in the set, the following are equivalent:

K(Str, Ttr)ij = k(Zi, Zj)

MMD-Gaussian uses a sum of Radial Basis Function
(RBF) kernel functions, where given γ ∈ G, such that
G : [0.001, 0.01, 0.1, 1, 1, 10, 100, 1000] the final kernel can
be expressed as:

k(Z1, Z2) =
∑
γ∈G

kγ(Z1, Z2) (5)

=
∑
γ∈G

exp(−γ||Z1 − Z2||22) (6)

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

MMD-Mean-Cov: For ease of explanation below we drop
the subscript tr and the superscript z and leave it understood
that we are always working in the training splits of the
source and target domains, and that we are working in the
representation space Z . Thus we write Sztr as S and T ztr as
T . With this notational simplification, given U ∈ {S, T },
we first compute the sample mean:

µU =
1

|U|
∑
Zi∈U

Zi (7)

Next, Zi ∈ RK , then we compute the sample covariance
matrix cov ∈ RK×K , where the ith row and jth column are
given by:

covU ij =
1

|U| − 1

|U|∑
t=1

(Zti − µU i)(Ztj − µU j) (8)

Denoting by F , the Frobenious norm of a matrix, the final
measure is expressed as:

MMD-Mean-Cov = ||µS−µT ||22 + ||covS−covT ||2F (9)

Fisher-based measures: Given U ∈ {Str, Ttr}, as ex-
plained in the main paper we compute the approximate
Fisher information matrix using Ñ examples (see section 8
below for choices of Ñ for different datasets). We then
perform an eigendecomposition to obtain the top Ñ approx-
imate eigenvalues αU = {α1

U , · · · , αÑU } and their corre-
sponding eigenvectors VU = {V 1

U , · · · , V ÑU }. Given these
we compute the following measures, as explained in the
main paper:

1. Fisher-Eigval-Diff: Computes a measure∑Ñ
n=1 (αnT − αnS)

2. Fisher-Eigval-Ratio: Computes a measure
∑Ñ
n=1 α

n
T∑Ñ

n=1 α
n
S

3. Fisher Align: Computes the best match between the
sets of eigenvectors VT and VS using the Hungarian al-
gorithm (Kuhn, 1955) and reports the score of the best
alignment between the sets, as the similarity between
them. The similarity is defined by the cosine similarity
matrix which is computed between unit vectors in the
direction of the eigenvectors. Concretely, given eigen-
vectors V iS and V jT , the corresponding row and column
of a similarity matrix sim ∈ RÑ×Ñ can be computed

as: simij =
V iTS ·V

j
T

||V iS ||2·||V
j
T ||2

. This similarity matrix is
then fed to the Hungarian algorithm which returns the
maximum similarity.

Jacobian Norm Based Measures. The input-output Jaco-
bian, a measure of sensitivity of the model output to changes

in the input, is mathematically defined as Ji,α = ∂hi(x)
∂xα

. In-
tuitively, a model that is less sensitive to changes in the
input will generalize better. Thus, it has been studied in
the context of robust learning (Hoffman et al., 2019) and
in-distribution generalization (Novak et al., 2018), where it
was found to be predictive of generalization at the level of
individual test points. Similar to (Novak et al., 2018), we
compute the Frobenius norm of the Jacobian matrix, which
we will refer to as Jacobian Norm as a short hand. We report
two measures based on the Jacobian:

1. Jacobian: The first measure computes the Jacobian
norm on the held out set Tte. From (Novak et al., 2018)
higher norm intuitively means the point is dissimilar
to the training distribution, and thus we should expect
worse generalization.

2. Jacobian-Diff: This measure is similar to the Jacobian
measure, except we use the training data S to provide
a baseline for the test Jacobian. It is computed as the
difference between the Jacobian for source and target.
We also consider measures based on the ratio of the
Jacobians and the log of the ratios of the Jacobians. We
call these measures Jacobian-Ratio and Jacobian-Log-
Diff, respectively.

Mixup Based Measures. Mixup (Zhang et al., 2018) was
proposed as a more robust alternative to Empirical Risk
Minimization, where given two examples X1, X2, and as-
sociated labels y1, y2, one optimizes an objective that sam-
ples λ ∼ Beta(α, α) and feeds the learning machine inputs
X̃ = λ·X1+(1−λ)·X2 and targets ỹ = λ·y1+(1−λ)·y2.
Given {X̃, ỹ}, one proceeds as if one were doing standard
Empirical Risk Minimization. It is easy to see that Mixup en-
courages the learned function to be smooth, and indeed has
been shown to smooth the input-output Jacobian (Carratino
et al., 2020) of the network. Here, we adapt the mixup idea
not as a training algorithm but as a generalization measure,
and use the model’s score function c instead of the labels y
for interpolation. Our intuition is the same as that for the
Jacobian, namely, that if the function is not smooth around
target examples, the network should not generalize as well.
Given the neural network function c(X), and a dataset T ,
and λ ∼ Beta(α, α), we compute the Mixup measure as:

1

|T |
∑

Xi∈T ,Xj∈T ;i6=j

(λc(Xi) + (1− λ)c(Xj)

− h(λXi + (1− λ)Xj)
2 (10)

We experiment with two values of α ∈ {0.1, 0.3} follow-
ing (Zhang et al., 2016). Similar to the Jacobian, we use a
relative variant of Mixup, namely Mixup-Diff which com-
putes the difference of the Mixup between Ttr and Str, and
another variant which computes the log of the difference
(Mixup-log-Diff) between Ttr and Str.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

We then compute the following measures with mixup, set-
ting α = 0.1:

• Mixup: compute µTtr

• Mixup-Diff: compute µTtr − µStr

• Mixup-Ratio: compute µTtr
µStr

• Mixup-log-Diff: compute log (µTtr)− log (µStr)

We also compute each of the above measures with α = 0.3,
yielding measures Mixup-Alpha-0.3 and so on.

Algorithm 6 Mixup for a dataset U
1: procedure PERMUTEMINIBATCH(B)
2: I ← permute ((1, · · · , |B|))
3: return (Bi for i ∈ I)
4: end procedure
1: procedure MIXUP(U , ĉ, α)
2: µ← 0
3: t← 0 Minibatch B ∈ U
4: B̃ ← PermuteMinibatch(B) X1 ∈ B and X2 ∈ B̃
5: λ ∼ Gamma(α, α)
6: A← λĉ(X1) + (1− λ)ĉ(X2)
7: B ← ĉ (λX1 + (1− λ)X2)
8: µ← µ+ ||A−B||22
9: t← t+ 1

10: return µ
t

11: end procedure

Entropy on Source Data. We compute the output-entropy
of the neural network h on the source domain data Str
(Entropy-Source):

1

|Str|
∑
Xi∈Str

Y∑
j=1

− log (c(Xi)[j]) · c(Xi)[j]. (11)

Entropy on Target Data. We also compute the output-
entropy of the neural network h on the target domain data
Ttr (Entropy-Target):

1

|Ttr|
∑
Xi∈Ttr

Y∑
j=1

− log (c(Xi)[j]) · c(Xi)[j]. (12)

8. Implementation Details
We first explain the exact model architecures we use for
each dataset in the paper, then provide more details on the
hyperparameter choices, and finally provide more details on
relevant hyperparameters for computing the generalization
measures.

8.1. Network architectures

We use the same architecture as that used in Do-
mainBed (Gulrajani & Lopez-Paz, 2020) for the RotatedM-
NIST dataset (fig. 4). As mentioned in the main paper, this
model has 386K parameters. For PACS and VLCS we use
standard ResNet50 models pretrained on ImageNet. For
this we use the standard, available implementations in the
PyTorch (Paszke et al., 2019) library.

8.2. Random Hyperparameter Sweep

As explained in the main paper, we perform a random hyper-
parameter sweep to obtain a set of ERMs which generalize
to different degrees. Here we describe in more detail how
we pick the hyperparameters.

We first describe the hyperparameter search attributes
for RotatedMNIST. Uniform(X, Y) denotes a uniform
distribution in the continuous interval (X, Y), while
Uniform[X, Y] denotes a discrete choice between el-
ements X and Y. pow(X, Y) denotes XY . Given this
notation, our hyperparameter choices for RotatedMNIST
are:

• Learning Rate: pow(10, Uniform(-4.5,
-2.5))

• Batch Size: pow(2, Uniform(3, 9))

Next, our hyperparameter choices for VLCS and PACS are:

• Learning Rate: pow(10, Uniform(-5,
-3.5))

• Batch Size: pow(2, Uniform(3, 5.5))

• Dropout: Uniform[0, 0.1, 0.5]

• Weight Decay: pow(10, Uniform(-6, -2))

8.3. Hyperparameters for Fisher

Our computation of the Fisher approximates the true Fisher
information by computing it over a subset of data examples
Ñ (as explained in the main paper). We use Ñ = 75 for
PACS and VLCS and Ñ = 1000 for RotatedMNIST.

References
Ben-David, S., Blitzer, J., Crammer, K., and Pereira, F.

Analysis of representations for domain adaptation. In
Schölkopf, B., Platt, J., and Hoffman, T. (eds.), Advances
in Neural Information Processing Systems, volume 19,
pp. 137–144. MIT Press, 2007.

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A.,
Pereira, F., and Vaughan, J. A theory of learning

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

 (conv1): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (Relu): ReLU()
 (bn0): GroupNorm(8, 64, eps=1e-05, affine=True)

 (conv2): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
 (Relu): ReLU()
 (bn1): GroupNorm(8, 128, eps=1e-05, affine=True)

 (conv3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (Relu): ReLU()
 (bn2): GroupNorm(8, 128, eps=1e-05, affine=True)

 (conv4): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (Relu): ReLU()
 (bn3): GroupNorm(8, 128, eps=1e-05, affine=True)

 (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
(squeezeLastTwo): SqueezeLastTwo()

Figure 4: Schematic illustration of forward pass of MNIST CNN. We list the modules which are executed on the input
image (using pytorch classes (Paszke et al., 2019)). Modules listed at the top are executed first, followed by each module in
the sequence. SqueezeLastTwo drops the last two dimensions of the tensor from the previous layer.

Figure 5: εT (ĉ) v.s. Measure for different datasets. Each environment for a given dataset has a marker of a different color.
The measure being computed is listed at the in the title of the figure

Figure 6: εT (ĉ) v.s. Measure for different datasets. Each environment for a given dataset has a marker of a different color.
The measure being computed is listed at the in the title of the figure

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Figure 7: εT (ĉ) v.s. Measure for different datasets. Each environment for a given dataset has a marker of a different color.
The measure being computed is listed at the in the title of the figure

Figure 8: εT (ĉ) v.s. Measure for different datasets. Each environment for a given dataset has a marker of a different color.
The measure being computed is listed at the in the title of the figure

Figure 9: εT (ĉ) v.s. Measure for different datasets. Each environment for a given dataset has a marker of a different color.
The measure being computed is listed at the in the title of the figure

Figure 10: εT (ĉ) v.s. Measure for different datasets. Each environment for a given dataset has a marker of a different
color. The measure being computed is listed at the in the title of the figure

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Figure 11: εT (ĉ) v.s. Measure for different datasets. Each environment for a given dataset has a marker of a different
color. The measure being computed is listed at the in the title of the figure

Figure 12: εT (ĉ) v.s. Measure for different datasets. Each environment for a given dataset has a marker of a different
color. The measure being computed is listed at the in the title of the figure

Figure 13: εT (ĉ) v.s. Measure for different datasets. Each environment for a given dataset has a marker of a different
color. The measure being computed is listed at the in the title of the figure

Figure 14: εT (ĉ) v.s. Measure for different datasets. Each environment for a given dataset has a marker of a different
color. The measure being computed is listed at the in the title of the figure

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Figure 15: εT (ĉ) v.s. Measure for different datasets. Each environment for a given dataset has a marker of a different
color. The measure being computed is listed at the in the title of the figure

from different domains. Machine Learning, 79:151–175,
2010. URL http://www.springerlink.com/
content/q6qk230685577n52/.

Carratino, L., Cissé, M., Jenatton, R., and Vert, J.-P. On
mixup regularization. June 2020.

Gulrajani, I. and Lopez-Paz, D. In search of lost domain
generalization. July 2020.

Hoffman, J., Roberts, D. A., and Yaida, S. Robust learning
with jacobian regularization. August 2019.

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., and
Bengio, S. Fantastic generalization measures and where
to find them. December 2019.

Kuhn, H. W. The hungarian method for the assignment
problem. Nav. Res. Logist. Q., 2(1-2):83–97, March 1955.

Lopez-Paz, D. and Oquab, M. Revisiting classifier two-
sample tests. arXiv preprint arXiv:1610.06545, 2016.

Novak, R., Bahri, Y., Abolafia, D. A., Pennington, J., and
Sohl-Dickstein, J. Sensitivity and generalization in neural
networks: an empirical study. February 2018.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. PyTorch: An imperative style,
High-Performance deep learning library. December 2019.

Sun, B. and Saenko, K. Deep CORAL: Correlation align-
ment for deep domain adaptation. July 2016.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning requires rethinking general-
ization. November 2016.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D.
mixup: Beyond empirical risk minimization. February
2018.

http://www.springerlink.com/content/q6qk230685577n52/
http://www.springerlink.com/content/q6qk230685577n52/

