
A Numerical Simulations

A.1 Simulations of the discretized continuized acceleration
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Figure 1: Comparison between gradient descent, Nesterov acceleration, and the continuized version
of Nesterov acceleration, on a convex function (left plots) and a strongly convex function (right
plots). For the continuized acceleration, which is randomized, the results shown in the above plots
correspond to a single run. In the plots below, the thick line represents the average performance
over N = 1000 runs of the continuized acceleration, while the thin lines represent the 5% and 95%
quantiles.

In Figure 1, we compare this continuized Nesterov acceleration (12)-(14) with the classical Nesterov
acceleration (3)-(5) and gradient descent. In the strongly convex case (right), we run the algorithms
with the parameters of Theorem 1.(2) and 3.(2) on the function

f(x1, x2, x3) =
µ

2
(x1 − 1)2 +

3µ

2
(x2 − 1)2 +

L

2
(x3 − 1)2 ,

with µ = 10−2 and L = 1. In the convex case, we run the algorithms with the parameters of Theorem
1.(1) and 3.(1) on the function

f(x1, . . . , x100) =
1

2

100∑
i=1

1

i2

(
xi −

1

i

)2

,

which has negligible strong convexity parameter. All iterations were initialized from x0 = z0 = 0.
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A.2 Simulation of Accelerated Randomized Gossip

(a) Line graph, 30 nodes (b) Line graph, 30 nodes

(c) 2D-Grid, 225 nodes (d) 2D-Grid, 225 nodes

(e) Complete graph, 10 nodes (f) Complete graph, 10 nodes

Figure 2: Comparison between randomized gossip [11] and accelerated randomized gossip from
Section 6, on 3 different graphs: line with 30 nodes, 2D-Grid with 225 nodes and complete graph
with 30 nodes. The probability P on the set of edges that determines at every activation which
edge is activated is uniform in all cases. Parameters of the algorithm are taken as in Theorem 5. In
all simulations, initialization was taken with a vector x0 such that x0(v) = 0 at all nodes, except
one where x0(v) = 1. Figures on the left represent one run of the algorithms. Figures on the right
represent the average performance (thick line) for N = 1000 runes with the same settings, and the
5% and 95% quantiles (thin lines). As expected, we observe acceleration one the line and the grid,
but no such phenomenon on the complete graph.

B Robustness of the continuized Nesterov acceleration to additive noise

In this section, we study the continuized acceleration (15)-(16) under stochastic gradients. We assume
that our gradient estimates are unbiased, i.e.,

∀x ∈ Rd , Eξ∇f(x, ξ) = ∇f(x) , (27)
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and has a uniformly bounded variance, i.e., there exists σ2 > 0 such that

∀x ∈ Rd , Eξ ‖∇f(x, ξ)−∇f(x)‖2 6 σ2 . (28)

These assumptions typically hold in the additive noise model, where ∇f(x, ξ) = ∇f(x) + ξ, and
ξ ∈ Rd satisfies Eξ = 0, E‖ξ‖2 6 σ2. By an abuse of terminology, we say that our stochastic
gradients have “additive noise” when (27) and (28) hold.

We should emphasize that similar studies of Nesterov acceleration under additive noise has been done
[34, 27, 56, 17, 13, 6].
Theorem 7 (Continuized acceleration with additive noise). Assume that the stochastic gradients are
unbiased (27) and have a variance uniformly bounded by σ2 (28). Then the continuized acceleration
(15)-(16) satisfies the following.

1. For the parameters of Theorem 2.(1),

Ef(xt)− f(x∗) 6
2L‖z0 − x∗‖2

t2
+ σ2 t

3L
.

2. Assume further that f is µ-strongly convex, µ > 0. For the parameters of Theorem 2.(2),

Ef(xt)− f(x∗) 6
(
f(x0)− f(x∗) +

µ

2
‖z0 − x∗‖2

)
exp

(
−
√
µ

L
t

)
+ σ2 1√

µL
.

This theorem is proved in Appendix D.3.

In the above bounds, L is a parameter of the algorithm, that can be taken greater than the best known
smoothness constant of the function f . Increasing L reduces the stepsizes of the algorithm and
performs some variance reduction. If the bound σ2 on the variance is known, one can choose L
optimizing the above bounds in order to obtain algorithms that adapt to additive noise.

In Figure 3, we run the same simulations as in Figure 1, with two differences: (1) we add isotropic
Gaussian noise on the gradients, with covariance 10−4 Id, and (2) we initialized algorithms at the
optimum, i.e., x0 = z0 = x∗. Initializing at the optimum enables to isolate the effect of the additive
noise only. These simulations confirm Theorem 7: the noise term is (sub-)linearly increasing in the
convex case and constant in the strongly convex case.

Note that similarly to Theorem 3, one could obtain convergence bounds for the discrete implementa-
tion under the presence of additive noise.

C Stochastic calculus toolbox

In this appendix, we give a short introduction to the mathematical tools that we use in this paper. For
more details, the reader can consult the more rigorous monographs of Jacod and Shiryaev [29], Ikeda
and Watanabe [28], Le Gall [36].

C.1 Poisson point measures

We fix P a probability law on some space Ξ.
Definition 2. A (homogenous) Poisson point measure on R>0 × Ξ, with intensity ν(dt, dξ) =
dt⊗ dP(ξ), is a random measure N on R>0 × Ξ such that

• For any disjoint measurable subsetsA andB of R>0×Ξ,N(A) andN(B) are independent.

• For any measurable subset A of R>0 × Ξ, N(A) is a Poisson random variable with
parameter ν(A). (If ν(A) =∞, N(A) is equal to∞ almost surely.)

Proposition 1. Let N be a Poisson point measure on R>0 × Ξ with intensity dt⊗ dP(ξ).

There exists a decomposition dN(t, ξ) =
∑
k>1 δ(Tk,ξk)(dt,dξ) on R>0 × Ξ where 0 < T1 < T2 <

T3 < . . . and ξ1, ξ2, ξ3, · · · ∈ Ξ satisfy:

• T1, T2 − T1, T3 − T2, . . . are i.i.d. of law exponential with rate 1,
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Figure 3: Effect of additive noise on gradient descent, Nesterov acceleration, and the continuized
version of Nesterov acceleration, on a convex function (left) and a strongly convex function (right).
All algorithms are started from the optimum x∗. The results shown in the above plots correspond to a
single run. In the plots below, the thick line represents the average performance over N = 100 runs
of each algorithm, while the thin lines represent the 5% and 95% quantiles.

• ξ1, ξ2, ξ3, . . . are i.i.d. of law P and independent of the T1, T2, T3, . . . .

Definition 3. Let N be a Poisson point measure on R>0×Ξ with intensity dt⊗dP(ξ). The filtration
Ft, t > 0, generated by N is defined by the formula

Ft = σ (N([0, s]×A) , s 6 t, A ⊂ Ξ measurable) .

C.2 Martingales and supermartingales

Let (Ω,F ,P) be a probability space and Ft, t > 0, a filtration on this probability space.

Definition 4. A random process xt ∈ Rd, t > 0, is adapted if for all t > 0, xt is Ft-measurable.
An adapted process xt ∈ R, t > 0 is a martingale (resp. supermartingale) if for all 0 6 s 6 t,
E[xt| Fs] = xs (resp. E[xt| Fs] 6 xs).

Definition 5. A random variable T ∈ [0,∞] is a stopping time if for all t > 0, {T 6 t} ∈ Ft.
Definition 6. A function xt, t > 0, is said to be càdlàg if it is right continuous and for every t > 0,
the limit xt− := lims→t,s<t xs exists and is finite.

Theorem 8 (Martingale stopping theorem). Let xt, t > 0, be a martingale (resp. supermartingale)
with càdlàg trajectories and uniformly integrable. Let T be a stopping time. Then EXT = X0

(resp. EXT 6 X0).

C.3 Stochastic ordinary differential equation with Poisson jumps

The continuized processes are the composition of an ordinary differential equation and stochastic
Poisson jumps. It is thus a piecewise-deterministic Markov process [15, 16], a special case of
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stochastic models that do not include any diffusion term. The stochastic calculus of this class of
processes is particularly intuitive: there is no Ito correction term as with diffusive processes.

We fix P a probability law on some space Ξ, N a Poisson point measure on R>0 × Ξ with intensity
dt⊗ dP(ξ), and denote Ft, t > 0, the filtration generated by N .

Definition 7. Let b : Rd → Rd andG : Rd×Ξ→ Rd be two functions. An random process xt ∈ Rd,
t > 0, is said to be a solution of the equation

dxt = b(xt)dt+

∫
Ξ

G(xt, ξ)dN(t, ξ)

if it is adapted, càdlàg, and for all t > 0,

xt = x0 +

∫ t

0

b(xs)ds+

∫
[0,t]×Ξ

G(xs−, ξ)dN(s, ξ) .

If we consider the decomposition dN(t, ξ) =
∑
k>1 δ(Tk,ξk)(dt,dξ) given by Proposition 1, then∫

[0,t]×Ξ

G(xs−, ξ)dN(s, ξ) =
∑
k>1

1{Tk6t}G(xTk−, ξk) .

Here, we consider only autonomous equations as b and G are a function of xt, but not of t. However,
there is no loss of generality, one can study time-dependent systems by studying the equation in the
variable (t, xt). This trick is used in Appendix D.

Proposition 2. Let xt ∈ Rd be a solution of

dxt = b(xt)dt+

∫
Ξ

G(xt, ξ)dN(t, ξ)

and ϕ : Rd → R be a smooth function. Then

ϕ(xt) = ϕ(x0) +

∫ t

0

〈∇ϕ(xs), b(xs)〉ds+

∫
[0,t]×Ξ

(ϕ(xs− +G(xs−, ξ))− ϕ(xs−)) dN(s, ξ) .

Moreover, we have the decomposition∫
[0,t]×Ξ

(ϕ(xs− +G(xs−, ξ))− ϕ(xs−)) dN(s, ξ)

=

∫ t

0

∫
Ξ

(ϕ(xs +G(xs, ξ))− ϕ(xs)) dtdP(ξ) +Mt ,

where Mt =
∫

[0,t]×Ξ
(ϕ(xs− +G(xs−, ξ))− ϕ(xs−)) (dN(s, ξ)− dtdP(ξ)) is a martingale.

This proposition is an elementary calculus of variations formula: to compute the value of the
observable ϕ(xt), one must sum the effects of the continuous part and of the Poisson jumps. Moreover,
the integral with respect to the Poisson measure N becomes a martingale if the same integral with
respect to its intensity measure dt⊗ dP(ξ) is removed.

D Analysis of the continuized Nesterov acceleration

To encompass the proofs in the convex and in the strongly convex cases in a unified way, we assume
f is µ-strongly convex, µ > 0. If µ > 0, this corresponds to assuming the µ-strong convexity in the
usual sense; if µ = 0, it means that we only assume the function to be convex. In other words, the
proofs in the convex case can be obtained by taking µ = 0 below.

In this section, Ft, t > 0, is the filtration associated to the Poisson point measure N .

18



D.1 Sketch of proof for Theorem 2

A complete and rigorous proof is given in Appendix D.2. Here, we only provide the heuristic of the
main lines of the proof.

The proof is similar to the one of Nesterov acceleration: we prove that for some choices of parameters
ηt, η

′
t, γt, γ

′
t, t > 0, and for some functions At, Bt, t > 0,

φt = At (f(xt)− f(x∗)) +
Bt
2
‖zt − x∗‖2

is a supermartingale. In particular, this implies that Eφt is a Lyapunov function, i.e., a non-increasing
function of t.

To prove that φt is a supermartingale, it is sufficient to prove that for all infinitesimal time intervals
[t, t+ dt], Etφt+dt 6 φt, where Et denotes the conditional expectation knowing all the past of the
Poisson process up to time t. Thus we would like to compute the first order variation of Etφt+dt.
This implies computing the first order variation of Etf(xt+dt).

From (10), we see that f(xt) evolves for two reasons between t and t+ dt:

• xt follows the linear ODE (8), which results in the infinitesimal variation f(xt)→ f(xt) +
ηt〈∇f(xt), zt − xt〉dt, and

• with probability dt, xt takes a gradient step, which results in a macroscopic variation
f(xt)→ f (xt − γt∇f(xt)).

Combining both variations, we obtain that

Etf(xt+dt) ≈ f(xt) + ηt〈∇f(xt), zt − xt〉dt+ dt (f (xt − γt∇f(xt))− f(xt)) ,

where the dt in the second term corresponds to the probability that a gradient step happens; note that
the latter event is independent of the past up to time t.

A similar computation can be done for Et‖zt − x∗‖2. Putting things together, we obtain

Etφt+dt − φt ≈ dt

(
dAt
dt

(f(xt)− f(x∗)) +Atηt〈∇f(xt), zt − xt〉

−At (f(xt − γt∇f(xt))− f(xt)) +
dBt
dt

1

2
‖zt − x∗‖2

+Btη
′
t〈zt − x∗, xt − zt〉+

Bt
2

(
‖zt − γ′t∇f(xt)− x∗‖2 − ‖zt − x∗‖2

))
.

Using convexity and strong convexity inequalities, and a few computations, we obtain the following
upper bound:

Etφt+dt − φt . dt

((
dAt
dt
−Atηt

)
〈∇f(xt), xt − x∗〉+

(
dBt
dt
−Btη′t

)
1

2
‖zt − x∗‖2

+ (Atηt −Btγ′t)〈∇f(xt), zt − x∗〉+

(
Btη

′
t −

dAt
dt

µ

)
1

2
‖xt − x∗‖2

+
(
Btγ

′2
t −Atγt (2− Lγt)

) 1

2
‖∇f(xt)‖2

)
.

We want this infinitesimal variation to be non-positive. Here, we choose the parameters so that
γt = 1/L, and all prefactors in the above expression are zero. This gives some constraints on the
choices of parameters. We show that only one degree of freedom is left: the choice of the function
At, that must satisfy the ODE

d2

dt2

(√
At

)
=

µ

4L

√
At ,

but whose initialization remains free. Once the initialization of the function At is chosen, this
determines the full function At and, through the constraints, all parameters of the algorithm. As φt is
a supermartingale (by design), a bound on the performance of the algorithm is given by

Ef(xt)− f(x∗) 6
Eφt
At

6
φ0

At
.
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The results presented in Theorem 2 correspond to one special choice of initialization for the func-
tion At.

In this sketch of proof, our derivation of the infinitesimal variation is intuitive and elementary;
however it can be made more rigorous and concise—albeit more technical—using classical results
from stochastic calculus, namely Proposition 2. This is our approach in Appendix D.2.

D.2 Noiseless case: proofs of Theorem 2 and of the bounds of Theorem 3

In this section, we analyze the convergence of the continuized iteration (10)-(11), that we recall for
the reader’s convenience:

dxt = ηt(zt − xt)dt− γt∇f(xt)dN(t) ,

dzt = η′t(xt − zt)dt− γ′t∇f(xt)dN(t) .

The choices of parameters ηt, η′t, γt, γ
′
t, t > 0, and the corresponding convergence bounds follow

naturally from the analysis. We seek sufficient conditions under which the function

φt = At (f(xt)− f∗) +
Bt
2
‖zt − x∗‖2

is a supermartingale.

The process x̄t = (t, xt, zt) satisfies the equation

dx̄t = b(x̄t)dt+G(x̄t)dN(t) , b(x̄t) =

(
1

ηt(zt − xt)
η′t(xt − zt)

)
, G(x̄t) =

(
0

−γt∇f(xt)
−γ′t∇f(xt)

)
.

We thus apply Proposition 2 to φt = ϕ(x̄t) = ϕ(t, xt, zt) where

ϕ(t, x, z) = At (f(x)− f(x∗)) +
Bt
2
‖z − x∗‖2 ,

we obtain:

φt = φ0 +

∫ t

0

〈∇ϕ(x̄s), b(x̄s)〉ds+

∫ t

0

(ϕ(x̄s +G(x̄s))− ϕ(x̄s)) ds+Mt ,

where Mt is a martingale. Thus, to show that ϕt is a supermartingale, it is sufficient to show that the
map t 7→

∫ t
0
〈∇ϕ(x̄s), b(x̄s)〉ds+

∫ t
0

(ϕ(x̄s +G(x̄s))− ϕ(x̄s))) ds is non-increasing almost surely,
i.e.,

It := 〈∇ϕ(x̄t), b(x̄t)〉+ ϕ(x̄t +G(x̄t))− ϕ(x̄t) 6 0 .

We now compute

〈∇ϕ(x̄t), b(x̄t)〉 = ∂tϕ(x̄t) + 〈∂xϕ(x̄t), ηt(zt − xt)〉+ 〈∂zϕ(x̄t), η
′
t(xt − zt)〉

=
dAt
dt

(f(xt)− f(x∗)) +
dBt
dt

1

2
‖zt − x∗‖2 +Atηt〈∇f(xt), zt − xt〉

+Btη
′
t〈zt − x∗, xt − zt〉 .

Here, we use that as f is µ-strongly convex,

f(xt)− f(x∗) 6 〈∇f(xt), xt − x∗〉 −
µ

2
‖xt − x∗‖2 ,

and the simple bound

〈zt − x∗, xt − zt〉 = 〈zt − x∗, xt − x∗〉 − ‖zt − x∗‖2 6 ‖zt − x∗‖‖xt − x∗‖ − ‖zt − x∗‖2

6
1

2

(
‖zt − x∗‖2 + ‖xt − x∗‖2

)
− ‖zt − x∗‖2 =

1

2

(
‖xt − x∗‖2 − ‖zt − x∗‖2

)
.

This gives

〈∇ϕ(x̄t), b(x̄t)〉 6
(

dAt
dt
−Atηt

)
〈∇f(xt), xt − x∗〉+

(
Btη

′
t −

dAt
dt

µ

)
1

2
‖xt − x∗‖2 (29)

+

(
dBt
dt
−Btη′t

)
1

2
‖zt − x∗‖2 +Atηt〈∇f(xt), zt − x∗〉 . (30)
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Further,

ϕ(x̄t +G(x̄t))− ϕ(x̄t) = At (f(xt − γt∇f(xt))− f(xt))

+
Bt
2

(
‖(zt − x∗)− γ′t∇f(xt)‖2 − ‖zt − x∗‖2

)
.

As f is L-smooth,

f(xt − γt∇f(xt))− f(xt) 6 〈∇f(xt),−γt∇f(xt)〉+
L

2
‖γt∇f(xt)‖2

= −γt (2− Lγt)
1

2
‖∇f(xt)‖2 .

This gives

ϕ(x̄t +G(x̄t))− ϕ(x̄t) 6
(
Btγ

′2
t −Atγt (2− Lγt)

) 1

2
‖∇f(xt)‖2 −Btγ′t〈∇f(xt), zt − x∗〉 .

(31)

Finally, combining (29)-(30) with (31), we obtain

It 6

(
dAt
dt
−Atηt

)
〈∇f(xt), xt − x∗〉+

(
dBt
dt
−Btη′t

)
1

2
‖zt − x∗‖2 (32)

+ (Atηt −Btγ′t)〈∇f(xt), zt − x∗〉+

(
Btη

′
t −

dAt
dt

µ

)
1

2
‖xt − x∗‖2 (33)

+
(
Btγ

′2
t −Atγt (2− Lγt)

) 1

2
‖∇f(xt)‖2 . (34)

Remember that It 6 0 is a sufficient condition for φt to be a supermartingale. Here, we choose the
parameters ηt, η′t, γt, γ

′
t, t > 0, so that all prefactors are 0. We start by taking γt ≡ 1

L (other choices
γt <

2
L could be possible but would give similar results) and we want to satisfy

dAt
dt

= Atηt ,
dBt
dt

= Btη
′
t Atηt = Btγ

′
t , Btη

′
t =

dAt
dt

µ , Btγ
′2
t =

At
L
.

To satisfy the last equation, we choose

γ′t =

√
At
LBt

. (35)

To satisfy the third equation, we choose

ηt =
Btγ

′
t

At
=

√
2Bt
LAt

. (36)

To satisfy the fourth equation, we choose

η′t =
dAt
dt

µ

Bt
=
Atηtµ

Bt
= µ

√
At
LBt

. (37)

Having now all parameters ηt, η′t, γt, γ
′
t constrained, we now have that φt is Lyapunov if

dAt
dt

= Atηt =

√
AtBt
L

,
dBt
dt

= Btη
′
t = µ

√
AtBt
L

.

This only leaves the choice of the initialization (A0, B0) as free: both the algorithm and the Lyapunov
depend on it. (Actually, only the relative value A0/B0 matters.) Instead of solving the above system
of two coupled non-linear ODEs, it is convenient to turn them into a single second-order linear ODE:

d

dt

(√
At

)
=

1

2
√
At

dAt
dt

=
1

2

√
Bt
L
,

d

dt

(√
Bt

)
=

1

2
√
Bt

dBt
dt

=
µ

2

√
At
L
. (38)

This can also be restated as

d2

dt2

(√
At

)
=

µ

4L

√
At ,

√
Bt = 2

√
L

d

dt

(√
At

)
. (39)
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D.2.1 Proof of the first part (convex case)

We now assume µ = 0, and we choose the solution such that A0 = 0 and B0 = 1. From (38), we
have d

dt

(√
Bt
)

= 0, thus Bt ≡ 1, and d
dt

(√
At
)

= 1
2
√
L

, thus
√
At = t

2
√
L

. The parameters of the
algorithm are given by (35)-(37): ηt = 2

t , η′t = 0, γ′t = t
2L (and we had chosen γt = 1

L ).

From the fact that φt is a supermartingale, we obtain that the associated algorithm satisfies

Ef(xt)− f(x∗) 6
Eφt
At

6
φ0

At
=

2L‖z0 − x∗‖2

t2
.

This proves the first part of Theorem 2.

Further, one can apply martingale stopping Theorem 8 to the supermartingale φt with the stopping
time Tk to obtain

E [ATk (f(x̃k)− f(x∗))] = E [ATk (f(xTk)− f(x∗))] 6 EφTk 6 φ0 = ‖z0 − x∗‖2 .
This proves the formula of Theorem 3.1.

D.2.2 Proof of the second part (strongly convex case)

We now assume µ > 0. We consider the solution of (39) that is exponential:√
At =

√
A0 exp

(
1

2

√
µ

L
t

)
,

√
Bt =

√
A0
√
µ exp

(
1

2

√
µ

L
t

)
.

The parameters of the algorithm are given by (35)-(37): ηt = η′t =
√

µ
L , γ′t = 1√

µL
(and we had

chosen γt = 1
L ).

From the fact that φt is a supermartingale, we obtain that the associated algorithm satisfies

Ef(xt)− f(x∗) 6
Eφt
At

6
φ0

At
=
A0(f(x0)− f(x∗)) +A0

µ
2 ‖z0 − x∗‖2

At

=
(
f(x0)− f(x∗) +

µ

2
‖z0 − x∗‖2

)
exp

(
−
√
µ

L
t

)
.

This proves the second part of Theorem 2. Similarly to above, one can also apply the martingale
stopping theorem to prove the formula of Theorem 3.2.
Remark 2. In the above derivation, in both the convex and strongly convex cases, we choose a
particular solution of (39), while several solutions are possible. In the convex case, we make the
choice A0 = 0 to have a succinct bound that does not depend on f(x0)− f(x∗). More importantly,
in the strongly convex case, we choose the solution that satisfies the relation

√
µ
√
At =

√
Bt, which

implies that ηt, η′t, γ
′
t, are constant functions of t, and ηt = η′t. These conditions help solving in

closed form the continuous part of the process

dxt = ηt(zt − xt)dt ,
dzt = η′t(xt − zt)dt ,

which is crucial if we want to have a discrete implementation of our method (for more details, see
Theorem 3 and its proof). However, in the strongly convex case, considering other solutions would be
interesting, for instance to have an algorithm converging to the convex one as µ→ 0.

D.3 With additive noise: proof of Theorem 7

The proof of this theorem is along the same lines as the proof of Theorem 2 above. Here, we only
give the major differences.

We analyze the convergence of the continuized stochastic iteration (15)-(16), that we recall for the
reader’s convenience:

dxt = ηt(zt − xt)dt− γt
∫

Ξ

∇f(xt, ξ)dN(t, ξ) ,

dzt = η′t(xt − zt)dt− γ′t
∫

Ξ

∇f(xt, ξ)dN(t, ξ) .
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In this setting, we loose the property that

φt = At (f(xt)− f∗) +
Bt
2
‖zt − x∗‖2

is a supermartingale. However, we bound the increase of φt.

The process x̄t = (t, xt, zt) satisfies the equation

dx̄t = b(x̄t)dt+

∫
Ξ

G(x̄t, ξ)dN(t, ξ), b(x̄t) =

(
1

ηt(zt − xt)
η′t(xt − zt)

)
, G(x̄t, ξ) =

(
0

−γt∇f(xt, ξ)
−γ′t∇f(xt, ξ)

)
.

We apply Proposition 2 to φt = ϕ(x̄t) = ϕ(t, xt, zt) and obtain

φt = φ0 +

∫ t

0

Isds+Mt , (40)

where Mt is a martingale and

It = 〈∇ϕ(x̄t), b(x̄t)〉+ Eξϕ(x̄t +G(x̄t, ξ))− ϕ(x̄t) .

The computation of the first term remains the same: the inequality (29)-(30) holds. The computation
of the second term becomes

Eξϕ(x̄t +G(x̄t, ξ))− ϕ(x̄t) = At (Eξf(xt − γt∇f(xt, ξ))− f(xt))

+
Bt
2

(
Eξ‖(zt − x∗)− γ′t∇f(xt, ξ)‖2 − ‖zt − x∗‖2

)
.

As f is L-smooth,

f(xt − γt∇f(xt, ξ))− f(xt) 6 〈∇f(xt),−γt∇f(xt, ξ)〉+
L

2
‖γt∇f(xt, ξ)‖2 ,

Eξf(xt − γt∇f(xt, ξ))− f(xt) 6 〈∇f(xt),−γtEξ∇f(xt, ξ)〉+
L

2
Eξ‖γt∇f(xt, ξ)‖2 .

By assumptions (27) and (28), the stochastic gradient ∇f(x, ξ) is unbiased and has a variance
bounded by σ2, which implies Eξ‖∇f(xt, ξ)‖2 6 ‖∇f(xt)‖2 + σ2. Thus

Eξf(xt − γt∇f(xt, ξ))− f(xt) 6 −γt (2− Lγt)
1

2
‖∇f(xt)‖2 + σ2Lγ

2
t

2
.

Similarly,

Eξ‖(zt − x∗)− γ′t∇f(xt, ξ)‖2 − ‖zt − x∗‖2 = −2γ′t〈Eξ∇f(xt, ξ), zt − x∗〉+ γ′2t Eξ‖∇f(xt, ξ)‖2

6 −2γ′t〈∇f(xt), zt − x∗〉+ γ′2t ‖∇f(xt)‖2 + σ2γ′2t .

This gives

ϕ(x̄t +G(x̄t))− ϕ(x̄t) 6
(
Btγ

′2
t −Atγt (2− Lγt)

) 1

2
‖∇f(xt)‖2 −Btγ′t〈∇f(xt), zt − x∗〉

+
σ2

2

(
AtLγ

2
t +Btγ

′2
t

)
.

Combining the bounds, we obtain

It 6

(
dAt
dt
−Atηt

)
〈∇f(xt), xt − x∗〉+

(
dBt
dt
−Btη′t

)
1

2
‖zt − x∗‖2

+ (Atηt −Btγ′t)〈∇f(xt), zt − x∗〉+

(
Btη

′
t −

dAt
dt

µ

)
1

2
‖xt − x∗‖2

+
(
Btγ

′2
t −Atγt (2− Lγt)

) 1

2
‖∇f(xt)‖2 +

σ2

2

(
AtLγ

2
t +Btγ

′2
t

)
,

which is an additive perturbation of the bound (32)-(34) in the noiseless case, with a perturbation
proportional to σ2. The choices of parameters of Theorem 2 cancel all first five prefactors, and satisfy
γt = 1

L , AtLγ2
t = Btγ

′2
t . We thus obtain

It 6 σ2At
L
.
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This bound controls the increase of φt. Using the decomposition (50), we obtain

Ef(xt)− f(x∗) 6
Eφt
At

6
φ0

At
+

∫ t
0
EIsds
At

6
A0(f(x0)− f(x∗)) +B0‖z0 − x∗‖2

At
+
σ2

L

∫ t
0
Asds

At
.

D.3.1 Proof of the first part (convex case)

In this case, At = t2

2L and B0 = 1. Thus
∫ t

0
Asds = 1

2L
t3

3 . Thus

Ef(xt)− f(x∗) 6
2L‖z0 − x∗‖2

t2
+ σ2 t

3L
.

D.3.2 Proof of the second part (strongly convex case)

In this case, At = A0 exp
(√

µ
L t
)

and B0 = A0
µ
2 . Thus

∫ t
0
Asds 6 A0

√
µ
L

−1
exp

(√
µ
L t
)

=√
L
µAt. Thus

Ef(xt)− f(x∗) 6
(
f(x0)− f(x∗) +

µ

2
‖z0 − x∗‖2

)
exp

(
−
√
µ

L
t

)
+ σ2 1√

µL
.

D.4 With Pure Multiplicative Noise: Proof of Theorem 4

The proof of this theorem mimics the proof of Theorem 2, with a slightly different Lyapunov function.

We recall that in Section 5, the function f is of the form:

∀x ∈ Rd, f(x) = E
[

1

2
(〈a, x〉 − b)2

]
,

where ξ = (a, b) ∈ Rd × R is of law P . Thanks to the noiseless assumption, for H = E
[
aa>

]
, we

also have:
∀x ∈ Rd, f(x) =

1

2
‖x− x∗‖2H .

The Lyapunov function studied in the proof of Theorem 2 would then write as, for t ∈ R>0:

φt =
At
2
‖xt − x∗‖2H +

Bt
2
‖zt − x∗‖2.

An acceleration of stochastic gradient descent using this Lyapunov function has been done by Vaswani
et al. [52]. In order to have an analysis similar to Nesterov acceleration, the authors make a strong
growth condition, which is too strong for many stochastic gradient problems and for our application
to gossip algorithms. Instead, our analysis requires a bounded statistical condition number κ̃, and
performs a shift in terms of dependency over H: ‖x− x∗‖2H becomes ‖x− x∗‖2, and ‖zt − x∗‖2

becomes ‖zt − x∗‖2H−1 . The new Lyapunov function writes:

φt =
At
2
‖xt − x∗‖2 +

Bt
2
‖zt − x∗‖2H−1 .

As in Theorem 2, the proof consists in proving that for carefully chosen parameters, φt is a super-
matingale. The process x̄t = (t, xt, zt) satisfies the equation

dx̄t = b(x̄t)dt+

∫
Ξ

G(x̄t, ξ)dN(t, ξ), b(x̄t) =

(
1

ηt(zt − xt)
η′t(xt − zt)

)
, G(x̄t, ξ) =

(
0

−γt∇f(xt, ξ)
−γ′t∇f(xt, ξ)

)
.

We apply Proposition 2 to φt = ϕ(x̄t) = ϕ(t, xt, zt) and obtain:

φt = φ0 +

∫ t

0

Isds+Mt ,
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where Mt is a martingale and

It = 〈∇ϕ(x̄t), b(x̄t)〉+ Eξϕ(x̄t +G(x̄t, ξ))− ϕ(x̄t) .

Since the Lyapunov function is not the same, we need to explicit here each term. The first term writes:

〈∇ϕ(x̄t), b(x̄t)〉 =
1

2

dAt
dt
‖xt − x∗‖2 +

1

2

dBt
dt
‖zt − x∗‖2H−1

+Atηt〈xt − x∗, zt − xt〉+Btη
′
t〈H−1(zt − x∗), xt − zt〉.

Mimicking the proof of Theorem 2, we write
1

2
‖xt − x∗‖2 6 ‖xt − x∗‖2 −

µ

2
‖xt − x∗‖2H−1 ,

and

〈H−1(zt − x∗), xt − zt〉 = 〈zt − x∗, xt − x∗〉H−1 − ‖zt − x∗‖2H−1

6
1

2

(
‖xt − x∗‖2H−1 − ‖zt − x∗‖2H−1

)
.

Hence:

〈∇ϕ(x̄t), b(x̄t)〉 6
dAt
dt
‖xt − x∗‖2 +

(
Btη

′
t −

dAt
dt

µ

)
1

2
‖xt − x∗‖2H−1

+

(
dBt
dt
−Btη′t

)
1

2
‖zt − x∗‖2H−1 +Atηt〈xt − x∗, zt − xt〉 .

Further,

ϕ(x̄t +G(x̄t))− ϕ(x̄t) =
At
2

(
‖xt − γt∇f(xt, ξ)− x∗‖2 − ‖xt − x∗‖2

)
+
Bt
2

(
‖(zt − x∗)− γ′t∇f(xt, ξ)‖2H−1 − ‖zt − x∗‖2H−1

)
.

Then, expanding and taking expectation over ξ of the first term:

Eξ
[

1

2
‖xt − γt∇f(xt, ξ)− x∗‖2 −

1

2
‖xt − x∗‖2

]
=
γ2
t

2
Eξ
[
‖∇f(xt, ξ)‖2

]
− γt〈H(xt − x∗), xt − x∗〉

6

(
R2γ2

t

2
− γt

)
‖xt − x∗‖2H ,

where we used the definition of R2 in Equation (19):

Eξ
[
‖∇f(xt, ξ)‖2

]
= (xt − x∗)>E

[
aa>aa>

]
(xt − x∗)

= (xt − x∗)>E
[
‖a‖2aa>

]
(xt − x∗)

6 R2(xt − x∗)>H(xt − x∗).
The second term writes:

1

2
Eξ
[
‖(zt − x∗)− γ′t∇f(xt, ξ)‖2H−1 − ‖zt − x∗‖2H−1

]
=
γ′t

2

2
Eξ
[
‖∇f(xt, ξ)‖2H−1

]
− γ′t〈xt − x∗, zt − x∗〉

6
κ̃γ′t

2

2
‖xt − x∗‖2H

− γ′t〈xt − x∗, zt − x∗〉,
where we used the definition of κ̃ in Equation (20):

Eξ
[
‖∇f(xt, ξ)‖2H−1

]
= (xt − x∗)>E

[
aa>H−1aa>

]
(xt − x∗)

= (xt − x∗)>E
[
a‖a‖2H−1a

>
]
(xt − x∗)

6 κ̃(xt − x∗)>H(xt − x∗).

25



Combining these inequalities gives the following upper-bound on It:

It 6

(
dAt
dt
−Atηt

)
‖xt − x∗‖2 +

(
dBt
dt
−Btη′t

)
1

2
‖zt − x∗‖2H−1

+ (Atηt −Btγ′t)〈xt − x∗, zt − x∗〉+

(
Btη

′
t −

dAt
dt

µ

)
1

2
‖xt − x∗‖2H−1

+
(
κ̃Btγ

′2
t −Atγt

(
2−R2γt

)) 1

2
‖xt − x∗‖2H

Since It 6 0 is still a sufficient condition for φt to be a supermartingale, we choose parameters such
that all prefactors are equal to 0. We first take γt = 1

R2 , and we want to satisfy:

dAt
dt

= Atηt ,
dBt
dt

= Btη
′
t Atηt = Btγ

′
t , Btη

′
t =

dAt
dt

µ , Btγ
′2
t =

At
κ̃R2

.

To satisfy that last equality, we choose:

γ′t =

√
At

Btκ̃R2
.

The rest of the proof then follows just as in the proof of Theorem D.2.

E Proof of Theorem 3

By integrating the ODE
dxt = ηt(zt − xt)dt ,
dzt = η′t(xt − zt)dt ,

between Tk and Tk+1−, we obtain that there exists τk, τ ′′k , such that
ỹk = xTk+1− = xTk + τk(zTk − xTk) = x̃k + τk(z̃k − x̃k) , (41)

zTk+1− = zTk + τ ′′k (xTk − zTk) = z̃k + τ ′′k (x̃k − z̃k) .

From the first equation, we have x̃k = 1
1−τk (ỹk − τkz̃k), which gives by substitution in the second

equation,

zTk+1− = z̃k + τ ′′k

(
1

1− τk
(ỹk − τkz̃k)− z̃k

)
= z̃k + τ ′k(ỹk − z̃k) ,

where τ ′k =
τ ′′k

1−τk .

Further, from (6)-(7), we obtain the equations
x̃k+1 = xTk+1

= xTk+1− − γTk+1
∇f(xTk+1−) = ỹk − γTk+1

∇f(ỹk) , (42)

z̃k+1 = zTk+1
= zTk+1− − γ′Tk+1

∇f(xTk+1−) = z̃k + τ ′k(ỹk − z̃k)− γ′Tk+1
∇f(ỹk) . (43)

The stated equation (12)-(14) are the combination of (41), (42) and (43).

1. The parameters of Theorem 2.(1) are ηt = 2
t , η
′
t = 0, γt = 1

L and γ′t = t
2L . In this case, the

ODE

dxt = ηt(zt − xt)dt =
2

t
(zt − xt)dt ,

dzt = η′t(xt − zt)dt = 0 ,

can be integrated in closed form: for t > t0,

xt = zt0 +

(
t0
t

)2

(xt0 − zt0) = xt0 +

(
1−

(
t0
t

)2
)

(zt0 − xt0) ,

zt = zt0 .

In particular, taking t0 = Tk, t = Tk+1−, we obtain τk = 1−
(

Tk
Tk+1

)2

, τ ′′k = 0 and thus

τ ′k =
τ ′′k

1−τk = 0. Finally, γ̃k = γTk = 1
L and γ̃′k = γ′Tk = Tk

2L .
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2. The parameters of Theorem 2.(2) are ηt = η′t ≡
√

µ
L , γt ≡

1
L and γ′t ≡ 1√

µL
. In this case,

the ODE

dxt = ηt(zt − xt)dt =

√
µ

L
(zt − xt)dt ,

dzt = η′t(xt − zt)dt =

√
µ

L
(xt − zt)dt ,

can also be integrated in closed form: for t > t0,

xt =
xt0 + zt0

2
+
xt0 − zt0

2
exp

(
−2

√
µ

L
(t− t0)

)
= xt0 +

1

2

(
1− exp

(
−2

√
µ

L
(t− t0)

))
(zt0 − xt0) ,

zt =
xt0 + zt0

2
+
zt0 − xt0

2
exp

(
−2

√
µ

L
(t− t0)

)
= zt0 +

1

2

(
1− exp

(
−2

√
µ

L
(t− t0)

))
(xt0 − zt0) .

In particular, taking t0 = Tk, t = Tk+1−, we obtain τk = τ ′′k =
1
2

(
1− exp

(
−2
√

µ
L (Tk+1 − Tk)

))
and thus τ ′k =

τ ′′k
1−τk = tanh

(√
µ
L (Tk+1 − Tk)

)
. Fi-

nally, γ̃k = γTk = 1
L and γ̃′k = γ′Tk = 1√

µL
.

F Heuristic ODE scaling limit of the continuized acceleration

F.1 Convex case

With the choices of parameters of Theorem 2.(1), the continuized acceleration is

dxt =
2

t
(zt − xt)dt−

1

L
∇f(xt)dN(t) ,

dzt = − t

2L
∇f(xt)dN(t) .

The ODE scaling limit is obtained by taking the limit L → ∞ (so that the stepsize 1/L vanishes)
and rescaling the time s = t/

√
L. Some law of large number argument heuristically gives us that, as

L→∞, dN(t) = dN(
√
Ls) ≈

√
Lds. Thus in the limit, we obtain

dxs =
2√
Ls

(zs − xs)
√
Lds− 1

L
∇f(xs)

√
Lds ,

dzs = −
√
Ls

2L
∇f(xs)

√
Lds .

The second term of the first equation becomes negligible in the limit. Thus the equations simplify to

dxs
ds

=
2

s
(zs − xs) ,

dzs
ds

= −s
2
∇f(xs) .

Thus

−s
2
∇f(xs) =

dzs
ds

=
d

ds

(
xs +

s

2

dxs
ds

)
=

dxs
ds

+
1

2

dxs
ds

+
s

2

d2xs
ds2

,

and thus
d2xs
ds2

+
3

s

dxs
ds

+∇f(xs) = 0 .

This is the same limiting ODE as the one found by Su et al. [50] for Nesterov acceleration.

27



F.2 Strongly-convex case

With the choices of parameters of Theorem 2.(2), the continuized acceleration is

dxt =

√
µ

L
(zt − xt)dt−

1

L
∇f(xt)dN(t) ,

dzt =

√
µ

L
(xt − zt)dt−

1√
µL
∇f(xt)dN(t) .

Again, we take joint scaling L→∞, s = t/
√
L, with the approximation dN(t) ≈

√
Lds. We obtain

dxs =

√
µ

L
(zs − xs)

√
Lds− 1

L
∇f(xs)

√
Lds ,

dzs =

√
µ

L
(xs − zs)

√
Lds− 1√

µL
∇f(xs)

√
Lds .

As before, the second term of the first equation becomes negligible in the limit. Thus the equations
simplify to

dxs
ds

=
√
µ(zs − xs) , (44)

dzs
ds

=
√
µ(xs − zs)−

1
√
µ
∇f(xs) . (45)

From (44), we have zs = xs + 1√
µ

dxs
ds , and by substitution in (45), we obtain

d2xs
ds2

+ 2
√
µ

dxs
ds

+∇f(xs) = 0 .

This is the so-called “low-resolution” ODE for Nesterov acceleration of Shi et al. [48].

G Continuized Accelerated Coordinate Descent with arbitrary sampling

In this section, we focus on the following problem:

min
x∈Rd

f(x), (46)

where f is of the form f : x 7→ g(Rx) for some function g and projector R ∈ Rd×d (such that
R2 = R). We further assume that f is smooth with respect to some matrix M ∈ Rd×d and µ-strongly
convex with respect to R, i.e.:

µ

2
‖x− y‖2R 6 f(x)− f(y)−∇f(x)>(x− y) 6

1

2
‖x− y‖2M .

Note that µ can be equal to zero, but convergence will be slower in this case. We analyze the
convergence of the following continuized coordinate descent iteration:

dxt = ηt(zt − xt)dt− γt
∫

Ξ

Rξξ
Pξ
∇f(xt, ξ)dN(t, ξ) ,

dzt = η′t(xt − zt)dt− γ′t
∫

Ξ

∇f(xt, ξ)dN(t, ξ) ,

(47)

where
∇f(xt, ξ) =

1

Pξ
∇ξf(xt), (48)

with the coordinate gradient∇ξf(xt) = eξe
>
ξ ∇f(xt), with eξ ∈ Rd the unit vector associated with

coordinate ξ ∈ {1, . . . , d} and Pξ and dN are defined as in Section 6. Note that these iterations are
slightly different from the previous stochastic gradient iteration since the stochastic gradient is not the
same for xt and zt (same direction but different magnitudes). The following theorem is a continuized
version of Hendrikx et al. [25], which is itself largely based on Nesterov and Stich [45].
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Theorem 9 (Continuized acceleration of coordinate descent). Assume that the stochastic gradients
are of the coordinate descent form (48). Besides, choose parameter L such that:

L > max
ξ∈Ξ

MξξRξξ
P2
ξ

. (49)

Then the continuized acceleration (60) satisfies the following:

1. For ηt = 2
t , η
′
t = 0, γt = 1

L , γ
′
t = t

2L ,

Ef(xt)− f(x∗) 6
2L‖z0 − x∗‖2R

t2
.

2. Assume further that µ > 0 and choose the constant parameters ηt = η′t ≡
√

µ
L , γt ≡ 1

L ,
γ′t ≡ 1√

µL
. Then ,

Ef(xt)− f(x∗) 6
(
f(x0)− f(x∗) +

µ

2
‖z0 − x∗‖2R

)
exp

(
−
√
µ

L
t

)
.

Proof. Similarly to the proof in Appendix D.3, the proof of this theorem is along the same lines as
the proof of Theorem 2, and we only highlight the major differences. The process x̄t = (t, xt, zt)
satisfies the equation

dx̄t = b(x̄t)dt+

∫
Ξ

G(x̄t, ξ)dN(t, ξ), b(x̄t) =

(
1

ηt(zt − xt)
η′t(xt − zt)

)
, G(x̄t, ξ) =

 0

−γt RξξPξ ∇f(xt, ξ)

−γ′t∇f(xt, ξ)

 .

We also consider a slightly different Lyapunov function φt that takes into account the projector R:

φt = At (f(xt)− f∗) +
Bt
2
‖zt − x∗‖2R

This change of norm is essential to take into account the fact that f is not strongly convex with respect
to the euclidean norm, but only with respect to ‖ · ‖R. We apply Proposition 2 to φt = ϕ(x̄t) =
ϕ(t, xt, zt) and obtain

φt = φ0 +

∫ t

0

Isds+Mt , (50)

where Mt is a martingale and

It = 〈∇ϕ(x̄t), b(x̄t)〉+ Eξϕ(x̄t +G(x̄t, ξ))− ϕ(x̄t) .

The computation of the first term remains the same: the inequality (29)-(30) holds. The computation
of the second term becomes

Eξϕ(x̄t +G(x̄t, ξ))− ϕ(x̄t) = At

(
Eξf

(
xt − γt

Rξξ
Pξ
∇f(xt, ξ)

)
− f(xt)

)
+
Bt
2

(
Eξ‖(zt − x∗)− γ′t∇f(xt, ξ)‖2R − ‖zt − x∗‖2R

)
.

As f is M -smooth,

f

(
xt − γt

Rξξ
Pξ
∇f(xt, ξ)

)
− f(xt) 6 〈∇f(xt),−γt

Rξξ
Pξ
∇f(xt, ξ)〉+

1

2
‖γt

Rξξ
Pξ
∇f(xt, ξ)‖2M .

In the additive case, the variance is bounded by σ2. In this case, we have that:

‖Rξξ
Pξ
∇f(xt, ξ)‖2M =

MξξRξξ
P2
ξ

‖∇f(xt, ξ)‖2R 6 L‖∇f(xt, ξ)‖2R, (51)

and similarly:

〈∇f(xt),−γt
Rξξ
Pξ
∇f(xt, ξ)〉 = −γt

Rξξ
P2
ξ

‖∇ξf(xt)‖2 = γt‖∇f(xt, ξ)‖2R. (52)
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Thus:

Eξf
(
xt − γt

Rξξ
Pξ
∇f(xt, ξ)

)
− f(xt) 6 γt(1− γtL)Eξ‖∇f(xt, ξ)‖2R .

Similarly, thanks to the unbiasedness of∇f(xt, ξ),

Eξ‖(zt − x∗)− γ′t∇f(xt, ξ)‖2R − ‖zt − x∗‖2R
= −2γ′t〈EξR∇f(xt, ξ), zt − x∗〉+ γ′2t Eξ‖∇f(xt, ξ)‖2R
6 −2γ′t〈∇f(xt), zt − x∗〉+ γ′2t Eξ‖∇f(xt, ξ)‖2R .

This gives

ϕ(x̄t +G(x̄t))− ϕ(x̄t) 6 −Btγ′t〈∇f(xt), zt − x∗〉

+
(
Btγ

′2
t −Atγt (2− Lγt)

) 1

2
Eξ‖∇f(xt, ξ)‖2R .

Combining the bounds, we obtain

It 6

(
dAt
dt
−Atηt

)
〈∇f(xt), xt − x∗〉+

(
dBt
dt
−Btη′t

)
1

2
‖zt − x∗‖2R

+ (Atηt −Btγ′t)〈∇f(xt), zt − x∗〉+

(
Btη

′
t −

dAt
dt

µ

)
1

2
‖xt − x∗‖2R

+
(
Btγ

′2
t −Atγt (2− Lγt)

) 1

2
Eξ‖∇f(xt, ξ)‖2R .

We see that we obtain a result that is very similar to that of the deterministic case. The choices of
parameters of Theorem 9 cancel all first five prefactors, and satisfy γt = 1

L , AtLγ2
t = Btγ

′2
t . We

thus obtain It 6 0 and so φt is a supermartingale, and the rest follows as in Appendix D.2.

H Accelerated Decentralized Optimization with Randomized Gossip
Communications.

We now consider the setting of decentralized optimization considered in Section 7. More specifically,
recall that we wish to solve:

min
x∈Rd

{
f(x) =

1

|V|
∑
v∈V

fv(x)

}
, (53)

where the function fv is privately held by node v ∈ V . To solve this problem, a classical approach is
to use a dual formulation [47, 25]. We first rewrite Problem (53) as:

min
X∈R|V|×d, Xu=Xv ∀{u,v}∈E

{
F (X) =

1

|V|
∑
v∈V

fv(Xv)

}
, (54)

where Xv ∈ Rd corresponds to the local parameter of node v, and the equality constraints ensures
equivalence between (53) and (54). The constraints are linear and can be expressed in matrix form as:

A>X = 0, (55)
with A ∈ RE×V such that ker(A>) = Span(1, ..., 1) the constant vector. The natural choice
for matrix A is to choose a square root of the Laplacian matrix of graph G. For (ev)v∈V and
(e{v,w}){v,w}∈E the canonical bases of RV and RE , A is thus that for any {v, w} ∈ E :

Ae{v,w} =
√
P{v,w}(ev − ew).

Matrix A then satisfies AA> = L the Laplacian matrix of graph G with weights P{v,w}. Indeed, if
W{v,w} = P{v,w}(ev − ew)(ev − ew)> corresponds to the gossip matrix for edge {v, w}, A is such
that:

AA> =
∑

{v,w}∈E

W{v,w} = L. (56)
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Then, introducing Lagrange multipliers λ, we obtain through Lagrangian duality that Problem (53) is
equivalent to:

max
λ∈RE×d

−F ∗(Aλ), (57)

with F ∗ the convex conjugate of F . Following the approach of Hendrikx et al. [25], we then
apply Accelerated Coordinate Descent to this dual problem. Yet, we use the continuized version of
Theorem 9, which allows us to remove the global iterations counter on which previous approaches
rely. We see that Problem (57) has exactly the right form to apply Theorem 9, leading to the following
dual iterations:

dλ
(y)
t = ηt(λ

(z)
t − λ

(y)
t )dt− γt

∫
R>0×E

R{v,w}

P2
{v,w}

e{v,w}e
>
{v,w}A

>∇F ∗(Aλ(y)
t )dN(t, {v, w}) ,

dλ
(z)
t = η′t(λ

(y)
t − λ

(z)
t )dt− γ′t

∫
R>0×E

1

P{v,w}
e{v,w}e

>
{v,w}A

>∇F ∗(Aλ(y)
t )dN(t, {v, w}) ,

(58)

where P = A†A with A† is the pseudo-inverse of A, R{v,w} = e>{v,w}A
†Ae{v,w}. Now, we multiply

these iterations by A on the left (which is standard), and we rewrite them with the following iterates:

yt = Aλ
(y)
t , zt = Aλ

(z)
t . (59)

Note that yt, zt ∈ R|V|×d, and are thus variables associated with nodes of the graph.

dyt = ηt(zt − yt)dt− γt
∫
R>0×E

R{v,w}

P2
{v,w}

W{v,w}∇F ∗(yt)dN(t, {v, w}) ,

dzt = η′t(yt − zt)dt− γ′t
∫
R>0×E

1

P{v,w}
W{v,w}∇F ∗(yt)dN(t, {v, w}) ,

(60)

where we recall that W{v,w} = P{v,w}(ev − ew)(ev − ew)> corresponds to the gossip matrix for
edge {v, w}. Besides, the dual gradients ∇F ∗(yt) are such that e>v ∇F ∗(yt) = ∇f∗v (e>v yt), and so
each component can be computed locally at node v.

In summary, the distributed decentralized algorithm writes as follows. Upon activation of edge
{vk, wk} at time Tk,

G{vk,wk}(Tk) = ω{vk,wk}

[
∇f∗((yT−k )vk)−∇f∗((yT−k )wk)

]
yTk(vk) = yT−k

(vk)− γt
R{vk,wk}

P2
{vk,wk}

G{vk,wk}(Tk) ,

yTk(wk) = yT−k
(wk) + γt

R{vk,wk}

P2
{vk,wk}

G{vk,wk}(Tk) ,

zTk(vk) = zT−k
(vk)− γ′tG{vk,wk}(Tk) ,

zTk(wk) = zT−k
(wk) + γ′tG{vk,wk}(Tk) .

(61)

Between these updates, yt(v) and zt(v) locally mix at all nodes v ∈ V , according to the coupled
ODE:

dyt(v) = ηt(zt(v)− yt(v))dt,

dzt(v) = η′t(yt(v)− zt(v))dt.

This algorithm can be implemented with local computations and pairwise communications only,
since an update along edge {v, w} only involves the parameters and functions of nodes v and w. In
order to fully describe this algorithm, we need to specify the various parameters. We do so, with the
corresponding rate of convergence, in the following theorem.
Theorem 10 (Asynchronous Accelerated Decentralized Optimization). Assume that each fv is
µ-strongly-convex with µ > 0 and L-smooth. Let Ldual = 1

µ max{v,w}
R{v,w}
P{v,w}

, where we recall
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that R{v,w} = (A†A){v,w},{v,w}. Then, let θ′ARG =
√
µgossip/max{v,w}

R{v,w}
P{v,w}

where µgossip is
the smallest non-zero eigenvalue of the Laplacian of the graph G, and κ = L/µ is a bound on
the condition number of f . We choose the constant parameters ηt = η′t ≡

θ′ARG√
κ

, γt ≡ 1
Ldual

,

γ′t ≡
√

L
µgossipLdual

. The iterates produced by the algorithm described in (61) verify:

E
∑
v∈V

1

2
‖∇f∗v (zt(v))− x?‖2 6 Cdual

0 exp

(
−θ
′
ARG√
κ
t

)
,

with Cdual
0 = λmax(AA>)

µ

(
F ∗(Aλ

(y)
0 )− F ∗(Aλ?) +

µgossip

2L ‖λ
(z)
0 − λ?‖2A†A

)
, with λ? a solution

to the dual problem.

Note that θ′ARG is slightly different from θARG. Yet, following Hendrikx et al. [25], an equivalent
of Corollary 1 can be obtained for θ′ARG. To obtain Theorem 6, we simply choose λ(y)

0 = λ
(z)
0 and

bound the dual function suboptimality by the distance to optim using the smoothness and strong
convexity of F ∗.

We stress the fact that the accelerated algorithm described in this section, as well as accelerated
randomized gossip in Section 6, are decentralized and asynchronous: operations are local and do
not require any global synchronization, provided that a continuous time clock can be shared. This
is possible only thanks to the continuized framework. However, there are some limitations: even if
these algorithms are the first to achieve these rates without any global synchronization, computations
and communications are here assumed to happen instantly, or to take a negligible time. Handling
communication and computation physical capacity constraints such as delays or node/edge overloads
in our algorithms as in [23] combined with accelerated schemes is left for future works.

Proof. First note that the Hessian of the dual objective writes for some λ ∈ R|E|×d:

A>∇2F ∗(Aλ)A <
1

L
A>A, (62)

since F ∗ is L−1 strongly-convex when F is L-smooth [31]. Thus, the dual objective is µgossip/L
strongly convex on the orthogonal of the kernel of A. Similarly, the smoothness of the dual objective
in direction {v, w} is equal to:

M{v,w}{v,w} = e>{v,w}A
>∇2F ∗(Aλ)Ae{v,w} 4

1

µ
e>{v,w}A

>Ae{v,w} =
P{v,w}

2µ
. (63)

Thus, we have that:

Ldual = max
{v,w}

M{v,w}{v,w}R{v,w}

P2
{v,w}

=
1

µ
max
{v,w}

R{v,w}

P{v,w}
. (64)

Then, the result follows directly from applying Theorem (9), together with the smoothness of the
dual gradients, since:

E
∑
v∈V

1

2
‖∇f∗v (zt(v))− x?‖2 6 E

1

2µ
‖Aλ(z)

t −Aλ?‖2 6
λmax(AA>)

2µ
E‖λ(z)

t − λ?‖2R. (65)

Note that the primal parameter that we are interested in is xt = ∇f∗(zt), and not yt or zt which are
dual parameters.
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