
A Additional results and experiment details

A.1 Detailed results on ImageNet-C

In this section, we provide a detailed version of the results shown in our experiment section concerning
the ImageNet-C dataset, which technically contains a total of 75 variants of the ImageNet dataset.
The 75 variants fall into 15 categories of corruption; each category presents 5 gradually increasing
degrees of severity, where “degree=1" denotes the lowest degree of severity.

Table 4: mean Corrupted Error (mCE) of each corruption category in ImageNet-C.

Noise Blur Weather Digital

Network Clean Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG mCE

Base model 23.9 80 82 83 75 89 78 80 78 75 66 57 71 85 77 77 76.7
AdvBN 23.0 75 76 77 70 85 75 80 74 71 63 54 66 82 71 72 72.7

Table 5: Raw error of each subset in ImageNet-C .
Degree Degree Degree Degree

Model Corruption 1 2 3 4 5 Corruption 1 2 3 4 5 Corruption 1 2 3 4 5 Corruption 1 2 3 4 5

AugMix Blur-Defocus 35 40 50 62 74 Blur-Glass 39 50 74 78 84 Blur-Motion 28 33 42 58 71 Blur-Zoom 38 45 49 57 65
+ AdvBN 34 39 51 64 74 38 49 74 79 86 29 36 50 69 80 42 51 57 65 73

AugMix Weather-Snow 39 59 57 69 77 Weather-Frost 35 50 62 64 71 Weather-Fog 37 42 52 58 75 Weather-Bright 25 26 29 33 40
+ AdvBN 40 59 56 68 75 34 49 60 62 69 34 40 48 55 72 24 25 28 32 37

AugMix Digital-Contrast 29 33 39 59 85 Digital-Elastic 31 53 37 48 71 Digital-Pixel 30 32 41 53 60 Digital-JPEG 32 35 37 43 52
+ AdvBN 29 33 41 63 87 31 53 38 50 75 30 31 40 53 58 31 34 36 41 49

AugMix Noise-Gauss. 32 40 55 76 94 Noise-Shot 33 42 55 77 88 Noise-Impulse 36 46 56 79 95
+ AdvBN 31 37 48 64 84 32 39 49 69 81 37 44 51 67 84

In Table 4, we list the mCE of each corruption category. The mCE of a given category is calculated
by taking the average of the 5 corruption errors corresponding to the 5 corruption degrees of the given
category, and then normalize the mean value with a constant. The constant differs between corruption
categories, which reflects the difficulty of a given corruption type. For detailed formulations, please
refer to the official ImageNet-C repository4. From the results, we can see that AdvBN alone can
improve the baseline model on all corruption types. In Table 5, we list the raw error rate on each
sub-dataset in ImageNet-C. The two models in this table are the AugMix model and AugMix model
fine-tuned with AdvBN respectively.

A.2 Other architectures

We apply our method to other network architectures and evaluate on the task of image classification.
Datasets in Table 6 are the same as in Table 1. We apply AdvBN using the same setting as introduced
in Section 5.1, by fine-tuning a pre-trained model for 20 epochs using SGD optimizer. For DenseNet-
121, we place the AdvBN layer after the first block, and we use 6 PGD steps with stepsize τ = 0.2,
ε = 1.1. For the EfficientNet, we place the AdvBN layer after the second block, and we use 3 PGD
steps with stepsize τ = 0.2, ε = 0.5.

Table 6: Applying AdvBN to other architectures.

Architecture ImageNet-C ImageNet-Ins. ImageNet-Sketch ImageNet-Style
mCE. ↓ Top-1 acc. ↑ Top-1 acc. ↑ Top-1 acc. ↑

DenseNet-121 73.4 66.6 24.3 7.9
+ AdvBN (w/ AA) 70.4 69.3 28.6 15.5
EfficientNet-B0 72.1 69.7 26.7 12.5
+ AdvBN (w/ AA) 68.7 71.3 27.4 15.7

4https://github.com/hendrycks/robustness

13



A.3 AdvBN at inference time

Models containing Batchnorm layers, such as ResNet, will have two sets of BN statistics in deeper
layers after being fine-tuned by our method, because we use auxiliary BN [46] for propagating
adversarially perturbed features. The auxiliary BN in our model stores the mean and standard
deviation of the adversarial feature, which is very different from the feature statistics of the original
data.

Intuitively, when testing on data whose distribution is “close” to the training data, using the main
BN (as compared to the auxiliary BN) in a model would be more favorable than using the auxiliary
BN, and vice versa. In this work, we take a naive measurement for the “closeness” of an ImageNet
variant to the original ImageNet by comparing a model’s accuracy on the two datasets. For example,
on ImageNet-Instagram, the accuracy of a standard baseline is not degraded much from that on the
original ImageNet validation set, and we consider it to be “close” to the original data. Following
this rule, at the inference time, we use the main BN on the original ImageNet, ImageNet-Instagram
and ImageNet-C, and use auxiliary BN on ImageNet-Sketch and ImageNet-Style. A future direction
is to improve the measurement of the distance between test samples and the training data using
unsupervised techniques. To demonstrate the discrepancy of the main and auxiliary BN statistics in
our model, we include full results of using both statistics in Table 7.

Table 7: Evaluation using main and auxiliary batch normalization statistics respectively.

Method ImageNet-C ImageNet-Ins. ImageNet-Sketch.. ImageNet-Style
mCE ↓ Top-1 acc. ↑ Top-1 acc.↑ Top-1 acc.↑

Standard Training 76.7 67.2 24.1 7.4

AdvBN (w/ main BN) 72.7 69.5 26.4 9.0
AdvBN (w/ aux. BN) 72.4 68.5 27.9 11.9

B ImageNet-AdvBN Dataset

B.1 Creation of the ImageNet-AdvBN dataset

We process the entire ImageNet validation set using the visualization technique introduced in Section 3.
We consider two encoder architectures: one is the VGG-19 encoder we use for visualization, another
consists of layers of a ResNet-50 up to conv2_3. Both encoders are paired with the same decoder
architecture from Huang and Belongie [15]. The resulting datasets, denoted by ImageNet-AdvBN-
VGG and ImageNet-AdvBN-ResNet respectively, contain 50000 images each. The data we synthesize
for testing other models is generated using these autoencoders that contain the AdvBN module but on
ImageNet validation data. AdvBN is conducted with 6 steps, stepsize = 0.20, ε = 1.1, and a batch
size of 32. We do not shuffle the ImageNet validation data when generating these batches.

B.2 Classification on ImageNet-AdvBN

Table 8 shows the classification performance of various models on the two ImageNet-AdvBN variants,
denoted as IN-Adv-VGG and IN-Adv-ResNet respectively. Models in Table 8 are the same ResNet-50
models we use in section 5.1, where we give the details of each model. The significantly degraded
accuracy on our generated dataset indicates the adversarial property of our method. We also test these
models on ImageNet images reconstructed using our autoencoders, denoted as VGG Reconstructed
and ResNet Reconstructed, for each autoencoder. The performance gap between ImageNet-AdvBN
and Reconstructed ImageNet indicates that the degradation on ImageNet-AdvBN is not solely caused
by the reconstruction loss due to the autoencoders we use.

B.3 Additional Example Images

We include more images from ImageNet-AdvBN-VGG in this section. Example images in Figure 7
are randomly chosen. We do not include the ImageNet-AdvBN-ResNet, because the resulting images
are mostly in extreme contrast with small textures that are hard to observe. It is possible that features
output from ResNet based encoders are more sensitive to AdvBN perturbations; another explanation
is that the features we extract from ResNet-50 are relatively shallow features compared to their VGG
counterparts.

14



Table 8: Classification accuracy on ImageNet-AdvBN and reconstructed images. Models of
all methods are implemented based on ResNet-50 and trained on the original ImageNet training set. IN-
Adv-VGG and IN-Adv-ResNet are two ImageNet-AdvBN datasets generated using different auto-encoders.
VGG-reconstructed and ResNet-reconstructed are two datasets generated using the same auto-encoder as their
AdvBN counterparts but without feature perturbation.

Method ImageNet IN-Adv-VGG VGG Reconstructed IN-Adv-ResNet ResNet Reconstructed
Top-1 acc. ↑ Top-1/ Top-5 acc. ↑ Top-1/ Top-5 acc. ↑ Top-1/ Top-5 acc. ↑ Top-1/ Top-5 acc. ↑

Standard Training 76.1 1.6/ 4.7 45.8/ 70.6 0.4/ 1.3 65.7/ 86.9
MoEx (w/ Cutmix) 79.1 1.0/ 2.9 40.2/ 63.8 0.3/ 1.1 65.7/ 86.8
Adv. Training 76.6 2.0/ 5.5 48.1/ 72.5 0.5/ 1.5 68.0/ 88.3
AdvBN 77.0 4.7/ 11.9 46.8/ 71.4 1.7/ 4.0 67.2/ 87.9

AdvProp 77.4 1.6/ 4.5 53.1/ 76.6 0.3/ 0.9 71.1/ 90.0
AdvProp + AdvBN 77.3 7.4/ 17.2 51.4/ 75.3 1.8/ 4.2 70.5/ 89.7

Cutmix 78.6 1.1/ 3.2 39.0/ 62.2 0.3/ 1.0 64.6/ 85.8
Cutmix + AdvBN 78.4 4.1/ 10.3 42.3/ 66.3 1.4/ 3.4 66.7/ 87.4

AA∗ 76.4 1.9/ 5.3 45.8/ 70.2 0.8/ 2.3 65.5/ 86.9
AA + AdvBN 76.5 6.3/ 15.6 54.6/ 78.3 2.9/ 6.4 66.4/ 87.3

Fast AA 77.8 1.9/ 5.0 43.4/ 67.0 0.8/ 2.5 66.8/ 87.3
Fast AA + AdvBN 77.6 5.1/ 12.8 44.4/ 68.5 1.8/ 4.4 67.4/ 87.8

AugMix 77.6 3.9/ 9.9 53.5/ 77.0 1.0/ 2.7 71.9/ 90.7
AugMix + AdvBN 77.8 8.6/ 19.5 50.9/ 74.7 2.4/ 5.3 70.2/ 89.7

Figure 7: More example images. For each pair of adjacent columns, original versions are on the left,
ImageNet-AdvBN-VGG is on the right.

C Details concerning the training budget

We evaluate the training time of our method on a workstation with 4 GeForce RTX 2080 Ti GPUs. We
use the default settings for AdvBN on ResNet-50: an AdvBN layer placed after the conv2_3 layer,
and 20 epochs of fine-tuning with 6-step PGD inside the AdvBN layer. Fine-tuning is conducted on
the ImageNet training set, containing 1.3 million images. Training in this setting takes approximately
48 hours, with batch size set to 256. Besides the model size (i.e., the number of model parameters),

Table 9: Training duration of AdvBN under different model configurations. l denotes the place-
ment of the AdvBN layer within a ResNet-50, and m is the number of PGD steps.

Model
configuration

l=conv2_3 l=conv2_3 l=conv3_4 l=conv4_6

m=3 m=4 m=5 m=6 m=7 m=8 m=6

Training duration (hrs) 30 36 43 48 53 59 48 31 15

there are other factors that can affect the training speed of our method. The first factor is the number
of PGD steps used by AdvBN layer, as each step evokes a backpropagation through the later part
(after the AdvBN layer) of the network. The default setting of our method on ResNet-50 uses 6
PGD steps, so the training time is longer than standard training for the same number of epochs.
Another factor is the placement of AdvBN layer within a network. In each PGD step, gradients only
backpropagate through the sub-network after the AdvBN layer, so it takes a notably shorter time to
train a model with our method, if the AdvBN layer is placed at later network layers.

15


