
Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 5.2 - Interpretablity,

where we showed that the rule set learned using our method is inferior to CG in terms
of complexity.

(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Propo-
sition 2, in which we stated that the approximation guarantee can be obtained if the
subproblem is solved to optimality.

(b) Did you include complete proofs of all theoretical results? [Yes] Proposition 1 and 3
have been proved. Proofs for Proposition 2 were referred to [23].

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [No] Our code is
proprietary.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 5.1 - Parameter tuning.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All reported numerical results are with error bars.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 5.1 -

Baselines.
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] We cited the UCI repository and the sources of COMPAS and
FICO datasets.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]

14

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

A Appendix

A.1 Other rule set learning objectives

We show that several other learning objectives for rule sets may reduce to (3).

A.1.1 0-1 loss with complexity penalty

Let l(ŷ, y) = I(ŷ 6= y) be the 0-1 loss and ⌦(S) = �
P

R2S |R| be the complexity penalty. Then

nX

i=1

l (PS(xi), yi) + ⌦(S)

=
��X+ \ X+

S
��+
��X�

S
��+ �

X

R2S
|R|


��X+ \ X+

S
��+

X

R2S

���X�
{R}

���+ �
X

R2S
|R| =: L1(S).

It is obvious that L1(S) is equal to L(S) with �0 = �1 = 1 and �2 = 0. Therefore, minimizing L(S)
can be interpreted as minimizing an upper bounding surrogate of the penalized 0-1 loss.

A.1.2 0-1 loss with overlap penalty

Let ⌦(S) = ⌘
�P

R2S
��X{R}

��� |XS |
�

be the overlap penalty, in which XS := {i|PS(xi)}. If
⌘  1, we have

nX

i=1

l (PS(xi), yi) + ⌦(S)

=
��X+ \ X+

S
��+
��X�

S
��+ ⌘

X

R2S

��X{R}
��� |XS |

!

=
��X+

���
��X+

S
��+
��X�

S
��� ⌘(|X+

S |+ |X�
S |) + ⌘

X

R2S

���X+
{R}

���+
���X�

{R}

���

=
��X+

��� (1 + ⌘)
��X+

S
��+ (1� ⌘)

��X�
S
��+ ⌘

X

R2S

���X+
{R}

���+
���X�

{R}

���


��X+

��� (1 + ⌘)
��X+

S
��+ (1� ⌘)

X

R2S

���X�
{R}

���+ ⌘
X

R2S

���X+
{R}

���+
���X�

{R}

���

=
��X+

��� (1 + ⌘)
��X+

S
��+

X

R2S
⌘
���X+

{R}

���+
���X�

{R}

��� =: L2(S).

It can be observed that L2(S) is equal to L(S) with �0 = �1 = 1, �2 = ⌘ and � = 0.

A.1.3 Hamming loss

The Hamming loss employed by Dash et al. [14] is equal to L(S) with �0 = �1 = 1, �2 = 0 and
� = 0.

15

A.2 Guidance for hyperparameter tuning

As pointed out in Section 4.2, the multiplier ↵ := (1 � 1/K)K�k � 1/e for K 2 N+ and
k = 1, . . . ,K. Then ! := ↵(�1 + �2)� �2 > 0 is ensured by choosing �1 > (e� 1)�2, as:

↵(�1 + �2)� �2

�1

e
(�1 + �2)� �2

>
1

e
[(e� 1)�2 + �2]� �2 = 0.

A.3 Additional algorithms

The output of Algorithm 1 is refined by the following local search algorithm, which tries to improve
the objective V (S) through adding, removing, or replacing a rule.

Algorithm 4 Refine a rule set

1 Input: Training data {(xi, yi)}ni=1, hyperparameters (�,�), cardinality K, initial solution S
2 while true do
3 S 0 S
4 for k = |S| to K � 1 do
5 Define v(R) = g(R|S)� c(R)
6 Solve R? argmaxR✓[d] v(R)
7 if v(R?) > 0 then S S [{R?} end if
8 end for
9 for R0 2 S do

10 S S \ {R0}
11 Define v(R) = g(R|S)� c(R)
12 Solve R? argmaxR✓[d] v(R)
13 if v(R?) > 0 then S S [{R?} end if
14 end for
15 if S = S 0 then break end if
16 end while
17 Output: S

The Enlarge subprocedure in Algorithm 3 expands the current solution into an active set of size M .

Algorithm 5 Enlarge(R̃,M, u, w)

1 for k = |R̃| to M � 1 do
2 j? argmaxj u(j|R̃)/w(j|R̃)
3 R̃ R̃ [{j?}
4 end for
5 Output: R̃

The SwapLocalSearch subprocedure in Algorithm 3 tries to improve the output of DS-OPT through
adding, removing or replacing a feature.

16

Table 4: Characteristics of datasets used in our experimental study.

Dataset #samples #features #binarized #positives #negatives

tic-tac-toe 958 9 54 626 332
liver 345 6 104 145 200
heart 303 13 118 165 138
ionosphere 351 34 566 225 126
ILPD 583 10 160 416 167
WDBC 569 30 540 212 357
pima 768 8 134 268 500
transfusion 748 4 64 178 570
banknote 1372 4 72 610 762
mushroom 8124 22 224 3916 4208
COMPAS-2016 5020 6 30 2246 2774
COMPAS-binary 6907 12 24 3196 3711
FICO-binary 10459 17 34 5000 5459
COMPAS 12381 22 180 3855 8526
FICO 10459 23 312 5000 5459
adult 48842 14 262 11687 37155
bank-market 11162 16 174 5289 5873
magic 19020 10 180 12332 6688
musk 6598 166 2922 1017 5581
gas 13910 128 2304 6778 7132

Algorithm 6 SwapLocalSearch(R, u, w)

1 while true do
2 R00 R
3 while 9j 2 [d] \ R s.t. v(j|R) > 0 do R R [{j} end while
4 while 9j 2 R s.t. v(j|R \ {j})  0 do R R \ {j} end while
5 while 9a 2 R, b 2 [d] \ R s.t. v(b|R \ {a}) > 0 do R (R \ {a}) [{b} end while
6 if R = R00 then break end if
7 end while
8 Output: R

A.4 Dataset details

Table 4 shows several extra dataset characteristics, including the number of original features and the
number of positive/negative samples in each dataset.

A.5 Running time

The average running time in seconds of each method was measured on a MacBook Pro (2019
edition, Intel Core i5). The hyperparameters of the methods were set to their typical values found in
cross-validation. Results are summarized in Table 5.

The readers should be aware that the running time comparison based on wall-clock time here is not
totally fair, as the implementations of these methods are not optimized to a matching level. Among the
baselines, CG, BRS and RIPPER are implemented in Python (with numerical computation offloaded
to numpy), while CART and RF are based on a highly optimized Cython backend. Our method is
implemented in Golang, a programming language that in general is faster than Python and is slower
than C/C++. Nevertheless, this table, jointly with the reported experimental data on accuracy and
interpretability, enables us to roughly understand the trade-offs of these methods.

17

Table 5: Average running time in seconds.

Dataset Ours CG RIPPER BRS CART RF

tic-tac-toe 0.794 12.815 0.204 14.833 0.002 0.097
liver 4.113 62.482 0.232 19.513 0.002 0.083
heart 0.853 62.840 0.227 14.858 0.001 0.077
ionosphere 6.064 51.475 0.914 17.304 0.008 0.090
ILPD 0.909 81.869 0.325 23.254 0.004 0.097
WDBC 8.209 23.009 1.042 26.592 0.008 0.091
pima 1.580 66.515 0.471 54.542 0.005 0.105
transfusion 0.679 8.246 0.208 21.857 0.001 0.095
banknote 2.142 13.043 0.274 659.874 0.002 0.093
mushroom 1.637 16.369 2.083 48.763 0.031 0.252
COMPAS-2016 2.860 14.914 1.243 33.815 0.003 0.159
COMPAS-binary 3.380 16.151 2.178 41.120 0.003 0.174
FICO-binary 7.705 11.199 6.890 72.515 0.016 0.432
COMPAS 16.534 N/A 10.359 237.615 0.083 0.897
FICO 33.935 159.838 18.826 695.484 0.215 1.121
adult 15.952 288.338 202.279 39787.330 0.815 4.802
bank-market 34.185 107.736 30.563 8956.680 0.124 0.842
magic 39.432 222.451 65.904 N/A 0.197 1.459
musk 88.215 659.791 371.562 864.823 1.388 1.644
gas 192.125 5353.880 582.690 N/A 2.331 2.772

A.6 Approximation quality

On the first nine datasets in Table 6, all of the subproblems could be exactly solved within ten minutes
using BnB. For the remaining higher-dimensional datasets, we specified a time limit of 10 minutes
for BnB. Although the solutions obtained by time-limited search are not guaranteed to be close to the
optimal ones, we noticed that our fine-tuned BnB procedure generally did not find a better solution
beyond the first two minutes of its time limit, which indicates that nearly optimal solution had been
reached (but had not been proved). The largest gap occurs on the COMPAS dataset, for which the
BnB based method spent about ten hours in total, while the proposed method terminated in one
minute.

18

Table 6: Approximation quality measured by relative gaps.

Dataset #features V (Sapprox) V (Sbnb) Relative Gap

COMPAS-binary 24 871.00 875.00 0.0046
COMPAS-2016 30 594.40 590.00 -0.0075
FICO-binary 34 1977.00 1919.00 -0.0302
tic-tac-toe 54 433.78 433.78 0.0000
transfusion 64 12.00 12.00 0.0000
banknote 72 599.40 602.40 0.0050
heart 118 99.48 99.48 0.0000
ILPD 160 217.00 217.00 0.0000
mushroom 224 3908.00 3908.00 0.0000

liver 104 127.68 124.69 -0.0240
pima 134 . 74.84 76.00 . 0.0153
bank-market 174 3329.07 3323.59 -0.0016
magic 180 9251.09 9193.73 -0.0062
COMPAS 180 563.00 642.57 0.1238
adult 262 3690.00 3665.10 -0.0068
FICO 312 1936.30 1927.00 -0.0048
WDBC 540 209.00 207.01 -0.0096
ionosphere 566 198.80 199.20 0.0020
musk 2922 565.50 609.90 0.0728
gas 2304 6234.64 6181.82 -0.0085

19

	Introduction
	Related work
	Problem formulation
	Algorithms
	Regularized submodular maximization
	Solving the subproblem

	Experiments
	Setup
	Numerical results

	Limitations
	Conclusions
	Appendix
	Other rule set learning objectives
	0-1 loss with complexity penalty
	0-1 loss with overlap penalty
	Hamming loss

	Guidance for hyperparameter tuning
	Additional algorithms
	Dataset details
	Running time
	Approximation quality

