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Abstract

Several recent works in machine learning have focused on evaluating the test-time
robustness of a classifier: how well the classifier performs not just on the target do-
main it was trained upon, but upon perturbed examples. In these settings, the focus
has largely been on two extremes of robustness: the robustness to perturbations
drawn at random from within some distribution (i.e., robustness to random perturba-
tions), and the robustness to the worst case perturbation in some set (i.e., adversarial
robustness). In this paper, we argue that a sliding scale between these two extremes
provides a valuable additional metric by which to gauge robustness. Specifically,
we illustrate that each of these two extremes is naturally characterized by a (func-
tional) q-norm over perturbation space, with q = 1 corresponding to robustness to
random perturbations and q = 1 corresponding to adversarial perturbations. We
then present the main technical contribution of our paper: a method for efficiently
estimating the value of these norms by interpreting them as the partition function of
a particular distribution, then using path sampling with MCMC methods to estimate
this partition function (either traditional Metropolis-Hastings for non-differentiable
perturbations, or Hamiltonian Monte Carlo for differentiable perturbations). We
show that our approach provides substantially better estimates than simple random
sampling of the actual “intermediate-q” robustness of standard, data-augmented,
and adversarially-trained classifiers, illustrating a clear tradeoff between classifiers
that optimize different metrics. Code for reproducing experiments can be found at
https://github.com/locuslab/intermediate_robustness.

1 Introduction

There has been an increasing focus in recent years in evaluating the robustness of machine learning
classifiers, broadly interpreted as evaluating their performance not just on a test set, but also evaluating
the performance relative to some additional (possibly domain-specific) uncertainty or bounds on
the problems. Although there are many formal definitions of robustness, most work in this area has
focused on two particular settings. In the “classical” sense of robustness, we can consider evaluating
the classifier in terms of its worst-case loss under some perturbation set applied to the inputs, i.e., we
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could evaluate (via finite sample approximation)

Ex,y⇠D


max

�2�(x)
`(h(x+ �), y)

�
(1)

where D denotes a distribution over x, y pairs, h denotes the hypothesis function, ` denotes a loss, and
�(x) denotes some (input-dependent) uncertainty region. This formulation, for instance, underlies
adversarial examples and also motivates the classical adversarial training approaches. However,
substantial work has also been done in evaluating the setting of robustness to random perturbations,
i.e., evaluating a classifier via the loss

Ex,y⇠D
⇥
E�⇠P(x)[`(h(x+ �), y)]

⇤
(2)

where now P(x) denotes some (again, input-dependent) distribution over possible perturbations.
This formulation underlies common data augmentation strategies in deep learning, as well as most
formulations of “natural” robustness [Hendrycks and Dietterich, 2018] (even if not always written in
this formal manner).

Until now, these two types of robustness have typically been seen as largely separate notions. We
believe there is inherent value in generalizing these two notions to place them in a unified framework.
The main criticism of worst-case robustness is that it focuses “too much” on the worst case, while
the criticism of average-case is that it is “not robust enough”. It seems very likely that what people
actually want in terms of robustness is precisely something in the middle, between these two extremes.

In this paper, we advocate for a more fine-grained spectrum of robustness definitions, which naturally
interpolates between both these two extremes. In particular, we argue that robustness to random
perturbations and worst-case robustness can be naturally interpreted as (functional) `q norms1 of the
loss function evaluated over the perturbation distribution (which can be a uniform distribution in
the case of traditional adversarial loss). In particular, the random setting corresponds to the choice
of q = 1 and the adversarial setting corresponds to the choice of q = 1. We believe that it is
also valuable and informative to consider the performance of classifiers in a wide range in between
these two extremes, i.e., the performance of “intermediate-q” robustness. However, evaluating
this intermediate-q robustness is non-trivial, owing to the fact that it requires computing a high
dimensional integral over the perturbation space. Thus, our main technical contribution of this paper
is the proposal of a simple approach to evaluating the relevant robustness norms, using a combination
of path sampling and Markov chain Monte Carlo (MCMC) approaches (specifically the Hamiltonian
Monte Carlo method for cases where loss is a differentiable function of the perturbation space).
Despite their seeming complexity, in this particular case the eventual estimators take the very simple
form of a geometric mean computed over samples from an annealed distribution over the perturbation
region.

We evaluate our approach on networks trained via standard training, data augmentation, and adversar-
ial training. In all the cases our proposed approach shows a clear trade-off between different levels of
robustness that would missed by solely considering just the random or adversarial perturbation setting.
Furthermore, we show that our HMC-based path sampling estimator for intermediate-q robustness is
vastly superior to naive estimates produced e.g. by Monte Carlo sampling. We also briefly highlight
the possibility of actually training networks using these estimators to create classifiers more robust
to these intermediate notions of robustness. Code for reproducing experiments can be found at
https://github.com/locuslab/intermediate_robustness.

2 Background and related work

Robustness in deep learning Adversarial robustness is the “classicial” view of robustness that
traces its roots back to robust optimization, a field in optimization theory that allows for the study of
worst-case uncertainty [Ben-Tal et al., 2009]. Szegedy et al. [2013] noted the marked presence of
adversarial examples in deep classifiers, in which the addition of imperceptible amounts of noise leads
to gross misclassification of input images by deep networks. Goodfellow et al. [2014] then introduced
the Fast Gradient Sign Method (FGSM), which uses a single gradient step to generate adversarial

1We should emphasize that this use of `q norms is entirely orthogonal to the use of `p balls as perturbation
regions, commonly done in adversarial robustness. The `q norms here can be applied to any perturbation region,
as we will highlight.
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examples and was used to perturb training examples as the original form of adversarial training.
Subsequently, the Basic Iterative Method was introduced by Kurakin et al. [2016], and rendered
FGSM adversarial training ineffective through attacks using multiple, smaller FGSM steps (although
the robustness of FGSM adversarial training was later improved [Wong et al., 2020, Andriushchenko
and Flammarion, 2020]). The work of Madry et al. [2017] further improved upon this iterative attack,
and incorporated the resulting Projected Gradient Descent (PGD) adversary into adversarial training.
Today, PGD remains the most empirically effective adversary for adversarial training and attacks.
While traditional adversarial training focuses on perturbations within some `p-norm ball, it has also
been expanded to more realistic threat models, from spatial transformations [Engstrom et al., 2019,
Xiao et al., 2018] to weather corruptions and lighting changes [Wong and Kolter, 2020].

However, when considering robustness to more “realistic” (yet synthetic) perturbations, the focus is
often shifted from robustness to the worst-case perturbation within some set to robustness to random
perturbations [Geirhos et al., 2018, Hendrycks and Dietterich, 2018, Hendrycks et al., 2019b,a,
Yin et al., 2019]. It was been further studied whether such synthetic corruptions can universally
improve robustness to real-world distribution shifts, such as geographic location, or camera hardware
[Hendrycks et al., 2020]. Other naturally occurring distribution shifts of interest include consistency
shifts [Shankar et al., 2019] and dataset shifts [Storkey, 2009, Taori et al., 2020]. For example, the
impact of dataset shift has been emphasized on the ImageNet dataset, where the performance of
models trained on ImageNet was shown to be drastically worse on a reproduction of the validation
set [Recht et al., 2019]. While some work such as Meunier et al. [2021] could be interpreted as an
interpolation between random and adversarial noise, generally the field faces a divide between studies
on adversarial robustness and robustness to random data perturbations.

MCMC methods for partition function estimation Because our definition of intermediate-q
robustness involves computation of a high dimensional integral over a perturbation distribution, our
work can also be related to methods for estimating an intractable partition function of a probability
distribution. The problem of computing normalizing constants ties to the problem of computing
differences in free energy in physics. Several Monte Carlo sampling-based approaches exist for
approximately estimating normalizing constants. Importance sampling is one approach at estimating
ratios of normalizing constants that relies on samples from one of the distributions. Bridge sampling
[Bennett, 1976, Meng and Wong, 1996], on the other hand, uses a single “bridge” distribution to
interpolate between the two distributions and can reduce the Monte Carlo errors associated with
importance sampling. Annealed importance sampling [Jarzynski, 1997, Neal, 2001] bridges the gap
between the two distributions by chaining together intermediate distributions, and linked importance
sampling [Neal, 2005] then combined bridge sampling with annealed importance sampling to bridge
these intermediate distributions. Path sampling [Gelman and Meng, 1998], which originated under
the name of thermodynamic integration in physics [Ogata, 1989], aims at reducing Monte Carlo
errors by introducing flexible paths.

Our proposed approach also leverages Hamiltonian Monte Carlo methods to improve the sample
efficiency of our eventual estimator [Duane et al., 1987, Betancourt, 2017, Neal et al., 2011]. Hamil-
tonian Monte Carlo (HMC) is useful due to its avoidance of random walks, and is compatible with
sampling in a constrained space through use of reflection [Afshar et al., 2015].

3 A simple generalization of robustness

To begin, we first make the simple observation that there is a natural interpolation between the notions
of adversarial robustness and robustness to random perturbations. Specifically, we note that both
these notions can be expressed as function `q norms over the perturbation space. Specifically, we
define the following functional norm
Definition 1. For a continuous function f : Rn ! R and density µ : Rn ! R+,

R
µ(x)dx = 1, let

kfkµ,q be the q-norm of the function under this density

kfkµ,q = Ex⇠µ [|f(x)|q]1/q =

✓Z
|f(x)|qµ(x)dx

◆1/q

. (3)

Then as the proposition shows, random perturbation loss and adversarial perturbation loss simply
correspond to two extremes of this functional norm over the perturbation �, as formalized by the
following proposition.
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Proposition 1. Let � be a random variable with density µ and consider the expectation

Ex,y⇠D

h
k`(h(x+ �), y)kµ,q

i
. (4)

Then (for a smooth loss `) this corresponds to the expected loss on random samples from µ when

q = 1, and to the expected adversarial loss over the domain of µ when q = 1.

This proposition follows immediately from the fact that losses are non-negative, and the fact that
the `1 norm is given by the pointwise maximum of the function, assuming a smooth loss ` (i.e.
not zero-one loss). Note that “traditional” adversarial loss actually arises more specifically when
q = 1 and µ is a uniform distribution over some norm ball (unrelated to the norm q). When we
have 1 < q < 1, we enable a full spectrum of robustness measurements, which we refer to as
intermediate-q robustness, that evaluates the performance of classifiers in a wide range in between
these two extreme cases. Furthermore, we argue that there are naturally appealing properties of these
intermediate-q robustness measures: whereas adversarial robustness may overestimate the risk of
what effectively amount to “measure zero” regions of the perturbation space, random robustness may
likewise fail to take into account smaller but non-negligible regions that do contain areas of high loss.

As an example, when considering � as a Gaussian distribution, adversarial loss (q = 1) is not mean-
ingful because the worst case perturbation can be arbitrarily far away from x. Meanwhile, random
data augmentation with Gaussian noise (q = 1) is often insufficient for evaluating robustness because
random Gaussian samples are rarely good adversarial examples. Our intermediate-q robustness allows
us to consider a middle ground where the model is robust under a certain degree of adversarial noise
(stronger than randomly sampled Gaussian noise) while the evaluation is not hindered by very rare
events (e.g., an extremely low probability Gaussian sample far away from x).

4 Estimating intermediate-q robustness via MCMC methods

Of course, simply writing the loss in this manner is not particularly useful on its own. In most
cases, the integral in Equation 3 cannot be computed exactly, and so we must resort to numerical
approximation methods. Specifically, in order to estimate the q-norm robustness for an arbitrary
nonlinear model h, loss `, and (known) density µ, we consider the problem of computing the integral

Z :=

✓Z
`(h(x+ �), y)qµ(�)d�

◆(1/q)

. (5)

One could naively estimate this integral by using Monte Carlo sampling, and sample �
(1)

, . . . , �
(m)

randomly from density µ, and approximate the objective as the following,

ẐMonte Carlo =
⇣ 1

m

mX

i=1

`(h(x+ �
(i)), y)q

⌘(1/q)
. (6)

However, because the integral in (5) will be dominated by values with large `(h(x+ �), y), simply
using Monte Carlo sampling will be insufficient to approximate this integral well for larger values of
q, as random sampling will place too much weight on regions of low loss.

Instead, in this work we argue that it is beneficial to interpret the task at hand as one of evaluating
the partition function of a particular unnormalized probability density. Specifically, we define an
(unnormalized) density over the perturbation �

p̃(�) = `(h(x+ �), y)qµ(�). (7)
Then clearly, just from construction, we see that the task of evaluating the (qth root of) partition
function (the normalizing constant) of this distribution is exactly the same as that of computing the
integral of interest.

The advantage of this perspective on the integral of interest, however, is that we can use a wealth
of techniques developed for partition function estimation in order to better estimate this particular
integral. Specifically, we argue to use the path sampling [Gelman and Meng, 1998] approach, a
Markov chain Monte Carlo based method, to approximate the desired partition function. In fact, we
show that for the precise form of the integral in question, the eventual estimator produced by this
method takes on a very simple form: it consists of a geometric mean over samples generated from a
certain annealed distribution. This makes the estimator particularly simple to implement and even in
some cases to train networks based upon, via standard automatic differentiation toolkits.
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4.1 Evaluating the particular function of the loss-based distribution

We state our main result on the path sampling formulation of the integral of interest via the following
theorem.
Theorem 1. Consider the task of approximately computing the following integral:

Z :=

✓Z
`(h(x+ �), y)qµ(�)d�

◆(1/q)

.

Let {t(1), t(2), · · · , t(m)} be m scalars corresponding to linearly interpolated values from 0 to q. For

i = 1, . . . ,m, sample �
(i)

from the following unnormalized density

�
(i) ⇠ p(�|t(i)), where, p(�|t) / `(h(x+ �), y)tµ(�).

Then the following estimator, given by the geometric mean of the resulting samples

Ẑpath :=
⇣ mY

i=1

`(h(x+ �
(i)), y)

⌘1/m
. (8)

is a consistent estimator of our integral Z. Practically, the m samples can be drawn using MCMC.

Proof. For notational completeness, we define the density

p(�|t) = 1

z(t)
p̃(�|t) (9)

where
p̃(�|t) = `(h(x+ �), y)tµ(�). (10)

and where z(t) denotes the partition function of this distribution

z(t) =

Z
p̃(�|t)d�. (11)

Taking the log of both sides of and differentiating with respect to t, we get:
d

dt
log(z(t)) =

d

dt
log

Z
p̃(�|t)d�

=

R
d
dt p̃(�|t)d�R
p̃(�|t)d�

=

Z
p̃(�|t)
z(t)

d
dt p̃(�|t)
p̃(�|t) d�

= E�⇠p(�|t)

h
d

dt
log p̃(�|t)

i

= E�⇠p(�|t)

h
log `((h(x+ �), y))

i

(12)

where we use the fact that
log p̃(�|t) = t log `((h(x+ �), y)). (13)

Then we can integrate (12) from 0 to q to get

log
h
z(q)

z(0)

i
=

Z q

0
E�⇠p(�|t)

h
log(`(h(x+ �), y))

i
dt (14)

Given in our case z(0) = 1 and incorporating the exponent of (1/q), we have

log
h
z(q)(1/q)

i
=

1

q

Z q

0
E�⇠p(�|t)

h
log(`(h(x+ �), y))

i
dt (15)

Then the right hand side of Equation 15 can be interpreted as the expectation of log(`(h(x+ �), y))
over the joint distribution of (�, t), where t is a random variable with a uniform distribution in [0, q].

log
h
z(q)(1/q)

i
= Et⇠U [0,q]

h
E�⇠p(�|t)

h
log(`(h(x+ �), y))

ii
(16)

5



Algorithm 1 Evaluating the intermediate-q robustness of a neural network function h using path
sampling estimation with m MCMC samples with x, y ⇠ D for some norm q.

Initialize �
(0) randomly

for i = 1 . . .m do

Let t(i) := q · i�1
m�1

Sample �
(i) ⇠ p(�|t(i)) using MCMC from initial state �

(i�1)

end for

return
⇣Qm

i=1 `(h(x+ �
(i)), y)

⌘1/m

Finally, sampling (�(i), t(i)) for i = 1, . . . ,m from this joint distribution p(�, t) (which we can do by
linearly interpolating t

(i) between 0 and q and then sampling �
(i) from p(�|t(i))), we have the fact

that

Ẑpath := exp
⇣ 1

m

mX

i=1

log(`(h(x+ �
(i)), y)

⌘
=

⇣ mY

i=1

`(h(x+ �
(i)), y)

⌘1/m
, (17)

is a consistent estimator of the desired integral.

The key point of this result is that it allows us to approximate the desired integral just through the
ability to sample from the distribution p(�|t). While this is still a challenging task, sampling from
unnormalized probability distributions is a well-studied problem, and we can apply MCMC sampling
methods to this task. Further, while the sampling of (�(i), t(i)) can be done in different ways, we
choose to linearly anneal t(i) from 0 to q, and then draw �

(i) ⇠ p̃(�|t) using some MCMC sampler.
This has the nice feature that it starts with sampling from an “easy” distribution (when t = 0, the
distribution over � is simply given by µ), and gradually anneals to a more peaked distribution as t
increases. The resulting algorithm for evaluating a network using this geometric mean estimator is
shown in Algorithm 1.

4.2 Sampling from the (unnormalized) loss distribution via HMC

In order to generate the samples for the path sampling estimation (17) from the desired distribution
p(�, t), we use Markov chain Monte Carlo (MCMC) methods to sample � from the unnormalized
distribution p̃(�|t). When the loss is a differentiable function of the perturbation distribution, we can
take advantage of gradient-based methods to reduce random walk behavior in MCMC sampling and
achieve more efficient sampling. Hamiltonian Monte Carlo (HMC) is one such gradient-based MCMC
method that simulates Hamiltonian dynamics to improve sample efficiency in high-dimensional spaces.
HMC is based on the Hamiltonian function H(q, p) = U(q) +K(p), where q is a d-dimensional
position vector, p is a d-dimensional momentum vector, U(q) is the potential energy, and K(p) is the
kinetic energy. To translate this to our setting, U(�) = � log(`(x+ �), y)tµ(�)) is just the negative
log probability density of the distribution we want to sample from, and K(p) = ||p||2/(2�2) is the
negative log probability density of the zero-mean Gaussian distribution with variance �

2. Then the
Hamiltonian function H is equal to the following:

H(�, p) = �t log(`(h(x+ �), y)) + log µ(�) +
||p||2

�2
(18)

In order to make use of Hamiltonian dynamics in practice, Hamiltonian’s equations must be dis-
cretized. The Leapfrog method is one such discretization of Hamiltonian dynamics, using a small
stepsize ↵ to discretize time and numerically integrating the system of differential equations as
follows:

p = p+ ↵tr� log(`(h(x+ �), y))/2

� = � + ↵p/�
2

p = p+ ↵tr� log(`(h(x+ �), y))/2

(19)

The leapfrog method is reversible by simply negating p (although this need not be done in practice,
since K(p) = K(�p)). The HMC algorithm begins by first sampling a new momentum vector
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p ⇠ N (0,�2), independent of the current state of �. Then, the Leapfrog method in (19) is repeated for
L steps to propose a new Markov state (�0, p0). This proposed state is then accepted with probability
min[1, exp(��H)], where �H = H(�0, p0)�H(�, p)). If the state (�0, p0) is not accepted, the next
state is then set to (�, p).

Given that in general, our perturbation distribution will likely be constrained in some manner, we need
to modify the HMC algorithm so that our proposals remain within the boundaries of the perturbation
distribution. Consider the case where our perturbation distribution is the `1 norm ball with radius ✏,
so that each element of � is constrained to be within �✏ and ✏. In order to enforce these constraints
while preserving the dynamics, we incorporate what is known as reflection in HMC. In this case,
after setting � = � + ✏p/�

2, we check if any �
0
i > ✏ or �0i < �✏ for i = 1, . . . , n. If so, we negate the

corresponding momentum term, pi, and if �0i > ✏, we set �i = 2✏� �
0
i, whereas if �0i < �✏, we set

�
0
i = �2✏� �

0
i. We repeat this reflection step until �i satisfies our constraints. One can think of this

behavior as effectively simulating reflecting off a physical boundary.

We note that we can still easily use the path sampling estimator for non-differentiable perturbations
by replacing the Hamilton Monte Carlo sampler with any other non-gradient based MCMC sampler,
such as a random walk Metropolis. This is roughly similar to random sampling, but with a more
subtle weighting on terms that involve higher loss.

4.3 Estimating the partition function during training

We further consider the possibility of training networks using the estimators we have discussed to
achieve better intermediate robustness. However, this becomes less computationally feasible due to
the number of samples required to get a good estimate of the objective, due to the m⇥ L iterations
of the path sampling estimator with Hamiltonian Monte Carlo, where L is the number of Leapfrog
steps. Additionally, the step size ↵ and variance �

2 in HMC require careful tuning. However, for
larger values of q, the path sampling estimator is essential to getting accurate estimates of the training
objective, as random sampling will be much less likely to come across regions of the perturbation
distribution with high loss. Path sampling draws samples from the unnormalized loss distribution
using MCMC, and so with increased q, there will be higher weighting on samples that induce higher
loss. The Hamiltonian Monte Carlo method has the additional benefit of following the gradient (along
with some noise), and so for larger q, even with a small number of iterations, path sampling can have
advantages over Monte Carlo sampling during training.

5 Experimental evaluation

In this section, we evaluate the intermediate-q robustness of models trained using standard training,
data augmentation, and adversarial training, comparing estimates of the functional q-norm of the
loss function over the perturbation distribution computed via naive, Monte Carlo sampling (6) and
path sampling (8) with Hamiltonian Monte Carlo (for differentiable perturbations) and random walk
Metropolis Hastings (for non-differentiable perturbations). We additionally show preliminary results
of training according to the intermediate-q robustness objective approximated by these estimators.
All of our experiments are either run on the MNIST dataset [LeCun et al., 1998] or the CIFAR-10
dataset [Krizhevsky et al., 2009]. We consider robustness over two types of perturbations, namely the
`1 norm bounded input perturbation and spatial transformations. Additional results can be found in
Appendix A.1 and A.2, and experimental details can be found in Appendix A.3.

5.1 Robustness over the `1-norm ball

In order to easily translate the notion of intermediate-q robustness to that of adversarial robustness, we
consider perturbations uniformly distributed within an `1-norm ball with radius ✏. Our evaluations
of intermediate-q robustness on MNIST and CIFAR-10 in Table 1 both show that estimates of
the functional q-norm of the loss function evaluated over this perturbation distribution naturally
interpolate between loss over random samples (MC q = 1) and adversarial loss (PGD). For larger
values of q, specifically q = 102 and q = 103, the path sampling with HMC (PS+HMC) estimator
consistently produces more accurate (i.e. higher) estimates of the desired integral than the Monte
Carlo (MC) estimator. We show that this result holds for all of the models we evaluated, each of which
were trained according to a different training objective, and across both datasets. The advantage of
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Table 1: Evaluations comparing the Monte Carlo estimates (ẐMC) and path sampling with HMC
estimates (ẐPS+HMC) of the functional q-norm of the loss over the `1 ball with radius ✏ = 0.3 on
MNIST and ✏ = 0.03 on CIFAR-10. As q increases, ẐPS+HMC computes better estimates interpolating
between random and adversarial robustness. On MNIST, ẐMC is computed with m = 2000, ẐPS+HMC

with m = 100, L = 20, and Adv. loss corresponds to PGD with 100 iterations. On CIFAR-10, ẐMC

is computed with m = 500, ẐPS+HMC with m = 50, L = 10, and Adv. loss corresponds to PGD with
50 iterations at 10 restarts.

Dataset Train method ẐMC ẐPS+HMC Adv. loss
q = 1 q = 10 q = 102 q = 103 q = 1 q = 10 q = 102 q = 103

MNIST Standard 0.043 0.140 0.251 0.268 0.043 0.160 1.420 4.456 11.649
MNIST MC q = 1 0.032 0.084 0.143 0.154 0.032 0.088 0.692 2.133 7.363
MNIST PGD-50 0.039 0.051 0.076 0.081 0.039 0.048 0.101 0.187 0.270
CIFAR-10 Standard 0.453 0.787 1.153 1.216 0.453 0.841 2.718 4.991 18.142
CIFAR-10 MC q = 1 0.405 0.532 0.717 0.756 0.405 0.546 1.490 3.140 14.240
CIFAR-10 PGD-10 0.733 0.734 0.743 0.761 0.733 0.734 0.743 0.796 1.411

Table 2: Evaluation of models trained according to estimates of the functional q-norm of the loss over
the `1 ball with radius ✏ = 0.3 on MNIST. As we increase q during evaluation, models trained using
the path sampling estimator with HMC tend to have lower intermediate-q robust loss than models
trained using the Monte Carlo estimator for the same q. Note that as we have shown in Table 1,
ẐMC is not reliable for large q so ẐPS+HMC should be used for comparisons. ẐMC is computed with
m = 2000, ẐPS+HMC with m = 100, L = 20, and Adv. loss corresponds to PGD with 100 iterations.

Train method ẐMC ẐPS+HMC Adv. loss
q = 1 q = 10 q = 102 q = 103 q = 1 q = 10 q = 102 q = 103

MC q = 10 0.026 0.058 0.098 0.105 0.026 0.058 0.412 1.336 3.722
MC q = 102 0.025 0.055 0.093 0.099 0.025 0.055 0.388 1.261 3.492
MC q = 103 0.025 0.055 0.093 0.100 0.025 0.055 0.390 1.268 3.488
PS+HMC q = 10 0.031 0.075 0.126 0.135 0.031 0.075 0.467 1.307 5.012
PS+HMC q = 102 0.028 0.060 0.099 0.107 0.028 0.058 0.304 0.816 2.613
PS+HMC q = 103 0.024 0.047 0.077 0.083 0.024 0.045 0.239 0.684 1.646

the PS+HMC estimator over the MC estimator is further illustrated in Figure 1, where we show the
convergence of their corresponding estimates of the functional q-norm of the loss over this same
perturbation distribution given increasing number of samples. Specifically, we compare the estimates
of the intermediate-q robust loss computed by each estimator given the same number of iterations
(which corresponds to m for the MC estimator, and m⇥ L for the PS+HMC estimator). While for
q = 1 the estimates converge to the same value given a similar number of iterations, for q = 100, the
estimates quickly diverge, with path sampling producing a much higher (i.e. better) estimate.

In addition to evaluating intermediate-q robustness using both estimators, we additionally show the
potential benefits of training using these estimators in Table 2. On MNIST, we compare the results
of training using the MC objective vs. the PS+HMC objective. We note that when q = 1, the MC
estimate corresponds to just applying m random perturbations per example and taking the average
loss, similar to data augmentation methods. For the MC estimate computed during training, we use
m = 50 samples, whereas for the PS+HMC estimate we use m = 25 samples with L = 2 leapfrog
steps in order to compare an equivalent number of iterations. We find that most models trained
according to the PS+HMC objective outperform those trained using the MC objective for the same
value of q, i.e. have a lower intermediate-q robust loss. This suggests that even with a reasonably
small number of samples, path sampling can still result in a better estimate of the objective.

We additionally attempt training on CIFAR-10 using these estimators, however the computational
complexity given the number of samples required to get a reasonable estimate makes training more
challenging for larger datasets. Despite this, we see promise for training deep networks to robustness
levels somewhere between robustness over random perturbations and robustness over worst-case
perturbations. Full tables of results for MNIST and CIFAR-10 can be found in Tables 4 and 6
respectively in Appendix A.1.
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Figure 1: Comparison of the convergence of HMC-based path sampling and naive Monte Carlo
estimates for (a) q = 1, and (b) q = 100 with increasing iterations on a standard trained model on
CIFAR-10 using a single batch. Iterations corresponds m for the Monte Carlo estimator, and to
m⇥ L for the path sampling + HMC estimator using L = 10 leapfrog steps. For a smaller q = 1 (a),
random sampling works reasonably well, whereas for q = 100 (b), using path sampling with HMC is
essential to get good estimates.

5.2 Robustness over (non-differentiable) spatial transformations

In order to show that the path sampling estimator can naturally be extended to non-differentiable
perturbations, we consider a perturbation set consisting of parameterizations of spatial transformations
on CIFAR-10. The parameters of the spatial transformations include horizontal flips, rotations
between �10 to 10 degrees, scaling factors between 0.9 to 1.1, and cropping between 0 to 4 pixels
horizontally and vertically. Because the applied spatial perturbations are non-differentiable, in place
of Hamiltonian Monte Carlo we use Gaussian random walk Metropolis Hastings to sample from the
unnormalized loss distribution. Specifically, We use the following proposal distributions: 1) perform
a horizontal flip with probability 0.5; 2) scale the image by resizing by a factor of r ⇠ N (0, 0.5); 3)
rotate d degrees with d ⇠ N (0, 5); 4) crop x or y in the horizontal or vertical direction, each drawn
i.i.d. ⇠ N (0, 2) and then rounded to the nearest integer value. Additionally, at each value of the
annealed t, we perform 20 burn-in steps and only keep the last value for estimation purposes.

We compare the estimates of the functional q-norm of the loss over this perturbation distribution
generated by the Monte Carlo estimator and by the path sampling estimator using Gaussian random-
walk Metropolis sampling on a standard trained model and a data augmentation (MC q = 1) trained
model. The results in Table 3 show that with larger q, the path sampling estimator produces better
(higher) estimates than random sampling. For q = 103, the path sampling estimation approaches
the adversarial loss over the transformation space, suggesting that this estimator, even without the
advantage of Hamiltonian Monte Carlo, can effectively capture the entire spectrum of robustness.
Estimates ẐMC and ẐPS were computed with m = 500. Due to the computational complexity, we
only evaluate on the first 1000 CIFAR-10 test examples. The adversarial loss was approximated by
averaging the maximum loss value encountered for each example during the Metropolis Hastings
sampling process. Results were averaged over three repeated runs with different random seeds.

6 Conclusion

In this paper, we proposed a definition of intermediate-q robustness that smooths the gap between
robustness to random perturbations and adversarial robustness by generalizing these notions of
robustness as functional `q norms of the loss function over the perturbation distribution. In order to
evaluate intermediate-q robustness in practice, we introduced an approach for approximating the high
dimensional integral over the perturbation distribution that uses path sampling, an effective estimator
based on MCMC sampling. We showed that across different datasets, models trained on different
training objectives, and different perturbation distributions (both differentiable and non-differentiable
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Table 3: Evaluations comparing the Monte Carlo estimates (ẐMC) and path sampling estimates (ẐPS)
of the functional q-norm of the loss over non-differentiable spatial transformations on CIFAR-10. The
intermediate-q losses naturally interpolate between loss over random perturbations, and worst-case
loss over the space of spatial perturbations. Despite the necessity of using Gaussian random walk
Metropolis Hastings in place of gradient-based Hamiltonian Monte Carlo, the path sampling estimator
still results in higher estimates of the desired integral than the Monte Carlo estimator for larger values
of q.

Train method ẐMC ẐPS Adv. loss
q = 1 q = 10 q = 102 q = 103 q = 1 q = 10 q = 102 q = 103

Standard 0.450 2.268 3.687 3.865 0.444 2.450 4.636 4.889 5.625
MC q = 1 0.191 0.800 1.246 1.300 0.186 0.879 1.615 1.711 2.021

cases), our path sampling approach produces much better estimates of the integral than simple Monte
Carlo sampling. Additionally, we illustrated the benefit of using the gradient-based Hamiltonian
Monte Carlo method as the MCMC sampler when the loss is differentiable with respect to the
perturbation distribution. Lastly, we highlighted the possibility of training using these estimators, and
showed that models trained on MNIST using these estimators do exhibit improved intermediate-q
robustness, with path sampling again outperforming random sampling. However, the best way
of estimating the integral during training of deep networks remains an open question, due to the
computational complexity of accumulating enough MCMC samples at each epoch to get a reasonable
estimation.
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