
Appendix: On Learning Domain-Invariant
Representations for Transfer Learning with Multiple

Sources

Trung Phung1 Trung Le2 Long Vuong1 Toan Tran1 Anh Tran1 Hung Bui1 Dinh Phung1,2

1 VinAI Research, Vietnam 2 Monash University, Australia
v.trungpq3@vinai.io, trunglm@monash.edu,

{v.longvt8, v.toantm3, v.anhtt152, v.hungbh1, v.dinhpq2}@vinai.io

This supplementary material provides proofs for theoretical results stated in the main paper, as well
as detailed experiment settings and further experimental results. It is organized as follows

• Appendix A contains the proofs for the upper bounds of target loss introduced in Section
2.2 of our main paper.

• Appendix B contains the proofs for characteristics of two representations as mentioned in
Section 2.3 of our main paper.

• Appendix C contains the proof for trade-off theorem discussed in Section 2.4 of our main
paper.

• Finally, in Appendix D, we present the generative detail of the Colored MNIST dataset, the
experimental setting together with additional results for MSDA on Colored MNIST and DG
on the real-world PACS dataset.

1 Appendix A: Target Loss’s Upper Bounds

We begin with a crucial proposition for our theory development, which further allows us to connect
loss on feature space to loss on data space.

Proposition 1. Let f̂ : X 7→ Y∆ where f̂ = ĥ ◦ g with g : X 7→ Z and ĥ : Z 7→ Y∆. Let
c : Z × [C] 7→ R be a positive function.

i) For any i ∈ [C], we have∫
h (z, i) c

(
ĥ (z) , i

)
pg (z) dz =

∫
f (x, i) c

(
f̂ (x) , i

)
p (x) dx,

ii) For any i ∈ [C], we have∫
|h (z, i)− h′ (z, i)| c

(
ĥ (z) , i

)
pg (z) dz ≤

∫
|f (x, i)− f ′ (x, i)| c

(
f̂ (x) , i

)
p (x) dx,

where p is the density of a distribution P on X , pg is the density of the distribution Pg = g#P,
f : X 7→ Y∆ and f ′ : X 7→ Y∆ are labeling functions, and h : Z 7→ Y∆ and h′ : Z 7→ Y∆

are labeling functions on the latent space induced from f , i.e., h(z) =

∫
g−1(z)

f(x,i)p(x)dx∫
g−1(z)

p(x)dx
and

h′(z) =

∫
g−1(z)

f ′(x,i)p(x)dx∫
g−1(z)

p(x)dx
.

Proof. i) Using the definition of h, we manipulate the integral on feature space as
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∫
Z
h (z, i) c

(
ĥ (z) , i

)
pg (z) dz

(1)
=

∫
Z
c
(
ĥ (z) , i

) ∫
g−1(z)

f (x, i) p (x) dx∫
g−1(z)

p (x) dx

∫
g−1(z)

p (x′) dx′dz

=

∫
Z
c
(
ĥ (z) , i

)∫
g−1(z)

f (x, i) p (x) dxdz

(2)
=

∫
Z

∫
g−1(z)

c
(
ĥ (g (x)) , i

)
f (x, i) p (x) dxdz

(3)
=

∫
Z

∫
X
Ix∈g−1(z)c

(
ĥ (z) , i

)
f (x, i) p (x) dxdz

(4)
=

∫
X

∫
Z
Iz=g(x)c

(
ĥ (z) , i

)
f (x, i) p (x) dxdz

=

∫
X
c
(
ĥ (g (x)) , i

)
f (x, i) p (x) dx

=

∫
X
c
(
f̂ (x) , i

)
f (x, i) p (x) dx.

In (1), we use the definition of push-forward distribution
∫
B
pg (z) dz =

∫
B
dz
∫
g−1(z)

p (x) dx. In

(2), c
(
ĥ (z) , i

)
can be put inside the integral because z = g (x) for any x ∈ g−1 (z). In (3), the

integral over restricted region is expanded to all space with the help of Ix∈g−1(z), whose value is 1 if
x ∈ g−1 (z) and 0 otherwise. In (4), Fubini theorem is invoked to swap the integral signs.

ii) Using the same technique, we have

∫
|h (z, i)− h′ (z, i)| c

(
ĥ (z) , i

)
pg (z) dz

=

∫
Z
c
(
ĥ (z) , i

) ∣∣∣∫g−1(z)
f (x, i) p (x) dx−

∫
g−1(z)

f ′ (x, i) p (x) dx
∣∣∣∫

g−1(z)
p (x′) dx′

∫
g−1(z)

p (x) dxdz

=

∫
Z
c
(
ĥ (z) , i

) ∣∣∣∣∣
∫
g−1(z)

(f (x, i)− f ′ (x, i)) p (x) dx

∣∣∣∣∣ dz
≤
∫
Z
c
(
ĥ (z) , i

)∫
g−1(z)

|f (x, i)− f ′ (x, i)| p (x) dxdz

=

∫
Z

∫
X
Ix∈g−1(z)c

(
ĥ (z) , i

)
|f (x, i)− f ′ (x, i)| p (x) dxdz

=

∫
X

∫
Z
Iz=g(x)c

(
ĥ (g (x)) , i

)
|f (x, i)− f ′ (x, i)| p (x) dxdz

=

∫
X
|f (x, i)− f ′ (x, i)| c

(
f̂ (x) , i

)
p (x) dx.

Proposition 1 allows us to connect expected loss on feature space and input space as in the following
corollary.

Corollary 2. Consider a domain D = (P, f) with data distribution P and ground-truth labeling
function f . A hypothesis is f̂ : X 7→ Y∆, where f̂ = ĥ ◦ g with g : X 7→ Z and ĥ : Z 7→ Y∆.
Then, the labeling function f on input space induces a ground-truth labeling function on feature

space h(z) =

∫
g−1(z)

f(x,i)p(x)dx∫
g−1(z)

p(x)dx
. Let ` : Y∆ × Y∆ 7→ R be the loss function, then expected loss

can be calculated either w.r.t. input space L
(
f̂ , f,P

)
=
∫
`
(
f̂ (x) , f (x)

)
p (x) dx or w.r.t. feature
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space L
(
ĥ, h, g#P

)
=
∫
`
(
ĥ (z) , h (z)

)
pg (z) dz. If we assume the loss ` (·, ·) has the formed

mentioned in the main paper, that is,

` (u, v) =

C∑
i=1

l (u, i) vi,

for any two simplexes u, v ∈ Y∆, where u = [ui]
C
i=1 and v = [vi]

C
i=1. Then the losses w.r.t. input

space and feature space are the same, i.e.,

L
(
ĥ, h, g#P

)
= L

(
f̂ , f,P

)
.

Proof. We derive as

L
(
ĥ, h, g#P

)
=

∫
Z
`
(
ĥ (z) , h (z)

)
p (z) dz =

C∑
i=1

∫
Z
l
(
ĥ (z) , i

)
h (z, i) p (z) dz

(1)
=

C∑
i=1

∫
X
l
(
f̂ (x) , i

)
f (x, i) p (x) dx =

∫
X
`
(
f̂ (x) , f (x)

)
p (x) dx

= L
(
f̂ , f,P

)
.

Here we have
(1)
= by using (i) in Proposition 1 with c (β, i) = l (β, i) for any β ∈ Y∆ and i ∈ [C].

Normally, target loss L
(
f̂ , fT ,PT

)
is bounded by source loss L

(
f̂ , fS ,PS

)
, a label shift term

LS
(
fT , fS

)
, and a data shift term DS

(
PT ,PS

)
[2]. Here, this kind of bound is developed using

data distribution P on input space and labeling function f from input to label space, which are not
convenient in understanding representation learning, since PT ,PS are data nature and therefore
fixed. In order to relate target loss to properties of learned representations, another bound in which
L
(
ĥ, h,Pg

)
is the loss w.r.t. feature space andDS

(
PTg ,PSg

)
is the data shift on feature space is more

favorable. However, this naive approach presents a pitfall, since the loss L
(
ĥ, h,Pg

)
is not identical

to the loss w.r.t. input space L
(
f̂ , f,P

)
, which is of ultimate interest, e.g., to-be-bounded target loss

L
(
f̂ , fT ,PT

)
, or to-be-minimized source loss L

(
f̂ , fS ,PS

)
. Using the previous proposition and

corollary, we could bridge this gap and develop a target bound connecting both data space and feature
space.

Theorem 3. (Theorem 1 in the main paper) Consider a mixture of source domains Dπ =∑K
i=1 πiDS,i and the target domain DT . Let ` be any loss function upper-bounded by a posi-

tive constant L. For any hypothesis f̂ : X 7→ Y∆ where f̂ = ĥ◦ g with g : X 7→ Z and ĥ : Z 7→ Y∆,
the target loss on input space is upper bounded

L
(
f̂ ,DT

)
≤

K∑
i=1

πiL
(
f̂ ,DS,i

)
+ L max

i∈[K]
EPS,i

[
‖∆pi(y|x)‖1

]
+ L
√

2 d1/2

(
PTg ,Pπg

)
, (1)

where ∆pi(y|x) :=
[∣∣fT (x, y)− fS,i(x, y)

∣∣]C
y=1

is the absolute of single point label shift on input
space between source domain DS,i, the target domain DT , [K] := {1, 2, ...,K}, and the feature
distribution of the source mixture Pπg :=

∑K
i=1 πiPS,ig .

Proof. First, consider the hybrid domain Dh,ig =
(
Pπg , hT

)
, with Pπg :=

∑K
i=1 πiPS,ig be the feature

distribution of the source mixture, and hT is the induced ground-truth labeling function of target
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domain. The loss on the hybrid domain is then upper bounded by the loss on source mixture and a
label shift term. We derive as follows:

L
(
ĥ,Dhig

)
=

∫
`
(
ĥ (z) , hT (z)

)
pπg (z) dz

=

∫
`
(
ĥ (z) , hT (z)

) K∑
i=1

πip
S,i
g (z) dz =

K∑
i=1

πi

∫
`
(
ĥ (z) , hT (z)

)
pS,ig (z) dz

≤
K∑
i=1

πi

∫
`
(
ĥ (z) , hS,i (z)

)
pS,ig (z) dz

+

K∑
i=1

πi

∫ ∣∣∣`(ĥ (z) , hT (z)
)
− `
(
ĥ (z) , hS,i (z)

)∣∣∣ pS,ig (z) dz.

Firstly, using Corollary 2, the loss terms on feature space and input space are equal

K∑
i=1

πi

∫
`
(
ĥ (z) , hS,i (z)

)
pS,ig (z) dz =

K∑
i=1

πiL
(
f̂ , fS,i,PS,i

)

Secondly, the difference term, can be transformed into label shift on input space using Proposition 1

K∑
i=1

πi

∫
Z

∣∣∣`(ĥ (z) , hT (z)
)
− `
(
ĥ (z) , hS,i (z)

)∣∣∣ pS,ig (z) dz

≤
K∑
i=1

πi

C∑
j=1

∫
Z
`
(
ĥ (z) , j

) ∣∣hT (z, j)− hS,i (z, j)
∣∣ pS,ig (z) dz

= L

K∑
i=1

πi

C∑
j=1

∫
Z

∣∣hT (z, j)− hS,i (z, j)
∣∣ pS,ig (z) dz

(1)

≤ L

K∑
i=1

πi

C∑
j=1

∫
X

∣∣fT (z, j)− fS,i (z, j)
∣∣ pS,i (x) dx

≤ L max
i∈[K]

EPS,i
[
‖∆pi (y|x) ‖1

]
.

Here we note that
(1)

≤ results from (ii) in Proposition 1 with c (β, i) = 1 for any β ∈ Y∆ and i ∈ [C].
Furthermore, ∆pi(y|x) :=

[∣∣fT (x, y)− fS,i(x, y)
∣∣]C
y=1

is the absolute single point label shift on
input space between the source domain DS,i and the target domain DT .

With these two terms, we have the upper bound for hybrid domain as

L
(
ĥ,Dhyg

)
≤

K∑
i=1

πiL
(
f̂ ,DS,i

)
+ L max

i∈[K]
EPS,i

[
‖∆pi(y|x)‖1

]
.

Next, we relate the loss on target DTg to hybrid domain Dhyg , which differs only at the feature
marginals.
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∣∣∣L(ĥ,DTg )− L(ĥ,Dhyg )∣∣∣ =

∣∣∣∣∫ `
(
ĥ(z), hT (z)

) (
pTg (z)− pπg (z)

)
dz

∣∣∣∣
≤
∫
L
∣∣pTg (z)− pπg (z)

∣∣ dz
≤ L

∫ ∣∣∣√pTg (z) +
√
pπg (z)

∣∣∣ ∣∣∣√pTg (z)−
√
pπg (z)

∣∣∣ dz
≤ L

[∫ (√
pTg (z) +

√
pπg (z)

)2

dz

]1/2 [∫ (√
pTg (z)−

√
pπg (z)

)2

dz

]1/2

≤ L√
2

[∫ (
pTg (z) + pπg (z) + 2

√
pTg (z)pπg (z)

)
dz

]1/2

×
[
2

∫ (√
pTg (z)−

√
pπg (z)

)2

dz

]1/2

≤ L√
2

[
2 + 2

(∫
pTg (z)dz

∫
pπg (z)dz

)1/2
]1/2

d1/2

(
PTg ,Pπg

)
≤ L
√

2d1/2

(
PTg ,Pπg

)
.

In the above proof, we repeatedly invoke Cauchy-Schwartz inequality
∣∣∫ f(z)g(z)dz

∣∣2 ≤∫
|f(z)|2 dz

∫
|g(z)|2 dz. Moreover, for the sake of completeness, we reintroduce the definition

of the square root Hellinger distance

d1/2

(
PTg ,Pπg

)
=

[
2

∫ (√
pTg (z)−

√
pπg (z)

)2

dz

]1/2

.

To this end, we obtain the upper bound for target loss related to loss on souce mixture, a label shift
term on input space, and a data shift term between target domain and source mixture on feature space.

L
(
ĥ,DTg

)
≤

K∑
i=1

πiL
(
f̂ ,DS,i

)
+ L max

i∈[K]
EPS,i

[
‖∆pi(y|x)‖1

]
+ L
√

2d1/2

(
PTg ,Pπg

)
. (2)

Finally, using the fact that loss on feature space equal loss on input space (Corollary 2), we have

L
(
f̂ ,DT

)
≤

K∑
i=1

πiL
(
f̂ ,DS,i

)
+ L max

i∈[K]
EPS,i

[
‖∆pi(y|x)‖1

]
+ L
√

2d1/2

(
PTg ,Pπg

)
.

That concludes our proof.

This bound is novel since it relates loss on input space and data shift on feature space. This allows us
to further investigate how source-source compression and source-target compression affect learning.
First, we prove a lemma showing decomposition of data shift between target domain and source
mixture d1/2

(
PTg ,Pπg

)
to a sum of data shifts between target domain and source domains.

Lemma 4. Given a source mixture and a target domain, we have the following

d1/2

(
PTg ,Pπg

)
≤

K∑
j=1

√
πjd1/2

(
PTg ,PS,jg

)
Proof. Firstly, we observe that

5



d1/2

(
PTg ,Pπg

)
=

[
2

∫ (√
pTg (z)−

√
pπg (z)

)2

dz

]1/2

=

[
2

∫ (
pTg (z) + pπg (z)− 2

√
pTg (z)pπg (z)

)
dz

]1/2

.

Secondly, we use Cauchy-Schwartz inequality to obtain

pTg (z)pπg (z) =

 K∑
j=1

πjp
T
g (z)

 K∑
j=1

πjp
S,j
g (z)


≥

 K∑
j=1

πj

√
pTg (z)pS,jg (z)

2

.

Therefore,we arrive at

d1/2

(
PTg ,Pπg

)
≤

2

∫  K∑
j=1

πjp
T
g (z) +

K∑
j=1

πjp
S,j
g (z)− 2

K∑
j=1

πj

√
pTg (z)pS,jg (z)

 dz

1/2

=

 K∑
j=1

πj2

∫ (
pTg (z) + pS,jg (z)− 2

√
pTg (z)pS,jg (z)

)
dz

1/2

≤
K∑
j=1

[
πj2

∫ (
pTg (z) + pS,jg (z)− 2

√
pTg (z)pS,jg (z)

)
dz

]1/2

=

K∑
j=1

√
πjd1/2

(
PTg ,PS,jg

)
.

Now we are ready to prove the bound which motivate compressed DI representation.
Theorem 5. (Theorem 3 in the main paper) Consider mixture of source domains Dπ =∑K

i=1 πiDS,i and target domain DT . Let ` be any loss function upper-bounded by a positive constant
L. For any hypothesis f̂ : X 7→ Y∆ where f̂ = ĥ ◦ g with g : X 7→ Z and ĥ : Z 7→ Y∆, the target
loss on input space is upper bounded

L
(
f̂ ,DT

)
≤

K∑
i=1

πiL
(
f̂ ,DS,i

)
+ L max

i∈[K]
EPS,i

[
‖∆pi(y|x)‖1

]
+

K∑
i=1

K∑
j=1

L
√

2πj

K

(
d1/2

(
PTg ,PS,ig

)
+ d1/2

(
PS,ig ,PS,jg

)) (3)

Proof. In the previous Theorem 3, the upper bound for target loss is

L
(
f̂ ,DT

)
≤

K∑
i=1

πiL
(
f̂ ,DS,i

)
+ L max

i∈[K]
EPS,i

[
‖∆pi(y|x)‖1

]
+ L
√

2d1/2

(
PTg ,Pπg

)
.

Using Lemma 4, we have
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d1/2

(
PTg ,Pπg

)
≤

K∑
j=1

√
πjd1/2

(
PTg ,PS,jg

)
Next, we use the triangle inequality for square root Hellinger distance

d1/2

(
PTg ,Pπg

)
≤

K∑
j=1

√
πjd1/2

(
PTg ,PS,jg

)
≤

K∑
j=1

√
πj
(
d1/2

(
PTg ,PS,ig

)
+ d1/2

(
PS,ig ,PS,jg

))
Therefore, by average over all PTg ,PS,ig pairs,

d1/2

(
PTg ,Pπg

)
=

K∑
i=1

1

K
d1/2

(
PTg ,Pπg

)
≤

K∑
i=1

K∑
j=1

√
πj

K

(
d1/2

(
PTg ,PS,ig

)
+ d1/2

(
PS,ig ,PS,jg

))
We obtain the conclusion of our proof

L
(
f̂ ,DT

)
≤

K∑
i=1

πiL
(
f̂ ,DS,i

)
+ L max

i∈[K]
EPS,i

[
‖∆pi(y|x)‖1

]
+

K∑
i=1

K∑
j=1

L
√

2πj

K

(
d1/2

(
PTg ,PS,ig

)
+ d1/2

(
PS,ig ,PS,jg

))

2 Appendix B: DI Representation’s Characteristics

2.1 General Domain-Invariant Representations

In the main paper, we defined general DI representation via minimization of source loss
ming∈G minĥ∈H

∑K
i=1 πiL

(
ĥ, hS,i,PS,ig

)
. We then proposed to view the optimization problem

minĥ∈H
∑K
i=1 πiL

(
ĥ, hS,i,PS,ig

)
as calculating a type of divergence, i.e., hypothesis-aware diver-

gence. To understand the connection between the two, we first consider the classification problem
where samples are drawn from a mixture z ∼ Qα =

∑C
i=1 αiQi, with Qi defined on Z and density

being qi (z), and the task is to predict which distributions Q1, ...,QC the samples originate from,
i.e., labels being 1, . . . , C. Here, the hypothesis classH is assumed to have infinite capacity, and the
objective is to minimize minĥ∈H L

α
Q1:C

(
ĥ
)

= minĥ∈H
∑C
i=1 αiL

(
ĥ,Qi

)
.

2.1.1 Hypothesis-Aware Divergence

Theorem 6. (Theorem 5 in the main paper) Assuming the hypothesis classH has infinite capacity,
we define the hypothesis-aware divergence for multiple distributions as

Dα (Q1, ...,QC) = −min
ĥ∈H
LαQ1:C

(
ĥ
)

+ inf
β∈Y∆

(
C∑
i=1

l (β, i)αi

)
. (4)

This divergence is a proper divergence among Q1, ...,QC in the sense that Dα (Q1, ...,QC) ≥ 0 for
all Q1, ...,QC and α ∈ Y∆, and Dα (Q1, ...,QC) = 0 if Q1 = ... = QC .
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Proof. Data is sampled from the mixture Qα by firstly sampling domain index i ∼ Cat (α), then
sampling data z ∼ Qi and label with i. We examine the the total expected loss for any hypothesis
ĥ ∈ H, which is

LαQ1:C

(
ĥ
)

:=

C∑
i=1

αiL
(
ĥ,Qi

)
=

C∑
i=1

αi

∫
l
(
ĥ (z) , i

)
qi (z) dz

We would like to minimize this loss, which leads to

min
ĥ∈H
LαQ1:C

(
ĥ
)

= min
ĥ∈H

C∑
i=1

αi

∫
l
(
ĥ (z) , i

)
qi (z) dz

(1)
= min

ĥ∈H

∫ ( C∑
i=1

αil
(
ĥ (z) , i

) qi (z)

qα (z)

)
qα (z) dz

(2)
=

∫
min
ĥ∈H

(
C∑
i=1

αil
(
ĥ (z) , i

) qi (z)

qα (z)

)
qα (z) dz

=

∫
min
β∈Y∆

(
C∑
i=1

αil (β, i)
qi (z)

qα (z)

)
qα (z) dz

(3)

≤ min
β∈Y∆

(∫ C∑
i=1

αil (β, i) qi (z) dz

)

= min
β∈Y∆

(
C∑
i=1

αil (β, i)

)
.

(5)

For (1), qα (z) =
∑C
i=1 αiqi (z) is introduced as the density of the mixture, whereas for (2), we

use the fact that H has infinite capacity, leading to the equality minĥ∈H
∫
f
(
ĥ (x)

)
q (x) dx =∫

minĥ∈H f
(
ĥ (x)

)
q (x) dx. Moreover, for (3), the property of concave function φ (t) =

minβ∈Y∆

(∑C
i=1 αil (β, i) ti

)
with t ∈ Y∆ is invoked, i.e., Ez∼Q [φ (t (z))] ≤ φ (Ez∼Q [t (z)]).

This hints us to define a non-zero divergence Dα between multiple distributions Q1, ...,QC as

Dα (Q1, ...,QC) = −min
ĥ∈H
LαQ1:C

(
ĥ
)

+ inf
β∈Y∆

(
C∑
i=1

l (β, i)αi

)
,

=

∫
−φ

([
qi (z)

qα (z)

]C
i=1

)
qα (z) dz + inf

β∈Y∆

(
C∑
i=1

l (β, i)αi

)

which is a proper f-divergence, since −φ (t) is a convex function, and infβ∈Y∆

(∑C
i=1 l (β, i)αi

)
is

just a constant. Moreover, Dα (Q1, ...,QC) ≥ 0 for all Q1, ...,QC and α ∈ Y∆ due to the previous
inequality 5. The equality happens if there is some β0 ∈ Y∆ such that, for all z ∈ Z

β0 = argmin
β∈Y∆

C∑
i=1

αil (β, i)
qi (z)

qα (z)
.
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This means qi(z)
qα(z) = Ai,∀i ∈ [C], where Ai is a constant dependent on index i. However, this leads

to

∫
qi (z) dz = Ai

∫
qα (z) dz

1 = Ai

i.e., qi (z) = qα (z) ,∀i ∈ [C]. In other words, the equality happens when all distributions are the
same Q1 = ... = QC .

2.1.2 General Domain-Invariant Representations

For a fixed feature map g, the induced representation distributions of source domains are PS,ig . We
then find the optimal hypothesis ĥ∗g on the induced representation distributions PS,ig by minimizing
the loss

min
ĥ∈H

K∑
i=1

πiL
(
ĥ, hS,i,PS,ig

)
= minĥ∈H

K∑
i=1

πiL
(
ĥ,DS,ig

)
. (6)

The general domain-invariant feature map g∗ is defined as the one that offers the minimal optimal
loss as

g∗ = arg min
g∈G

min
ĥ∈H

K∑
i=1

πiL
(
ĥ, hS,i,Pig

)
= argming∈Gminĥ∈H

K∑
i=1

πiL
(
ĥ,DS,ig

)
. (7)

We denote Ps,i,cg as the class c conditional distribution of the source domain i on the latent space and
ps,i,cg as its density function. The induced representation distribution PS,ig of source domain i is a
mixture of Ps,i,cg as PS,ig =

∑C
c=1 γi,cPs,i,cg ,where γi,c = Ps,i (y = c).

We further define Qs,cg :=
∑K
i=1

πiγi,c
αc

Ps,i,cg where αc =
∑K
j=1 πjγj,c. Obviously, we can interpret

Qs,cg as the mixture of the class c conditional distributions of the source domains on the latent
space. The objective function in Eq. (6) can be viewed as training the optimal hypothesis ĥ ∈ H to
distinguish the samples from Qs,cg , c ∈ [C] for a given feature map g. Therefore, by linking to the
multi-divergence concept developed in Theorem 6, we achieve the following theorem.

Theorem 7. (Theorem 6 in the main paper) Assume that H has infinite capacity, we have the
following statements.

1. Dα
(
Qs,1g , ...,Qs,Cg

)
= −minĥ∈H

∑K
i=1 πiL

(
ĥ, hS,i,PS,ig

)
+ const, where α = [αc]c∈[C] is

defined as above.

2. Finding the general domain-invariant feature map g∗ via the OP in (7) is equivalent to solving

g∗ = argmax
g∈G

Dα
(
Qs,1g , ...,Qs,Cg

)
. (8)

Proof. We investigate the loss on mixture

K∑
i=1

πiL
(
ĥ, hS,i,PS,ig

)
=

K∑
i=1

πi

C∑
c=1

γi,cL
(
ĥ, c,PS,i,cg

)
=

C∑
c=1

αcL

(
ĥ, c,

K∑
i=1

πiγi,c
αc

PS,i,cg

)

=

C∑
c=1

αcL
(
ĥ, c,QS,cg

)

9



Therefore, the loss on mixture is actually a loss on joint class-conditional distributions QS,cg =∑K
i=1

πiγi,c
αc

PS,i,cg . Using result from Theorem 6, we can define a divergence between these class-
conditionals

Dα
(
QS,1g , ...,QS,Cg

)
= −min

ĥ∈H

C∑
c=1

αcL
(
ĥ,QS,cg

)
+ min
β∈Y∆

(
C∑
c=1

` (β, i)αc

)

= −
K∑
i=1

πiL
(
ĥ, hS,i,PS,ig

)
+ const

2.2 Compressed Domain-Invariant Representations

Theorem 8. (Theorem 7 in the main paper) For any confident level δ ∈ [0, 1] over the choice of S,
the estimation of loss is in the ε-range of the true loss

Pr
(∣∣∣L(ĥ, S)− L(ĥ,Dπg)∣∣∣ ≤ ε) ≥ 1− δ,

where ε = ε (δ) =
(
A
δ

)1/2
is a function of δ for which A is proportional to

1

N

(
K∑
i=1

K∑
j=1

√
πi

K
L
(
f̂ ,DS,j

)
+ L

K∑
i=1

√
πi max

k∈[K]
EPS,k

[∥∥∥∆pk,i (y|x)
∥∥∥
1

]
+
L

K

K∑
i=1

K∑
j=1

√
2πi d1/2

(
PS,i
g ,PS,j

g

))2

.

Proof. Let S be a sample of N data points (z, y) ∼ Dπg sampled from the mixture domain, i.e.,

i.e., i ∼ Cat(π), z ∼ PS,i, and labeling with corresponding y ∼ Cat
(
ĥS,i (z)

)
. The loss of a

hypothesis h on a sample (z, y) =
(
z, ĥS,i(z)

)
for some domain index i is `

(
ĥ (z) , ĥS,i (z)

)
. To

avoid crowded notation, we denote this loss as `i (z) := `
(
ĥ (z) , ĥS,i (z)

)
.

Let N =
∑K
i=1Ni, where each Ni is the number of sample drawn from domain i. The estimation of

loss on a particular domain i is

L
(
ĥ, Si

)
=

Ni∑
j=1

1

Ni
`i (zj) .

This estimation is unbiased estimation, i.e., E
Si∼(DS,ig )

Ni

[
L
(
ĥ, Si

)]
= Ez∼PS,ig

[
`i (z)

]
=

L
(
ĥ,DS,ig

)
. Furthermore, loss estimation on source mixture is

L (h, S) =

K∑
i=1

Ni∑
j=1

1

N
`i (zj)

This estimation is also an unbiased estimation

E
S∼(Dπg )

N

[
L
(
ĥ, S

)]
=E{Ni}

[
ESi

[
L
(
ĥ, S

)]]
=

K∑
i=1

πiL
(
ĥ,DS,ig

)
= L

(
ĥ,Dπg

)
.

Therefore, we can bound the concentration of L
(
ĥ, S

)
around its mean value L

(
ĥ,Dπg

)
using

Chebyshev’s inequality

Pr
(∣∣∣L(ĥ, S)− L(ĥ,Dπg)∣∣∣ ≤ ε) ≥ 1−

Var
S∼(Dπg )

N

[
L
(
ĥ, S

)]
ε2

10



which is equivalent to

Pr

∣∣∣L(ĥ, S)− L(ĥ,Dπg)∣∣∣ ≤
√√√√Var

S∼(Dπg )
N

[
L
(
ĥ, S

)]
δ

 ≥ 1− δ

The variance of L
(
ĥ, S

)
is

Var
S∼(Dπg )

N

[
L
(
ĥ, S

)]
(1)
=

1

N
Var(z,y)∼Dπg

[
`
(
ĥ(z), y

)]
(2)
=

1

N

K∑
i=1

πi

(
Varz∼PS,ig

[
`i (z)

]
+ Ez∼PS,ig

[
`i (z)

]2)− (E(z,y)∼Dπg

[
`
(
ĥ(z), y

)])2

≤ 1

N

K∑
i=1

πi

(
Varz∼PS,ig

[
`i (z)

]
+ L

(
ĥ,DS,ig

)2
)

≤ 1

N

K∑
i=1

πiVarz∼PS,ig
[
`i (z)

]
+

1

N

(
K∑
i=1

√
πiL

(
ĥ,DS,ig

))2

(9)
(1)
= is true since L (h, S) is the sum of N i.i.d. random variable ` (h(z), y) with (z, y) sampled from
the same distribution Dπg . In (2), the variance of w.r.t. a distribution mixture is related to mean

and variance of constituting distribution, i.e., Var∑
i πiPi [X] =

∑
i πi

(
VarPi [X] + EPi [X]

2
)
−

E∑
i πiPi [X]

2.

We reuse the result of 2 in Theorem 3, substituting DTg ≡ DS,ig , Dπg ≡ DS,jg to obtain

L
(
ĥ,DS,ig

)
≤ L

(
f̂ ,DS,j

)
+ LEPS,i

[
‖∆pi,j(y|x)‖1

]
+ L
√

2 d1/2

(
PS,ig ,PS,jg

)
≤ 1

K

K∑
j=1

(
L
(
f̂ ,DS,j

)
+ L max

k∈[K]
EPS,k

[∥∥∆pk,i (y|x)
∥∥

1

]
+ L
√

2 d1/2

(
PS,ig ,PS,jg

))
.

Therefore, the right hand side of 9 is upper by A, where A is

A =
1

N

K∑
i=1

πiVar
z∼PS,ig

[
`i (z)

]

+
1

N

(
K∑
i=1

K∑
j=1

√
πi

K
L
(
f̂ ,DS,j

)
+ L

K∑
i=1

√
πi max

k∈[K]
EPS,k

[∥∥∥∆pk,i (y|x)
∥∥∥
1

]
+
L

K

K∑
i=1

K∑
j=1

√
2πi d1/2

(
PS,i
g ,PS,j

g

))2

.

This concludes our proof, where the concentration inequality is

Pr

(∣∣∣L(ĥ, S)− L(ĥ,Dπg)∣∣∣ ≤√A

δ

)
≥ 1− δ .

3 Appendix C: Trade-Off in Learning DI Representations

Lemma 9. Given a labeling function f : X → Y∆ and a hypothesis f̂ : X → Y∆, let denote PfY and

Pf̂Y as two label marginal distributions induced by f and f̂ on the data distribution P. Particularly,

11



to sample y ∼ PfY , we first sample x ∼ P (i.e., P is the data distribution with the density function p)

and then sample y ∼ Cat (f (x)), while similar to sample y ∼ Pf̂Y . We then have

d1/2

(
PfY ,P

f̂
Y

)
≤ L

(
f̂ , f,P

)1/2

,

where the loss L is defined based on the Hellinger loss `
(
f̂ (x) , f (x)

)
= D1/2

(
f̂ (x) , f (x)

)
=

2
∑C
i=1

[√
f̂ (x, i)−

√
f (x, i)

]2

.

Proof. We have

D1/2

(
PfY ,P

f̂
Y

)
= 2

C∑
i=1

(√
pf (y)−

√
pf̂ (y)

)2

=2

C∑
i=1

(√∫
pf (y = i | x) p(x)dx−

√∫
pf̂ (y = i | x) p(x)dx

)2

=2

C∑
i=1

(√∫
f (x, i) p(x)dx−

√∫
f̂ (x, i) p(x)dx

)2

=2

C∑
i=1

[∫
f (x, i) p(x)dx+

∫
f̂ (x, i) p(x)dx− 2

√∫
f (x, i) p(x)dx

√∫
f̂ (x, i) p(x)dx

]
(1)

≤2

C∑
i=1

[∫
f (x, i) p(x)dx+

∫
f̂ (x, i) p(x)dx− 2

√∫
f (x, i) f̂ (x, i)p(x)dx

]

=2

C∑
i=1

∫ [√
f (x, i)−

√
f̂ (x, i)

]2

p(x)dx =

∫
2

C∑
i=1

[√
f (x, i)−

√
f̂ (x, i)

]2

p(x)dx

=

∫
D1/2

(
f̂ (x) , f (x)

)
p(x)dx = L

(
f̂ , f,P

)
,

where we note that in the derivation in
(1)

≤ , we use Cauchy-Schwarz inequality:∫
f̂ (x, i) p (x) dx

∫
f (x, i) p (x) dx ≥

(∫ √
f̂ (x, i) f (x, i)p (x) dx

)2

.

Therefore, we reach the conclusion as

d1/2

(
PfY ,P

f̂
Y

)
≤ L

(
f̂ , f,P

)1/2

.

Lemma 10. Consider the hypothesis f̂ = ĥ ◦ g. We have the following inequalities w.r.t. the source
and target domains:

(i) d1/2

(
P̂TY ,PTY

)
≤ L

(
ĥ ◦ g, fT ,PT

)1/2

, where PTY is the label marginal distribution induced by

fT on PT , while P̂TY is the label marginal distribution induced by f̂ on PT .

(ii) d1/2

(
PπY , P̂πY

)
≤
[∑K

i=1 πiL
(
ĥ ◦ g, fS,i,PS,i

)]1/2
, where PπY :=

∑K
i=1 πiP

S,i
Y with PS,iY to

be induced by fS,i on PS,i and P̂πY :=
∑K
i=1 πiP̂

S,i
Y with P̂S,iY to be induced by f̂ on PS,i (i.e.,

equivalently, the label marginal distribution induced by f̂ on Pπ :=
∑K
i=1 πiPS,i).

Proof. (i) The proof of this part is obvious from Lemma 9 by considering fT as f and PT as P.
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(ii) By the convexity of D1/2, which is a member of f -divergence family, we have

D1/2

(
PπY , P̂πY

)
= D1/2

(
K∑
i=1

πiPS,iY ,

K∑
i=1

πiP̂S,iY

)
≤

K∑
i=1

πiD1/2

(
PS,iY , P̂S,iY

)
(1)

≤
K∑
i=1

πiL
(
ĥ ◦ g, fS,i,PS,i

)
,

where the derivation in
(1)

≤ is from Lemma 9. Therefore, we reach the conclusion as

d1/2

(
PπY , P̂πY

)
≤

[
K∑
i=1

πiL
(
ĥ ◦ g, fS,i,PS,i

)]1/2

.

Theorem 11. (Theorem 8 in the main paper) Consider a feature extractor g and a hypothesis ĥ, the
Hellinger distance between two label marginal distributions PπY and PTY can be upper-bounded as:

(i) d1/2

(
PπY ,PTY

)
≤
[∑K

k=1 πkL
(
ĥ ◦ g, fS,k,PS,k

)]1/2
+d1/2

(
PTg ,Pπg

)
+L

(
ĥ ◦ g, fT ,PT

)1/2

.

(ii) d1/2

(
PπY ,PTY

)
≤
[∑K

i=1 πiL
(
ĥ ◦ g, fS,i,PS,i

)]1/2
+
∑K
i=1

∑K
j=1

√
πj
K d1/2

(
PS,ig ,PS,jg

)
+∑K

i=1

∑K
j=1

√
πj
K d1/2

(
PTg ,PS,ig

)
+ L

(
ĥ ◦ g, fT ,PT

)1/2

.

Here we note that the general loss L is defined based on the Hellinger loss ` defined as
`
(
f̂ (x) , f(x)

)
= D1/2

(
f̂ (x) , f(x)

)
.

Proof. (i)We define PπY , P̂πY and PTY , P̂TY as in Lemma 10. Recap that to sample y ∼ P̂πY , we sample
k ∼ Cat(π), x ∼ PS,k (i.e., x ∼ Pπ :=

∑K
k=1 πkPS,k), compute z = g (x) (i.e., z ∼ Pπg ) , and

y ∼ Cat
(
ĥ (z)

)
, while similar to draw y ∼ P̂TY .

Using triangle inequality for Hellinger distance, we have

d1/2

(
PπY ,PTY

)
≤ d1/2

(
PπY , P̂πY

)
+ d1/2

(
P̂πY , P̂TY

)
+ d1/2

(
P̂TY ,PTY

)
.

Referring to Lemma 10, we achieve

d1/2

(
PπY ,PTY

)
≤

[
K∑
i=1

πiL
(
ĥ ◦ g, fS,i,PS,i

)]1/2

+ d1/2

(
PπŶ ,P

T
Ŷ

)
+ L

(
ĥ ◦ g, fT ,PT

)1/2

.

From the monotonicity of Hellinger distance, when applying to PTg and Pπg with the same transition
probability p (y = i | z) = ĥ (z, i) for obtaining PπŶ and PTŶ , we have

d1/2

(
PπŶ ,P

T
Ŷ

)
≤ d1/2

(
Pπg ,PTg

)
.

Finally, we reach the conclusion as

d1/2

(
PπY ,PTY

)
≤

[
K∑
i=1

πiL
(
ĥ ◦ g, fS,i,PS,i

)]1/2

+ d1/2

(
Pπg ,PTg

)
+ L

(
ĥ ◦ g, fT ,PT

)1/2
.
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(ii) From Lemma 4, we can decompose the data shift term and use triangle inequality again, hence
arriving at

d1/2

(
PπY ,PTY

)
≤

[
K∑
i=1

πiL
(
ĥ ◦ g, fS,i,PS,i

)]1/2

+

K∑
j=1

√
πjd1/2

(
PTg ,PS,jg

)
+ L

(
ĥ ◦ g, fT ,PT

)1/2

≤

[
K∑
i=1

πiL
(
ĥ ◦ g, fS,i,PS,i

)]1/2

+

K∑
i=1

K∑
j=1

√
πj

K

(
d1/2

(
PTg ,PS,ig

)
+ d1/2

(
PS,ig ,PS,jg

))
+ L

(
ĥ ◦ g, fT ,PT

)1/2

.

This concludes our proof.

The loss L in Theorem 11 defined based on the Hellinger loss ` defined as `
(
f̂ (x) , f(x)

)
=

D1/2

(
f̂ (x) , f(x)

)
, while theory development in previous sections bases on the loss ` which has

the specific form

`
(
f̂ (x) , f (x)

)
=

C∑
i=1

l
(
f̂ (x) , i

)
f (x, i) . (10)

To make it more consistent, we discuss under which condition the Hellinger loss is in the family
defined in (10). It is evident that if the labeling function f satisfying f (x, i) > 0,∀x ∼ P and
i ∈ [C], for example, we apply label smoothing [10, 9] on ground-truth labels, the Hellinger loss is
in the family of interest. That is because the following derivation:

D1/2

(
f̂ (x) , f(x)

)
= 2

C∑
i=1

[√
f̂ (x, i)−

√
f (x, i)

]2

=2

C∑
i=1

√ f̂ (x, i)

f (x, i)
− 1

2

f (x, i) ,

where we consider l
(
f̂ (x) , i

)
=

[√
f̂(x,i)
f(x,i) − 1

]2

.

4 Appendix D: Additional Experiments

4.1 Experiment on Colored MNIST

4.1.1 Dataset

We conduct experiments on the colored MNIST dataset [1] whose data is generated as follow. Firstly,
for any original image X in the MNIST dataset [7], the value of digit feature is Zd = 0 if the
image’s digit is from 0 → 4, while Zd = 1 is assigned to image with digit from 5 → 9. Next,
the ground-truth label for the image X is also binary and sampled from either P(Y |Zd = 1) or
P(Y |Zd = 0), depending on the value of digit feature Zd. These binomial distributions are such that
P(Y = 1|Zd = 1) = P(Y = 0|Zd = 0) = 0.75. Next, the color feature binary random variable Zc
is assigned to each image conditioning on its label, i.e., zC ∼ P(ZC |Y = 1) or zc ∼ P(ZC |Y = 0)
with P(Zc = 1|Y = 1) = P(Zc = 0|Y = 0) = θ, depending on the domain. Finally, we color the
image red if Zc = 0 or green if Zc = 1.

For both DG and MSDA experiments, there are 7 source domains generated by setting P(Zc =
1|Y = 1) = P(Zc = 0|Y = 0) = θS,i where θs,i ∼ Uni ([0.6, 1]) for i = 1, . . . , 7. In our
actual implemetation, we take θs,i = 0.6 + 0.4

7 (i− 1). The two target domains are created with
θT,i ∈ {0.05, 0.7} for i = 1, 2. After domain creation, data from each domain is split into training
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Figure 1: Images in Colored MNIST dataset are “colored” according to color feature ZC . If ZC = 0,
channel 0 is kept while channel 1 contains all 0, corresponding to red images. Similarly, ZC = 1
means channel 1 is kept intact while channel 0 is zero-out, represented by green images.

set and validation set. For DG experiment, no data from the target domain is used in training. On the
other hand, the same train-validation split is applied to target domains in MSDA and the unlabeled
training splits are used for training, while the validation splits are used for testing.

4.1.2 Model

We train a hypothesis f̂ = ĥ ◦ g and minimize the classification loss w.r.t. entire source data

Lgen :=

7∑
i=1

Ni
NS

E(x,y)∼DS,i
[
CE

(
ĥ (g (x)) , y

)]
,

where CE is the cross-entropy loss, Ni is the number of samples from domain i, and NS is the total
number of source samples.

To align source-source representation distribution, we apply adversarial learning [4] as in [3], in
which a min-max game is played, where the domain discriminator ĥs−s tries to predict domain
labels from input representations, while the feature extractor (generator) g tries to fool the domain
discriminator, i.e., ming maxĥs−s L

s−s
disc. The source-source compression loss is defined as

Ls−sdisc :=

7∑
i=1

Ni
NS

Ex∼PS,i
[
−CE

(
log ĥs−s (g (x)) , i

)]
,

where i is the domain label. It is well-known [4] that if we search ĥs−s in a family with infinite
capacity then

max
ĥs−s
Ls−sdisc = JS

(
PS,1g , ...,PS,7g

)
.

.

Similarly, alignment between source and target feature distribution is enforced by employing ad-
versarial learning between another discriminator ĥs−t and the encoder g, with the objective is
ming maxĥs−s L

s−t
disc. The loss function for source-target compression is

Ls−tdisc :=
Nk

NS +NT
Ex∼Pπ,S

[
− log ĥs−t (g (x))

]
+

NT
NS +NT

Ex∼PT
[
− log

(
1− ĥs−t (g (x))

)]
,

where Pπ,S =
∑7
i=1

Ni
NS

PS,i is the source mixture and PT is the chosen target domain among the
two.

Finally, for DG we optimize the objective

min
g

(
min
ĥ
Lgen + λmax

ĥs−s
Ls−sdisc

)
, (11)
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Figure 2: Accuracy on distant and close target domains, where tuples (λs−t, λs−s) indicate strength
of source-target compression and source-source compression, respectively.
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(a) Art Painting as target domain.
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Figure 3: Domain generalization on PACS with different compression strength. On both domain,
a slight compression is beneficial which increases accuracy, in-line with possible benefit of com-
pressed DI representation. However, larger compression deteriorates performance, which confirm our
discussion using trade-off bound.

where λ being the trade-off hyperparameter: λ = 0 corresponds to DG’s general DI representation,
while larger λ corresponds to more compressed DI representation. On the other hand, the objective
for MSDA setting is

min
g

(
min
ĥ
Lgen + λs−s max

ĥs−s
Ls−scom + λs−t max

ĥs−t
Ls−tcom

)
, (12)

with λs−s controls the source-source compression and λs−t controls the source-target compression.

Our implementation is based largely on Domain Bed repository [5]. Specifically, the encoder g is
a convolutional neural network with 4 cnn layers, each is accompanied by RELU activation and
batchnorm, while the classifier ĥ and discriminators ĥs−s, ĥs−t are densely connected multi-layer
perceptions with 3 layers. Our code can be found in the zip file accompanying this appendix.
Moreover, our experiments were run on one Tesla V100 GPU and it took around 30 minutes for one
training on Colored MNIST.

4.1.3 Multiple-source Domain Adaptation

In additional to DG experiment provided in Section 3 in the main paper, further experiment is
conducted on MSDA, in which source-target compression is applied in additional to source-source
compression. Specifically, unlabeled data from a target domain is supplied for training, whose label
is 1 while all labeled source data has label 0, and the source-target discriminator is tasked with
classifying them. We experiment with 2 target domains θT,i ∈ {0.5, 0.7} separately and report
accuracy on target domain for different compression strength. The result is presented in Figure 2.

It is evident from the figure that the more compression on both source-source and source-target
representation, the lower the accuracy. This result aligns with our previous bound (Theorem 8 in
main paper), i.e.,
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d1/2

(
PπY ,PTY

)
−

K∑
i=1

K∑
j=1

√
πj

K
d1/2

(
PTg ,PS,ig

)
−

K∑
i=1

K∑
j=1

√
πj

K
d1/2

(
PS,ig ,PS,jg

)

≤

[
K∑
i=1

πiL
(
ĥ ◦ g, fS,i,PS,i

)]1/2

+ L
(
ĥ ◦ g, fT ,PT

)1/2

.

When source-source and source-target compression is applied, the term∑K
i=1

∑K
j=1

√
πj
K d1/2

(
PTg ,PS,ig

)
+
∑K
i=1

∑K
j=1

√
πj
K d1/2

(
PS,ig ,PS,jg

)
is minimized, raising

the lower bound of the loss terms. Subsequently, as source loss
∑K
i=1 πiL

(
ĥ ◦ g, fS,i,PS,i

)
is

minimized, the target loss L
(
ĥ ◦ g, fT ,PT

)
is high and hence performance is hindered.

However, the drop in accuracy for large compression on close target domain is not as significant as
in distant target domain, as indicated in Figure 2b and 2c. In fact, accuracy for some compressed
representation is higher than no compressed representation at larget iteration. It is possible that
the negative effect of raising lower bound as in trade-off Theorem is counteracted by the benefit of
compressed DI representation (Section 2.3.3 of main paper), i.e., the learned classifier for compressed
DI representation better approximates the ground-truth labeling function. On the other hand, model
with general DI representation cannot approximate this ground-truth labeling function as accurately,
but overfit to training dataset, resulting in target accuracy drop at larger iteration.

4.2 Experiment on PACS dataset

In order to verify our theoretical finding on real dataset, we conduct further experiment on PACS
dataset [8], which has 4 domains: Photo, Art Painting, Cartoon, and Sketch. Among the 4 domains,
Photo and Cartoon are chosen as training domains, while Art Painting is chosen as target domain
close to the training ones, and Sketch is the target domain distant from the training ones. We use
Resnet18 [6] as the feature map, while label classifier and domain discriminator are multi-layer
perceptrons. We only investigate DG setting on this dataset, in which training objective function
is Eq. 11. The result in Figure 3 illustrates similar pattern to DG experiment on Colored MNIST.
Specifically, the accuracies for both target domains raise until a peak is reached and then decrease,
which confirms our developed theory for benefit and trade-off of compressed DI representation.
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