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Abstract

We show that Optimistic Hedge – a common variant of multiplicative-weights-
updates with recency bias – attains poly(log T ) regret in multi-player general-sum
games. In particular, when every player of the game uses Optimistic Hedge to
iteratively update her strategy in response to the history of play so far, then after T
rounds of interaction, each player experiences total regret that is poly(log T ). Our
bound improves, exponentially, the O(T 1/2) regret attainable by standard no-regret
learners in games, the O(T 1/4) regret attainable by no-regret learners with recency
bias [SALS15], and the O(T 1/6) bound that was recently shown for Optimistic
Hedge in the special case of two-player games [CP20]. A corollary of our bound is
that Optimistic Hedge converges to coarse correlated equilibrium in general games
at a rate of Õ

(
1
T

)
.

1 Introduction
Online learning has a long history that is intimately related to the development of game theory,
convex optimization, and machine learning. One of its earliest instantiations can be traced to Brown’s
proposal [Bro49] of fictitious play as a method to solve two-player zero-sum games. Indeed, as shown
by [Rob51], when the players of (zero-sum) matrix game use fictitious play to iteratively update their
actions in response to each other’s history of play, the resulting dynamics converge in the following
sense: the product of the empirical distributions of strategies for each player converges to the set
of Nash equilibria in the game, though the rate of convergence is now known to be exponentially
slow [DP14]. Moreover, such convergence to Nash equilibria fails in non-zero-sum games [Sha64].

The slow convergence of fictitious play to Nash equilibria in zero-sum matrix games and non-
convergence in general-sum games can be mitigated by appealing to the pioneering works [Bla54,
Han57] and the ensuing literature on no-regret learning [CBL06]. It is known that if both players of a
zero-sum matrix game experience regret that is at most ε(T ), the product of the players’ empirical
distributions of strategies is an O(ε(T )/T )-approximate Nash equilibrium. More generally, if each
player of a general-sum, multi-player game experiences regret that is at most ε(T ), the empirical
distribution of joint strategies converges to a coarse correlated equilibrium1 of the game, at a rate
of O(ε(T )/T ). Importantly, a multitude of online learning algorithms, such as the celebrated Hedge
and Follow-The-Perturbed-Leader algorithms, guarantee adversarial regret O(

√
T ) [CBL06]. Thus,

when such algorithms are employed by all players in a game, theirO(
√
T ) regret implies convergence

to coarse correlated equilibria (and Nash equilibria of matrix games) at a rate of O(1/
√
T ).

While standard no-regret learners guarantee O(
√
T ) regret for each player in a game, the players

can do better by employing specialized no-regret learning procedures. Indeed, it was established
by [DDK11] that there exists a somewhat complex no-regret learner based on Nesterov’s excessive gap
technique [Nes05], which guarantees O(log T ) regret to each player of a two-player zero-sum game.

1In general-sum games, it is typical to focus on proving convergence rates for weaker types of equilibrium than
Nash, such as coarse correlated equilibria, since finding Nash equilibria is PPAD-complete [DGP06, CDT09].

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

costis@csail.mit.edu
maxfish@mit.edu
nzg@mit.edu


Table 1: Overview of prior work on fast rates for learning in games. m denotes the number of
players, and n denotes the number of actions per player (assumed to be the same for all players). For
Optimistic Hedge, the adversarial regret bounds in the right-hand column are obtained via a choice of
adaptive step-sizes. The Õ(·) notation hides factors that are polynomial in log T .

Algorithm Setting Regret in games Adversarial regret

Hedge (& many
other algs.)

multi-player,
general-sum O(

√
T log n) [CBL06] O(

√
T log n) [CBL06]

Excessive Gap
Technique

2-player,
0-sum

O(log n(log T + log3/2 n))
[DDK11]

O(
√
T log n)

[DDK11]

DS-OptMD, OptDA 2-player, 0-sum logO(1)(n) [HAM21]
√
T logO(1)(n) [HAM21]

Optimistic Hedge multi-player,
general-sum

O(log n ·
√
m · T 1/4)

[RS13b, SALS15]
Õ(
√
T log n)

[RS13b, SALS15]

Optimistic Hedge 2-player,
general-sum O(log5/6 n · T 1/6) [CP20] Õ(

√
T log n)

Optimistic Hedge multi-player,
general-sum

O(log n ·m · log4 T )
(Theorem 3.1)

Õ(
√
T log n)

(Corollary D.1)

This represents an exponential improvement over the regret guaranteed by standard no-regret learners.
More generally, [SALS15] established that if players of a multi-player, general-sum game use any
algorithm from the family of Optimistic Mirror Descent (MD) or Optimistic Follow-the-Regularized-
Leader (FTRL) algorithms (which are analogoues of the MD and FTRL algorithms, respectively,
with recency bias), each player enjoys regret that is O(T 1/4). This was recently improved by [CP20]
to O(T 1/6) in the special case of two-player games in which the players use Optimistic Hedge, a
particularly simple representative from both the Optimistic MD and Optimistic FTRL families.

The above results for general-sum games represent significant improvements over the O(
√
T ) regret

attainable by standard no-regret learners, but are not as dramatic as the logarithmic regret that has
been shown attainable by no-regret learners, albeit more complex ones, in 2-player zero-sum games
(e.g., [DDK11]). Indeed, despite extensive work on no-regret learning, understanding the optimal
regret that can be guaranteed by no-regret learning algorithms in general-sum games has remained
elusive. This question is especially intruiging in light of experiments suggesting that polylogarithmic
regret should be attainable [SALS15, HAM21]. In this paper we settle this question by showing that
no-regret learners can guarantee polylogarithmic regret to each player in general-sum multi-player
games. Moreover, this regret is attainable by a particularly simple algorithm – Optimistic Hedge:

Theorem 1.1 (Abbreviated version of Theorem 3.1). Suppose that m players play a general-sum
multi-player game, with a finite set of n strategies per player, over T rounds. Suppose also that each
player uses Optimistic Hedge to update her strategy in every round, as a function of the history of
play so far. Then each player experiences O(m · log n · log4 T ) regret.

An immediate corollary of Theorem 1.1 is that the empirical distribution of play is aO
(
m logn log4 T

T

)
-

approximate coarse correlated equilibrium (CCE) of the game. We remark that Theorem 1.1 bounds
the total regret experienced by each player of the multi-player game, which is the most standard
regret objective for no-regret learning in games, and which is essential to achieve convergence to
CCE. For the looser objective of the average of all players’ regrets, [RS13b] established a O(log n)
bound for Optimistic Hedge in two-player zero-sum games, and [SALS15] generalized this bound, to
O(m log n) in m-player general-sum games. Note that since some players may experience negative
regret [HAM21], the average of the players’ regrets cannot be used in general to bound the maximum
regret experienced by any individual player. Finally, we remark that several results in the literature
posit no-regret learning as a model of agents’ rational behavior; for instance, [Rou09, ST13, RST17]
show that no-regret learners in smooth games enjoy strong Price-of-Anarchy bounds. By showing
that each agent can obtain very small regret in games by playing Optimistic Hedge, Theorem 1.1
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strengthens the plausability of the common assumption made in this literature that each agent will
choose to use such a no-regret algorithm.

1.1 Related work
Table 1 summarizes the prior works that aim to establish optimal regret bounds for no-regret learners
in games. We remark that [CP20] shows that the regret of Hedge is Ω(

√
T ) even in 2-player games

where each player has 2 actions, meaning that optimism is necessary to obtain fast rates. The table
also includes a recent result of [HAM21] showing that when the players in a 2-player zero-sum
game with n actions per player use a variant of Optimistic Hedge with adaptive step size (a special
case of their algorithms DS-OptMD and OptDA), each player has logO(1) n regret. The techniques
of [HAM21] differ substantially from ours: the result in [HAM21] is based on showing that the
joint strategies x(t) rapidly converge, pointwise, to a Nash equilibrium x?. Such a result seems
very unlikely to extend to our setting of general-sum games, since finding an approximate Nash
equilibrium even in 2-player games is PPAD-complete [CDT09]. We also remark that the earlier
work [KHSC18] shows that each player’s regret is at most O(log T · log n) when they use a certain
algorithm based on Optimistic MD in 2-player zero-sum games; their technique is heavily tailored to
2-player zero-sum games, relying on the notion of duality in such a setting.

[FLL+16] shows that one can obtain fast rates in games for a broader class of algorithms (e.g.,
including Hedge) if one adopts a relaxed (approximate) notion of optimality. [WL18] uses optimism
to obtain adaptive regret bounds for bandit problems. Many recent papers (e.g., [DP19, GPD20,
LGNPw21, HAM21, WLZL21, AIMM21]) have studied the last-iterate convergence of algorithms
from the Optimistic Mirror Descent family, which includes Optimistic Hedge. Finally, a long
line of papers (e.g., [HMcW+03, DFP+10, KLP11, BCM12, PP16, BP18, MPP18, BP19, CP19,
VGFL+20]) has studied the dynamics of learning algorithms in games. Essentially all of these papers
do not use optimism, and many of them show non-convergence (e.g., divergence or recurrence) of the
iterates of various learning algorithms such as FTRL and Mirror Descent when used in games.

2 Preliminaries
Notation. For a positive integer n, let [n] := {1, 2, . . . , n}. For a finite set S, let ∆(S) denote the
space of distributions on S. For S = [n], we will write ∆n := ∆(S) and interpret elements of ∆n

as vectors in Rn. For a vector v ∈ Rn and j ∈ [n], we denote the jth coordinate of v as v(j). For
vectors v, w ∈ Rn, write 〈v, w〉 =

∑n
j=1 v(j)w(j). The base-2 logarithm of x > 0 is denoted log x.

No-regret learning in games. We consider a game G with m ∈ N players, where player i ∈ [m]
has action space Ai with ni := |Ai| actions. We may assume that Ai = [ni] for each player i. The
joint action space is A := A1 × · · · × Am. The specification of the game G is completed by a
collection of loss functions L1, . . . ,Lm : A → [0, 1]. For an action profile a = (a1, . . . , am) ∈ A
and i ∈ [m], Li(a) is the loss player i experiences when each player i′ ∈ [m] plays ai′ . A mixed
strategy xi ∈ ∆(Ai) for player i is a distribution over Ai, with the probability of playing action
j ∈ Ai given by xi(j). Given a mixed strategy profile x = (x1, . . . , xm) (or an action profile
a = (a1, . . . , am)) and a player i ∈ [m] we let x−i (or a−i, respectively) denote the profile after
removing the ith mixed strategy xi (or the ith action ai, respectively).

The m players play the game G for a total of T rounds. At the beginning of each round t ∈ [T ], each
player i chooses a mixed strategy x(t)

i ∈ ∆(Ai). The loss vector of player i, denoted `(t)i ∈ [0, 1]ni , is
defined as `(t)i (j) = E

a−i∼x(t)
−i

[Li(j, a−i)]. As a matter of convention, set `(0)
i = 0 to be the all-zeros

vector. We consider the full-information setting in this paper, meaning that player i observes its full
loss vector `(t)i for each round t. Finally, player i experiences a loss of 〈`(t)i , x

(t)
i 〉. The goal of each

player i is to minimize its regret, defined as: Regi,T :=
∑
t∈[T ]〈x

(t)
i , `

(t)
i 〉−minj∈[ni]

∑
t∈[T ] `

(t)
i (j).

Optimistic hedge. The Optimistic Hedge algorithm chooses mixed strategies for player i ∈ [m] as
follows: at time t = 1, it sets x(1)

i = (1/ni, . . . , 1/ni) to be the uniform distribution on Ai. Then for
all t < T , player i’s strategy at iteration t+ 1 is defined as follows, for j ∈ [ni]:

x
(t+1)
i (j) :=

x
(t)
i (j) · exp(−η · (2`(t)i (j)− `(t−1)

i (j)))∑
k∈[ni]

x
(t)
i (k) · exp(−η · (2`(t)i (k)− `(t−1)

i (k)))
. (1)
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Optimistic Hedge is a modification of Hedge, which performs the updates x
(t+1)
i (j) :=

x
(t)
i (j)·exp(−η·`(t)i (j))∑

k∈[ni]
x
(t)
i (k)·exp(−η·`(t)i (k))

. The update (1) modifies the Hedge update by replacing the loss vector

`
(t)
i with a predictor of the following iteration’s loss vector, `(t)i + (`

(t)
i − `

(t−1)
i ). Hedge corre-

sponds to FTRL with a negative entropy regularizer (see, e.g., [Bub15]), whereas Optimistic Hedge
corresponds to Optimistic FTRL with a negative entropy regularizer [RS13b, RS13a].
Distributions & divergences. For distributions P,Q on a finite domain [n], the KL divergence

between P,Q is KL(P ;Q) =
∑n
j=1 P (j) · log

(
P (j)
Q(j)

)
. The chi-squared divergence between P,Q

is χ2(P ;Q) =
∑n
j=1Q(j) ·

(
P (j)
Q(j)

)2

− 1 =
∑n
j=1

(P (j)−Q(j))2

Q(j) . For a distribution P on [n] and

a vector v ∈ Rn, we write VarP (v) :=
∑n
j=1 P (j) · (v(j)−

∑n
k=1 P (k)v(k))

2
. Also define

‖v‖P :=
√∑n

j=1 P (j) · v(j)2. If further P has full support, then define ‖v‖?P =
√∑n

j=1
v(j)2

P (j) .
The above notations will often be used when P is the mixed strategy profile xi for some player i and
v is a loss vector `i; in such a case the norms ‖v‖P and ‖v‖?P are often called local norms.

3 Results
Below we state our main theorem, which shows that when all players in a game play according to
Optimistic Hedge with appropriate step size, they all experience polylogarithmic individual regrets.
Theorem 3.1 (Formal version of Theorem 1.1). There are constants C,C ′ > 1 so that the following
holds. Suppose a time horizon T ∈ N and a game G with m players and ni actions for each player
i ∈ [m] is given. Suppose all players play according to Optimistic Hedge with any positive step size
η ≤ 1

C·m log4 T
. Then for any i ∈ [m], the regret of player i satisfies

Regi,T ≤
log ni
η

+ C ′ · log T. (2)

In particular, if the players’ step size is chosen as η = 1
C·m log4 T

, then the regret of player i satisfies

Regi,T ≤ O
(
m · log ni · log4 T

)
. (3)

A common goal in the literature on learning in games is to obtain an algorithm that achieves fast rates
whan played by all players, and so that each player i still obtains the optimal rate of O(

√
T ) in the

adversarial setting (i.e., when i receives an arbitrary sequence of losses `(1)
i , . . . , `

(T )
i ). We show in

Corollary D.1 (in the appendix) that by running Optimistic Hedge with an adaptive step size, this is
possible. Table 1 compares our regret bounds discussed in this section to those of prior work.

4 Proof overview
In this section we overview the proof of Theorem 3.1; the full proof may be found in the appendix.

4.1 New adversarial regret bound
The first step in the proof of Theorem 3.1 is to prove a new regret bound (Lemma 4.1 below) for
Optimistic Hedge that holds for an adversarial sequence of losses. We will show in later sections that
when all players play according to Optimistic Hedge, the right-hand side of the regret bound (4) is
bounded by a quantity that grows only poly-logarithmically in T .
Lemma 4.1. There is a constant C > 0 so that the following holds. Suppose any player i ∈ [m]
follows the Optimistic Hedge updates (1) with step size η < 1/C, for an arbitrary sequence of losses
`
(1)
i , . . . , `

(T )
i ∈ [0, 1]ni . Then

Regi,T ≤
log ni
η

+

T∑
t=1

(η
2

+ Cη2
)

Var
x
(t)
i

(
`
(t)
i − `

(t−1)
i

)
−

T∑
t=1

(1− Cη)η

2
·Var

x
(t)
i

(
`
(t−1)
i

)
. (4)

The detailed proof of Lemma 4.1 can be found in Section A, but we sketch the main steps here. The
starting point is a refinement of [RS13a, Lemma 3] (stated as Lemma A.5), which gives an upper
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bound for Regi,T in terms of local norms corresponding to each of the iterates x(t)
i of Optimistic

Hedge. The bound involves the difference between the Optimistic Hedge iterates x(t)
i and iterates

x̃
(t)
i defined by x̃(t)

i =
x
(t)
i (j)·exp(−η·(`(t)i (j)−`(t−1)

i (j)))∑
k∈[ni]

x
(t)
i (k)·exp(−η·(`(t)i (k)−`(t−1)

i (k)))
:

Regi,T ≤
log ni
η

+

T∑
t=1

∥∥∥x(t)
i − x̃

(t)
i

∥∥∥?
x
(t)
i

√
Var

x
(t)
i

(
`
(t)
i − `

(t−1)
i

)
− 1

η

T∑
t=1

KL(x̃
(t)
i ;x

(t)
i )− 1

η

T∑
t=1

KL(x
(t)
i ; x̃

(t−1)
i ).

(5)

We next show (in Lemma A.2) that KL(x̃
(t)
i ;x

(t)
i ) and KL(x

(t)
i ; x̃

(t−1)
i ) may be lower bounded by

(1/2−O(η)) · χ2(x̃
(t)
i ;x

(t)
i ) and (1/2−O(η)) · χ2(x

(t)
i ; x̃

(t−1)
i ), respectively. Note it is a standard

fact that the KL divergence between two distributions is upper bounded by the chi-squared distribution
between them; by contrast, Lemma A.2 can exploit that x(t)

i , x̃(t)
i and x̃(t−1)

i are close to each other
to show a reverse inequality. Finally, exploiting the exponential weights-style functional relationship
between x(t)

i and x̃(t−1)
i , we show (in Lemma A.3) that the χ2-divergence χ2(x

(t)
i ; x̃

(t−1)
i ) may be

lower bounded by (1−O(η)) · η2 ·Var
x
(t)
i

(
`
(t−1)
i

)
, leading to the term (1−Cη)η

2 Var
x
(t)
i

(
`
(t−1)
i

)
being subtracted in (4). The χ2-divergence χ2(x̃

(t)
i ;x

(t)
i ), as well as the term

∥∥∥x(t)
i − x̃

(t)
i

∥∥∥?
x
(t)
i

in (5)

are bounded in a similar manner to obtain (4).

4.2 Finite differences
Given Lemma 4.1, in order to establish Theorem 3.1, it suffices to show Lemma 4.2 below. Indeed,
(6) below implies that the right-hand side of (4) is bounded above by logni

η + η ·O(log5 T ), which is

bounded above by O(m log ni log4 T ) for the choice η = Θ
(

1
m·log4 T

)
of Theorem 3.1.2

Lemma 4.2 (Abbreviated; detailed version in Section C.3). Suppose all players play according to
Optimistic Hedge with step size η satifying 1/T ≤ η ≤ 1

Cm·log4 T
for a sufficiently large constant C.

Then for any i ∈ [m], the losses `(1)
i , . . . , `

(T )
i ∈ Rni for player i satisfy:

T∑
t=1

Var
x
(t)
i

(
`
(t)
i − `

(t−1)
i

)
≤ 1

2
·
T∑
t=1

Var
x
(t)
i

(
`
(t−1)
i

)
+O

(
log5 T

)
. (6)

The definition below allows us to streamline our notation when proving Lemma 4.2.

Definition 4.1 (Finite differences). SupposeL = (L(1), . . . , L(T )) is a sequence of vectorsL(t) ∈ Rn.
For integers h ≥ 0, the order-h finite difference sequence for the sequence L, denoted by Dh L, is the
sequence Dh L := ((Dh L)

(1)
, . . . , (Dh L)

(T−h)
) defined recursively as: (D0 L)

(t)
:= L(t) for all

1 ≤ t ≤ T , and
(Dh L)

(t)
:= (Dh−1 L)

(t+1) − (Dh−1 L)
(t) (7)

for all h ≥ 1, 1 ≤ t ≤ T − h.3

Remark 4.3. Notice that another way of writing (7) is: Dh L = D1 Dh−1 L. We also remark for
later use that (Dh L)

(t)
=
∑h
s=0

(
h
s

)
(−1)h−sL(t+s).

Let H = log T , where T denotes the fixed time horizon from Theorem 3.1 (and thus Lemma 4.2). In
the proof of Lemma 4.2, we will bound the finite differences of order h ≤ H for certain sequences.
The bound (6) of Lemma 4.2 may be rephased as upper bounding

∑T
t=1 Var

x
(t)
i

(
(D1 `i)

(t−1)
)

, by

1
2

∑T
t=1 Varxi

(
`
(t−1)
i

)
; to prove this, we proceed in two steps:

2Notice that the factor 1
2

in (6) is not important for this argument – any constant less than 1 would suffice.
3We remark that while Definition 4.1 is stated for a 1-indexed sequence L(1), L(2), . . ., we will also occa-

sionally consider 0-indexed sequences L(0), L(1), . . ., in which case the same recursive definition (7) holds for
the finite differences (Dh L)(t), t ≥ 0.
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1. (Upwards induction step) First, in Lemma 4.4 below, we find an upper bound on
∥∥∥(Dh `i)

(t)
∥∥∥
∞

for all t ∈ [T ], h ≥ 0, which decays exponentially in h for h ≤ H . This is done via upwards
induction on h, i.e., first proving the base case h = 0 using boundedness of the losses `(t)i and then
h = 1, 2, . . . inductively. The main technical tool we develop for the inductive step is a weak form
of the chain rule for finite differences, Lemma 4.5. The inductive step uses the fact that all players
are following Optimistic Hedge to relate the hth order finite differences of player i’s loss sequence
`
(t)
i to the hth order finite differences of the strategy sequences x(t)

i′ for players i′ 6= i; then we use
the exponential-weights style updates of Optimistic Hedge and Lemma 4.5 to relate the hth order
finite differences of the strategies x(t)

i′ to the (h− 1)th order finite differences of the losses `(t)i′ .
2. (Downwards induction step) We next show that for all 0 ≤ h ≤ H ,∑T

t=1 Var
x
(t)
i

(
(Dh+1 `i)

(t−1)
)

is bounded above by ch ·
∑T
t=1 Var

x
(t)
i

(
(Dh `i)

(t−1)
)

+ µh,

for some ch < 1/2 and µh < O(log5 T ). This shown via downwards induction on h, namely first
establishing the base case h = H by using the result of item 1 for h = H and then treating the
cases h = H − 1, H − 2, . . . , 0. The inductive step makes use of the discrete Fourier transform
(DFT) to relate the finite differences of different orders (see Lemmas 4.7 and 4.8). In particular,
Parseval’s equality together with a standard relationship between the DFT of the finite differences
of a sequence to the DFT of that sequence allow us to first prove the inductive step in the frequency
domain and then transport it back to the original (time) domain.

In the following subsections we explain in further detail how the two steps above are completed.

4.3 Upwards induction proof overview
Addressing item 1 in the previous subsection, the lemma below gives a bound on the supremum norm
of the h-th order finite differences of each player’s loss vector, when all players play according to
Optimistic Hedge and experience losses according to their loss functions L1, . . . ,Lm : A → [0, 1].

Lemma 4.4 (Abbreviated). Fix a step size η > 0 satisfying η ≤ o
(

1
m log T

)
. If all players

follow Optimistic Hedge updates with step size η, then for any player i ∈ [m], integer h satisfying
0 ≤ h ≤ H , and time step t ∈ [T − h], it holds that ‖ (Dh `i)

(t) ‖∞ ≤ O(mη)h · hO(h).

A detailed version of Lemma 4.4, together with its full proof, may be found in Section B.4. We next
give a proof overview of Lemma 4.4 for the case of 2 players, i.e., m = 2; we show in Section B.4
how to generalize this computation to general m. Below we introduce the main technical tool in the
proof, a “boundedness chain rule,” and then outline how it is used to prove Lemma 4.4.
Main technical tool for Lemma 4.4: boundedness chain rule. We say that a function φ : Rn → R
is a softmax-type function if there are real numbers ξ1, . . . , ξn and some j ∈ [n] so that for all
(z1, . . . , zn) ∈ Rn, φ((z1, . . . , zn)) =

exp(zj)∑n
k=1 ξk·exp(zk) . Lemma 4.5 below may be interpreted as a

“boundedness chain rule” for finite differences. To explain the context for this lemma, recall that given
an infinitely differentiable vector-valued functionL : R→ Rn and an infinitely differentiable function
φ : Rn → R, the higher order derivatives of the function φ(L(t)) may be computed in terms of those
of L and φ using the chain rule. Lemma 4.5 considers an analogous setting where the input variable
t to L is discrete-valued, taking values in [T ] (and so we identify the function L with the sequence
L(1), . . . , L(T )). In this case, the higher order finite differences of the sequence L(1), . . . , L(T )

(Definition 4.1) take the place of the higher order derivatives of L with respect to t. Though there is
no generic chain rule for finite differences, Lemma 4.5 states that, at least when φ is a softmax-type
function, we may bound the higher order finite differences of the sequence φ(L(1)), . . . , φ(L(T )). In
the lemma’s statement we let φ ◦ L denote the sequence φ(L(1)), . . . , φ(L(T )).
Lemma 4.5 (“Boundedness chain rule” for finite differences; abbreviated). Suppose that h, n ∈ N,
φ : Rn → R is a softmax-type function, and L = (L(1), . . . , L(T )) is a sequence of vectors in
Rn satisfying ‖L(t)‖∞ ≤ 1 for t ∈ [T ]. Suppose for some α ∈ (0, 1), for each 0 ≤ h′ ≤ h and
t ∈ [T − h′], it holds that ‖Dh′ L

(t)‖∞ ≤ O(αh
′
) · (h′)O(h′). Then for all t ∈ [T − h],

| (Dh (φ ◦ L))
(t) | ≤ O(αh) · hO(h).

A detailed version of Lemma 4.5 may be found in Section B.3. While Lemma 4.5 requires φ to be a
softmax-type function for simplicity (and this is the only type of function φ we will need to consider
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for the case m = 2) we remark that the detailed version of Lemma 4.5 allows φ to be from a more
general family of analytic functions whose higher order derivatives are appropriately bounded. The
proof of Lemma 4.4 for all m ≥ 2 requires that more general form of Lemma 4.5.

The proof of Lemma 4.5 proceeds by considering the Taylor expansion Pφ(·) of the function φ at the
origin, which we write as follows: for z = (z1, . . . , zn) ∈ Rn, Pφ(z) :=

∑
k≥0,γ∈Zn≥0

: |γ|=k aγz
γ ,

where aγ ∈ R, |γ| denotes the quantity γ1 + · · ·+ γn and zγ denotes zγ11 · · · zγnn . The fact that φ is
a softmax-type function ensures that the radius of convergence of its Taylor series is at least 1, i.e.,
φ(z) = Pφ(z) for any z satisfying ‖z‖∞ ≤ 1. By the assumption that ‖L(t)‖∞ ≤ 1 for each t, we
may therefore decompose (Dh (φ ◦ L))

(t) as:

(Dh (φ ◦ L))
(t)

=
∑

k≥0,γ∈Zn≥0
: |γ|=k

aγ · (Dh L
γ)

(t)
, (8)

where Lγ denotes the sequence of scalars (Lγ)(t) := (L(t))γ for all t. The fact that φ is a softmax-
type function allows us to establish strong bounds on |aγ | for each γ in Lemma B.5. The proof
of Lemma B.5 bounds the |aγ | by exploiting the simple form of the derivative of a softmax-type
function to decompose each aγ into a sum of |γ|! terms. Then we establish a bijection between the
terms of this decomposition and graph structures we refer to as factorial trees; that bijection together
with the use of an appropriate generating function allow us to complete the proof of Lemma B.5.

Thus, to prove Lemma 4.5, it suffices to bound
∣∣∣(Dh L

γ)
(t)
∣∣∣ for all γ. We do so by using Lemma 4.6.

Lemma 4.6 (Abbreviated; detailed vesion in Section B.2). Fix any h ≥ 0, a multi-index γ ∈ Zn≥0

and set k = |γ|. For each of the kh functions π : [h]→ [k], and for each r ∈ [k], there are integers
h′π,r ∈ {0, 1, . . . , h}, t′π,r ≥ 0, and j′π,r ∈ [n], so that the following holds. For any sequence
L(1), . . . , L(T ) ∈ Rn of vectors, it holds that, for each t ∈ [T − h],

(Dh L
γ)

(t)
=

∑
π:[h]→[k]

k∏
r=1

(
Dh′π,r

(L(j′π,r))
)(t+t′π,r)

. (9)

Lemma 4.6 expresses the hth order finite differences of the sequence Lγ as a sum of kh terms, each
of which is a product of k finite order differences of a sequence L(t)(j′π,r) (i.e., the j′π,rth coordinate
of the vectors L(t)). Crucially, when using Lemma 4.6 to prove Lemma 4.5, the assumption of
Lemma 4.5 gives that for each j′ ∈ [n], each h′ ∈ [h], and each t′ ∈ [T − h′], we have the bound∣∣∣(Dh′ L(j′))

(t′)
∣∣∣ ≤ O(αh

′
) · (h′)O(h′). These assumed bounds may be used to bound the right-hand

side of (9), which together with Lemma 4.6 and (8) lets us complete the proof of Lemma 4.5.
Proving Lemma 4.4 using the boundedness chain rule. Next we discuss how Lemma 4.5 is used
to prove Lemma 4.4, namely to bound ‖ (Dh `i)

(t) ‖∞ for each t ∈ [T −h], i ∈ [m], and 0 ≤ h ≤ H .
Lemma 4.4 is proved using induction, with the base case h = 0 being a straightforward consequence
of the fact that ‖ (D0 `i)

(t) ‖∞ = ‖`(t)i ‖∞ ≤ 1 for all i ∈ [m], t ∈ [T ]. For the rest of this section we
focus on the inductive case, i.e., we pick some h ∈ [H] and assume Lemma 4.4 holds for all h′ < h.

The first step is to reduce the claim of Lemma 4.4 to the claim that the upper bound ‖ (Dh xi)
(t) ‖1 ≤

O (mη)
h · hO(h) holds for each t ∈ [T − h], i ∈ [m]. Recalling that we are only sketching here

the case m = 2 for simplicity, this reduction proceeds as follows: for i ∈ {1, 2}, define the matrix
Ai ∈ Rn1×n2 by (Ai)a1a2 = Li(a1, a2), for a1 ∈ [n1], a2 ∈ [n2]. We have assumed that all
players are using Optimistic Hedge and thus `(t)i = E

ai′∼x
(t)

i′ , ∀i
′ 6=i[Li(a1, . . . , an)]; for our case

here (m = 2), this may be rewritten as `(t)1 = A1x
(t)
2 , `(t)2 = A>2 x

(t)
1 . Thus

‖ (Dh `1)
(t) ‖∞ =

∥∥∥∥∥A1 ·
h∑
s=0

(
h

s

)
(−1)h−sx

(t+s)
2

∥∥∥∥∥
∞

≤

∥∥∥∥∥
h∑
s=0

(
h

s

)
(−1)h−sx

(t+s)
2

∥∥∥∥∥
1

= ‖ (Dh x2)
(t) ‖1,

where the first equality is from Remark 4.3 and the inequality follows since all entries of A1 have
absolute value ≤ 1. A similar computation allows us to show ‖ (Dh `2)

(t) ‖∞ ≤ ‖ (Dh x1)
(t) ‖1.

7



To complete the inductive step it remains to upper bound the quantities ‖ (Dh xi)
(t) ‖1 for i ∈ [m], t ∈

[T − h]. To do so, we note that the definition of the Optimistic Hedge updates (1) implies that for any
i ∈ [m], t ∈ [T ], j ∈ [ni], and t′ ≥ 1, we have

x
(t+t′)
i (j) =

x
(t)
i (j) · exp

(
η ·
(
`
(t−1)
i (j)−

∑t′−1
s=0 `

(t+s)
i (j)− `(t+t

′−1)
i (j)

))
∑ni
k=1 x

(t)
i (k) · exp

(
η ·
(
`
(t−1)
i (k)−

∑t′−1
s=0 `

(t+s)
i (k)− `(t+t

′−1)
i (k)

)) . (10)

For t ∈ [T ], t′ ≥ 0, set ¯̀(t
′)

i,t := η ·
(
`
(t−1)
i −

∑t′−1
s=0 `

(t+s)
i − `(t+t

′−1)
i

)
. Also, for each i ∈ [m], j ∈

[ni], t ∈ [T ], and any vector z = (z(1), . . . , z(ni)) ∈ Rni define φt,i,j(z) :=
x
(t)
i (j)·exp(z(j))∑ni

k=1 x
(t)
i (k)·exp(z(k))

.

Thus (10) gives that for t′ ≥ 1, x(t+t′)
i (j) = φt,i,j(¯̀(t

′)
i,t ). Viewing t as a fixed parameter and letting

t′ vary, it follows that for h ≥ 0 and t′ ≥ 1,
(

Dh x
(t+·)
i (j)

)(t′)

=
(
Dh (φt,i,j ◦ ¯̀

i,t)
)(t′)

.

Recalling that our goal is to bound | (Dh xi(j))
(t+1) | for each t, we can do so by using Lemma

4.5 with φ = φt,i,j and α = O(mη), if we can show that its precondition is met, i.e. that

‖
(
Dh′

¯̀
i,t

)(t′) ‖∞ ≤ 1
B1
· αh′ · (h′)B0h

′
for all h′ ≤ h, the appropriate α and appropriate con-

stants B0, B1. Helpfully, the definition of ¯̀(t
′)

i,t as a partial sum allows us to relate the h′-th order

finite differences of the sequence ¯̀(t
′)

i,t to the (h′ − 1)-th order finite differences of the sequence `(t)i
as follows: (

Dh′
¯̀
i,t

)(t′)
= η · (Dh′−1 `i)

(t+t′−1) − 2η · (Dh′−1 `i)
(t+t′)

. (11)

Since h′ − 1 < h for h′ ≤ h, the inductive assumption of Lemma 4.4 gives a bound on the `∞-norm
of the terms on the right-hand side of (11), which are sufficient for us to apply Lemma 4.5. Note that
the inductive assumption gives an upper bound on ‖ (Dh′−1 `i)

(t) ‖∞ that only scales with αh
′−1,

whereas Lemma 4.5 requires scaling of αh
′
. This discrepancy is corrected by the factor of η on the

right-hand side of (11), which gives the desired scaling αh
′

(since η < α for the choice α = O(mη)).

4.4 Downwards induction proof overview
In this section we discuss in further detail item 2 in Section 4.2; in particular, we will show that there
is a parameter µ = Θ̃(ηm) so that for all integers h satisfying H − 1 ≥ h ≥ 0,

T−h−1∑
t=1

Var
x
(t)
i

(
(Dh+1 `i)

(t)
)
≤ O(1/H) ·

T−h∑
t=1

Var
x
(t)
i

(
(Dh `i)

(t)
)

+ Õ
(
µ2h
)
, (12)

where Õ hides factors polynomial in log T . The validity of (12) for h = 0 implies Lemma 4.2. On
the other hand, as long we choose the value µ in (12) to satisfy µ ≥ mηHΩ(1), then Lemma 4.4
implies that

∑T−H
t=1 Var

x
(t)
i

(
(DH `i)

(t)
)
≤ O(µ2H). This gives that (12) holds for h = H − 1.

To show that (12) holds for all H − 1 > h ≥ 0, we use downwards induction; fix any h, and
assume that (12) has been shown for all h′ satisfying h < h′ ≤ H − 1. Our main tool in the
inductive step is to apply Lemma 4.7 below. To state it, for ζ > 0, n ∈ N, we say that a sequence
of distributions P (1), . . . , P (T ) ∈ ∆n is ζ-consecutively close if for each 1 ≤ t < T , it holds that
max

{∥∥∥ P (t)

P (t+1)

∥∥∥
∞
,
∥∥∥P (t+1)

P (t)

∥∥∥
∞

}
≤ 1 + ζ.4 Lemma 4.7 shows that given a sequence of vectors for

which the variances of its second-order finite differences are bounded by the variances of its first-order
finite differences, a similar relationship holds between its first- and zeroth-order finite differences.
Lemma 4.7. There is a sufficiently large constant C0 > 1 so that the following holds. For any
M, ζ, α > 0 and n ∈ N, suppose that P (1), . . . , P (T ) ∈ ∆n and Z(1), . . . , Z(T ) ∈ [−M,M ]n

satisfy the following conditions:

1. The sequence P (1), . . . , P (T ) is ζ-consecutively close for some ζ ∈ [1/(2T ), α4/C0].

2. It holds that
∑T−2
t=1 VarP (t)

(
(D2 Z)

(t)
)
≤ α ·

∑T−1
t=1 VarP (t)

(
(D1 Z)

(t)
)

+ µ.

4Here, for distributions P,Q ∈ ∆n, P
Q
∈ Rn denotes the vector whose jth entry is P (j)/Q(j).
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Then
∑T−1
t=1 VarP (t)

(
(D1 Z)

(t)
)
≤ α · (1 + α)

∑T
t=1 VarP (t)

(
Z(t)

)
+ µ

α + C0M
2

α3 .

Given Lemma 4.7, the inductive step for establishing (12) is straightforward: we apply Lemma 4.7
with P (t) = x

(t)
i and Z(t) = (Dh `i)

(t) for all t. The fact that x(t)
i are updated with Optimistic Hedge

may be used to establish that precondition 1 of Lemma 4.7 holds. Since (D1 Z)
(t)

= (Dh+1 `i)
(t) and

(D2 Z)
(t)

= (Dh+2 `i)
(t), that the inductive hypothesis (12) holds for h+ 1 implies that precondition

2 of Lemma 4.7 holds for appropriate α, µ > 0. Thus Lemma 4.7 implies that (12) holds for the
value h, which completes the inductive step.
On the proof of Lemma 4.7. Finally we discuss the proof of Lemma 4.7. One technical challenge
is the fact that the vectors P (t) are not constant functions of t, but rather change slowly (as constrained
by being ζ-consecutively close). The main tool for dealing with this difficulty is Lemma C.1, which

shows that for a ζ-consecutively close sequence P (t), for any vector Z(t),
Var

P (t)(Z(t))
Var

P (t+1)(Z(t))
∈ [1−ζ, 1+

ζ]. This fact, together with some algebraic manipulations, lets us to reduce to the case that all P (t) are
equal. It is also relatively straightforward to reduce to the case that 〈P (t), Z(t)〉 = 0 for all t, i.e., so
that VarP (t)

(
Z(t)

)
=
∥∥Z(t)

∥∥2

P (t) . We may further separate
∥∥Z(t)

∥∥2

P (t) =
∑n
j=1 P

(t)(j) · (Z(t)(j))2

into its individual components P (t)(j) · (Z(t)(j))2, and treat each one separately, thus allowing us to
reduce to a one-dimensional problem. Finally, we make one further reduction, which is to replace the
finite differences Dh (·) in Lemma 4.7 with circular finite differences, defined below:

Definition 4.2 (Circular finite difference). Suppose L = (L(0), . . . , L(S−1)) is a sequence of vectors
L(t) ∈ Rn. For integers h ≥ 0, the level-h circular finite difference sequence for the sequence L,
denoted by D◦h L, is the sequence defined recursively as: (D◦0 L)

(t)
= L(t) for all 0 ≤ t < S, and

(D◦h L)
(t)

=

{(
D◦h−1 L

)(t+1) −
(
D◦h−1 L

)(t)
: 0 ≤ t ≤ S − 2(

D◦h−1 L
)(1) −

(
D◦h−1 L

)(T )
: t = S − 1.

(13)

Circular finite differences for a sequence L(0), . . . , L(S−1) are defined similarly to finite differences
(Definition 4.1) except that unlike for finite differences, where (Dh L)

(S−h)
, . . . , (Dh L)

(S−1) are
not defined, (D◦h L)

(S−h)
, . . . , (D◦h L)

(S−1) are defined by “wrapping around” back to the beginning
of the sequence. The above-described reductions, which are worked out in detail in Section C.2,
allow us to reduce proving Lemma 4.7 to proving the following simpler lemma:
Lemma 4.8. Suppose µ ∈ R, α > 0, and W (0), . . . ,W (S−1) ∈ R is a sequence of reals satisfying

S−1∑
t=0

(
(D◦2 W )

(t)
)2

≤ α ·
S−1∑
t=0

(
(D◦1 W )

(t)
)2

+ µ. (14)

Then
∑S−1
t=0

(
(D◦1 W )

(t)
)2

≤ α ·
∑S−1
t=1 (W (t))2 + µ/α.

To prove Lemma 4.8, we apply the discrete Fourier transform to both sides of (14) and use the Cauchy-
Schwarz inequality in frequency domain. For a sequence W (0), . . . ,W (S−1) ∈ R, its (discrete)
Fourier transform is the sequence Ŵ (0), . . . , Ŵ (S−1) defined by Ŵ (s) =

∑S−1
t=0 W

(t) · e− 2πist
S .

Below we prove Lemma 4.8 for the special case µ = 0; we defer the general case to Section C.1.

Proof of Lemma 4.8 for special case µ = 0. We have the following:

S ·
T∑
t=1

(
(D◦1 W )

(t)
)2

=

T∑
s=1

∣∣∣∣D̂◦1 W (s)
∣∣∣∣2 =

T∑
s=1

∣∣∣Ŵ (s)(e2πis/T−1)
∣∣∣2 ≤

√√√√ T∑
s=1

∣∣∣Ŵ (s)
∣∣∣2
√√√√ T∑

s=1

∣∣∣Ŵ (s)
∣∣∣2 ∣∣e2πis/T − 1

∣∣4,
where the first equality uses Parseval’s equality, the second uses Fact C.3 (in the appendix) for h = 1,
and the inequality uses Cauchy-Schwarz. By Parseval’s inequality and Fact C.3 for h = 2, the right-

hand side of the above equals S ·
√∑T

t=1(W (t))2 ·
√∑T

t=1

(
(D◦2 W )

(t)
)2

, which, by assumption, is

at most S ·
√∑T

t=1(W (t))2 ·
√
α ·
∑T
t=1

(
(D◦1 W )

(t)
)2

. Rearranging terms completes the proof.
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A Proofs for Section 4.1

In this section we prove Lemma 4.1. Throughout the section we use the notation of Lemma 4.1: in
particular, we assume that any player i ∈ [m] follows the Optimistic Hedge updates (1) with step size
η > 0, for an arbitrary sequence of losses `(1)

i , . . . , `
(T )
i .

A.1 Preliminary lemmas

The first few lemmas in this section pertain to vectors P,Q ∈ ∆n, for some n ∈ N; note that such
vectors P,Q may be viewed as distributions on [n]. Let P/Q ∈ Rn denote the Radon-Nikodym
derivative, i.e., the vector whose jth component is P (j)/Q(j).
Lemma A.1. If ‖P/Q‖∞ ≤ A, then χ2(P ;Q) ≤ A · χ2(Q;P ).

Proof. The lemma is immediate from the definition of the χ2 divergence:

χ2(P ;Q) =

n∑
j=1

(P (j)−Q(j))2

Q(j)
≤ A ·

n∑
j=1

(P (j)−Q(j))2

P (j)
= A · χ2(Q;P ).

It is a standard fact (though one which we do not need in our proofs) that for all P,Q ∈ ∆ni ,
KL(P ;Q) ≤ χ2(P ;Q). The below lemma shows an inequality in the opposite direction when
‖P/Q‖∞, ‖Q/P‖∞ are bounded:
Lemma A.2. There is a constant C so that the following holds. Suppose that for A ≤ 3

2 we have
‖P/Q‖∞ ≤ A and ‖Q/P‖∞ ≤ A. Then (1/2− C(A− 1)) · χ2(P ;Q) ≤ KL(P ;Q).

Proof. There is a constant C > 0 so that for any 0 < β ≤ 1/2, for all |x| ≤ β, we have

log(1 + x) ≥ x− (1/2 + Cβ)x2.

Set a = A− 1, so that |P (j)/Q(j)− 1| ≤ a for all j by assumption. Then for C ′ = C + 1/2, we
have

KL(P ;Q) =
∑
j

P (j) log
P (j)

Q(j)

≥
∑
j

P (j) ·

((
P (j)

Q(j)
− 1

)
− (1/2 + Ca)

(
P (j)

Q(j)
− 1

)2
)

≥ χ2(P ;Q)− (1/2 + Ca)
∑
j

P (j) · (P (j)−Q(j))2

Q(j)2

≥ χ2(P ;Q)− 1/2 + Ca

A
χ2(P ;Q)

≥ 1/2− aC
1 + a

· χ2(P ;Q)

≥ (1/2− a · (C + 1/2)) · χ2(P ;Q)

= (1/2− C ′a) · χ2(P ;Q).

The next lemma considers two vectors x, x′ ∈ ∆n which are related by a multiplicative weights-style
update with loss vector w ∈ Rn; the lemma relates χ2(x′;x) to ‖w‖2x.
Lemma A.3. There is a constant C > 0 so that the following holds. Suppose that w ∈ Rn, α > 0,
‖w‖∞ ≤ α/2 ≤ 1/C, and x, x′ ∈ ∆n satisfy, for each j ∈ [n],

x′(j) =
x(j) · exp(w(j))∑

k∈[n] x(k) · exp(w(k))
. (15)

Then
(1− Cα) ·Varx (w) ≤ χ2(x′;x) ≤ (1 + Cα) Varx (w) .
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Proof. Let w′ = w − 〈x,w〉1, where 1 denotes the all-1s vector. Note that Varx (w) = Varx (w′),
and that if we replace w with w′, (15) remains true. Moreover, ‖w′‖∞ ≤ 2‖w‖∞ ≤ α. Thus, by
replacing w with w′, we may assume from here on that 〈w, x〉 = 0 and that ‖w‖ ≤ α.

Note that

χ2(x′;x) = −1 +

n∑
i=1

x(i) · (x′(i)/x(i))2 = −1 + E
(

exp(W )

E exp(W )

)2

,

where W is a random variable that takes values w(j) with probability x(j). As long as C is a
sufficiently large constant, we have that, for all z satisfying |z| ≤ α,

1 + z + (1− Cα)z2/2 ≤ exp(z) ≤ 1 + z + (1 + Cα)z2/2. (16)

Thus, for a sufficiently large constant C ′0, we have, for all z satisfying |z| ≤ α,

1 + 2z + (2− C ′0α)z2 ≤ exp(z)2 ≤ 1 + 2z + (2 + C ′0α)z2. (17)

Moreover, since EW = 0, we have from (16) that 1 + (1− Cα)EW 2/2 ≤ E exp(W ) ≤ 1 + (1 +
Cα)EW 2/2. For a sufficiently large constant C ′1 it follows that

1 + (1− C ′1α)EW 2 ≤ (E exp(W ))2 ≤ 1 + (1 + C ′1α)EW 2. (18)

Combining (17) and (18) and again using the fact that EW = 0, we get, for some sufficiently large
constant C ′′, as long as α < 1/C ′1,

(1− C ′′α)EW 2 ≤− 1 +
1 + (2− C ′0α)EW 2

1 + (1 + C ′1α)EW 2

≤− 1 +
E(exp(W )2)

(E exp(W ))2

≤− 1 +
1 + (2 + C ′0α)EW 2

1 + (1− C ′1α)EW 2

≤(1 + C ′′α)EW 2.

By the assumption that 〈w, x〉 = 0, we have EW 2 = Varx (w), and thus the above gives the desired
result.

We will need the following standard lemma:
Lemma A.4 ([RS13a], Eq. (26)). For any n ∈ N, ` ∈ Rn, y ∈ ∆n, if it holds that x =
arg minx′∈∆n〈x′, `〉+ KL(x′; y), then for any z ∈ ∆n,

〈x− z, `〉 ≤ KL(z; y)−KL(z;x)−KL(x; y).

For t ∈ [T ], we define the vector x̃(t)
i ∈ ∆ni by

x̃
(t)
i (j) :=

x
(t)
i (j) · exp(−η · (`(t)i (j)− `(t−1)

i (j)))∑
k∈[ni]

x
(t)
i (k) · exp(−η · (`(t)i (k)− `(t−1)

i (k)))
. (19)

Additionally define x̃(0)
i := (1/ni, . . . , 1/ni) to be the uniform distribution over [ni].

The next lemma, Lemma A.5 is very similar to [RS13a, Lemma 3], and is indeed essentially shown in
the course of the proof of that lemma. Note that no boundedness assumption is placed on the vectors
`
(t)
i in Lemma A.5. For completeness we provide a full proof of the lemma.

Lemma A.5 (Refinement of Lemma 3, [RS13a]). Suppose that any player i ∈ [m] follows the
Optimistic Hedge updates (1) with step size η > 0, for an arbitrary sequence of losses `(1)

i , . . . , `
(T )
i ∈

Rni . For any vector x? ∈ ∆ni , it holds that

T∑
t=1

〈x(t)
i − x

?, `
(t)
i 〉 ≤

log ni
η

+

T∑
t=1

∥∥∥x(t)
i − x̃

(t)
i

∥∥∥?
x
(t)
i

√
Var

x
(t)
i

(
`
(t)
i − `

(t−1)
i

)
− 1

η

T∑
t=1

KL(x̃
(t)
i ;x

(t)
i )− 1

η

T∑
t=1

KL(x
(t)
i ; x̃

(t−1)
i ).

(20)
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Proof. For any x? ∈ ∆ni , it holds that

〈x(t)
i − x

?, `
(t)
i 〉 = 〈x(t)

i − x̃
(t)
i , `

(t)
i − `

(t−1)
i 〉+ 〈x(t)

i − x̃
(t)
i , `

(t−1)
i 〉+ 〈x̃(t)

i − x
?, `

(t)
i 〉. (21)

For t ∈ [T ], set c(t) = 〈x(t)
i , `

(t)
i − `

(t−1)
i 〉. Using the definition of the dual norm and the fact

〈x(t)
i − x̃

(t)
i ,1〉 = 0, we have

〈x(t)
i − x̃

(t)
i , `

(t)
i − `

(t−1)
i 〉 =〈x(t)

i − x̃
(t)
i , `

(t)
i − `

(t−1)
i − c(t)1〉

≤
∥∥∥x(t)

i − x̃
(t)
i

∥∥∥?
x
(t)
i

·
∥∥∥`(t)i − `(t−1)

i − c(t)1
∥∥∥
x
(t)
i

≤
∥∥∥x(t)

i − x̃
(t)
i

∥∥∥?
x
(t)
i

·
√

Var
x
(t)
i

(
`
(t)
i − `

(t−1)
i

)
. (22)

It is immediate from the definitions of x̃(t)
i (in (19)) and x(t)

i (in (1)) that for j ∈ [ni],

x
(t)
i (j) =

x̃
(t−1)
i (j) · exp(−η · `(t−1)

i (j))∑
k∈[ni]

x̃
(t−1)
i (k) · exp(−η · `(t−1)

i (k))
= arg min

x∈∆ni

〈
x, η · `(t−1)

i

〉
+ KL(x; x̃

(t−1)
i )

(23)

Using Lemma A.4 with x = x
(t)
i , ` = η`

(t−1)
i , y = x̃

(t−1)
i , z = x̃

(t)
i , we obtain

〈x(t)
i − x̃

(t)
i , `

(t−1)
i 〉 ≤ 1

η
KL(x̃

(t)
i ; x̃

(t−1)
i )− 1

η
KL(x̃

(t)
i ;x

(t)
i )− 1

η
KL(x

(t)
i ; x̃

(t−1)
i ). (24)

Next, we note that, again by (19) and (1), for j ∈ [ni],

x̃
(t)
i (j) =

x̃
(t−1)
i (j) · exp(−η · `(t)i (j))∑

k∈[ni]
x̃

(t−1)
i (k) · exp(−η · `(t)i (k))

= arg min
x∈∆ni

〈
x, η · `(t)i

〉
+ KL(x; x̃

(t−1)
i ).

Using Lemma A.4 with x = x̃
(t)
i , ` = η`

(t)
i , y = x̃

(t−1)
i , z = x?, we obtain

〈x̃(t)
i − x

?, `
(t)
i 〉 ≤

1

η
KL(x?; x̃

(t−1)
i )− 1

η
KL(x?; x̃

(t)
i )− 1

η
KL(x̃

(t)
i ; x̃

(t−1)
i ). (25)

By (21), (22), (24), and (25), we have

〈x(t)
i − x

?, `
(t)
i 〉 ≤

∥∥∥x(t)
i − x̃

(t)
i

∥∥∥?
x
(t)
i

·
√

Var
x
(t)
i

(
`
(t)
i − `

(t−1)
i

)
+

1

η
KL(x̃

(t)
i ; x̃

(t−1)
i )− 1

η
KL(x̃

(t)
i ;x

(t)
i )− 1

η
KL(x

(t)
i ; x̃

(t−1)
i )

+
1

η
KL(x?; x̃

(t−1)
i )− 1

η
KL(x?; x̃

(t)
i )− 1

η
KL(x̃

(t)
i ; x̃

(t−1)
i )

=
∥∥∥x(t)

i − x̃
(t)
i

∥∥∥?
x
(t)
i

·
√

Var
x
(t)
i

(
`
(t)
i − `

(t−1)
i

)
+

1

η
KL(x?; x̃

(t−1)
i )− 1

η
KL(x?; x̃

(t)
i )

− 1

η
KL(x̃

(t)
i ;x

(t)
i )− 1

η
KL(x

(t)
i ; x̃

(t−1)
i ). (26)

The statement of the lemma follows by summing (26) over t ∈ [T ] and using the fact that for any
choice of x?, KL(x?;x

(0)
i ) ≤ log ni.

A.2 Proof of Lemma 4.1

Now we are ready to prove Lemma 4.1. For convenience we restate the lemma.
Lemma 4.1 (restated). There is a constant C > 0 so that the following holds. Suppose any player
i ∈ [m] follows the Optimistic Hedge updates (1) with step size 0 < η < 1/C, for an arbitrary
sequence of losses `(1)

i , . . . , `
(T )
i ∈ [0, 1]ni . Then for any vector x? ∈ ∆ni , it holds that

T∑
t=1

〈x(t)
i − x

?, `
(t)
i 〉 ≤

log ni
η

+

T∑
t=1

(η
2

+ Cη2
)

Var
x
(t)
i

(
`
(t)
i − `

(t−1)
i

)
−

T∑
t=1

(1− Cη)η

2
·Var

x
(t)
i

(
`
(t−1)
i

)
.

(27)
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Proof. Lemma A.5 gives that, for any x? ∈ ∆ni ,
T∑
t=1

〈x(t)
i − x

?, `
(t)
i 〉 ≤

log ni
η

+

T∑
t=1

∥∥∥x(t)
i − x̃

(t)
i

∥∥∥?
x
(t)
i

√
Var

x
(t)
i

(
`
(t)
i − `

(t−1)
i

)
− 1

η

T∑
t=1

KL(x̃
(t)
i ;x

(t)
i )− 1

η

T∑
t=1

KL(x
(t)
i ; x̃

(t−1)
i ).

(28)

Note that for any vectors x, x′ ∈ ∆ni , if there is a vector ` ∈ Rni so that for all j ∈ [ni],
x′(j) = x(j)·exp(η·`(j))∑

k x(j)·exp(η·`(k)) , we have that

exp(−2η‖`‖∞) ≤
∥∥∥∥x′x

∥∥∥∥
∞
≤ exp(2η‖`‖∞).

Therefore, by (19) and (23), respectively, we obtain that, for η ≤ 1/4,

exp(−2η‖`(t)i − `
(t−1)
i ‖∞) ≤

∥∥∥∥∥ x̃(t)
i

x
(t)
i

∥∥∥∥∥
∞

≤ exp(2η‖`(t)i − `
(t−1)
i ‖∞) ≤ exp(4η) ≤ 1 + 8η

exp(−2η‖`(t−1)
i ‖∞) ≤

∥∥∥∥∥ x
(t)
i

x̃
(t−1)
i

∥∥∥∥∥
∞

≤ exp(2η‖`(t−1)
i ‖∞) ≤ exp(2η) ≤ 1 + 4η. (29)

(Above we have also used that ‖`(t)i ‖∞ ≤ 1 for all t.) Thus, for η ≤ 1
16 , we can apply Lemma A.2

and show, for a sufficiently large constant C0,

KL(x̃
(t)
i ;x

(t)
i ) ≥ χ2(x̃

(t)
i ;x

(t)
i ) · (1/2− C0η) (30)

KL(x
(t)
i ; x̃

(t−1)
i ) ≥ χ2(x

(t)
i ; x̃

(t−1)
i ) · (1/2− C0η). (31)

Note also that for vectors x, y we have that χ2(x; y) =
(
‖x− y‖?y

)2

. By Lemma A.3 and (19), we
have that, for a sufficiently large constant C1, as long as η ≤ 1/C1,(∥∥∥x(t)

i − x̃
(t)
i

∥∥∥?
x
(t)
i

)2

= χ2(x̃
(t)
i ;x

(t)
i ) ≤ (1 + C1η)η2 ·Var

x
(t)
i

(
`
(t)
i − `

(t−1)
i

)
(32)

and

χ2(x̃
(t)
i ;x

(t)
i ) ≥ (1− C1η)η2 ·Var

x
(t)
i

(
`
(t)
i − `

(t−1)
i

)
. (33)

Next we lower bound χ2(x
(t)
i ; x̃

(t−1)
i ) as follows, where C2 denotes a sufficiently large constant: as

long as η ≤ 1/C2,

χ2(x
(t)
i ; x̃

(t−1)
i ) ≥ χ2(x̃

(t−1)
i ;x

(t)
i ) · exp(−2η) (34)

≥ (1− C2η)η2 ·Var
x
(t)
i

(
`
(t−1)
i

)
, (35)

where (34) follows from Lemma A.1 and (29), and (35) follows from Lemma A.3 and (23).

Combining (28), (30), (31), (32), (33), and (35) gives that for a sufficiently large constant C, as long
as η < 1/C,

T∑
t=1

〈x(t)
i − x

?, `
(t)
i 〉 ≤

log ni
η

+

T∑
t=1

(η/2 + Cη2) ·Var
x
(t)
i

(
`
(t)
i − `

(t−1)
i

)
− (1− Cη)η

2
·Var

x
(t)
i

(
`
(t−1)
i

)
,

as desired.

B Proofs for Section 4.3

In this section we give the full proof of Lemma 4.4. In Section B.1 we introduce some preliminaries.
In Section B.2 we prove Lemma 4.5, the “boundedness chain rule” for finite differences. In Section
B.4 we show how to use this lemma to prove Lemma 4.4.
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B.1 Additional preliminaries

In this section we introduce some additional notations and basic combinatorial lemmas. Definition
B.1 introduces the shift operator Es , which like the finite difference operator Dh , maps one sequence
to another sequence.

Definition B.1 (Shift operator). Suppose L = (L(1), . . . , L(T )) is a sequence of vectors L(t) ∈ Rn.
For integers s ≥ 0, the s-shift sequence for the sequence L, denoted by Es L, is the sequence
Es L = ((Es L)

(1)
, . . . , (Es L)

(T−s)
), defined by (Es L)

(t)
= L(t+s) for 1 ≤ t ≤ T − s.

For sequences L = (L(1), . . . , L(T )) and K = (K(1), . . . ,K(T )) of real numbers, we will denote
the product sequence as L · K as the sequence of vectors L · K := (L(1)K(1), . . . , L(T )K(T )).
Lemmas B.1 and B.2 below are standard analogues of the product rule for finite differences. The
(straightforward) proofs are provided for completeness.

Lemma B.1 (Product rule; Eq. (2.55) of [GKP89]). Suppose L = (L(1), . . . , L(T )) and K =
(K(1), . . . ,K(T )) are sequences of real numbers. Then the product sequence L ·K satisfies

D1 (L ·K) = L ·D1K + D1 L · E1K.

Proof. We compute

D1 (L ·K)
(t)

= L(t+1)K(t+1) − L(t)K(t)

= L(t+1)K(t+1) − L(t)K(t+1) + L(t)K(t+1) − L(t)K(t)

= (L ·D1K + D1 L · E1K)(t).

Lemma B.2 (Multivariate product rule). Suppose that m ∈ N and for 1 ≤ i ≤ m, Li =

(L
(1)
i , . . . , L

(T )
i ) are sequences of real numbers. Then the product sequence

∏m
i=1 Li satisfies

D1

m∏
i=1

Li =

m∑
i=1

(∏
i′<i

Li′

)
·D1 Li ·

(∏
i′>i

E1 Li′

)
.

Proof. We compute(
D1

m∏
i=1

Li

)(t)

=

m∏
i=1

L
(t+1)
i −

m∏
i=1

L
(t)
i

=

m∑
i=1

∏
i′≤i

L
(t+1)
i′

∏
i′>i

L
(t)
i′ −

∏
i′<i

L
(t+1)
i′

∏
i′≥i

L
(t)
i′


=

m∑
i=1

(∏
i′<i

L
(t+1)
i′ ·

∏
i′>i

L
(t)
i′ ·

(
L

(t+1)
i − L(t)

i

))

=

(
m∑
i=1

(∏
i′<i

Li′

)
·D1 Li ·

(∏
i′>i

E1 Li′

))(t)

.

Lemma B.4 and Lemma B.3, which is used in the proof of the former, are used to bound certain
sums with many terms in the proof of Lemma 4.5. To state Lemma B.3 we make one definition. For
positive integers k,m and any h,C > 0, define

Rh,m,k,C =
∑

0≤n1,··· ,nk≤m

(∏k
i=1 n

ni
i

h
∑k
i=1 ni

)C
,

where the sum is over integers n1, . . . , nk satisfying 0 ≤ ni ≤ m for i ∈ [k]. In the definition of
Rh,m,k,C , the quantity 00 (which arises when some ni = 0) is interpreted as 1.
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Lemma B.3. For any positive integers k,m and any h,C > 0 so that m ≤ h/2, C ≥ 2, and h ≥ 8,
then

Rh,m,k,C ≤ exp

(
2k

hC

)
.

Proof of Lemma B.3. We may rewrite Rh,m,k,C and then upper bound it as follows:

Rh,m,k,C =

 m∑
j=0

(
j

h

)Cjk

≤

(
1 +

(
1

h

)C
+ (m− 1) max

((
2

h

)2C

,
(m
h

)mC))k
(36)

≤

(
1 +

(
1

h

)C
+ (h/2) max

((
2

h

)2C

,

(
1

2

)hC/2))k

where (36) follows since
(
i
h

)Ci
is convex in i for i ≥ 0, and therefore, in the interval [2,m] ⊆ [2, h/2],

takes on maximal values at the endpoints. We see

(h/2)

(
2

h

)2C

=

(
2

h

)2C−1

≤
(

1

h

)C
for h ≥ 8 when C ≥ 2. Also,

(h/2)

(
1

2

)hC/2
≤
(

1

h

)C
for h ≥ 8 when C ≥ 2. (This inequality is easily seen to be equivalent to the fact that (C+1) log h−
Ch
2 ≤ 1, which follows from the fact that log h− h/2 ≤ 0 for h ≥ 8 and 3 log h− h ≤ 1 for h ≥ 8.)

Therefore,

Rh,m,k,C ≤

(
1 +

(
1

h

)C
+ (h/2) max

((
2

h

)2C

,

(
1

2

)hC/2))k

≤

(
1 + 2

(
1

h

)C)k
≤ exp

(
2k

hC

)
.

Lemma B.4. Fix integers h ≥ 0, k ≥ 1. For any function π : [h] → [k], define, for each i ∈ [k],
hi(π) = |{q ∈ [h]|π(q) = i}|. Then, for any C ≥ 3,

∑
π:[h]→[k]

∏k
i=1 hi(π)Chi(π)

hCh
≤ max

{
k7, (hk + 1) · exp

(
2k

hC−1

)}
. (37)

Proof. In the case that h ≤ 7, we simply use the fact that the number of functions π : [h]→ [k] is
kh ≤ k7, and each term of the summation on the left-hand side of (37) is at most 1. In the remainder
of the proof we may thus assume that h ≥ 8.

For any tuple (h1, · · · , hk) of non-negative integers with
∑k
i=1 hi = h, there are

(
h

h1,h2,··· ,hk

)
≤

hh∏
i h
hi
i

(see [CS04, Lemma 2.2] for a proof of this inequality) functions π : [h] → [k] such that
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hi(π) = hi for all i ∈ [k]. Combining these like terms,

∑
π:[h]→[k]

∏
i hi(π)Chi(π)

hCh
≤

∑
h1,··· ,hk≥0∑

hi=h

hh∏
i h

hi
i

·

(∏
i h

hi
i

hh

)C

≤
∑

h1,··· ,hk≥0∑
hi=h

(∏
i h

hi
i

hh

)C−1

. (38)

We evaluate this sum in 2 cases: whether or not hmax := maxi{hi} is greater than h/2. The
contribution to this sum coming from terms with hmax ≤ h/2 is

∑
h1,··· ,hk≥0
h1,··· ,hk≤h/2∑

hi=h

(∏
i h

hi
i

hh

)C−1

≤
∑

h1,··· ,hk≥0
h1,··· ,hk≤h/2

(∏
i h

hi
i

h
∑
hi

)C−1

= Rh,bh/2c,k,C−1

≤ exp

(
2k

hC−1

)
, (39)

by Lemma B.3.

We next consider the case where hmax > h/2. For a specific term (h1, · · · , hk) with maxi{hi} >
h/2, we know there is a unique M ∈ [k] such that hM = maxi{hi} since

∑k
i=1 hi = h. So, we can

represent the contribution to the sum from this case as

k∑
M=1

∑
h1,··· ,hk≥0
hM>h/2∑

hi=h

(∏
i h

hi
i

hh

)C−1

= k
∑

h1,··· ,hk≥0
hk>h/2∑
hi=h

(∏
i h

hi
i

hh

)C−1

(40)

≤ k
bh/2c∑
d=0

(
(h− d)h−d

hh−d

)C−1 ∑
h1,··· ,hk−1≥0∑

hi=d

(∏
i h

hi
i

hd

)C−1

(41)

≤ k
bh/2c∑
d=0

∑
h1,··· ,hk−1≥0
h1,··· ,hk−1≤d

(∏
i h

hi
i

h
∑
hi

)C−1

= k

bh/2c∑
d=0

Rh,d,k−1,C−1

≤ kh · exp

(
2k

hC−1

)
, (42)

where (40) follows by symmetry, (41) follows by factoring out the contribution of
(
h
hk
k

hhk

)C
and

letting d = h− hk, and (42) follows by Lemma B.3.

The statement of the lemma follows from (38), (39), and (42).

Lemma B.5. For n ∈ N, let ξ1, . . . , ξn ≥ 0 such that ξ1 + · · ·+ ξn = 1. For each j ∈ [n], define
φj : Rn → R to be the function

φj((z1, . . . , zn)) =
ξj exp(zj)∑n

k=1 ξk · exp(zk)
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and let Pφj (z) =
∑
γ∈Zn≥0

aj,γ · zγ denote the Taylor series of φj . Then for any j ∈ [n] and any
integer k ≥ 1, ∑

γ∈Zn≥0
: |γ|=k

|aj,γ | ≤ ξjek+1.

Proof. Note that, for each j ∈ [n],

aj,γ =
1

γ1!γ2! · · · γn!
· ∂kφj(0)

∂zγ11 ∂zγ22 · · · z
γn
n
,

and so ∑
γ∈Zn≥0

: |γ|=k

|aj,γ | =
∑

γ∈Zn≥0
: |γ|=k

1

γ1!γ2! · · · γn!
·
∣∣∣∣ ∂kφj(0)

∂zγ11 ∂zγ22 · · · z
γn
n

∣∣∣∣
=

1

k!

∑
γ∈Zn≥0

: |γ|=k

k!

γ1!γ2! · · · γn!
·
∣∣∣∣ ∂kφj(0)

∂zγ11 ∂zγ22 · · · z
γn
n

∣∣∣∣
=

1

k!

∑
t∈[n]k

∣∣∣∣ ∂kφj(0)

∂zt1∂zt2 · · · ∂ztk

∣∣∣∣ .
It is straightforward to see that the following equalities hold for any i ∈ [n], i 6= j:

∂φj
∂zj

= φj(1− φj)

∂φj
∂zi

= −φiφj

∂(1− φj)
∂zj

= −φj(1− φj)

∂(1− φj)
∂zi

= φiφj

We claim that for any (t1, . . . , tk) ∈ [n]k, we can express ∂kφj
∂zt1 ···∂ztk

as a polynomial in
φ1, · · · , φn, (1 − φ1), · · · , (1 − φn) comprised of k! monomials each of degree k + 1. We ver-
ify this by induction, first noting that after taking zero derivatives, the function φj is a degree-1
monomial. Assume that for some sequence b1, . . . , b(`−1)! ∈ {0, 1}, we can express

∂`−1φj
∂zt1 · · · ∂zt`−1

=

(`−1)!∑
f=1

(−1)bf
`−1∏
d=0

mf,d

where each mf,d ∈ {φ1, · · · , φn, (1− φ1), · · · , (1− φn)}. We see that for each f , there is some
sequence of bits bf,0, . . . , bf,`−1 ∈ {0, 1} so that

∂

∂zt`

`−1∏
d=0

mf,d =

`−1∑
d=0

(−1)bf,d ·mf,0 · · ·m′f,d · · ·mf,d,` (43)

where we define, for each 0 ≤ d ≤ `− 1,

m′f,d and mf,d,` =


mf,d and φt` if mf,d = φi with i 6= t`
mf,d and (1− φt`) if mf,d = φt`
(1−mf,d) and φt` if mf,d = 1− φi with i 6= t`
(1−mf,d) and (1− φt`) if mf,d = 1− φt` .
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Thus, ∂`φj
∂zt1 ···∂zt`

can be expressed as a sum of `! monomials of degree (` + 1), completing the
inductive step.

This inductive argument also demonstrates a bijection between the k! monomials of ∂kφj
∂zt1 ···∂ztk

and
a combinatorial structure that we call factorial trees. Formally, we define a factorial tree to be a
directed graph on vertices {0, 1, · · · , k} such that each vertex i 6= 0 has a single incoming edge from
one of the vertices in [0, i− 1]. (For a non-negative integer i, we write [0, i] := {0, 1, . . . , i}.) For
a factorial tree f , let pf (`) ∈ [0, `− 1] denote the parent of a vertex `. A particular factorial tree f
represents the monomial that was generated by choosing the pf (`)th term in (43) for derivation when
taking the derivative ∂

∂zt`
, for each ` ∈ [k]. (See Figure 1 for an example.)

Figure 1: A monomial −φjφiφjφk of ∂3φj
∂zi∂zj∂zk

and its corresponding factorial tree

Each of the k! monomials comprising ∂kφj
∂zt1 ···∂ztk

is a product of k+ 1 terms corresponding to indices
j, t1, · · · , tk (i.e., the first term in the product is either φj or 1− φj , the second term is either φt1 or
1− φt1 , and so on). We say that a term corresponding to index i ∈ [n] is perturbed if it is (1− φi)
(as opposed to φi). From our construction, we see that the `th term is perturbed if t` = tpf (`) and
there is no `′ such that pf (`′) = `. That is, ` is a leaf in the corresponding factorial tree f and the
parent of ` corresponds to the same index as `. One can think of t1, · · · , tk as a coloring of all the
vertices of the factorial tree with n colors, except the root of the tree (vertex 0) which has fixed color
j. Then, we can say the `th term is perturbed if and only if ` is a leaf with the same color as its parent.
We call such a leaf a petal. For t ∈ [n], we let Pf,t ⊆ [k] be the set of petals on tree f with color t,
Lf ⊆ [k] be the set of leaves of tree f , and Bf = [k] \ Lf be the set of all non-leaves other than the
fixed-color root. Therefore,

∑
γ∈Zn≥0

: |γ|=k

|aj,γ | =
1

k!

∑
t∈[n]k

∣∣∣∣ ∂kφj(0)

∂zt1 · · · ∂ztk

∣∣∣∣
≤ 1

k!

∑
t∈[n]k

∑
f

k∏
`=0

(φt`(0) · 1[` 6∈ Pf,t] + (1− φt`(0)) · 1[` ∈ Pf,t])

(where we let t0 = j for notational convenience)

=
1

k!

∑
t∈[n]k

∑
f

k∏
`=0

(ξt` · 1[` 6∈ Pf,t] + (1− ξt`) · 1[` ∈ Pf,t])

=
1

k!

∑
f

∑
tBf∈[n]Bf

∑
tLf∈[n]Lf

k∏
`=0

(ξt` · 1[` 6∈ Pf,t] + (1− ξt`) · 1[` ∈ Pf,t]),

where in the last step we decompose, for each factorial tree f , t ∈ [n]k into the tuple of indices
tBf ∈ [n]Bf corresponding to the non-leaves Bf , and the tuple of indices tLf ∈ [n]Lf corresponding
to the leaves Lf .
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We note that, fixing tree f and the colors of all non-leaves tB ,

∑
tLf∈[n]Lf

∏
`∈Lf

(ξt` · 1[` 6∈ Pf,t] + (1− ξt`) · 1[` ∈ Pf,t])

=
∏
`∈Lf

∑
t`∈[n]

ξt` · 1[t` 6= tpf (`)] + (1− ξt`) · 1[t` = tpf (`)]


=
∏
`∈Lf

(
2− 2ξtpf (`)

)
≤ 2|Lf |

And so,

1

k!

∑
f

∑
tBf∈[n]Bf

∑
tLf∈[n]Lf

k∏
`=0

(ξt` · 1[` 6∈ Pf,t] + (1− ξt`) · 1[` ∈ Pf,t])

≤ 1

k!

∑
f

2|Lf |
∑

tBf∈[n]Bf

∏
`∈Bf∪{0}

(ξt` · 1[` 6∈ Pf,t] + (1− ξt`) · 1[` ∈ Pf,t])

=
1

k!

∑
f

2|Lf |
∑

tBf∈[n]Bf

∏
`∈Bf∪{0}

ξt`

(as no non-leaf can ever be a petal)

=
ξj
k!

∑
f

2|Lf |
∏
`∈Bf

∑
t`∈[n]

ξt`


=
ξj
k!

∑
f

2|Lf | = ξjEf∼U(F)

[
2|Lf |

]

where F is the set of all factorial trees and U(F) is the uniform distribution over F . For a specific
vertex ` ∈ [0, k], we note that ` ∈ Lf if and only if it is not the parent of any vertex `+ 1, · · · , k. So,

Pr
f∼U(F)

[` ∈ Lf ] =

k∏
i=`+1

i− 1

i
=
`

k
(44)

We will show via induction that, for any vertex set S ⊆ [0, k]

Pr
f∼U(F)

[S ⊆ Lf ] ≤
∏
`∈S

`

k
(45)

Having established the base case for every S with |S| = 1, we assume (45) holds for all S with
|S| < s. For any set of s vertices V , consider an arbitrary partition of V into two sets S ∪ T = V
with |S|, |T | < s. We see
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Pr
f∼U(F)

[V ⊆ Lf ] =

k∏
c=1

Pr [pf (c) 6∈ V ]

=

k∏
c=1

Pr [pf (c) 6∈ S] Pr [pf (c) 6∈ T |pf (c) 6∈ S]

≤
k∏
c=1

Pr [pf (c) 6∈ S] Pr [pf (c) 6∈ T ]

= Pr [S ⊆ Lf ] Pr [T ⊆ Lf ]

≤
∏
`∈V

`

k

by the inductive hypothesis, as desired. Thus, Pr [|Lf | ≥ s] ≤
∑
S:|S|=s Pr [S ⊆ Lf ] is at most the

sth coefficient of the polynomial

R(x) =

k∏
`=0

(
1 +

`

k
x

)
and so

Ef∼U(F)

[
2|Lf |

]
≤

k∑
s=0

2s Pr[|Lf | ≥ s]

≤ R(2)

≤ e
∑k
`=0 2`/k = ek+1

and ∑
γ∈Zn≥0

: |γ|=k

|aj,γ | ≤ ξjek+1,

as desired.

Lemma B.6. Let φ1, · · · , φm be softmax-type functions. That is, for each φi, there is some ji ∈ [n]
and indices ξi1, . . . , ξin such that

φi((z1, . . . , zn)) =
exp(zji)∑n

k=1 ξik · exp(zk)

where ξi1 + · · · + ξin = 1 for all i. Let P (z) =
∑
γ∈Zn≥0

aγz
γ denote the Taylor series of

∏
i φi.

Then for any integer k, ∑
γ∈Zn≥0

: |γ|=k

|aγ | ≤ (e3m)k.

Proof. Letting Pi(z) =
∑
γ∈Zn≥0

ai,γz
γ denote the Taylor series of φi for all i, we have P (z) =∏

i Pi(z) and therefore

∑
γ∈Zn≥0

: |γ|=k

|aγ | ≤
∑

k1,··· ,km∈Z≥0∑
ki=k

∏
i

∑
γ∈Zn≥0

: |γ|=ki

|ai,γ |

We have that
∑
|γ|=ki |ai,γ | ≤ e

2ki for all ki since, for ki = 0, ai,0 = φi(0) = 1, and for ki ≥ 1,∑
|γ|=ki

|ai,γ | ≤
ξij
ξij
eki+1 ≤ e2ki (46)
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from Lemma B.5. Note that the softmax-type functions discussed in Lemma B.5 have a ξij term in
the numerator, while those discussed here do not. This accounts for the extra ξij term that appears in
equation (46). Thus, ∑

k1,··· ,km∈Z≥0∑
ki=k

∏
i

∑
γ∈Zn≥0

: |γ|=ki

|ai,γ | ≤
∑

k1,··· ,km∈Z≥0∑
ki=k

e2k

= e2k

(
m+ k − 1

k

)
≤ e2k

(
e(m+ k − 1)

k

)k
= (e3m)k

as desired.

Lemma B.7. Let φ((z1, . . . , zn)) =
exp(zj)∑n

k=1 ξk exp(zk) be any softmax-type function. Then the radius
of convergence of the Taylor series of φ at the origin is at least 1.

Proof. For a complex number z, write <(z),=(z) to denote the real and imaginary parts, respectively,
of z. Note that for any ζ1, . . . , ζn ∈ C with |ζk| ≤ π/3 for all k ∈ [n], we have

<(exp(ζk)) ≥ cos(π/3) · exp(−π/3) > 1/10,

and thus |
∑n
k=1 ξk · exp(ζk)| ≥ 1/10. Moreover, for any such point ζ = (ζ1, . . . , ζn), it holds that

| exp(ζj)| ≤ exp(π/3) < 3. It then follows that for such ζ we have |φ(z)| ≤ 30. In particular, φ is
holomorphic on the region {ζ : |ζk| ≤ π/3 ∀k ∈ [n]}.
Fix any γ ∈ Zn≥0, and let k = |γ|. By the multivariate version of Cauchy’s integral formula,∣∣∣∣ dγdzγ φ(z)

∣∣∣∣ =

∣∣∣∣∣ γ!

(2πi)n

∫
|ζ1−z1|=π/3

· · ·
∫
|ζn−zn|=π/3

φ(ζ1, . . . , ζn)

(ζ1 − z1)γ1+1 · · · (ζn − zn)γn+1
dζ1 · · · dζn

∣∣∣∣∣
≤ 30γ!

(π/3)k+n
≤ 30γ!

(π/3)k
.

The power series of φ at 0 is defined as Pφ(z) =
∑
γ∈Zn≥0

aγ · zγ , where aγ = 1
γ!

dγ

dzγ φ(0). For any

γ ∈ Zn≥0 with k = |γ|, we have |aγ |1/k ≤ (30/(π/3)k)1/k = (30)1/k · 3/π, which tends to 3/π < 1
as k → ∞. Thus, by the (multivariate version of the) Cauchy-Hadamard theorem, the radius of
convergence of the power series of φ at 0 is at least π/3 ≥ 1.

B.2 Proof of Lemma 4.6

In this section prove Lemma 4.6, which, as explained in Section 4.3, is an important ingredient in
the proof of Lemma 4.5. The detailed version of Lemma 4.6 is presented below; it includes several
claims which are omitted for simplicity in the abbreviated version in Section 4.3.
Lemma 4.6 (Detailed). Fix any integer h ≥ 0, a multi-index γ ∈ Zn≥0 and set k = |γ|. For each
of the kh functions π : [h] → [k], and for each r ∈ [k], there are integers h′π,r ∈ {0, 1, . . . , h},
t′π,r ≥ 0, and j′π,r ∈ [n], so that the following holds. For any sequence L(1), . . . , L(T ) ∈ Rn of
vectors, it holds that

Dh L
γ =

∑
π:[h]→[k]

k∏
r=1

Et′π,r Dh′π,r
(L(j′π,r)). (47)

Moreover, the following properties hold:

1. For each π and r ∈ [k], h′π,r = |{q ∈ [h] : π(q) = r}|. In particular,
∑k
r=1 h

′
π,r = h.

2. For each π and r ∈ [k], it holds that 0 ≤ t′π,r + h′π,r ≤ h.
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3. For each π, r ∈ [k], and j ∈ [n], γj = |{r ∈ [k] : j′π,r = j}|.

Proof of Lemma 4.6. We use induction on h. First note that in the case h = 0 and for any k ≥ 0, we
have that (Dh L

γ)
(t)

= (L(t))γ , and so for the unique function π : ∅ → [k], for all r ∈ [k], we may
take t′π,r = 0, h′π,r = 0, and ensure that for each j ∈ [n] there are γj values of r so that j′π,r = j.

Now fix any integer h > 0, and suppose the statement of the claim holds for all h′ < h. We have that

Dh L
γ

= D1 Dh−1 L
γ

= D1

∑
π:[h−1]→[k]

k∏
r=1

Et′π,r Dh′π,r
L(j′π,r)

=
∑

π:[h−1]→[k]

k∑
r=1

D1 Et′π,r Dh′π,r
L(j′π,r) ·

r−1∏
r′=1

Et′
π,r′

Dh′
π,r′

L(j′π,r′) ·
k∏

r′=r+1

Et′
π,r′+1 Dh′

π,r′
L(j′π,r′)

(48)

=
∑

π:[h−1]→[k]

k∑
r=1

Et′π,r Dh′π,r+1 L(j′π,r) ·
r−1∏
r′=1

Et′
π,r′

Dh′
π,r′

L(j′π,r′) ·
k∏

r′=r+1

Et′
π,r′+1 Dh′

π,r′
L(j′π,r′).

(49)

where (48) uses Lemma B.2 and (49) uses the commutativity of Et′ and D1 . For each π : [h− 1]→
[k], we construct k functions π1, . . . , πk : [h] → [k], defined by πr(q) = π(q) for q < h, and
πr(h) = r for r ∈ [k]. Next, for r, r′ ∈ [k], we define the quantities h′πr,r′ , t

′
πr,r′

, j′πr,r′ as follows:

• Set h′πr,r′ = h′π,r′ if r 6= r′, and h′πr,r = h′π,r + 1.

• Set t′πr,r′ = t′π,r′ if r′ ≤ r, and t′πr,r′ = t′π,r′ + 1 if r′ > r.

• Set j′πr,r′ = j′π,r′ .

By (49) and the above definitions, we have

Dh L
γ =

∑
π:[h]→[k]

k∏
r′=1

Et′π,r Dh′π,r
L(j′π,r),

thus verifying (9) for the value h.

Finally we verify that items 1 through 3 in the lemma statement hold. The definition of h′πr,r′ above
together with the inductive hypothesis ensures that for all r, r′ ∈ [k], h′πr,r′ = |{q ∈ [h] : πr(q) =

r′}|, thus verifying item 1 of the lemma statement. Since h′πr,r′+ t′πr,r′ ≤ h
′
π,r+ t′π,r+1 for all r, r′,

it follows from the inductive hypothesis that 0 ≤ h′πr,r′ + t′πr,r′ ≤ h; this verifies item 2. Finally,
note that for any j ∈ [n] and r ∈ [k], {r′ ∈ [k] : j′π,r′ = j} = {r′ ∈ [k] : j′πr,r′ = j}, and thus item
3 follows from the inductive hypothesis.

B.3 Proof of Lemma 4.5

In this section we prove Lemma 4.5. To introduce the detailed version of the lemma we need
the following definition. Suppose φ : Rn → R is a real-valued function that is real-analytic in a
neighborhood of the origin. For real numbers Q,R > 0, we say that φ is (Q,R)-bounded if the
Taylor series of φ at 0, denoted Pφ(z1, . . . , zn) =

∑
γ∈Zn≥0

aγz
γ , satisfies, for each integer k ≥ 0,∑

γ∈Zn≥0
:|γ|=k |aγ | ≤ Q ·Rk. In the statement of Lemma 4.5 below, the quantity 00 is interpreted as

1 (in particular, (h′)B0h
′

= 1 for h′ = 0).

Lemma 4.5 (“Boundedness chain rule” for finite differences; detailed). Suppose that h, n ∈ N,
φ : Rn → R is a (Q,R)-bounded function so that the radius of convergence of its power series at
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0 is at least 1, and L = (L(1), . . . , L(T )) ∈ Rn is a sequence of vectors satisfying ‖L(t)‖∞ ≤ 1
for t ∈ [T ]. Suppose for some α ∈ (0, 1), for each 0 ≤ h′ ≤ h and t ∈ [T − h′], it holds that
‖Dh′ L

(t)‖∞ ≤ 1
B1
· αh′ · (h′)B0h

′
for some B1 ≥ 2e2R,B0 ≥ 3. Then for all t ∈ [T − h],

| (Dh (φ ◦ L))
(t) | ≤ 12RQe2

B1
· αh · hB0h+1.

Proof of Lemma 4.5. Note that the hth order finite differences of a constant sequence are identically
0 for h ≥ 1, so by subtracting φ(0) from φ, we may assume without loss of generality that φ(0) = 0.
(Here 0 denotes the all-zeros vector.)

By assumption, the radius of convergence of the power series of φ at the origin is at least 1, and so
for each γ ∈ Zn≥0, there is a real number aγ so that for z = (z1, . . . , zn) with |zj | ≤ 1 for each j,

φ(z) =
∑

k∈N,γ∈Zn≥0
: |γ|=k

aγz
γ . (50)

LetAk :=
∑
γ∈Zn≥0

:|γ|=k |aγ |; by the assumption that φ is (Q,R)-bounded, we have thatAk ≤ Q·Rk

for all k ∈ N.

For γ ∈ Zn≥0, recall that Lγ denotes the sequence ((Lγ)(1), . . . , (Lγ)(T )), defined by (Lγ)(t) =

(L(t)(1))γ1 · · · (L(t)(n))γn . Then since ‖L(t)‖∞ ≤ 1 for all t ∈ [T ], we have that, for t ∈ [T − h],
(Dh (φ ◦ L))

(t)
=
∑
γ∈Zn≥0

aγ · (Dh L
γ)

(t).

We next upper bound the quantities | (Dh L
γ)

(t) |. To do so, fix some γ ∈ Zn≥0, and set k = |γ|.
For each function π : [h] → [k] and r ∈ [k], recall the integers h′π,r ∈ {0, 1, . . . , h}, t′π,r ≥ 0,
j′π,r ∈ [n] defined in Lemma 4.6. By assumption it holds that for each t ∈ [T − h], each h′ ≤ h,

each 0 ≤ t′ ≤ h, | (Dh′ L(j))
(t+t′) | ≤ 1

B1
· αh′ · (h′)B0h

′
. It follows that for each t ∈ [T − h] and

function π : [h]→ [k],

∣∣∣∣∣
k∏
r=1

(
Et′π,r Dh′π,r

L(j′π,r)
)(t)
∣∣∣∣∣ ≤

k∏
r=1

1

B1
· αh

′
π,r · (h′π,r)B0h

′
π,r =

αh

Bk1
·
k∏
r=1

(h′π,r)
B0h

′
π,r ,

where the last equality uses that
∑k
r=1 h

′
π,r = h (item 1 of Lemma 4.6). Then by Lemma 4.6, we

have:

∣∣∣(Dh L
γ)

(t)
∣∣∣ ≤ ∑

π:[h]→[k]

∣∣∣∣∣
k∏
r=1

(
Et′π,r Dh′π,r

L(j′π,r)
)(t)
∣∣∣∣∣

≤α
h

Bk1

∑
π:[h]→[k]

k∏
r=1

(h′π,r)
B0h

′
π,r

≤α
h

Bk1
· hB0h max

{
k7, (hk + 1) · exp

(
2k

hB0−1

)}
, (51)

where (51) follows from Lemma B.4, the fact that B0 ≥ 3, and that h′π,r = |{q ∈ [h] : π(q) = r}|
(item 1 of Lemma 4.6).
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We may now bound the order-h finite differences of the sequence φ ◦ L as follows: for t ∈ [T − h],

| (Dh (φ ◦ L))
(t) | ≤

∑
γ∈Zn≥0

|aγ | ·
∣∣∣(Dh L

γ)
(t)
∣∣∣

≤αh · hB0h+1
∑
γ∈Zn≥0

|aγ | ·B−|γ|1 ·max

{
|γ|7, (|γ|+ 1) · exp

(
2|γ|
hB0−1

)}
(52)

≤αh · hB0h+1 ·
∑
k∈N

Ak ·B−k1 ·
(
k7 + 2k · exp(2k/hB0−1)

)
≤αh · hB0h+1 ·Q ·

(∑
k∈N

k7 · (R/B1)k +
∑
k∈N

2k · (R/B1)k · e2k

)
(53)

≤2RQe2

B1
· αh · hB0h+1 ·

(∑
k∈N

k7 · (2e2)−k + 2
∑
k∈N

k · 2−k
)

(54)

=
12RQe2

B1
· αh · hB0h+1.

where (52) uses (51), (53) uses the bound Ak ≤ QRk, and (54) uses the assumption B1 ≥ 2e2R.
This gives the desired conclusion of the lemma.

B.4 Proof of Lemma 4.4

In this section we prove Lemma 4.4. The detailed version of Lemma 4.4 is stated below.

Lemma 4.4 (Detailed). Fix a parameter α ∈
(

0, 1
H+3

)
. If all players follow Optimistic Hedge

updates with step size η ≤ α
36e5m , then for any player i ∈ [m], integer h satisfying 0 ≤ h ≤ H , time

step t ∈ [T − h], it holds that
‖ (Dh `i)

(t) ‖∞ ≤ αh · h3h+1.

Proof. We have that for each agent i ∈ [m], each t ∈ [T ], and each ai ∈ [ni], `
(t)
i (ai) =

E
ai′∼x

(t)

i′ : i′ 6=i[Li(a1, . . . , am)]. Thus, for 1 ≤ t ≤ T ,

∣∣∣(Dh `i)
(t)

(ai)
∣∣∣ =

∣∣∣∣∣
h∑
s=0

(
h

s

)
(−1)h−s`

(t+s)
i (ai)

∣∣∣∣∣ (55)

=

∣∣∣∣∣∣
∑

ai′∈[ni′ ], ∀i′ 6=i

Li(a1, . . . , am)

h∑
s=0

(
h

s

)
(−1)h−s ·

∏
i′ 6=i

x
(t+s)
i′ (ai′)

∣∣∣∣∣∣
≤

∑
ai′∈[ni′ ], ∀i′ 6=i

∣∣∣∣∣∣
h∑
s=0

(
h

s

)
(−1)h−s ·

∏
i′ 6=i

x
(t+s)
i′ (ai′)

∣∣∣∣∣∣
=

∑
ai′∈[ni′ ], ∀i′ 6=i

∣∣∣∣∣∣∣
Dh

∏
i′ 6=i

xi′(ai′)

(t)
∣∣∣∣∣∣∣ , (56)

where (55) and (56) use Remark 4.3 and in (56),
∏
i′ 6=i xi′(ai′) refers to the sequence

∏
i′ 6=i x

(1)
i′ (ai′),∏

i′ 6=i x
(2)
i′ (ai′), . . .,

∏
i′ 6=i x

(T )
i′ (ai′).

In the remainder of this lemma we will prepend to the loss sequence `(1)
i , . . . , `

(T )
i the vectors

`
(0)
i = `

(−1)
i := 0 ∈ Rni . We will also prepend x(0)

i := x
(1)
i = (1/ni, . . . , 1/ni) ∈ ∆ni to the

strategy sequence x(1)
i , . . . , x

(T )
i . Next notice that for any agent i ∈ [m], any t0 ∈ {0, 1, . . . , T}, and
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any t ≥ 0, by the definition (1) of the Optimistic Hedge updates, it holds that, for each j ∈ [ni],

x
(t0+t+1)
i (j) =

x
(t0)
i (j) · exp

(
η ·
(
`
(t0−1)
i (j)−

∑t
s=0 `

(t0+s)
i (j)− `(t0+t)

i (j)
))

∑ni
k=1 x

(t0)
i (k) · exp

(
η ·
(
`
(t0−1)
i (k)−

∑t
s=0 `

(t0+s)
i (k)− `(t0+t)

i (k)
)) .

Note in particular that our definitions of `(0)
i , `

(−1)
i , x

(0)
i ensure that the above equation holds even

for t0 ∈ {0, 1}. Now an integer t0 satisfying 0 ≤ t0 ≤ T ; for t ≥ 0, let us write

¯̀(t)
i,t0

:= `
(t0−1)
i −

t−1∑
s=0

`
(t0+s)
i − `(t0+t−1)

i .

Also, for a vector z = (z(1), . . . , z(ni)) ∈ Rni and an index j ∈ [ni], define

φt0,j(z) :=
exp (z(j))∑ni

k=1 x
(t0)
i (k) · exp (z(k))

, (57)

so that x(t0+t)
i (j) = x

(t0)
i (j) ·φt0,j(η · ¯̀

(t)
i,t0

) for t ≥ 1. In particular, for any i ∈ [m], and any choices
of ai′ ∈ [ni′ ] for all i′ 6= i,∏

i′ 6=i

x
(t0+t)
i′ (ai′) =

∏
i′ 6=i

x
(t0)
i′ (ai′) · φt0,ai′ (η · ¯̀

(t)
i′,t0

). (58)

Next, note that(
D1

¯̀
i,t0

)(t)
= `

(t0+t−1)
i − 2`

(t0+t)
i = `

(t0+t−1)
i − 2 (E1 `i)

(t0+t−1)
,

meaning that for any h′ ≥ 1,(
Dh′

¯̀
i,t0

)(t)
= (Dh′−1 `i)

(t0+t−1) − 2 (E1 Dh′−1 `i)
(t0+t−1)

. (59)

We next establish the following claims which will allow us to prove Lemma 4.4 by induction.

Claim B.8. For any t0 ∈ {0, 1, . . . , T}, t ≥ 0, and i ∈ [m], it holds that ‖¯̀(t)i,t0‖∞ ≤ t+ 2.

Proof of Claim B.8. The claim is immediate from the triangle inequality and the fact that ‖`(t)i ‖∞ ≤ 1
for all t ∈ [T ].

Claim B.9. Fix h so that 1 ≤ h ≤ H . Suppose that for some B0 ≥ 3 and for all 0 ≤ h′ < h, all
i ∈ [m], and all t ≤ T − h′, it holds that ‖ (Dh′ `i)

(t) ‖∞ ≤ αh
′ · (h′ + 1)B0(h′+1). Suppose that

the step size η satisfies η ≤ min
{

α
36e5m ,

1
12e5(H+3)m

}
. Then for all i ∈ [m] and 1 ≤ t ≤ T − h,∥∥∥(Dh `i)

(t)
∥∥∥
∞
≤ αh · hB0h+1. (60)

Proof of Claim B.9. Set B1 := 12e5m, so that the assumption of the claim gives η ≤
min

{
α

3B1
, 1
B1(H+3)

}
.

We first use Lemma 4.5 to bound, for each 0 ≤ t0 ≤ T − h, i ∈ [m], and ai′ ∈ [ni′ ] for all

i′ 6= i, the quantity
∣∣∣∣(Dh

(∏
i′ 6=i xi′(ai′)

))(t0+1)
∣∣∣∣ . In particular, we will apply Lemma 4.5 with

n =
∑
i′ 6=i ni′ , the value of h in the statement of Claim B.9, T = h+ 1, and the sequence L(t), for

1 ≤ t ≤ h+ 1, defined as

L(t) =
(
η · ¯̀(t)1,t0

, . . . , η · ¯̀(t)i−1,t0
, η · ¯̀(t)i+1,t0

, . . . , η · ¯̀(t)m,t0
)
,
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namely the concatenation of the vectors η · ¯̀(t)1,t0
, . . . , η · ¯̀(t)i−1,t0

, η · ¯̀(t)i+1,t0
, . . . , η · ¯̀(t)m,t0 . The function

φ in Lemma 4.5 is set to the function that takes as input the concatenation of zi′ ∈ Rni′ for all i′ 6= i
and outputs:

φt0,a−i(z1, . . . , zi−1, zi+1, . . . , zm) :=
∏
i′ 6=i

φt0,ai′ (zi′), (61)

where the function φt0,ai′ are as defined in (57). We first verify the preconditions of Lemma 4.5. By
Lemma B.6, φt0,a−i is a (1, e3m)-bounded function for some constant C ≥ 1. By Lemma B.7, the
radius of convergence of each function φt0,ai′ at 0 is at least 1; thus the radius of convergence of
φt0,a−i at 0 is at least 1. Claim B.8 gives that ‖¯̀(t)i,t0‖∞ ≤ t + 2 ≤ h + 3 for all t ≤ h + 1. Thus,
since η ≤ 1

B1(H+3) ,∥∥∥(D0

(
η · ¯̀i,t0

))(t)∥∥∥
∞

= ‖η · ¯̀(t)i,t0‖∞ ≤ η · (H + 3) ≤ 1

B1

for 1 ≤ t ≤ h0 + 1. Next, for 1 ≤ h′ ≤ h and 1 ≤ t ≤ h+ 1− h′, we have∥∥∥(Dh′ (η · ¯̀i,t0)
)(t)∥∥∥

∞
≤η ·

∥∥∥(Dh′−1 `i)
(t0+t−1)

∥∥∥
∞

+ 2η ·
∥∥∥(Dh′−1 `i)

(t0+t)
∥∥∥
∞

(62)

≤3η · αh
′−1 · (h′)B0(h′) (63)

≤ 1

B1
· αh

′
· (h′)B0(h′), (64)

where (62) follows from (59), (63) follows from the assumption in the statement of Claim B.9 and
t0 + t + h′ − 1 ≤ t0 + h ≤ T , and (64) follows from the fact that 3η ≤ α

B1
. It then follows from

Lemma 4.5 and (58) that

1∏
i′ 6=i x

(t0)
i′ (ai′)

·

∣∣∣∣∣∣∣
Dh

∏
i′ 6=i

xi′(ai′)

(t0+1)
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
Dh

∏
i′ 6=i

(
φt0,ai′ ◦ η ¯̀

i′,t0

)(t0+1)
∣∣∣∣∣∣∣ (65)

=
∣∣∣(Dh

(
φt0,a−i ◦ (η ¯̀

1,t0 , . . . , η
¯̀
i−1,t0 , η

¯̀
i+1,t0 , . . . , η

¯̀
m,t0)

))(1)
∣∣∣ (66)

≤12e5m

B1
· αh · hB0h+1 = αh · (h)B0h+1. (67)

(In particular, (65) uses (58), (66) uses the definition of φt0,a−i in (61), and (67) uses Lemma 4.5.)

Next we use (56), which gives that for each i ∈ [m] and t ≥ 1,

∥∥∥(Dh `i)
(t)
∥∥∥
∞
≤

∑
ai′∈[ni′ ], ∀i′ 6=i

∣∣∣∣∣∣∣
Dh

∏
i′ 6=i

xi′(ai′)

(t)
∣∣∣∣∣∣∣

≤
∑

ai′∈[ni′ ], ∀i′ 6=i

∏
i′ 6=i

x
(t0)
i′ (ai′) · αh · (h)B0h+1 (68)

=αh · (h)B0h+1,

where (68) follows from (67) with t = t0 + 1 (here we use that t0 may be 0). This completes the
proof of Claim B.9.

It is immediate that for all i ∈ [m], t ∈ [T ], we have that ‖ (D0 `i)
(t) ‖∞ ≤ 1 = α0 · 1B0·1. We now

apply Claim B.9 inductively with B0 = 3, for which it suffices to have η ≤ α
36e5m as long as α ≤

1/(H + 3). This gives that for 0 ≤ h ≤ H , i ∈ [m], and t ∈ [T − h], ‖ (Dh `i)
(t) ‖∞ ≤ αh · h3h+1,

completing the proof of Lemma 4.4.
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C Proofs for Section 4.4

The main goal of this section is to prove Lemma 4.7. First, in Section C.1 we prove some preliminary
lemmas and then we prove Lemma 4.7 in Section C.2

C.1 Preliminary lemmas

Lemma C.1 shows that VarP (W ) and VarP ′ (W ) are close when the entries of P, P ′ are close;
it will be applied with P, P ′ equal to the strategies x(t)

i ∈ ∆ni played in the course of Optimistic
Hedge.

Lemma C.1. Suppose n ∈ N and M > 0 are given, and W ∈ Rn is a vector. Suppose P, P ′ ∈ ∆n

are distributions with max
{∥∥ P

P ′

∥∥
∞ ,
∥∥∥P ′P ∥∥∥∞} ≤ 1 + α for some α > 0. Then

(1− α) VarP (W ) ≤ VarP ′ (W ) ≤ (1 + α) VarP (W ) . (69)

Proof. We first prove that VarP ′ (W ) ≤ (1 + α) VarP (W ). To do so, note that since adding
a constant to every entry of W does not change VarP (W ) or VarP ′ (W ), by replacing W with
W − 〈P,W 〉 · 1, we may assume without loss of generality that 〈P,W 〉 = 0. Thus VarP (W ) =∑n
j=1 P (j)W (j)2. Now we may compute:

VarP ′ (W ) ≤
∑
j

P ′(j) ·W (j)2

=
∑
j

P (j) ·W (j)2 +
∑
j

(P ′(j)− P (j)) ·W (j)2

=(1 + α) VarP (W ) , (70)

where (70) uses the fact that
∥∥∥P ′P ∥∥∥∞ ≤ 1 + α.

By interchanging the roles of P, P ′, we obtain that

VarP ′ (W ) ≥ 1

1 + α
VarP (W ) ≥ (1− α) VarP (W ) .

This completes the proof of the lemma.

Next we prove Lemma 4.8 (recall that only the special case µ = 0 was proved in Section 4.4). For
convenience the lemma is repeated below.

Lemma 4.8 (Restated). Suppose µ ∈ R, α > 0, and W (0), . . . ,W (S−1) ∈ R is a sequence of reals
satisfying

S−1∑
t=0

(
(D◦2 W )

(t)
)2

≤ α ·
S−1∑
t=0

(
(D◦1 W )

(t)
)2

+ µ. (71)

Then
S−1∑
t=0

(
(D◦1 W )

(t)
)2

≤ α ·
S−1∑
t=1

(W (t))2 + µ/α.

To prove Lemma 4.8 we need the following basic facts about the Fourier transform:

Fact C.2 (Parseval’s equality). It holds that
∑S−1
t=0 |W (t)|2 = 1

S

∑S−1
s=0 |Ŵ (s)|2.

The second fact gives a formula for the Fourier transform of the circular finite differences; its simple
form is the reason we work with circular finite differences in this section:

Fact C.3. For h ∈ Z≥0, D̂◦hW
(s)

= Ŵ (s) · (e2πist/S − 1)h.
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Proof of Lemma 4.8. Note that the discrete Fourier transform of D◦1 W satisfies D̂◦1 W
(s)

= Ŵ (s) ·

(e2πis/T − 1), and similarly D̂◦2 W
(s)

= Ŵ (s) · (e2πis/T − 1)2, for 0 ≤ s ≤ S − 1. By the Cauchy-
Schwarz inequality, Parseval’s equality (Fact C.2), Fact C.3, and the assumption that (71) holds, we
have

S−1∑
t=0

(
(D◦1 W )

(t)
)2

=
1

S

S−1∑
s=0

∣∣∣∣D̂◦1 W (s)
∣∣∣∣2

=
1

S

S−1∑
s=0

∣∣∣Ŵ (s) · (e2πis/T−1)
∣∣∣2

=
1

S

S−1∑
s=0

∣∣∣Ŵ (s)
∣∣∣ · ∣∣∣Ŵ (s)

∣∣∣ ∣∣∣e2πis/T − 1
∣∣∣2

≤

√√√√ 1

S

S−1∑
s=0

∣∣∣Ŵ (s)
∣∣∣2 ·
√√√√ 1

S

S−1∑
s=0

∣∣∣Ŵ (s)
∣∣∣2 · ∣∣e2πis/T − 1

∣∣4
=

√√√√S−1∑
t=0

(W (t))2 ·

√√√√ 1

S

S−1∑
s=0

∣∣∣∣D̂◦2 W (s)
∣∣∣∣2

=

√√√√S−1∑
t=0

(W (t))2 ·

√√√√S−1∑
t=0

(
(D◦2 W )

(t)
)2

≤

√√√√S−1∑
t=0

(W (t))2 ·

√√√√α ·
S−1∑
t=0

(
(D◦1 W )

(t)
)2

+ µ. (72)

Note that for real numbers A > 0 and ε with A+ ε > 0, it holds that

A2

A+ ε
=

A

1 + ε/A
≥ A · (1− ε/A) = A− ε.

Taking A =
∑S−1
t=0

(
(D◦1 W )

(t)
)2

and ε = µ/α (for which A+ ε > 0 is immediate) and using (72)
then gives

S−1∑
t=0

(
(D◦1 W )

(t)
)2

− µ/α ≤

(∑S−1
t=0

(
(D◦1 W )

(t)
)2
)2

∑S−1
t=0

(
(D◦1 W )

(t)
)2

+ µ/α
≤ α ·

S−1∑
t=0

(
W (t)

)2

,

as desired.

C.2 Proof of Lemma 4.7

Now we prove Lemma 4.7. For convenience we restate the lemma below with the exact value of the
constant C0 referred to in the version in Section 4.4.
Lemma 4.7 (Restated). For any M, ζ, α > 0 and n ∈ N, suppose that P (1), . . . , P (T ) ∈ ∆n and
Z(1), . . . , Z(T ) ∈ [−M,M ]n satisfy the following conditions:

1. The sequence P (1), . . . , P (T ) is ζ-consecutively close for some ζ ∈ [1/(2T ), α4/8256].

2. It holds that
∑T−2
t=1 VarP (t)

(
(D2 Z)

(t)
)
≤ α ·

∑T−1
t=1 VarP (t)

(
(D1 Z)

(t)
)

+ µ.

Then
T−1∑
t=1

VarP (t)

(
(D1 Z)

(t)
)
≤ α · (1 + α)

T∑
t=1

VarP (t)

(
Z(t)

)
+
µ

α
+

1290M2

α3
. (73)
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Proof. Fix a positive integer S < 1/(2ζ) < T , to be specified exactly below. For 1 ≤ t0 ≤ T−S+1,
define µt0 ∈ R by

µt0 =

S−3∑
s=0

VarP (t0+s)

(
(D2 Z)

(t0+s)
)
− α ·

S−3∑
s=0

VarP (t0+s)

(
(D1 Z)

(t0+s)
)
. (74)

Then
T−S+1∑
t0=1

µt0

=

T−2∑
t=1

VarP (t)

(
(D2 Z)

(t)
)
·min{S − 2, t, T − t− 1}

− α ·
T−1∑
t=1

VarP (t)

(
(D1 Z)

(t)
)
·min{S − 2, t, T − t− 1}

≤(S − 2) ·
T−2∑
t=1

VarP (t)

(
(D2 Z)

(t)
)
− (S − 2)α ·

T−1∑
t=1

VarP (t)

(
(D1 Z)

(t)
)

+ 8α(S − 2)2M2

(75)

≤(S − 2)µ+ 2α(S − 2)2M2, (76)

where (75) uses the fact that ‖Z(t)‖∞ ≤ M and so ‖ (D1 Z)
(t) ‖∞ ≤ 2M for all t ∈ [T ], and the

final inequality (76) follows from assumption 2 of the lemma statement.

By (74) and Lemma C.1 with P = P (t0), we have, for some constant C > 0,

S−3∑
s=0

VarP (t0)

(
(D2 Z)

(t0+s)
)
≤(1 + 2ζS) ·

S−3∑
s=0

VarP (t0+s)

(
(D2 Z)

(t0+s)
)

=(1 + 2ζS)α ·
S−3∑
s=0

VarP (t0+s)

(
(D1 Z)

(t0+s)
)

+ (1 + 2ζS)µt0

≤(1 + 2ζS)2α ·
S−3∑
s=0

VarP (t0)

(
(D1 Z)

(t0+s)
)

+ (1 + 2ζS)µt0 .

(77)

Here we have used that for 0 ≤ s ≤ S, it holds that max
{∥∥∥P (t0+s)

P (t0)

∥∥∥
∞
,
∥∥∥ P (t0)

P (t0+s)

∥∥∥
∞

}
≤ (1+ζ)S ≤

1 + 2ζS since ζS ≤ 1/2.

For any integer 1 ≤ t0 ≤ T − S + 1, we define the sequence Z(s)
t0 := Z(t0+s) − 〈P (t0), Z(t0+s)〉1,

for 0 ≤ s ≤ S − 1. Thus 〈Z(s)
t0 , P

(t0)〉 = 0 for 0 ≤ s ≤ S − 1, which implies that for all h ≥ 0,
0 ≤ s ≤ S − 1, 〈(D◦h Zt0)

(s)
, P (t0)〉 = 0, and thus

VarP (t0)

(
(D◦h Zt0)

(s)
)

=

n∑
j=1

P (t0)(j) · (D◦h Zt0)
(s)

(j)2. (78)

By the definition of the sequence Zt0 , for 0 ≤ s ≤ S − h− 1, we have

VarP (t0)

(
(Dh Z)

(t0+s)
)

= VarP (t0)

(
(Dh Zt0)

(s)
)

= VarP (t0)

(
(D◦h Zt0)

(s)
)
. (79)

For 1 ≤ t0 ≤ T − S + 1, let us now define

νt0,j :=

S−1∑
s=0

(D◦2 Zt0)
(s)

(j)2 − (1 + 2ζS)2α ·
S−1∑
s=0

(D◦1 Zt0)
(s)

(j)2, (80)
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so that, by (77), (78), and (79),

n∑
j=1

P (t0)(j) · νt0,j

=

S−1∑
s=0

VarP (t0)

(
(D◦2 Zt0)

(s)
)
− (1 + 2ζS)2α ·

S−1∑
s=0

VarP (t0)

(
(D◦1 Zt0)

(s)
)

≤

(
S−3∑
s=0

VarP (t0)

(
(D2 Z)

(t0+s)
))

+ VarP (t0+1)

(
(D◦2 Z)

(t0+S−2)
)

+ VarP (t0+1)

(
(D◦2 Z)

(t0+S−1)
)

− (1 + 2ζS)2α ·
S−3∑
s=0

VarP (t0)

(
(D1 Z)

(t0+s)
)

≤(1 + 2ζS)µt0 + VarP (t0)

(
(D◦2 Z)

(t0+S−2)
)

+ VarP (t0)

(
(D◦2 Z)

(t0+S−1)
)
. (81)

By (80) and Lemma 4.8 applied to the sequence Z(0)
t0 , . . . , Z

(S−1)
t0 , it holds that, for each j ∈ [n],

S−1∑
s=0

(D◦1 Zt0)
(s)

(j)2 ≤ (1 + ζCS)2α ·
S−1∑
s=0

Z
(s)
t0 (j)2 +

νt0,j
(1 + ζCS)2α

. (82)

Then we have:

S−2∑
s=0

VarP (t0)

(
(D1 Z)

(t0+s)
)

=

S−2∑
s=0

VarP (t0)

(
(D◦1 Zt0)

(s)
)

(83)

≤(1 + 2ζS)2α ·
S−1∑
s=0

VarP (t0)

(
Z

(s)
t0

)
+

n∑
j=1

P (t0)(j) · νt0,j
(1 + 2ζS)2α

(84)

≤(1 + 2ζS)2α

S−1∑
s=0

VarP (t0)

(
Z

(s)
t0

)
+

µt0
(1 + 2ζS)α

+
VarP (t0)

(
(D◦2 Z)

(t0+S−2)
)

+ VarP (t0)

(
(D◦2 Z)

(t0+S−1)
)

(1 + 2ζS)2α
,

(85)
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where (83) follows from (79), (84) follws from (82) and (78), and (85) follows from (81). Summing
the above for 1 ≤ t0 ≤ T − S + 1, we obtain, for some constant C > 0,

(S − 1) ·
T−1∑
t=1

VarP (t)

(
(D1 Z)

(t)
)

≤
T−S+1∑
t0=1

S−2∑
s=0

VarP (t0+s)

(
(D1 Z)

(t0+s)
)

+ 8(S − 1)2M2 (86)

≤
T−S+1∑
t0=1

(1 + 2ζS)

S−2∑
s=0

VarP (t0)

(
(D1 Z)

(t0+s)
)

+ 8(S − 1)2M2 (87)

≤(1 + 2ζS)3α

T−S+1∑
t0=1

S−1∑
s=0

VarP (t0)

(
Z

(s)
t0

)
+

T−S+1∑
t0=1

µt0
α

+ 8(S − 1)2M2

+

T−S+1∑
t0=1

VarP (t0)

(
(D◦2 Z)

(t0+S−2)
)

+ VarP (t0)

(
(D◦2 Z)

(t0+S−1)
)

(1 + 2ζS)α
(88)

≤(1 + 2ζS)4α

T−S+1∑
t0=1

S−1∑
s=0

VarP (t0+s)

(
Z(t0+s)

)
+

T−S+1∑
t0=1

µt0
α

+ 8(S − 1)2M2

+
4

(1 + 2ζS)α

T−S+1∑
t0=1

[
VarP (t0)

(
Z(t0+S−2)

)
+ 3 VarP (t0)

(
Z(t0+S−1)

)
+3 VarP (t0)

(
Z(t0)

)
+ VarP (t0)

(
Z(t0+1)

)]
(89)

≤(1 + 2ζS)4αS

T∑
t=1

VarP (t)

(
Z(t)

)
+

T−S+1∑
t0=1

µt0
α

+ 8(S − 1)2M2

+
32

(1 + 2ζS)α

T∑
t=1

VarP (t)

(
Z(t)

)
(90)

≤(1 + 2ζS)4αS ·
(

1 +
32

α2S

) T∑
t=1

VarP (t)

(
Z(t)

)
+

T−S+1∑
t0=1

µt0
α

+ 8(S − 1)2M2 (91)

≤(1 + 2ζS)4αS ·
(

1 +
32

α2S

) T∑
t=1

VarP (t)

(
Z(t)

)
+

(S − 2)µ

α
+ 10(S − 1)2M2, (92)

where:

• (86) follows since ‖Z(t)‖∞ ≤M and thus ‖ (D1 Z)
(t) ‖∞ ≤ 2M for all t;

• (87) follows from Lemma C.1 and the fact that for 0 ≤ s ≤ S − 2,
max

{∥∥∥P (t0+s)

P (t0)

∥∥∥
∞
,
∥∥∥ P (t0)

P (t0+s)

∥∥∥
∞

}
≤ 1 + 2ζS as established above as a consequence of the

fact that the distributions P (t) are ζ-consecutively close.

• (88) follows from (85);

• The first term in (89) is bounded using Lemma C.1 and the fact that the distributions P (t)

are ζ-consecutively close, and the the final term in (89) is bounded using the fact that
for any vectors Z1, . . . , Zk ∈ Rn and any P ∈ ∆n, we have VarP (Z1 + · · ·+ Zk) ≤
k · (VarP (Z1) + · · ·+ VarP (Zk));

• (90) and (91) by rearranging terms;

• (92) follows from (76).
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Now choose S =
⌈

128
α3

⌉
, so that 32

α2S ≤
α
4 . Therefore, as long as 2ζS ≤ α

32 , we have, since α ≤ 1/2,
that

(1 + 2ζS)4α · S

S − 1
·
(

1 +
32

α2S

)
≤ α · (1 + α/4)3 ≤ α · (1 + α).

Then it follows from (92) that
T−1∑
t=1

VarP (t)

(
(D1 Z)

(t)
)
≤α(1 + α) ·

T∑
t=1

VarP (t)

(
Z(t)

)
+
µ

α
+ 10SM2, (93)

Using that S ≤ 129
α3 , the inequality 2ζS ≤ α/32 can be satisfied by ensuring that ζ ≤ α4

8256 =
α4

129·42 ≤
α

64S . Note that our choice of S ensures that ζS ≤ 1/2, as was assumed earlier. Moreover,
we have 10SM2 ≤ 1290M2

α3 . Thus, (93) gives the desired result.

C.3 Completing the proof of Theorem 3.1

Using the lemma developed in the previous sections we now can complete the proof of Theorem 3.1.

We begin by proving Lemma 4.2. The lemma is restated formally below.
Lemma 4.2 (Detailed). There are constants C,C ′ > 1 so that the following holds. Suppose a time
horizon T ≥ 4 is given, we setH := dlog T e, and all players play according to Optimistic Hedge with
step size η satisfying 1/T ≤ η ≤ 1

C·mH4 . Then for any i ∈ [m], the losses `(1)
i , . . . , `

(T )
i ∈ [0, 1]ni

for player i satisfy:

T∑
t=1

Var
x
(t)
i

(
`
(t)
i − `

(t−1)
i

)
≤ 1

2
·
T∑
t=1

Var
x
(t)
i

(
`
(t−1)
i

)
+ C ′H5. (94)

Proof. Since T ≥ 4, we have that H ≥ 2. Set C0 = 1290 (note that C0 is the constant appearing
in the inequality (73) of the statement of Lemma 4.7 in Section C.2), and C1 = 8256 (note that
C1 is the constant appearing in item 1 of Lemma 4.7 in Section C.2). Set α = 1/(4H), and

α0 =

√
α/8

H3 < 1
H+3 . Finally note that our assumption on η implies that, as long as the constant C

satisfies C ≥ 44 · 7 · C1 = 14794752,

η ≤ min

{
α4

7C1
,

α0

36e5m

}
. (95)

By Lemma 4.4 with the parameter α in the lemma set to α0, for each i ∈ [m], 0 ≤ h ≤ H and
1 ≤ t ≤ T −h, it holds that

∥∥∥(Dh `i)
(t)
∥∥∥
∞
≤ H ·

(
α0H

3
)h

. Also set µ = H ·
(
α0H

3
)H

. Therefore,

we have, for each i ∈ [m],

T−H∑
t=1

Var
x
(t)
i

(
(DH `i)

(t)
)
≤ α ·

T−H+1∑
t=1

Var
x
(t)
i

(
(DH−1 `i)

(t)
)

+ µ2T. (96)

We will now prove, via reverse induction on h, that for all i ∈ [m] and h satisfying H − 1 ≥ h ≥ 0,

T−h−1∑
t=1

Var
x
(t)
i

(
(Dh+1 `i)

(t)
)
≤ α·(1+2α)H−h−1·

T−h∑
t=1

Var
x
(t)
i

(
(Dh `i)

(t)
)

+
2C0 ·H2 ·

(
2α0H

3
)2h

α3
.

(97)
The base case h = H − 1 is verified by (96) and the fact that 22(H−1) ≥ 2H ≥ T . Now suppose that
(97) holds for some h satisfying H − 1 ≥ h ≥ 1. We will now apply Lemma 4.7, with P (t) = x

(t)
i

and Z(t) = (Dh−1 `i)
(t) for 1 ≤ t ≤ T − h + 1, as well as M = H ·

(
2α0H

3
)h−1

, ζ = 7η, µ =
2C0·H2·(2α0H

3)
2h

α3 , and the parameter α of Lemma 4.7 set to α · (1 + 2α)H−h−1. We first verify that
precondition 1 holds. By the definition of the Optimistic Hedge updates, the sequence x(1)

i , . . . , x
(T )
i

is exp(6η)-consecutively close, and thus (1 + 7η)-consecutively close (since exp(6η) ≤ 1 + 7η for
η satisfying (95)). Our choice of η, α ensures that 1/(2(T − h+ 1)) ≤ 7η ≤ α4/C1. This verifies
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that condition 1 of Lemma 4.7 holds. Note that condition 2 of the lemma holds by (97) and our
choice of µ. Therefore, by Lemma 4.7 and the fact that 1 + α · (1 + 2α)H ≤ 1 + 2α for our choice
of α = 1/(4H), it follows that
T−h∑
t=1

Var
x
(t)
i

(
(Dh `i)

(t)
)
≤α · (1 + 2α)H−h ·

T−h+1∑
t=1

Var
x
(t)
i

(
(Dh−1 `i)

(t)
)

+
2C0 ·H2 ·

(
2α0H

3
)2h

α4

+
C0 ·H2 ·

(
2α0H

3
)2(h−1)

α3

≤α · (1 + 2α)H−h ·
T−h+1∑
t=1

Var
x
(t)
i

(
(Dh−1 `i)

(t)
)

+
C0 ·H2 · (2α0H

3)2(h−1)

α3
·
(

1 +
2(2α0H

3)2

α

)
≤α · (1 + 2α)H−h ·

T−h+1∑
t=1

Var
x
(t)
i

(
(Dh−1 `i)

(t)
)

+
2C0 ·H2 · (2α0H

3)2(h−1)

α3
,

where the final equality follows since α0 is chosen so that 2(2α0H
3)2 = α. This completes the

proof of the inductive step. Thus (97) holds for h = 0. Using again that the sequence x(t)
i is

(1 + 7η)-exponentially close, we see that
T∑
t=1

Var
x
(t)
i

(
`
(t)
i − `

(t−1)
i

)
≤1 +

T∑
t=2

Var
x
(t)
i

(
`
(t)
i − `

(t−1)
i

)
≤1 + (1 + 7η)

T−1∑
t=1

Var
x
(t)
i

(
(D1 `i)

(t)
)

(98)

≤1 + (1 + 7η) ·

(
α(1 + 2α)H−1

T∑
t=1

Var
x
(t)
i

(
`
(t)
i

)
+

2C0H
2

α3

)
(99)

≤2 + (1 + 7η) ·

(
α(1 + 2α)H−1(1 + 7η)

T∑
t=2

Var
x
(t)
i

(
`
(t−1)
i

)
+

2C0H
2

α3

)
(100)

≤α(1 + 2α)H
T∑
t=1

Var
x
(t)
i

(
`
(t−1)
i

)
+

2(1 + 7η)C0H
2

α3
+ 2

≤2α

T∑
t=1

Var
x
(t)
i

(
`
(t−1)
i

)
+

2(1 + 7η)C0H
2

α3
+ 2, (101)

where (98) and (100) follow from Lemma C.1, and (99) uses (97) for h = 0. Now, (101) verifies
the statement of the lemma. In summary, it suffices to take C = 14794752 and C ′ = 2 + 2(1 +
7/8256)C0 · 43 = 165262.

We are finally ready to prove Theorem 3.1. For convenience the theorem is restated below.
Theorem 3.1 (Restated). There are constants C,C ′ > 1 so that the following holds. Suppose a time
horizon T ∈ N is given. Suppose all players play according to Optimistic Hedge with any positive
step size η ≤ 1

C·m log4 T
. Then for any i ∈ [m], the regret of player i satisfies

Regi,T ≤
log ni
η

+ C ′ · log T. (102)

In particular, if the players’ step size is chosen as η = 1
C·m log4 T

, then the regret of player i satisfies

Regi,T ≤ O
(
m · log ni · log4 T

)
. (103)
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Proof. The conclusion of the theorem is immediate if T < 4, so we may assume from here on that
T ≥ 4. Moreover, the conclusion of (102) is immediate if η ≤ 1/T (as Regi,T ≤ T necessarily), so
we may also assume that η ≥ 1/T . Let C ′′ be the constant C of Lemma 4.1, let B be the constant
called C in Lemma 4.2 and B′ be the constant called C ′ in Lemma 4.2. As long as the constant C
of Theorem 3.1 is chosen so that C ≥ B and η ≤ 1

C·m log4 T
implies that C ′′η ≤ 1/6, we have the

following:

Regi,T ≤
log ni
η

+

T∑
t=1

(η
2

+ Cη2
)

Var
x
(t)
i

(
`
(t)
i − `

(t−1)
i

)
−

T∑
t=1

(1− Cη)η

2
Var

x
(t)
i

(
`
(t−1)
i

)
(104)

≤ log ni
η

+
2η

3

T∑
t=1

Var
x
(t)
i

(
`
(t)
i − `

(t−1)
i

)
− η

3

T∑
t=1

Var
x
(t)
i

(
`
(t−1)
i

)
≤ log ni

η
+

2η

3
·
(
B′ · (2 log T )5

)
(105)

≤ log ni
η

+ 32B′ · log T, (106)

where (104) follows from Lemma 4.1, (105) follows from Lemma 4.2, and (106) follows from
the upper bound η ≤ 1

Cm log4 T
. We have thus established (102). The upper bound (103) follows

immediately.

D Adversarial regret bounds

In this section we discuss how Optimistic Hedge can be modified to achieve an algorithm that obtains
the fast rates of Theorem 3.1 when played by all players, and which still obtains the optimal rate of
O(
√
T ) in the adversarial setting. Such guarantees are common in the literature [DDK11, RS13b,

SALS15, KHSC18, HAM21]. The guarantees of this modification of Optimistic Hedge are stated in
the following corollary (of Lemmas 4.1 and 4.2):

Corollary D.1. There is an algorithm A which, if played by all m players in a game, achieves
the regret bound of Regi,T ≤ O(m · log ni · log4 T ) for each player i; moreover, when player
i is faced with an adversarial sequence of losses, the algorithm A’s regret bound is Regi,T ≤
O(m log ni · log4 T +

√
T log ni).

Proof. Let C be the constant called C in Theorem 3.1 and C ′ be the constant called C ′ in Lemma
4.2. The algorithm A of Corollary D.1 is obtained as follows:

1. Initially run Optimistic Hedge, with the step-size η = 1
Cm log4 T

.

2. If, for some T0 ≥ 4, (94) first fails to hold at time T0, i.e.,

T0∑
t=1

Var
x
(t)
i

(
`
(t)
i − `

(t−1)
i

)
>

1

2
·
T0∑
t=1

Var
x
(t)
i

(
`
(t−1)
i

)
+ C ′dlog T e5, (107)

then set η′ =
√

logni
T and continue on running Optimistic Hedge with step size η′.

If there is no T0 ≥ 4 so that (107) holds (and by Lemma 4.2, this will be the case when A is played
by all m players in a game), then the proof of Theorem 3.1 shows that the regret of each player i is
bounded as Regi,T ≤ O(m log ni · log4 T ). Otherwise, since T0 is defined as the smallest integer at
least 4 so that (107) holds, we have

T0∑
t=1

Var
x
(t)
i

(
`
(t)
i − `

(t−1)
i

)
≤ 1

2
·
T0∑
t=1

Var
x
(t)
i

(
`
(t−1)
i

)
+ C ′dlog T e5 + 4,
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and thus, by Lemma 4.1, for any x? ∈ ∆ni ,

T0∑
t=1

〈`(t)i , x
(t)
i − x

?〉 ≤ Regi,T0
≤ O(m log ni · log4 T0). (108)

Further, by the choice of step size η′ =
√

logni
T for time steps t > T0, we have, for any x? ∈ ∆ni ,

T∑
t=T0+1

〈`(t)i , x
(t)
i − x

?〉 ≤ log ni
η′

+ η′
T∑

t=T0+1

‖`(t)i − `
(t−1)
i ‖2∞ (109)

≤ log ni
η′

+ η′T ≤ O(
√
T log ni), (110)

where (109) uses [SALS15, Proposition 7]. Adding (108) and (110) completes the proof of the
corollary.
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