
Online and Offline Reinforcement Learning by
Planning with a Learned Model

Julian Schrittwieser∗
DeepMind

swj@google.com

Thomas Hubert∗
DeepMind

tkhubert@google.com

Amol Mandhane
DeepMind

mandhane@google.com

Mohammadamin Barekatain
DeepMind

barekatain@google.com

Ioannis Antonoglou
DeepMind

University College London
ioannisa@google.com

David Silver
DeepMind

University College London
davidsilver@google.com

Abstract

Learning efficiently from small amounts of data has long been the focus of model-
based reinforcement learning, both for the online case when interacting with the
environment and the offline case when learning from a fixed dataset. However, to
date no single unified algorithm has demonstrated state-of-the-art results in both
settings. In this work, we describe the Reanalyse algorithm which uses model-
based policy and value improvement operators to compute new improved training
targets on existing data points, allowing efficient learning for data budgets varying
by several orders of magnitude. We further show that Reanalyse can also be used to
learn entirely from demonstrations without any environment interactions, as in the
case of offline Reinforcement Learning (offline RL). Combining Reanalyse with the
MuZero algorithm, we introduce MuZero Unplugged, a single unified algorithm for
any data budget, including offline RL. In contrast to previous work, our algorithm
does not require any special adaptations for the off-policy or offline RL settings.
MuZero Unplugged sets new state-of-the-art results in the RL Unplugged offline
RL benchmark as well as in the online RL benchmark of Atari in the standard 200
million frame setting.

1 Introduction

Offline reinforcement learning holds the promise of learning useful policies from many existing
real-world datasets in a wide range of important problems such as robotics, healthcare or education
(Levine et al., 2020). Learning effectively from offline data is crucial for such tasks where interaction
with the environment is costly or comes with safety concerns, but a large amount of logged and other
offline data is often available.

A wide variety of effective reinforcement learning (RL) algorithms for the online case have been
described, achieving impressive results in video games (Mnih et al., 2015), robotic control (Akkaya
et al., 2019) and many other problems. However, applying these online RL algorithms to offline data
often remains challenging due to off-policy issues, with the best results in offline RL so far obtained
by specialised offline algorithms (Kumar et al., 2020; Wang et al., 2020; Agarwal et al., 2020). At the
same time, model-based reinforcement learning (RL) has long focused on learning efficiently from
little data, even going as far as learning completely within a model of the environment (Hafner et al.,
2018) - an approach ideally suited for offline RL.

∗Equal contribution

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



So far, these developments have been relatively independent, with no unified algorithm that could
achieve state-of-the art results in both the online and offline settings.

In this paper, we describe the Reanalyse algorithm, a simple yet effective technique for policy and
value improvement at any data budget, including the fully offline case. A preliminary version of
Reanalyse was briefly introduced in the context of MuZero (Schrittwieser et al., 2020), but limited to
data efficiency improvements in the discrete action case. Here, we delve deeper into the algorithm and
push its capabilities much further – ultimately to the point where most or all of the data is reanalysed.

Starting with the possible uses of Reanalyse, we show how it can be used for data efficient learning
and offline RL, leading to MuZero Unplugged. We demonstrate its effectiveness for the online case
through results on Atari and for the offline case through results on the RL Unplugged benchmark for
Atari and DM Control.

2 Related Work

Recent work by Levine et al. (2020) provides a thorough review of offline RL literature and presents
an excellent introduction to the subject. Much research has focused on regularising the value or policy
learning to counteract off-policy issues and learn only from high quality data. Critic-Regularized
Regression (CRR) uses a critic to filter out bad actions and uses only good actions to train the policy
(Wang et al., 2020). Random Ensemble Mixture (REM) regularises q-value estimation by using
random convex combinations of ensemble members during training, and the ensemble mean during
evaluation (Agarwal et al., 2020). Conservative Q-Learning (CQL) learns a conservative Q-function,
used to lower bound the value of the current policy (Kumar et al., 2020). Pessimistic Offline Policy
Optimization (POPO) also uses a pessimistic value function for policy learning (He & Hou, 2021).

Existing work has also demonstrated the promise of model-based RL for offline learning (Matsushima
et al., 2020; Argenson & Dulac-Arnold, 2020), but has often been restricted to tasks with low-
dimensional action or state spaces, and has not been applied to visually more complex tasks such as
Atari (Bellemare et al., 2013).

Model-Based Offline Reinforcement Learning (MOReL) implements a two-step procedure, first
learning a pessimistic MDP from offline data using Gaussian dynamics models, then a policy within
this learned MDP (Kidambi et al., 2020). Results are presented for state-based control tasks. Model-
based Offline Policy Optimization (MOPO) penalises rewards by the uncertainty of the model
dynamics to avoid distributional shift issues (Yu et al., 2020). Offline Reinforcement Learning from
Images with Latent Space Models (LOMPO) extends MOPO to image based tasks (Rafailov et al.,
2021). Results are reported on newly introduced datasets with image observations, which the authors
aim to open-source in the near future. Deep Averagers with Costs MDP (DAC-MDP) (Shrestha et al.,
2021) builds non-parametric models from the offline data, solves these tabular MDPs using value
iteration, then generalizes back to the original MDP.

Most previous approaches primarily use the learned model for uncertainty estimation and to train a
policy; they do not directly use the learned model for planning over action sequences. In contrast,
our method focuses on using the learned model directly for policy and value improvement through
planning both offline (when learning from data) and online (when interacting with an environment). It
requires no regularisation of the value or policy function either in the online or offline case, works well
even in very high dimensional state spaces and is equally applicable to both discrete and continuous
action spaces.

Reanalyse is also qualitatively different from Dyna (Sutton, 1991) in several important regards: it uses
both value and policy rather than value function alone; and it also updates the state representation.
In the specific case of MuZero Reanalyse it also performs a tree search rather than a single step
lookahead used in Dyna.

A combination of MuZero Unplugged with regularisation approaches such as introduced in the
previous work discussed above (Kidambi et al., 2020; Yu et al., 2020; Rafailov et al., 2021) is
possible; we leave such investigations for future work.

2



3 Reanalyse

Reanalyse takes advantage of model-based value and policy improvement operators to generate
new value and policy training targets for a given state (Algorithm 1). In this work, we will use
MuZero’s Monte Carlo Tree Search (MCTS) planning algorithm combined with its learned model of
the environment dynamics as the improvement operator.2

As the learned model and its predictions are updated and improved throughout training, Reanalyse
can be repeatedly applied to the same state to generate better and better training targets. The improved
training targets in turn are used to improve the model and predictions, leading to a virtuous cycle of
improvement.

Algorithm 1 The Reanalyse algorithm. MuZero Unplugged instantiates representation, predict,
dynamics with the MuZero network architecture; plan with MCTS; loss with the MuZero loss in eqn
(1); and optimise with Adam.

for step← 0...N do
t ∼ random(1 : T )
s0t = representation(h1:t, θ)
for i← 0...k do
πit, ν

i
t = plan(representation(h1:t+i, θ), θ)

pit, v
i
t = predict(sit, θ)

ri+1
t , si+1

t = dynamics(sit, at+i, θ)
end for
l = loss(ht:t+k, {r, p, v, u, π, ν}0:kt , θ)
∆θ = optimise(l, θ)

end for

To run MCTS and compute new targets for a training point, the representation function of MuZero
maps the history h1:t of observations, actions and rewards up to timestep t into an agent state or
embedding st. The search over possible future action sequences then takes place entirely in this
embedding space, by rolling the dynamics forward and applying prediction functions at every step.
These predictions output the key quantities required by planning: the policy, value function and
reward. The resulting MCTS statistics at the root of the search tree - visit counts for the actions and
value estimate averaged over the tree - are then used as new training targets. During reanalysis, no
actions a are selected – instead the agent updates its model and prediction parameters based on the
data it has already experienced.

Specifically, MuZero Reanalyse jointly adjusts its parameters θ to repeatedly optimise the following
loss at every time-step t, applied to a model that is unrolled 0...K steps into the future,

lt(θ) =

K∑
k=0

lp(πt+k, p
k
t )+

K∑
k=0

lv(zt+k, v
k
t )+

K∑
k=1

lr(ut+k, r
k
t ) (1)

where pkt , vkt , and rtk are respectively the policy, value and reward prediction produced by the k-step
unrolled model. The respective targets for these predictions are drawn from the corresponding
time-step t+ k of the real trajectory: πt+k, νt+k are the improved policy and value generated by the
search, zt+k = ut+k+1 + ... + γn−1ut+k+n + γnνt+k+n is an n-step return, and ut+k is the true
reward.

The policy and value predictions are then updated towards the new training targets, in the same way
they would be for targets computed based on environment interactions - through minimising losses
lp, lv and lr. In other words, Reanalyse requires no changes on the part of the learner and can be
implemented purely in terms of adapting the actors to generate improved targets based on stored data
instead of environment interactions.

Since the actual MCTS procedure used to Reanalyse a state is the same as the one used to choose
an action when interacting with an environment, it is straightforward to perform a mix of both. We
refer to this ratio between targets computed from direct interactions with the environment, and targets

2Other model-based algorithms can be used as improvement operators as well.

3



Reanalyse Median Mean # Frames

50.0% 1331.7% 4094.4% 2000M
95.0% 1006.4% 2856.2% 200M
99.5% 126.6% 450.6% 20M

Figure 1: Reanalyse scaling in Atari. By varying the Reanalyse fraction alone, MuZero can learn
efficiently at data budgets differing by orders of magnitude. All other parameters are held constant.
Left: Final scores in Ms. Pac-Man for different Reanalyse fractions. Note the logarithmic x-axis:
Linear improvements in score require exponentially more data, matching scaling laws such as
described by (Kaplan et al., 2020) for language models.
Right: Mean & median human normalised scores over 57 Atari games, by Reanalyse fraction.

computed by reanalysing existing data points as the Reanalyse fraction. A Reanalyse fraction of 0%
refers to training by only interacting with the environment, no Reanalyse of stored data, whereas a
fraction of 100% refers to the fully offline case with no environment interaction at all.

Since Reanalyse only uses stored data points and the learned model to compute improved targets, it
can be employed flexibly for many different purposes:

• Data Efficiency. The simplest use of Reanalyse is to improve data efficiency by repeatedly
computing updated targets on previously collected data throughout training. By scaling the
Reanalyse fraction as described in Section 4, learning can be optimised for any data budget.
For this purpose, the data to be reanalysed is sampled from the N most recent environment
interactions; in the limit this includes all interactions throughout training.

• Offline RL. When increasing the Reanalyse fraction to 100%, learning takes place entirely
from stored offline data as described in Section 5, without any interaction with the environ-
ment. Offline data may be obtained from a variety of sources, such as other agents, logged
data from a heuristic control system or human examples.

• Demonstrations. Reanalyse can be used to quickly bootstrap learning from demonstrations
containing desirable behaviour that might otherwise be hard to discover - collected for
instance from humans - while still interacting with the environment, learning from both
sources of data at the same time. This is useful to skip past what might otherwise be hard
exploration problems while still improving beyond the quality of the initial demonstrations.

• Exploitation of good episodes. When using Reanalyse to improve data efficiency, Reanalyse
is applied to the most recently collected data. If instead data is ordered by some other metric,
such as episode reward, Reanalyse can be used to quickly learn from rare events, such as
rewards observed in hard-exploration tasks. This variant is most useful in deterministic
environments, as it could otherwise bias the value estimates in stochastic environments.

In this paper, we will focus on the data efficiency and offline RL cases. Remaining cases require
no adjustments to the algorithm and only differ in the source of data to be reanalysed. Further
combinations of the cases above are also possible, such as a mix of exploitation and data efficiency
Reanalyse which we leave for future work.

The Reanalyse algorithm has some similarities to experience replay (Lin, 1992). Whereas replay
performs multiple gradient descent updates for the same data point and target, Reanalyse uses model-
based improvement operators to generate multiple training targets for the same data point. Reanalyse
and replay have independent effects and can be combined to further improve data efficiency of
learning; in fact we do so for all experiments in this paper.

4 Reanalyse for Data Efficiency

By adjusting the ratio between targets computed from interactions with the environment and from
stored trajectories (Reanalyse fraction), Reanalyse can be used to train MuZero at any desired data

4



Loss Median Mean

a BC 53.3 % 48.5 %
DQN 86.2 % 89.5 %
IQN 100.8 % 96.1 %
BCQ 107.5 % 120.0 %
REM 107.9 % 113.5 %
CRR (ours) 155.6 % 271.2 %

b MuZero BC 54.0 % 46.9 %
MuZero Unplugged 265.3 % 595.5 %

Game QR-DQN REM CQL(H) MZ

asterix (1%) 359.8 363.3 592.4 27220.5
breakout 6.8 4.5 61.1 251.9
pong -14.5 -20.8 19.3 -16.2
qbert 156.0 160.1 14012.0 6953.2
seaquest 250.1 370.5 779.4 4964.0

asterix (10%) 1293.9 3912.3 156.3 40554.0
breakout 61.8 56.9 269.3 485.8
pong 12.7 9.5 18.5 15.6
qbert 9420.5 5800.0 13855.6 16817.9
seaquest 353.1 3643.5 3674.1 8556.3

Table 1: RL Unplugged Atari benchmark.
Left: Overall results. Mean and median normalised scores over the 46 Atari games of the RL
Unplugged benchmark. a) Baseline algorithms. CRR results are for our own reimplementation, other
results are from (Gulcehre et al., 2020). b) Results using the MuZero network architecture.
Behaviour cloning (BC) with the MuZero network replicated the baseline BC results from a), con-
firming correct import of the dataset and evaluation settings. Critic Regularized Regression (CRR)
(Wang et al., 2020) significantly improved performance of the policy. MuZero Unplugged training
with Reanalyse loss and MCTS for action selection led to overall best performance.
Right: Low-data setting. QR-DQN (Dabney et al., 2018), REM (Agarwal et al., 2020), CQL(H)
(Kumar et al., 2020) and MuZero Unplugged results when trained on only 1% (top, 2 million frames)
or 10% (bottom, 20 million frames) of Atari data. QR-DQN and REM results from (Agarwal et al.,
2020). MuZero Unplugged performance improves consistently when trained on more data.

budget, as shown in Figure 1. The total amount of computation for each training run (number of
updates on the learner and number of searches on the actors) is held constant.

As training progresses, the policy produced by MCTS with the latest network weights will increasingly
differ from the policy originally used to generate the trajectories that are being reanalysed. This can
bias the state distribution used for training as well as some of the training targets:

• The policy prediction pt for a state st is always updated towards the MCTS statistics πt for
that same state. In this way, the policy can be learned completely independently from the
trajectory; no off-policy issues can arise.

• The reward prediction only depends on the state and the action that was taken from this
state and is not affected by off-policy issues as such. However, if the state distribution is
very biased - in the extreme an action may never be observed - the reward function will be
unable to learn the correct reward prediction for these cases, limiting the maximum policy
improvement step.

• The situation for the value function depends on the choice of training target; when using an
n-step TD return such as in Atari (n = 5), the target depends on the trajectory and off-policy
issues can potentially arise. Whether this is an issue depends on how different the data
distribution is from the policy that is being learned. Empirically, we observed that the gain
from bootstrapping with the actually observed environment rewards seems to outweigh any
harm from being off-policy. We speculate that the bias introduced by early bootstrapping
may be larger than the bias introduced by off-policy targets, as also seen in prior work
(Vinyals et al., 2019).

5 MuZero Unplugged: Offline RL with Reanalyse

We obtain MuZero Unplugged, an offline version of MuZero, by adjusting the Reanalyse fraction to
100% - learning without any environment interactions, purely from stored trajectories. In contrast to
previous work, we perform no off-policy corrections or adjustments to the value and policy learning:
the exact same algorithm applies to both the online and offline case.

We used the RL Unplugged (Gulcehre et al., 2020) benchmark dataset for all offline RL experiments
in this paper. To demonstrate the generality of the approach, we report results for both discrete and
continuous action spaces as well as state and pixel based data, specifically:

5



Loss supervised CRR Reanalyse
Unroll 0 1 5 5 5

policy 60.6 61.4 54.0 155.6 203.2
value 92.2 105.0 159.2 153.0 239.9
MCTS - 137.3 169.7 172.5 265.3

Table 2: Median score in RL Unplugged Atari: ablations of action selection and training loss.
Median normalized scores over the 46 Atari games from RL Unplugged.
Rows of the table correspond to different action selection methods: sampling according to the policy
probabilities, selecting the action with the highest value or selecting according to MCTS visit counts.
Columns correspond to different number of unroll steps of the MuZero learned model and different
losses. The leftmost three columns use the action from the training data as a supervised policy target,
the rightmost two columns use the CRR and the Reanalyse loss respectively. For the case of 0 unroll
steps, an action-value head is used to predict action values, instead of the state-value predicted by the
normal model. All columns use a 5-step TD bootstrap towards a target network as the value target.
For all action selection methods, Reanalyse loss led to the best performance; for all losses, MCTS
action selection also led to the best performance. Overall, the combination of MCTS action selection
and Reanalyse loss - the MuZero Unplugged algorithm - led to the best results.

• DM Control Suite, 9 different tasks, number of frames varies by task (Table 3). Continuous
action space with 1 to 21 dimensions, state observations.

• Atari, 46 games with 200M frames each. Discrete action space, pixel observations, stochas-
ticity through sticky actions (Machado et al., 2017).

MuZero Unplugged was highly effective in either setting, outperforming baseline algorithms in Atari
(Table 1) as well as the DM Control Suite (Table 3). We performed no tuning of hyperparameters
for these experiments, instead using the same hyperparameter values as for the online RL case
(Schrittwieser et al., 2020; Hubert et al., 2021).

To add another strong baseline for the Atari benchmark, we also implemented Critic Regularized
Regression (CRR), a recent offline RL algorithm (Wang et al., 2020). For the critic value required by
CRR we used the value head of MuZero model, trained by 5-step TD with respect to a target network,
as in previous work (Schrittwieser et al., 2020) and the same as used for MuZero Unplugged. Using
CRR to train the policy head led to improved results in Atari (Table 1a, CRR), matching results
reported for continuous action tasks, but did not reach the same performance as MuZero Unplugged.

Performance of MuZero Unplugged was robust across the whole range of 46 Atari games in the RL
Unplugged benchmark, reaching the same or better performance as the DQN policy used to generate
the data in 44 games, and slightly worse performance in only 2 games (Figure 2). Improvements in
performance with respect to the training data were considerable, exceeding a 20 times increase in
score in several games.

To examine the performance of MuZero Unplugged in detail and ascertain the contributions of action
selection methods and training losses, we also performed a set of ablations (Tables 2 and 7) based
on the Atari dataset. We chose Atari because the large number of diverse levels enables robust
performance estimates and its discrete action space allows us to cleanly disentangle the contributions
of value and policy predictions as well as planning with MCTS. In contrast, for continuous action
spaces such as in the DM Control suite, the contributions of policy and value are entangled, as the
value function can only evaluate actions already sampled from the policy.

For our ablations, we considered three possible action selection methods: Sampling actions according
to the policy network probabilities, selecting the action with the maximum value, or selecting actions
based on the MCTS visit count distribution (rows of Table 2). We also considered different losses
and network architectures: the leftmost three columns use variants of the MuZero learned model with
0 (no model at all), 1 or 5 steps of model unroll, all trained using the supervised behaviour cloning
policy target and a 5-step TD value target based on a target network. The next column used CRR to
train the policy. The last column used the the MCTS visit count distribution from the Reanalyse loss.
These ablations allow us to separately measure the contribution of MCTS at training time (rightmost

6



column) and evaluation time (bottom row), with the combination of MCTS at evaluation time and
Reanalyse loss (bottom right cell) corresponding to MuZero Unplugged.

As expected, the policy prediction was insensitive to the choice of model depth, but benefited from an
improved training target: the CRR loss significantly improved results. Best results were obtained
when using the rich MCTS visit count distribution from the Reanalyse loss as a training target (top
row of Table 2).

When selecting actions according to the value estimate for each action (middle row of Table 2), the
depth of the learned model was surprisingly important. The difference between estimating q-values
(0-step model) and state-values (1-step model) was small, with both attaining results similar to the
IQN baseline (Table 1a) — expected, since all of these results use a distributional value prediction.
However, learning a full 5-step model led to a big improvement even though only 1-step value
predictions were used for evaluation. We speculate that learning a full 5-step model is beneficial
because it regularises the network representation and acts as a useful auxiliary loss.3

Baselines MuZero
Task # dims # episodes BC D4PG BRAC RABM BC Unplugged

cartpole.swingup 1 40 386.0 856.0 869.0 798.0 143.7 343.3
finger.turn hard 2 500 238.0 714.0 227.0 433.0 308.8 405.0
fish.swim 5 200 444.0 180.0 222.0 504.0 542.8 585.4
manipulator.insert ball 5 1500 385.0 154.0 55.6 409.0 412.7 557.0
manipulator.insert peg 5 1500 279.0 50.4 49.5 290.0 309.9 432.7
walker.stand 6 200 386.0 930.0 829.0 689.0 444.4 759.8
walker.walk 6 200 380.0 549.0 786.0 651.0 496.3 901.5
cheetah.run 6 300 408.0 308.0 539.0 304.0 592.9 798.9
humanoid.run 21 3000 382.0 1.7 9.6 303.0 408.5 633.4
mean 365.3 415.9 398.5 486.8 406.7 601.9

Table 3: Results for DM Control benchmark from RL Unplugged. Mean final score on 9
DM Control tasks, as well as mean score across all tasks. First three columns indicate task, action
dimensonality and dataset size, subsequent four columns reproduce baseline results from (Gulcehre
et al., 2020). Final columns show performance of Behaviour Cloning (BC) with the MuZero network
and results for MuZero Unplugged. As the data sets for the DM Control tasks are very small and vary
a hundredfold between tasks, to keep the number of model parameters per datapoint constant and

prevent memorisation, we scaled the neural network according to channels =
√

datapoints
layers . For an

ablation of network size see Table 9.

Keeping the 5-step model but changing the loss for the policy head, we observed that CRR had no
effect on the quality of the value prediction for action selection, while the richer MCTS visit count
distribution from the Reanalyse loss led to another big improvement. Even though the policy head
is not used when selecting actions according to the maximum 1-step value, we hypothesise that the
auxiliary loss has a strong regularising effect and further improved the internal representation of the
model. This matches the results of (Silver et al., 2017) that training a single combined network to
estimate both policy and value led to improved value prediction accuracy.

Finally, using MCTS to select actions at evaluation time (bottom row of Table 2) improved results no
matter which loss was used at training time, with best results obtained when using MCTS for both
training and evaluation - the full MuZero Unplugged algorithm.

We also verified that our training setup correctly interpreted the offline data4 and reproduced the
baseline performance when using the same loss: Using the actions played in the training data as

3These results suggest that an n-step model can also be used as an auxiliary loss to improve the performance
of otherwise model-free algorithms. For value-based algorithms without an explicit policy prediction, the
distribution used for action selection can be used as the target for the policy loss of the model.

4We spent a surprisingly large amount of time tracking down action space mismatches, data discrepancies
and compression artefacts. We recommend that any offline RL paper should first reproduce baseline results for
the chosen dataset before attempting modifications and improvements to the algorithms.

7



MuZero
Task CRR BC Unplugged

cartpole.swingup 664.0 501.8 594.3
finger.turn hard 714.0 333.8 759.0
fish.swim 517.0 556.8 681.6
manipulator.insert ball 625.0 465.6 659.2
manipulator.insert peg 387.0 325.9 556.0
walker.stand 797.0 473.3 887.2
walker.walk 901.0 637.9 949.5
cheetah.run 577.0 765.3 869.9
humanoid.run 586.0 416.5 643.1
mean 640.9 497.4 733.3

Table 4: Comparison of MuZero Unplugged and CRR. Results for CRR (Wang et al., 2020) were
reported by selecting the checkpoint with the highest mean reward from each training run. Since
this does not follow the offline policy selection guidelines from RL Unplugged and is therefore not
directly comparable to the baseline results, we compared to it separately. The same highest mean
reward evaluation scheme as used in CRR was used for MuZero Unplugged results in this table as
well. All other tables report results at the end of training.

a supervised policy target to train a policy head using cross-entropy loss and sampling from it for
evaluation (Table 1, policy BC a and b) reproduced the behaviour cloning (BC) baseline results.

6 Offline RL and Continuous Action Spaces

An important motivation for offline RL is the application to real-world systems such as robotics,
which often have continuous and high-dimensional action spaces. To investigate the applicability of
MuZero Unplugged to this setting, we used the DM Control Suite dataset from the RL Unplugged
dataset. DM Control is a collection of physics based benchmark tasks (Tassa et al., 2018) with a
variety of robotic bodies of different action and state dimensionalities (Table 3).

In order to use planning and Reanalyse with continuous action spaces, we used the sample based
search extension of MuZero introduced by (Hubert et al., 2021). This extension uses a policy head
to produce a set of candidate actions to search over, where the MCTS considers only the sampled
actions instead of fully enumerating the action space. Finally, the policy is updated towards the search
distribution only at the sampled actions.

When applying Reanalyse for data efficiency improvements to data generated by the agent itself, no
modifications are required to use sample based search and Reanalyse together. In offline RL or when
reanalysing demonstrations from a source other than the agent itself, the policy that generated the
actions making up the dataset is often quite different from the one learned by MuZero Unplugged,
and unlikely to sample the same actions, at least at the beginning of training. Since in this case the
MCTS (and by extension, Reanalyse) can only consider actions that have been sampled from the
policy, it would be unlikely to learn about the actions contained in the dataset, and thus unable to
sample them from the policy in the future. This effect is most pronounced in very high dimensional
action spaces.

To prevent this issue, we explicitly included the action from the trajectory being reanalysed in the
sample of actions searched over at the root of the MCTS tree. This serves the same purpose as the
Dirichlet exploration noise used in standard MuZero - encouraging the MCTS to explore actions it
would not otherwise consider. For the prior of the injected action we therefore use the same value
as for the Dirichlet probability mass, 25%, though the algorithm is not sensitive to the exact value.
This step is redundant for discrete action spaces (such as in Atari) where the policy already always
produces a prior for all possible actions.

We compared the performance of MuZero Unplugged to offline RL algorithms from the literature
such as D4PG (Barth-Maron et al., 2018), BRAC (Wu et al., 2019) and RABM (Siegel et al., 2020;
Gulcehre et al., 2020) (Table 3), as well as the recent Critic Regularized Regression (CRR) (Wang

8



et al., 2020) algorithm (Table 4, shown separately as CRR was evaluated by selecting the maximum
performance throughout training and results are thus not comparable to the other baselines).

We first measured the performance of Behaviour Cloning (BC) when implemented using the MuZero
network to ensure we used the offline dataset correctly and that it matches the evaluation environment.
Overall performance indeed approximately matches the BC baseline (Table 3).

MuZero Unplugged outperformed baseline algorithms both in individual tasks and for the mean
return5 averaged across all tasks. It did best in difficult high-dimensional tasks such as humanoid.run
or the manipulator tasks, classified as ”hard” by (Wang et al., 2020), compared to ”easy” for the other
tasks. Performance in the simplest tasks, especially cartpole, was somewhat lower — primarily due
to the very small datasets6 leading to overfitting of the learned model and value function throughout
training: in cartpole, performance of the best checkpoint (Figure 4) was much better than performance
at the end of training (Figure 3). Additional regularisation techniques such as dropout (Hinton et al.,
2012) could be employed to prevent this. We leave this for future work since we are primarily
interested in performance on complex tasks that we consider most representative of real-world
problems.

7 Limitations

MuZero Unplugged uses a deterministic model, potentially limiting its performance in stochastic or
partially observed environments. The learned model is a single time-step model, which may limit the
time horizon of planning. MuZero Unplugged also does not employ explicit forms of regularizations;
combination with existing methods from the literature may improve its performance on very small
datasets.

The MCTS improvement operator in MuZero Unplugged requires a suitable value function; in
environments where value learning is very difficult this may limit the magnitude of the improvement
obtained by Reanalyse.

8 Conclusions

In this paper we have investigated the Reanalyse algorithm and its applications to both data efficient
online RL at any data budget and completely offline RL. We combined Reanalyse with MuZero to
obtain MuZero Unplugged, a unified model-based RL algorithm that achieved a new state of the art in
both online and offline reinforcement learning. Specifically, MuZero Unplugged outperformed prior
baselines in the Atari Learning Environment both using a standard online budget of 200 million frames
and other data budgets spanning multiple orders of magnitude. Furthermore, MuZero Unplugged also
outperformed offline baselines in the RL Unplugged benchmark for Atari and continuous control.
Unlike previous approaches, MuZero Unplugged uses the same algorithm for multiple regimes
without any special treatment for off-policy or offline data.

This work represents a further step towards the vision of a single algorithm that can address a wide
range of reinforcement learning applications, extending the capabilities of model-based planning
algorithms to encompass new dimensions such as online and offline learning, using discrete and
continuous action spaces, across pixel and state-based observation spaces, in addition to the wide
array of challenging planning tasks addressed by prior work (Silver et al., 2018).

Acknowledgements

We would like to thank Caglar Gulcehre for providing very detailed feedback and helpful suggestions
to improve the paper.

All of the work in this paper was funded by DeepMind.

5Using the mean is appropriate in DM Control as the return for all tasks is in [0, 1000], with the return for
the optimal policy close to 1000. Therefore no outlier can dominate the mean; this is unlike the situation in Atari
where scores of wildly varying magnitude require usage of the median.

6The amount of information contained in the dataset is the product of the number of episodes and the size of
the state and action space.

9



References
Agarwal, R., Schuurmans, D., and Norouzi, M. An optimistic perspective on offline reinforcement

learning. In International Conference on Machine Learning, pp. 104–114. PMLR, 2020.

Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M., McGrew, B., Petron, A., Paino, A., Plap-
pert, M., Powell, G., Ribas, R., et al. Solving rubik’s cube with a robot hand. arXiv preprint
arXiv:1910.07113, 2019.

Argenson, A. and Dulac-Arnold, G. Model-based offline planning, 2020.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization, 2016.

Barth-Maron, G., Hoffman, M. W., Budden, D., Dabney, W., Horgan, D., TB, D., Muldal, A., Heess,
N., and Lillicrap, T. Distributed Distributional Deterministic Policy Gradients, 2018.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. The Arcade Learning Environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
2013.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke,
A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/google/jax.

Dabney, W., Rowland, M., Bellemare, M. G., and Munos, R. Distributional reinforcement learning
with quantile regression. In AAAI, 2018.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V., Harley, T.,
Dunning, I., et al. IMPALA: Scalable distributed deep-RL with importance weighted actor-learner
architectures. In Proceedings of the International Conference on Machine Learning (ICML), 2018.

Google, 2018. Cloud TPU. https://cloud.google.com/tpu/. Accessed: 2019.

Gulcehre, C., Wang, Z., Novikov, A., Paine, T. L., Colmenarejo, S. G., Zolna, K., Agarwal, R., Merel,
J., Mankowitz, D., Paduraru, C., Dulac-Arnold, G., Li, J., Norouzi, M., Hoffman, M., Nachum, O.,
Tucker, G., Heess, N., and de Freitas, N. RL Unplugged: Benchmarks for Offline Reinforcement
Learning. 2020. URL https://arxiv.org/pdf/2006.13888.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., and Davidson, J. Learning latent
dynamics for planning from pixels. arXiv preprint arXiv:1811.04551, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings in deep residual networks. CoRR,
abs/1603.05027, 2016. URL http://arxiv.org/abs/1603.05027.

He, Q. and Hou, X. POPO: Pessimistic Offline Policy Optimization, 2021.

Hennigan, T., Cai, T., Norman, T., and Babuschkin, I. Haiku: Sonnet for JAX, 2020. URL
http://github.com/deepmind/dm-haiku.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B.,
Azar, M., and Silver, D. Rainbow: Combining improvements in deep reinforcement learning. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R. Improving
neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580,
2012.

Hubert, T., Schrittwieser, J., Antonoglou, I., Barekatain, M., Schmitt, S., and Silver, D. Learning and
Planning in Complex Action Spaces. arXiv e-prints, April 2021.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Silver, D., and Kavukcuoglu, K.
Reinforcement learning with unsupervised auxiliary tasks. arXiv preprint arXiv:1611.05397, 2016.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford, A.,
Wu, J., and Amodei, D. Scaling laws for neural language models, 2020.

10

http://github.com/google/jax
https://cloud.google.com/tpu/
https://arxiv.org/pdf/2006.13888
http://arxiv.org/abs/1603.05027
http://github.com/deepmind/dm-haiku


Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims, T. MOReL : Model-Based Offline
Reinforcement Learning, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2015.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conservative Q-learning for Offline Reinforcement
Learning, 2020.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline reinforcement learning: Tutorial, review, and
perspectives on open problems, 2020.

Lin, L.-J. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine learning, 8(3-4):293–321, 1992.

Loshchilov, I. and Hutter, F. Fixing weight decay regularization in adam. CoRR, abs/1711.05101,
2017. URL http://arxiv.org/abs/1711.05101.

Machado, M., Bellemare, M., Talvitie, E., Veness, J., Hausknecht, M., and Bowling, M. Revisiting
the Arcade Learning Environment: Evaluation protocols and open problems for general agents.
Journal of Artificial Intelligence Research, 61, 09 2017. doi: 10.1613/jair.5699.

Matsushima, T., Furuta, H., Matsuo, Y., Nachum, O., and Gu, S. Deployment-efficient reinforcement
learning via model-based offline optimization, 2020.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Ried-
miller, M., Fidjeland, A. K., Ostrovski, G., et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529, 2015.

Rafailov, R., Yu, T., Rajeswaran, A., and Finn, C. Offline reinforcement learning from images with
latent space models. In Learning for Dynamics and Control, pp. 1154–1168. PMLR, 2021.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Prioritized experience replay. In International
Conference on Learning Representations, Puerto Rico, 2016.

Schmitt, S., Hessel, M., and Simonyan, K. Off-policy actor-critic with shared experience replay.
arXiv preprint arXiv:1909.11583, 2019.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A., Lockhart,
E., Hassabis, D., Graepel, T., Lillicrap, T. P., and Silver, D. Mastering Atari, Go, Chess and Shogi
by Planning with a Learned Model. Nature, 588(7839):604–609, 2020.

Shrestha, A. K., Lee, S., Tadepalli, P., and Fern, A. Deepaveragers: Offline reinforcement learning by
solving derived non-parametric {mdp}s. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=eMP1j9efXtX.

Siegel, N. Y., Springenberg, J. T., Berkenkamp, F., Abdolmaleki, A., Neunert, M., Lampe, T.,
Hafner, R., and Riedmiller, M. Keep doing what worked: Behavioral modelling priors for offline
reinforcement learning. arXiv preprint arXiv:2002.08396, 2020.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker,
L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T.,
and Hassabis, D. Mastering the game of Go without human knowledge. Nature, 550:354–359,
October 2017.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L.,
Kumaran, D., Graepel, T., et al. A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science, 362(6419):1140–1144, 2018.

Sutton, R. S. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160–163, 1991.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., de Las Casas, D., Budden, D., Abdolmaleki, A.,
Merel, J., Lefrancq, A., Lillicrap, T., and Riedmiller, M. Deepmind control suite, 2018.

11

http://arxiv.org/abs/1711.05101
https://openreview.net/forum?id=eMP1j9efXtX


Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi, D. H.,
Powell, R., Ewalds, T., Georgiev, P., et al. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature, pp. 1–5, 2019.

Wang, Z., Novikov, A., Zolna, K., Merel, J. S., Springenberg, J. T., Reed, S. E., Shahriari, B., Siegel,
N., Gulcehre, C., Heess, N., et al. Critic Regularized Regression. Advances in Neural Information
Processing Systems, 33, 2020.

Wu, Y., Tucker, G., and Nachum, O. Behavior regularized offline reinforcement learning. arXiv
preprint arXiv:1911.11361, 2019.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J., Levine, S., Finn, C., and Ma, T. MOPO: Model-based
Offline Policy Optimization, 2020.

12


