
A Implementation Details

A.1 Baselines

RL2 and variBAD We use the open-source reference implementation of variBAD at https:
//github.com/lmzintgraf/varibad to report the results of RL2 and variBAD. All gridworld
and MuJoCo environments used for our experiments are based on this implementation. We modify
the environments to contain separateMtrain andMtest. The oracle versions of RL2 and variBAD
use the original environmentM. We keep all the network structures and hyperparameters of the
reference implementation except for the gridworld task. We increase the GRU hidden size from 64 to
128 and the GRU output size from 5 to 32 for the gridworld task because our gridworld task (7× 7)
has more cells than the gridworld task in variBAD (5× 5).

LDM We implement LDM based on the implementation of variBAD. Refer to Table 3 for the
hyperparameters used to train LDM. Most of the network structures and hyperparameters follow the
reference implementation of variBAD. The policy network of LDM is from the RL2 implementation
of variBAD. The latent dynamics network is from the VAE part of variBAD. VariBAD uses a multi-
head structure (each head for a goal state inMtrain) with binary cross-entropy (BCE) loss for the
decoder output for the gridworld task. Because LDM needs to generate rewards for tasks out of
Mtrain as well, we modify the decoder to a general single head structure. The latent model m is
multidimensional, therefore we sample the weight corresponding to each dimension independently.
The weights in 4a represent the mean weights of all dimensions. Refer to our reference implementation
at https://github.com/suyoung-lee/LDM.

Mixreg The original Mixreg is based on Deep Q-Network (DQN). Therefore, we implement a
variant of Mixreg based on RL2 by modifying the code we use for RL2. We use the same Dirichlet
mixture weights used for LDM and multiply the weights to the states and rewards to generate mixture
tasks. We keep the ratio between the true tasks and mixture tasks as 14:2.

ProMP and E-MAML We use the open-source reference implementation of ProMP at https://
github.com/jonasrothfuss/ProMP for ProMP and E-MAML. We only modify the environments
to contain separateMtrain andMtest and keep all the reference implementation setup.

PEARL, MQL, and MIER We use the open-source reference implementation of
PEARL at https://github.com/katerakelly/oyster, MQL at https://github.
com/amazon-research/meta-q-learning and MIER at https://github.com/
russellmendonca/mier_public. We only modify the environments to contain separate
Mtrain andMtest and keep all the reference implementation setup. We report the performance at 5
million steps as asymptotic performance for MuJoCo tasks.

A.2 Runtime Comparison

We report the average runtime spent to train Half-cheetah-velocity for 5e7 environment steps (5e6
steps for PEARL) in Table 2. We ran multiple experiments on our machine (Nvidia TITAN X)
simultaneously, therefore consider the following as relative ordering of complexity.

Table 2: Mean runtime to train Half-cheetah-velocity.

LDM Mixreg RL2 variBAD ProMP E-MAML PEARL

Half-cheetah-velocity
Runtime (hours) 31 28 25 10 2 2 25

ProMP and E-MAML require the least training time because they do not use recurrent networks.
VariBAD requires less train time than RL2 because variBAD does not backpropagate the policy
network’s gradient to the recurrent encoder. LDM requires more training time than RL2 because
LDM trains the policy network and a separate latent dynamics network.
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A.3 Hyperparameters

Table 3: Hyperparameters of LDM.

Gridworld MuJoCo

RL algorithm

A2C
Epsilon: 1.0e-5
Discount: 0.95
Max grad norm: 0.5
Value loss coeff.: 0.5
Entropy coeff.: 0.01
GAE parameter tau: 0.95

PPO
Batch size: 3200
Minibatches: 4
Max grad norm: 0.5
Clip parameter: 0.1
Value loss coeff.: 0.5
Entropy coeff.: 0.01

Number of steps
of a rollout episode (H) 30 200

Number of rollout episodes
per iteration (N ) 4 2

Extrapolation level (β) 1.0 1.0 (2.0 for Ant-goal)
Decoder input dropout rate (pdrop) 0.7 0.5
Number of

parallel processes
Normal workers (n) 14 14 (12 for Cheetah-vel)
Mixture workers (n̂) 2 2 (4 for Cheetah-vel)

Policy
Network

Encoder-p
(φp)

State
encoding 1 FC layer, 32 dim 1 FC layer, 32 dim

Action
encoding 0 dim 1 FC layer, 16 dim

Reward
encoding 1 FC layer, 8 dim 1 FC layer, 16 dim

GRU 128 hidden size 128 hidden size
GRU

output (bt) size 32 128

Policy
(πψ) 1 FC layer, 32 nodes 1 FC layer, 128 nodes

Activation tanh tanh
Learning rate 7.0e-4 7.0e-4

Latent
Dynamics
Network

Encoder-v
(φv)

State
encoding 1 FC layer, 32 dim 1 FC layer, 32 dim

Action
encoding 0 dim 1 FC layer, 16 dim

Reward
encoding 1 FC layer, 8 dim 1 FC layer, 16 dim

GRU 128 hidden size 128 hidden size
Task embedding

(mt) size
(sample from GRU
output dimension)

32
5 for Ant-direction
and Cheetah-vel
10 for Ant-goal

Reward decoder
(θR)

2 FC layers,
32 and 32 nodes

2 FC layers,
64 and 32 nodes

Decoder loss
function BCE MSE

Activation ReLU ReLU
Learning rate 0.001 0.001
Buffer size 100000 10000
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B Test-time Generalization of the Latent Model
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(a) Gridworld: sample tasks.
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(b) Gridworld: t-SNE plot of test-time latent model mH+ .The
cross marks denote the tasks that the LDM agent fails to visit.
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(c) Ant-goal: sample tasks.
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(d) Ant-goal: t-SNE plot of test-time latent model mH+ . The
number on each point times 45◦ denotes the target goal’s angle
from the origin. Latent models with red numbers belong toMtest.

Figure 9: Latent dynamics network’s learned latent models on 45 tasks in the gridworld and 48 tasks
in Ant-goal.

We empirically demonstrate that the structure of the test task is well reflected in the latent models
although the latent dynamics network is not trained inMtest and M̂ (Figure 9). For each task in the
gridworld task, we collect the latent model at the last step (t = H+). Then we reduce the dimension of
the collected latent models to two dimensions via t-SNE (Figure 9b). The latent models of the tasks in
Mtest are between the inner subset and the outer subset of the training tasks. Similarly, we evaluate the
latent dynamics model in Ant-goal. We evaluate the latent models on 48 tasks as in Figure 9c where
r ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0} and θ ∈ {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦}. Although
LDM is not trained on the tasks with r = 1.5 and r = 2.0, the latent models are between the training
tasks’ latent models (Figure 9d). On the other hand, the policy network can not be trained stably with
a large input dropout (RL2 dropout in Figure 13). These empirical results support our claim that our
latent dynamics network with dropout can generalize to unseen test dynamics although the policy can
not. Therefore the mixtures of the latent models can generate tasks similar to the test tasks.
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C Analysis on the Ant-goal Task (Extrapolation Level β)

At the beginning of an iteration, we sample n = 14 training tasks fromMtrain on the Ant-goal task.
Because we sample a sufficiently large number of training tasks, a mixture task’s goal is located
near the origin with high probability if we set β = 1.0 (Figure 10). Therefore we use β = 2.0 that
effectively improves the test returns on the Ant-goal task.
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Figure 10: Expected mixture goals for different extrapolation level β on the Ant-goal task. We
sample training tasks fromMtrain for 200 iterations. For each iteration, we sample n = 14 goals for
normal workers. Then we mix the goal coordinates of the training tasks using the Dirichlet weights
to generate n̂ = 2 mixture goals. We plot the coordinates of the training and mixture goals.

D Number of Mixture Workers n̂

Refer to Figure 11 for the returns inMeval andMeval-train (Table 4) on the Half-cheetah-velocity task
for different values of n̂. We report the results for n̂ ∈ {2, 3, 4, 5} and keep the total number of
workers fixed at 16. For all values of n̂, LDM outperforms RL2 in test returns at the beginning of
training. However, the test return of LDM decays as training tasks dominate the policy updates. If n̂
is small, training of the policy is easily dominated by the training tasks, and the test return converges
that of RL2 quickly. If n̂ is too large, normal workers have difficulty in learning the optimal policy
for training tasks (n̂ = 5 in Figure 11, second row). We use n̂ = 4 that sets a balance in between.
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Figure 11: Training and test returns for different numbers of mixture workers n̂ on Half-cheetah-
velocity, using 4 random seeds.

18



E Ablations on Dropout

E.1 Amount of Dropout pdrop

We report the performance of LDM with different dropout rates pdrop ∈ {0.0, 0.5, 0.7, 0.9} in Figure
12. LDM without the input dropout (pdrop = 0.0) slightly outperforms RL2 at the end of training, but
the improvement is insignificant. The test performance improves as the dropout rate increases. But
if the rate is too large (pdrop = 0.9), it becomes difficult to train the decoder and the performance
decreases.
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Figure 12: Results of LDM with different dropout rate on gridworld task. Evaluated at the N -th
episode, using 4 random seeds.

E.2 Dropout on other baselines

To demonstrate that dropout is not all the regularization required to achieve better generalization, we
evaluate RL2 dropout and variBAD dropout, both with pdrop = 0.7 in Figure 13. RL2 doesn’t use a
decoder, therefore we apply dropout on the state input of the policy encoder. RL2 dropout cannot
be trained stably, since training policy network with a multi-step policy gradient loss is much more
complex than training the decoder with a single-step regression loss. For variBAD dropout, we apply
dropout on the state input of the decoder (same as LDM). VariBAD shares an encoder for both VAE
and the policy network and does not backpropagate the policy loss to the encoder. Therefore, the
encoding, trained with decoder with dropout, may disturb the policy network from stable training. We
evaluate LDM with a shared encoder, where we use a single encoder instead of separate encoder-p
and encoder-v. We encountered instability in policy training when the encoding, trained for a decoder
with dropout, was used for policy. If we have separate encoders, even when the VAE is not perfectly
trained due to the dropout, it does not affect the policy.
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Figure 13: Results of LDM, RL2, and variBAD trained with and without dropout on gridworld task.
Evaluated at the N -th episode, using 4 random seeds.
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F Additional Experimental Results

F.1 Gridworld First Rollout Episode

The non-oracle methods spend most of the timesteps in the first episode to explore the goal states of
Mtrain. Therefore the mean returns inMtest are significantly lower than those at the N -th episode
(Figure 3). The oracle methods explore the goal states ofMtest before exploring the outermost states
ofMtrain during the first episode. Therefore the mean returns of oracle methods inMtrain are lower
than those of non-oracle methods.
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Figure 14: Results of the gridworld task evaluated at the first episode in terms of the mean returns in
Mtrain andMtest, and the number of tasks inMtest in which the agent fails to reach the goal.

F.2 MuJoCo First Rollout Episode

Since the task can be inferred from the reward at any timestep of training, the performance of LDM
at the first episode is nearly the same as that at the N -th episode (Figure 7). ProMP, E-MAML, and
PEARL need to collect trajectories until the N -th episode.

0.5 1.0 1.5 2.0
Timesteps 1e8

0

250

500

750

1000

12501250

M
ea

n 
re

tu
rn

 in
 

ev
al

Ant-direction

0.5 1.0 1.5 2.0
Timesteps 1e8

-600

-500

-400

-300

-200

-100
Ant-goal

1 2 3 4 5
Timesteps 1e7

-500

-400

-300

-200

-100

0
Half-cheetah-velocity

LDM Mixreg RL2 RL2 
Oracle variBAD

variBAD 
Oracle ProMP E-MAML PEARL

Figure 15: Mean returns at the first episodes inMeval of three MuJoCo tasks.

F.3 MuJoCo Training Results

As we definedMeval ⊂Mtest, we defineMeval-train ⊂Mtrain to report the training results (Table 4).

Table 4:Meval-train for MuJoCo tasks. k ∈ {0, 1, 2, 3}.

Ant-direction Ant-goal Half-cheetah-velocity
θ r θ v

Meval-train 90◦ × k {0.50, 2.75} 90◦ × k {0.25, 3.25}

Refer to Figure 16 for the mean returns on the training tasks and Figure 17 for the trajectories. LDM
achieves higher training returns for all tasks than its baseline RL2, although LDM devotes some
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portion of training steps to train mixture tasks. LDM achieves the best training performance in the
Ant-direction task while RL2’s performance gradually decreases. When there are only a few training
tasks, RL2-based methods often collapse into a single-mode, unable to construct sharp decision
boundaries between tasks (Figure 17a). VariBAD achieves high training returns in Ant-direction and
Ant-goal, although its test returns inMtest are low.
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0.5 1.0 1.5 2.0
Timesteps 1e8

-600

-500

-400

-300

-200

-100

A
nt

-g
oa

l
M

ea
n 

re
tu

rn
 in

 
ev

al
tra

in

First Episode

0.5 1.0 1.5 2.0
Timesteps 1e8

N-th Episode

(b) Ant-goal, mean return of the 8 tasks inMeval-train
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Figure 16: Mean return inMeval-train of three MuJoCo tasks.
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(a) Ant-drection, 4 trajectories fromMeval-train in each plot. The
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(b) Ant-goal, 8 trajectories fromMeval-train for each method (4 in
each plot). The cross marks are the goal positions.
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Figure 17: Example trajectories of the agents in Meval-train of MuJoCo tasks. We illustrate the
behavior at the N -th episode as colored paths. The targets ofMeval-train are indicated as dashed lines
or cross marks
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