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A Proof of Stability of Average Degree

In this part, we prove the following stability result. We use the notation from the paper.

Theorem 1 (Stability of Average Degree). Let G+ and G− be two graphs of same size and order. Let
T± be the TIMR graph induced by G±, with thresholds ε1 and ε2. Let α± be the average degree of
T±. Then, there exists a constant K(ε1, ε2) > 0 such that

|α+ − α−| ≤ K(ε1, ε2)Dk(G+,G−).

Proof. For simplicity, we assume only that we add edges to G± to obtain T±. The case for removing
edges is similar. As G+ and G− are of the same order, number of nodes V (G±) = V (T±), say m.
Let E(G) represents the number of edges in the graph G. Assume we added k± edges to G± and
get T±, i.e. E(T±)− E(G±) = k±. Recall that average degree of a graph α(G) = 2E(G)/V (G).
Hence,

α+ = α(T+) =
2E(T+)

m
=

2(E(G+) + k+)

m

= α(G+) +
2k+

m
.

Similarly, α− = α(T−) = α(G−) + 2k−

m . As G+ and G− are of the same size,∣∣α+ − α−
∣∣ =

∣∣∣∣2k+m − 2k−

m

∣∣∣∣ =
2

m
|k+ − k−|.

If we can bound this quantity in terms of Dk(G+,G−), then the result follows. Notice that adding
k+ edges to G+ implies that there exist k+ pairs of nodes {(u+1 , v

+
1 ), (u+2 , v

+
2 ), . . . , (u+k+ , v

+
k+)} in

G+ such that dk(u+i , v
+
i ) < ε1. We claim that we can find suitable K(ε1) > 0 such that k+ ∼ k−

delivering the desired inequality.

Assume Dk(G+,G−) = δ where δ > 0. Let ϕ : G+ → G− be the best matching for this metric.
Notice that

dk(ϕ(u+), ϕ(v+)) ≤ dk(ϕ(u+), u+) + dk(u+, v+) + dk(v+, ϕ(v+))
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By assumption,

dk(u+, ϕ(u+)) ≤ Dk(G+,G−) = δ

dk(v+, ϕ(v+)) ≤ Dk(G+,G−) = δ,

which implies
dk(ϕ(u+), ϕ(v+)) ≤ 2δ + ε1. (1)

Let k+(t) be the number of pairs of points in G+ with PD distance< t, and define k−(t) likewise. We
compare these two functions with respect to δ, PD distance of G+ and G−. Notice that both functions
are monotone nondecreasing, and since there are only finitely many values, they are both locally
constant. As ϕ(u+), ϕ(v+) are both nodes in G−, the inequality (1) shows k+(t) < k−(2δ + t),
i.e., for each pair u+, v+ ∈ G+ with k-neighborhoods of u+ and v+ are t-close, we will have the
pair ϕ(u+), ϕ(v+) ∈ G− whose k-neighborhoods are (2δ + t)-close. Similarly, we have k−(t) <
k+(2δ + t). By taking t = s− 2δ, we have k+(s− 2δ) < k−(s). Hence, assuming k+(t) > k−(t)

at t, this implies k+(t)− k−(t) < k+(t)− k+(t− 2δ). Hence, bounding
k+(t)− k+(t− 2δ)

δ
by a

constant K(t) would suffice to finish the proof as δ is the PD distance appearing in the right hand
side of the desired inequality.

Now, let r0 be the minimum distance between the threshold pairs {(b, d)} on the persistence diagram
grid. Then, dk(u, v) ≥ r0 for any u, v ∈ G±. Let M = m · (m− 1)/2 be the total number of pairs
in G±, i.e. k± ≤ M . Let K0 = 2M/r0. Now note that if 2δ < r0, k+(t) − k−(t − 2δ) = 0 for
any threshold t, as by assumption, both k± are locally constant for intervals of at least r0 length. If
2δ ≥ r0, then K0 · δ ≥M . As a result, since k+(t)− k−(t) ≤M as M is the total number of pairs
in G±, the proof follows.

B More detailed information of TRI-GNN

Figure 1 provides the overview of framework of TRI-GNN. For Figure 2, we provide more detailed
descriptions of STAN within the Figure caption.

Figure 1: The framework of semi-supervised learning with TRI-GNN. Given the original graph G, the
upper part is the model architecture using topology-induced multigraph representation (Ω) equipped
with a set of multiedges (see Eq. (1) in Definition 3 of the main manuscript) to obtain the joint
topology-induced adjacency matrix W topo. Here edge colored black represents the original edge in
the graph G (i.e., W ), edge colored red represents positive topology-induced edge (i.e., W topo+ ), and
edge colored green represents negative topology-induced edge (i.e., W topo−). The lower part is the
model architecture using STAN to update node feature vectors (i.e., X∗) through weighted feature
aggregation procedure based on topological distances. We then apply TRI-GNN convolutional layer
and use the joint topology-induced adjacency matrix W topo and updated node feature vectors X∗ as
input.
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Figure 2: STAN for node feature vectors extension. The target node u (red) with 2-hop neighborhood,
where four 1-hop neighbors (blue) and three 2-hop neighbors (green). Each node is represented by a
3-component feature vector. STAN utilizes node features from 2-hop neighborhood and normalized
reciprocal topological distances (i.e., d̂uv) between the target node and its 2-hop neighborhood to
produce a new vector representation for u. (1) shows node feature vectors for all nodes in 2-hop
neighborhood of u at iteration t. (2) shows normalized reciprocal topological distances (which can
be treated as edge weights) between 2-hop neighborhood and u, solid arrow indicates the weights
during 1-hop neighborhood feature aggregation and dashed arrow indicates the weights during 2-hop
neighborhood feature aggregation. After one iteration, STAN is applied to generate the feature vector
for u at iteration t+ 1.
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Figure 3: Node classification accuracy of TRI-GNND under random attacks.

C More details on experiments

C.1 Datasets

Undirected networks Cora-ML (this Cora dataset consists of Machine Learning papers), Citeseer and
PubMed are three standard citation networks benchmark datasets used for semi-supervised learning
evaluation [7]. In these citation networks, nodes represent publications, edges denote citation, the
input feature matrix are bag of words and label matrix contain the class label of publication. We use
the same data format as GCN, i.e., 20 labels per class in each citation network.

Directed networks We evaluate our method on four directed networks - IEEE 118-bus system
(IEEE bus), ACTIVSg200, ACTIVSg500, and ACTIVSg2000 [2, 1, 5]. For IEEE 118-bus system,
we consider a (unweighted-directed) graph as a model for the IEEE 118-bus system where nodes
represent units such as generators, loads and buses, and edges represent the transmission lines. The
input features of power grid network are generator active power upper bound (PMAX) and real
power demand (PD) obtained from MATPOWER case struct. For ACTIVSg200, ACTIVSg500,
and ACTIVSg2000, we also treat them as unweighted directed power grid networks. In particular,
the input features are: (i) real power demand (PD); (ii) reactive power demand (QD); (iii) voltage
magnitude (VM); (iv) voltage angle (VA); (v) base voltage (BASE_KV). For the power grid networks,
we test them with 10% label rate for training set, 20% for validation and 70% for test sets. Summary
statistics of the data are summarized in Table I.
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Table I: Dataset summary statistics.
Dataset Vertices Edges Features Classes Label rate
IEEE 118-Bus 118 175 2 3 0.100
ACTIVSg200 200 156 5 3 0.100
ACTIVSg500 500 292 5 3 0.100
ACTIVSg2000 2,000 1,917 5 3 0.100
Cora-ML 2,708 5,429 1,433 7 0.052
CiteSeer 3,327 4,732 3,703 6 0.036
PubMed 19,717 44,338 500 3 0.003

C.2 Training Settings

For all experiments, we train our model utilizing Adam optimizer with learning rate lr1 = 0.01 for
undirected networks and lr2 = 0.1 for directed networks. We use the same random seeds across
all models (the experiments are repeated 5 times, each with the same random seed). To prevent
over-fitting, we consider both adding dropout layer before two graph convolutional layers and kernel
regularizers (`2) in each layer. For undirected networks, we set the parameters of baselines by
using two graph convolutional layers with 16 hidden units, `2 regularization term with coefficient
5× 10−4, and dropout probability pdrop. of 0.5 (for ARMA, except for number of hidden units, the
hyperparameters setting are significantly different from others). For directed networks, we consider
using a two-layer network but with nSOA

h hidden units (where nSOA
h ∈ {16, 32, 64, 128, 256}), learning

rate lr2 with 0.001, 0.5 dropout rate and `2 regularization weight of 5 × 10−4 for baselines (for
MotifNet, except for number of hidden units, the hyperparameters setting are significantly different
from others). The best hyperparameter configurations, including dropout rate pdrop., optimal number
of hidden neurons nTRI-GNN

h , regularization parameter µ, the coefficientR (i.e., related to the number
of power iteration steps), element-wise nonlinear activation function σ(·), of TRI-GNN for each
dataset by using standard grid search mechanism (the optimal kernel regularization weight `2 always
equal to 5 × 10−4). In STAN module, for the weighting factor α(u), we choose the best setting
for each model, where α(u) is searched in {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}; for the number of STAN
iterations T , we search T from {0, 1, 2}. We also use a parallel structure by stacking multiple
convolution based TRI-GNN layers to attenuate the noise issue. For the choice of k in the k-hop
neighborhood, (i) for citation networks: we search k from {1, 2, 3} (where kCora-ML = 2, kCiteSeer = 1,
and kPubMed = 1) and (ii) for synthetic power networks: we search k from {3, 4, 5} (where kIEEE = 5,
kACTIVSg200 = 5, kACTIVSg500 = 3, and kACTIVSg2000 = 5). For threshold hyperparameters of topology-
induced multiedge construction, in practice, we select the ε1 and ε2 values based on quantiles of
Wasserstein distances between persistence diagrams. The optimal choice of ε1 and ε2 can be obtained
via cross-validation. Specifically, we first search ε1 from {0.05, 0.1, 0.15, 0.2}-quantiles. With the
best selction of ε1, we then search ε2 from {0.1, 0.15, · · · , 0.95}-quantiles. Note that some most
recent studies of [6, 3] have shown that dropping out edges helps reducing over-smoothing and
improves training efficiency.

Running Time We report results for the average time (in seconds) taken for PD generation from
k-hop neighborhood subgraph (in our experiment, k ∈ {1, 2, 3, 5}) and the average training time (in
seconds) per epoch of TRI-GNNA for both undirected and directed networks on Tesla V100-SXM2-
16GB.

C.3 Ablation Study of TRI-GNNA

The extended ablation study with statistical significance (i.e., z-test between TRI-GNNA and base-
lines) is in Table III. Except for the PubMed (the reason maybe that the PubMed is a very sparse
network), in the power grids and Cora-ML, all TRI-GNN components are highly statistical sig-
nificant, but in CiteSeer individual contributions of TIMR is statistical significant, while STAN is
non-significant. This can be explained by CiteSeer highest sparsity and richest set of node attributes.
Overall, TIMR is universally important.
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Table II: Complexity of TRI-GNNA: the average time (in seconds) to generate PD and training time
per epoch.

Dataset PD generation TRI-GNNA (per epoch)

IEEE 118-Bus 5× 10−4s 0.01s
ACTIVSg200 5× 10−4s 0.01s
ACTIVSg500 1× 10−3s 0.02s
ACTIVSg2000 1× 10−2s 0.25s

Cora-ML 7× 10−2s 0.05s
CiteSeer 1× 10−2s 0.35s
PubMed 2× 10−1s 0.30s

Table III: Ablation study of TRI-GNNA in accuracy (%) and standard deviation (%) in (); *, **,
*** denote p-value < 0.1, 0.05, 0.01 (i.e., significant, statistically significant, highly statistically
significant).

TRI-GNNA TRI-GNNA TRI-GNNA

Dataset w/o Ω w/o STAN with Ω, STN
IEEE 118-Bus ∗82.20 (1.68) ∗82.38 (2.00) ∗82.21 (1.88)
ACTIVSg200 ∗∗∗82.75 (2.09) ∗∗84.56 (1.75) ∗∗∗82.80 (2.73)
ACTIVSg500 ∗97.85 (0.56) ∗97.69 (0.63) ∗97.54 (0.72)
ACTIVSg2000 ∗88.59 (0.60) ∗88.82 (0.56) ∗88.63 (0.65)
Cora-ML ∗∗∗84.33 (0.63) ∗∗∗84.63 (0.61) ∗∗∗84.42 (0.70)
CiteSeer 73.25 (0.70) ∗73.10 (0.70) ∗73.10 (0.63)
PubMed 79.77 (0.51) 79.71 (0.50) 79.68 (0.63)

C.4 Random Attacks

Here we present the results for TRI-GNND under random attacks. As demonstrated in Figure 3, we
can see that the TRI-GNND architecture indeed is capable to capture much richer local and global
higher-order graph information. Particularly on Cora-ML, the performance of the 4 baselines drop
rapidly as the ratio of perturbed edges increases, while TRI-GNND successfully defends against
the perturbations. Overall, the robustness of TRI-GNND and TRI-GNNA (see Figure 4 in the main
manuscript) are similar. These results indicate that the new TRI-GNN architecture with both types
of the considered filtration functions is a highly competitive alternative for graph learning under
adversarial perturbations.

C.5 Diverse Set of TRI-GNN

We experimented shorter training sets and numbers of layers (see Table IV). TRI-GNN sustains
its competitiveness, yielding one of the best results even under 20% reduction of the training set
(compare Table 1 in the main manuscript). Higher order holes have not brought up any noticeable
improvement as higher order homology are almost not met in relatively small node neighborhoods.

Table IV: TRI-GNND with different training set sizes and number of layers. Number of runs is 50.

Cora-ML Training set size
100% Train 90% Train 80% Train 50% Train

Accuracy (%) (std) 84.98 (0.49) 84.15 (0.55) 84.00 (0.64) 73.20 (0.50)

Cora-ML Layers
2 layers 8 layers 16 layers 32 layers

Accuracy (%) (std) 84.98 (0.49) 80.70 (0.75) 78.06 (1.07) 72.87 (1.30)
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C.6 Comparison with GCN-LPA, NodeNet, and DFNet-ATT

Tables V and VI compare the performance of TRI-GNND to other state-of-the-art graph classification
baselines, i.e., DFNet-ATT [9], GCN-LPA [8], and NodeNet [4]. On Cora-ML†, we follow the
settings of NodeNet, i.e., we split the Cora-ML dataset into training (80%) and test sets (20%). We
can observe that TRI-GNN significantly outperforms GCN-LPA, NodeNet, and DFNet-ATT on these
datasets.

Table V: Average accuracy (%) and standard deviation (%) in () on Cora-ML, ACTIVSg200, and
ACTIVSg500.

Method TRI-GNND NodeNet
Cora-ML† 85.85 (0.71) 84.03 (0.40)
ACTIVSg200 86.18 (0.20) 80.15 (0.91)
ACTIVSg500 98.11 (0.43) 95.00 (0.50)

Table VI: Average accuracy (%) and standard deviation (%) in () on Cora-ML and CiteSeer.
Method TRI-GNND GCN-LPA DFNet-ATT
Cora-ML 84.98 (0.49) 81.68 (0.93) 84.65 (0.50)
CiteSeer 73.32 (0.48) 71.40 (0.60) 70.18 (0.71)

C.7 Additional Results

We also evaluate our methods on two relatively large datasets, i.e., ogbn-products and ogbn-arxiv.
Table VII below shows that our proposed TRI-GNN always outperforms state-of-the-art methods in
terms of classification accuracy on large networks. The results also indicate that our proposed model
is capable to achieve highly promising results on very large networks.

Table VII: Average accuracy (%) and standard deviation (%) in () on ogbn-products and ogbn-arxiv.
Method TRI-GNND GCN GAT RGCN APPNP
ogbn-products 84.00 (0.007) 78.87 (0.003) 80.02 (0.001) 81.35 (0.005) 83.17 (0.006)
ogbn-arxiv 74.30 (0.003) 72.18 (0.002) 72.47 (0.002) 72.97 (0.001) 72.10 (0.003)

C.8 Boundary Sensitivity on ACTIVSg500

We also evaluate the boundary sensitivity of hyperparameters ε1 and ε2 on ACTIVSg500 dataset. The
results are presented in Figure 4. We can observe that, compared with ε2 (i.e., removing existing
edges based on topological similarity among two node neighborhoods), TRI-GNN is more sensitive
to ε1 (i.e., adding edges If two nodes in G are topologically similar).

(a) Wasserstein distances. (b) (ε1, ε
†
2). (c) (ε†1, ε2).

Figure 4: Hyperparameters ε1 and ε2 selection of TRI-GNN on ACTIVSg500 dataset.
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