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Abstract

Operating in the real-world often requires agents to learn about a complex envi-
ronment and apply this understanding to achieve a breadth of goals. This problem,
known as goal-conditioned reinforcement learning (GCRL), becomes especially
challenging for long-horizon goals. Current methods have tackled this problem
by augmenting goal-conditioned policies with graph-based planning algorithms.
However, they struggle to scale to large, high-dimensional state spaces and assume
access to exploration mechanisms for efficiently collecting training data. In this
work, we introduce Successor Feature Landmarks (SFL), a framework for exploring
large, high-dimensional environments so as to obtain a policy that is proficient for
any goal. SFL leverages the ability of successor features (SF) to capture transition
dynamics, using it to drive exploration by estimating state-novelty and to enable
high-level planning by abstracting the state-space as a non-parametric landmark-
based graph. We further exploit SF to directly compute a goal-conditioned policy
for inter-landmark traversal, which we use to execute plans to “frontier” landmarks
at the edge of the explored state space. We show in our experiments on MiniGrid
and ViZDoom that SFL enables efficient exploration of large, high-dimensional
state spaces and outperforms state-of-the-art baselines on long-horizon GCRL
tasks1.

1 Introduction
Consider deploying a self-driving car to a new city. To be practical, the car should be able to explore
the city such that it can learn to traverse from any starting location to any destination, since the
destination may vary depending on the passenger. In the context of reinforcement learning (RL),
this problem is known as goal-conditioned RL (GCRL) [12, 13]. Previous works [31, 1, 24, 26, 17]
have tackled this problem by learning a goal-conditioned policy (or value function) applicable to any
reward function or “goal.” However, the goal-conditioned policy often fails to scale to long-horizon
goals [11] since the space of state-goal pairs grows intractably large over the horizon of the goal.

To address this challenge, the agent needs to (a) explore the state-goal space such that it is proficient
for any state-goal pair it might observe during test time and (b) reduce the effective goal horizon
for the policy learning to be tractable. Recent work [25, 11] has tackled long-horizon GCRL by
leveraging model-based approaches to form plans consisting of lower temporal-resolution subgoals.
The policy is then only required to operate for short horizons between these subgoals. One line of
work learned a universal value function approximator (UVFA) [31] to make local policy decisions
and to estimate distances used for building a landmark-based map, but assumed a low-dimensional
state space where the proximity between the state and goal could be computed by the Euclidean
distance [11]. Another line of research focused on visual navigation tasks conducted planning over

1The demo video and code can be found at https://2016choang.github.io/sfl.
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Figure 1: High-level overview of SFL. 1. During exploration, select a frontier landmark (red circled
dot) lying at the edge of the explored region as the target goal. During evaluation (not shown in the
figure), the actual goal is selected as the target goal. 2. Use the graph to plan a landmark path (green
lines) to the target goal. 3. Execute the planned path with the goal-conditioned policy (black dotted
arrow). 4. During exploration, upon reaching the frontier landmark, deploy the random policy (red
dotted arrow) to reach novel states in unexplored areas. 5. Use each transition in the trajectory to
update the graph and SF (see Figure 2). Note: The agent is never shown the top-down view of the
maze and only uses first-person image observations (example on left) to carry out these steps. Goals
are also given as first-person images.

graph representations of the environment [29, 9, 16, 4]. However, these studies largely ignored the
inherent exploration challenge present for large state spaces, and either assumed the availability of
human demonstrations of exploring the state space [29], the ability to spawn uniformly over the state
space [9, 16], or the availability of ground-truth map information [4].

In this work, we aim to learn an agent that can tackle long-horizon GCRL tasks and address the
associated challenges in exploration. Our key idea is to use successor features (SF) [15, 2] — a
representation that captures transition dynamics — to define a novel distance metric, Successor
Feature Similarity (SFS). First, we exploit the transfer ability of SF to formulate a goal-conditioned
value function in terms of SFS between the current state and goal state. By just learning SF via
self-supervised representation learning, we can directly obtain a goal-conditioned policy from SFS
without any additional policy learning. Second, we leverage SFS to build a landmark-based graph
representation of the environment; the agent adds observed states as landmarks based on their SFS-
predicted novelty and forms edges between landmarks by using SFS as a distance estimate. SF as an
abstraction of transition dynamics is a natural solution for building this graph when we consider the
MDP as a directed graph of states (nodes) and transitions (edges) following [11]. We use this graph
to systematically explore the environment by planning paths towards landmarks at the “frontier” of
the explored state space and executing each segment of these planned paths with the goal-conditioned
policy. In evaluation, we similarly plan and execute paths towards (long-horizon) goals. We call this
framework Successor Feature Landmarks (SFL), illustrated in Figure 1.

Our contributions are as follows: (i) We use a single self-supervised learning component that captures
dynamics information, SF, to build all the components of a graph-based planning framework, SFL.
(ii) We claim that this construction enables knowledge sharing between each module of the framework
and stabilizes the overall learning. (iii) We introduce the SFS metric, which serves as a distance
estimate and enables the computation of a goal-conditioned Q-value function without further learning.
We evaluate SFL against current graph-based methods in long-horizon goal-reaching RL and visual
navigation on MiniGrid [6], a 2D gridworld, and ViZDoom [37], a visual 3D first-person view
environment with large mazes. We observe that SFL outperforms state-of-the-art navigation baselines,
most notably when goals are furthest away. In a setting where exploration is needed to collect training
experience, SFL significantly outperforms the other methods which struggle to scale in ViZDoom’s
high-dimensional state space.
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2 Related Work
Goal-conditioned RL. Prior work has tackled GCRL by proposing variants of goal-conditioned
value functions such as UVFAs which estimate cumulative reward for any given state-goal pair [23,
34, 31, 26]. HER [1] improved the sample efficiency in training UVFAs by relabeling reached states
as goals. Mapping State Space (MSS) [11] then extended UVFAs to long-horizon tasks by using a
UVFA as both a goal-conditioned policy and a distance metric to build a graph for high-level planning.
MSS also addressed exploration by selecting graph nodes to be at edge of the map’s explored region
via farthest point sampling. However, this method was only evaluated in low-dimensional state
spaces. LEAP [25] used goal-conditioned value functions to form and execute plans over latent
subgoals, but largely ignored the exploration question. Conversely, other works [27, 5] have worked
on exploration for goal-reaching policies, but do not tackle the long-horizon case. ARC [10] proposed
learning representations that measure state similarity according to the output of a maximum entropy
goal-conditioned policy, which can be utilized towards exploration and long-horizon hierarchical
RL. However, ARC assumes access to the goal-conditioned policy, which can be difficult to obtain
in large-scale environments. Our method can achieve both efficient exploration and long-horizon
goal-reaching in high-dimensional state spaces with a SF-based metric that acts as a goal-conditioned
value function and distance estimate for graph-building.

Graph-based planning. Recent approaches have tackled long-horizon tasks, often in the context
of visual navigation, by conducting planning on high-level graph representations and deploying a
low-level controller to locally move between nodes; our framework also falls under this paradigm of
graph-based planning. Works such as SPTM [29] and SoRB [9] used a deep network as a distance
metric for finding shortest paths on the graph, but rely on human demonstrations or sampling from the
replay buffer to populate graph nodes. SGM [16] introduced a two-way consistency check to promote
sparsity in the graph, allowing these methods to scale to larger maps. However, these methods rely
on assumptions about exploration, allowing the agent to spawn uniformly random across the state
space during training. To address this, HTM [19] used a generative model to hallucinate samples
for building the graph in a zero-shot manner, but was not evaluated in 3D visual environments.
NTS [4] achieved exploration and long-horizon navigation as well as generalization to unseen maps
by learning a geometric-based graph representation, but required access to a ground-truth map to
train their supervised learning model. In contrast, our method achieves exploration by planning and
executing paths towards landmarks near novel areas during training. SFL also does not require any
ground-truth data; it only needs to learn SF in a self-supervised manner.

Successor features. Our work is inspired by recent efforts in developing successor features (SF) [15,
2]. They have used SF to decompose the Q-value function into SF and the reward which enables
efficient policy transfer [2, 3] and to design transition-based intrinsic rewards [20, 39] for efficient
exploration. SF has also been used in the options framework [35]; Eigenoptions [21] derived
options from the eigendecomposition of SF, but did not yet apply them towards reward maximization.
Successor Options [28] used SF to discover landmark states and design a latent reward for learning
option policies, but was limited to low-dimensional state spaces. Our framework leverages a SF-based
similarity metric to formulate a goal-conditioned policy, abstract the state space as a landmark
graph for long-horizon planning and to model state-novelty for driving exploration. While the
options policies proposed in these works have to be learned from a reward signal, we can obtain our
goal-conditioned policy directly from the SF similarity metric without any policy learning. To our
knowledge, this is first work that uses SF for graph-based planning and long-horizon GCRL tasks.

3 Preliminaries
3.1 Goal-Conditioned RL

Goal-conditioned reinforcement learning (GCRL) tasks [12] are Markov Decision Processes (MDP)
extended with a set of goals G and defined by a tuple (S,A,G,RG , T , �), where S is a state space, A
an action set, RG : S ⇥A⇥ G ! R a goal-conditioned reward function, T the transition dynamics,
and � a discount factor. Following [11, 36], we focus on the setting where the goal space G is a
subset of the state space S , and the agent can receive non-trivial rewards only when it can reach the
goal (i.e., sparse-reward setting). We aim to find an optimal goal-conditioned policy ⇡ : S ⇥ G ! A
to maximize the expected cumulative reward, V ⇡

g (s0) = E⇡[
P

t �
trt]; i.e., goal-conditioned value

function. We are especially interested in long-horizon tasks where goals are distant from the agent’s
starting state, requiring the policy to operate over longer temporal sequences.
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Algorithm 1 Training

1: Initialize: Graph G = (L,E), parameter ✓ of SFS⇡̄
✓ , replay buffer D, hyperparameter Texp,

landmark transition count N l

2: while env not done do
3: lfront ⇠ Softmax( 1

Count(L) ) {Choose frontier landmark via count-based sampling}
4: while lcurr 6= lfront do
5: ltarget  PLAN(G, lcurr, lfront) {Plan path to frontier landmark}
6: ⌧traverse, lcurr  Traverse(⇡l, ltarget) {Traverse to ltarget with ⇡l (Algorithm 3 in §H)}
7: G,N l  Graph-Update(G, ⌧traverse, SFS⇡̄

✓ , N
l) {Update graph (Algorithm 2)}

8: end while
9: ⌧rand = {st, at, rt}

Texp
t ⇠ ⇡̄ {Explore with random policy for Texp steps}

10: G,N l  Graph-Update(G, ⌧rand, SFS⇡̄
✓ , N

l) {Update graph (Algorithm 2)}
11: D  D [ ⌧random
12: Update ✓ from TD error with mini-batches sampled from D {Update SF parameters}
13: end while

3.2 Successor Features
In the tabular setting, the successor representation (SR) [8, 15] is defined as the expected discounted
occupancy of futures state s0 starting in state s and action a and acting under a policy ⇡:

M⇡(s, a, s
0) = E⇡

hP1
t0=t �

t0�tI(St0 = s0)
���St = s,At = a

i
(1)

The SR M(s, a) is then a concatenation of M(s, a, s0), 8s 2 S. We may view SR as a representation
of state similarity extended over the time dimension, as described in [21]. In addition, we note that
the SR is solely determined by ⇡ and the transition dynamics of the environment p(st+1|st, at).
Successor features (SF) [2, 15] extend SR [8] to high-dimensional, continuous state spaces in which
function approximation is often used. SF’s formulation modifies the definition of SR by replacing
enumeration over all states s0 with feature vector �s0 . The SF  ⇡ of a state-action pair (s, a) is then
defined as:

 ⇡(s, a) = E⇡
hP1

t0=t �
t0�t�st0

���St = s,At = a
i

(2)

In addition, SF can be defined in terms of only the state,  ⇡(s) = Ea⇠⇡(s)[ 
⇡(s, a)].

SF allows decoupling the value function into the successor feature (dynamics-relevant information)
with task (reward function): if we assume that the one-step reward of transition (s, a, s0) with feature
�(s, a, s0) can be written as r(s, a, s0) = �(s, a, s0)>w, where w are learnable weights to fit the
reward function, we can write the Q-value function as follows [2, 15]:

Q⇡(s, a) = E⇡

" 1X

t0=t

�t
0�tr(St0 , At0 , St0+1)

���St = s,At = a

#

= E⇡

" 1X

t0=t

�t
0�t�>t0w

���St = s,At = a

#
=  ⇡(s, a)>w (3)

Consequently, the Q-value function separates into SF, which represents the policy-dependent transition
dynamics, and the reward vector w for a particular task. Later in Section 4.3, we will extend this
formulation to the goal-conditioned setting and discuss our choices for w.

4 Successor Feature Landmarks
We present Successor Feature Landmarks (SFL), a graph-based planning framework for supporting
exploration and long-horizon GCRL. SFL is centrally built upon our novel distance metric: Successor
Feature Similarity (SFS, §4.1). We maintain a non-parametric graph of state “landmarks,” using
SFS as a distance metric for determining which observed states to add as landmarks and how these
landmarks should be connected (§4.2). To enable traversal between landmarks, we directly obtain a
local goal-conditioned policy from SFS between current state and the given landmark (§4.3). With
these components, we tackle the long-horizon setting by planning on the landmark graph and finding
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Figure 2: The Graph + SF Update step occurs after every transition (s, a). The agent computes SFS
between current state s (black dot) and all landmarks (blue dots). It then localizes itself to the nearest
landmark (red circled dot). The agent records transitions between the previously localized landmark
(green circled dot) and this landmark. If the number of transitions between two landmarks is greater
than �edge, then an edge is formed between them. If SFS between the current localized landmark and
s is less than �add, then s is added as a landmark. Finally, transitions generated by the random policy
are added to the random transition buffer, and SF is trained on batch samples from this buffer.

the shortest path to the given goal, which decomposes the long-horizon problem into a sequence of
short-horizon tasks that the local policy can then more reliably achieve (§4.4). In training, our agent
focuses on exploration. We set the goals as “frontier” landmarks lying at the edge of the explored
region, and use the planner and local policy to reach the frontier landmark. Upon reaching the frontier,
the agent locally explores with a random policy and uses this new data to update its SF and landmark
graph (§4.5). In evaluation, we add the given goal to the graph and follow the shortest path to it.
Figure 1 illustrates the overarching framework and Figure 2 gives further detail into how the graph
and SF are updated. Algorithm 1 describes the procedure used to train SFL.

4.1 Successor Feature Similarity

SFS, the foundation of our framework, is based on SF. For context, we estimate SF  as the output of
a deep neural network parameterized by ✓ :  ⇡(s, a) ⇡  ⇡

✓ (�(s), a), where � is a feature embedding
of state and ⇡ is a fixed policy which we choose to be a uniform random policy denoted as ⇡̄. We
update ✓ by minimizing the temporal difference (TD) error [15, 2]. Details on learning SF are
provided in Appendix C.3.

Next, to gain intuition for SFS, suppose we wish to compare two state-action pairs (s1, a1) and
(s2, a2) in terms of similarity. One option is to compare s1 and s2 directly via some metric such as `2
distance, but this ignores a1, a2 and dynamics of the environment.

To address this issue, we should also consider the states the agent is expected to visit when starting
from each state-action pair, for a fixed policy ⇡. We choose ⇡ to be uniform random, i.e. ⇡̄, so that
only the dynamics of the environment will dictate which states the agent will visit. With this idea,
we can define a novel similarity metric, Successor Feature Similarity (SFS), which measures the
similarity of the expected discounted state-occupancy of two state-action pairs. Using the successor
representation M⇡̄(s, a) as defined in Section 3.2, we can simply define SFS as the dot-product
between the two successor representations for each state-action pair:

SFS⇡̄((s1, a1), (s2, a2))

=
X

s02S

E⇡̄

" 1X

t0=t

�t
0�tI(St = s0)

�����
St = s1,
At = a1

#
⇥ E⇡̄

" 1X

t0=t

�t
0�tI(St = s0)

�����
St = s2,
At = a2

#

=
X

s02S

M⇡̄(s1, a1, s
0)⇥M⇡̄(s2, a2, s

0) = M⇡̄(s1, a1)
>M⇡̄(s2, a2)

(4)

We can extend SFS to the high-dimensional case by encoding states in the feature space � and
replacing M⇡̄(s, a) with  ⇡̄(s, a). The intuition remains the same, but we instead measure similarities
in the feature space. In practice, we normalize  ⇡(s, a) before computing SFS to prevent high-value
feature dimensions from dominating the similarity metric, hence defining SFS as the cosine similarity
between SF. In addition, we may define SFS between just two states by getting rid of the action
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dimension in SF:

SFS⇡̄((s1, a1), (s2, a2)) =  ⇡̄(s1, a1)
> ⇡̄(s2, a2) (5)

SFS⇡̄(s1, s2) =  ⇡̄(s1)
> ⇡̄(s2) (6)

4.2 Landmark Graph
The landmark graph G serves as a compact representation of the state space and its transition
dynamics. G is dynamically-populated in an online fashion as the agent explores more of its
environment. Formally, landmark graph G = (L,E) is a tuple of landmarks L and edges E. The
landmark set L = {l1, . . . , l|L|} is a set of states representing the explored part of the state-space.
The edge set E is a matrix R|L|⇥|L|, where Ei,j = 1 if li and lj is connected, and 0 otherwise.
Algorithm 2 outlines the graph update process, and the following paragraph describes this process in
further detail.

Agent Localization and Adding Landmarks At every time step t, we compute the landmark
closest to the agent under SFS metric: lcurr = argmaxl2L SFS⇡̄(st, l). If SFS⇡̄(st, lcurr) < �add,
the add threshold, then we add st to the landmark set L. Otherwise, if SFS⇡̄(st, lcurr) > �local, the
localization threshold, then the agent is localized to lcurr. If the agent was previously localized to
a different landmark lprev, then we increment the count of the landmark transition N l

(lprev!lcurr)
by 1

where N l 2 N|E| is the landmark transition count, which is used to form the graph edges. 2

Since we progressively build the landmark set, we maintain all previously added landmarks. As
described above, this enables us to utilize useful landmark metrics such as how many times the
agent has been localized to each landmark and what transitions have occurred between landmarks to
improve the connectivity quality of the graph. In comparison, landmarks identified through clustering
schemes such as in Successor Options [28] cannot be used in this manner because the landmark set is
rebuilt every few iterations. See Appendix B.3 for a detailed comparison on landmark formation.

Algorithm 2 Graph-Update (§4.2)

input Graph G = (L,E), SFS⇡̄
✓ , trajectory ⌧ ,

landmark transition count N l

output updated graph G and N l

1: lprev  ; {Previously localized landmark}
2: for s 2 ⌧ do
3: lcurr  argmaxl2L SFS⇡̄

✓ (s, l) {Localize}
4: if SFS⇡̄

✓ (s, lcurr) < �add then
5: L L [ s {Add landmark}
6: end if
7: if SFS⇡̄

✓ (s, lcurr) > �local then
8: if lprev 6= ; and lprev 6= lcurr then
9: N l

(lprev!lcurr)
 N l

(lprev!lcurr)
+ 1 {Record

landmark transition}
10: if N l

(lprev!lcurr)
> �edge then

11: E  E [ (lprev ! lcurr) {Form edge}
12: end if
13: end if
14: lprev  lcurr
15: end if
16: end for
17: return G, N l

Edge Formation We form edge Ei,j if the
number of the landmark transitions is larger
than the edge threshold, i.e., N l

li!lj
> �edge,

with weight Wi,j = exp(�(N l
li!lj

)). We
apply filtering improvements to E in ViZ-
Doom to mitigate the perceptual aliasing
problem where faraway states can appear vi-
sually similar due to repeated use of textures.
See Appendix D for more details.

4.3 Local Goal-Conditioned Policy
We want to learn a local goal-conditioned
policy ⇡l : S ⇥ G ! A to reach or tran-
sition between landmarks. To accomplish
this, ⇡l should maximize the expected return
V (s, g) = E[

P1
t=0 �

tr(st, at, g)], where
r(s, a, g) is a reward function that captures
how close s (or more precisely s, a) is to the
goal g in terms of feature similarity:

r(s, a, g) = �(s, a)> ⇡̄(g), (7)

where  ⇡̄ is the SF with respect to the ran-
dom policy ⇡̄. Recall that we can decouple
the Q-value function into the SF represen-
tation and reward weights w as shown in
Eq. (3). The reward function Eq. (7) is our deliberate choice rather than learning a linear reward
regression model [2], so the value function can be instantly computed. If we let w be  ⇡̄(g), we can

2Zhang et al. [38] proposed a similar idea of recording the transitions between sets of user-defined attributes.
We extend this idea to the function approximation setting where landmark attributes are their SFs.
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have the Q-value function Q⇡̄(s, a, g) for the goal-conditioned policy ⇡(a|s, g) being equal to the
SFS between s and g:

Q⇡̄(s, a, g) =  ⇡̄(s, a)> ⇡̄(g) = SFS⇡̄(s, a, g). (8)

The goal-conditioned policy is derived by sampling actions from the goal-conditioned Q-value
function in a greedy manner for discrete actions. In the continuous action case, we can learn the
goal-conditioned policy by using a compatible algorithm such as DDPG [18]. However, extending
SF learning to continuous action spaces is beyond the scope of this work and is left for future work.

4.4 Planning
Given the landmark graph G, we can plan the shortest-path from the landmark closest to the agent
lcurr to a final target landmark ltarget by selecting a sequence of landmarks [l0, l1, . . . , lk] in the graph
G with minimal weight (see §4.2) sum along the path, where l0 = lcurr, lk = ltarget, and k is the length
of the plan. In training, we use frontier landmarks lfront which have been visited less frequently as
ltarget. In evaluation, the given goal state is added to the graph and set as ltarget. See Algorithm 1 for
an overview of how planning is used to select the agent’s low-level policy in training.

4.5 Exploration
We sample frontier landmarks lfront proportional to the inverse of their visitation count (i.e., with
count-based exploration). We use two policies: a local policy ⇡l for traversing between landmarks and
a random policy ⇡̄ for exploring around a frontier landmark. Given a target frontier landmark lfront, we
construct a plan [l0, l1, . . . , lfront]. When the agent is localized to landmark li, the policy at time t is
defined as ⇡l(a|st; li+1). When the agent is localized to a landmark that is not included in the current
plan [l0, l1, . . . , lfront], then it re-plans a new path to lfront. Such failure cases of transition between the
landmarks are used to prevent edge between those landmarks from being formed (see Appendix D
for details). We run this process until either lfront is reached or until the step-limit Nfront is reached.
At that point, random policy ⇡̄ is deployed for exploration for Nexplore steps, adding novel states to
our graph as a new landmark. While the random policy is deployed, its trajectory ⌧ ⇠ ⇡̄ is added to
the random transition buffer. SF  ⇡̄

✓ is updated with batch samples from this buffer.

The random policy is only used to explore local neighborhoods at frontier regions for a short horizon
while the goal-conditioned policy and planner are responsible for traveling to these frontier regions.
Under this framework, the agent is able to visit a diverse set of states in a relatively efficient manner.
Our experiments on large ViZDoom maps demonstrate that this strategy is sufficient for learning a
SF representation that ultimately outperforms baseline methods on goal-reaching tasks.

5 Experiments
In our experiments, we evaluate the benefits of SFL for exploration and long-horizon GCRL. We first
study how well our framework supports reaching long-horizon goals when the agent’s start state is
randomized across episodes. Afterwards, we consider how SFL performs when efficient exploration
is required to reach distant areas by using a setting where the agent’s start state is fixed in training.

5.1 Domain and Goal-Specification

Figure 3: Top-down view of a ViZDoom
maze used in fixed spawn with sampled goal
locations. Examples of image goals given to
the agent are shown at the bottom. Note that
the agent cannot access the top-down view.

ViZDoom is a visual navigation environment with
3D first-person observations. In ViZDoom, the large-
scale of the maps and reuse of similar textures make
it particularly difficult to learn distance metrics from
the first-person observations. This is due to percep-
tual aliasing, where visually similar images can be
geographically far apart. We use mazes from SPTM
in our experiments, with one example shown in Fig-
ure 3 [29].

MiniGrid is a 2D gridworld with tasks that require
the agent to overcome different obstacles to access
portions of the map. We experiment on FourRoom, a
basic 4-room map, and MultiRoom, where the agent
needs to open doors to reach new rooms.
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We study two settings:

1. Random spawn: In training, the agent is randomly spawned across the map with no given goal.
In evaluation, the agent is then tested on pairs of start and goal states, where goals are given as
images. This enables us to study how well the landmark graph supports traversal between arbitrary
start-goal pairs. Following [16], we evaluate on easy, medium, and hard tasks where the goal is
sampled within 200m, 200-400m, and 400-600m from the initial state, respectively.

2. Fixed spawn: In training, the agent is spawned at a fixed start state sstart with no given goal. This
enables us to study how well the agent can explore the map given a limited step budget per episode.
In evaluation, the agent is again spawned at sstart and is given different goal states to reach. In
ViZDoom, we sample goals of varying difficulty accounting for the maze structure as shown in
Figure 3. In MiniGrid, a similar setup is used except only one goal state is used for evaluation.

5.2 Baseline Methods for Comparison

Random spawn experiments. We compare SFL against baselines used in SGM, as described below.
For each difficulty, we measure the average success rate over 5 random seeds. We evaluate on the
map used in SGM, SGM-Map, and two more maps from SPTM, Test-2 and Test-6.

1. Random Actions: random acting agent. Baseline shows task difficulty.
2. Visual Controller: model-free visual controller learned via inverse dynamics. Baseline highlights

how low-level controllers struggle to learn long-horizon policies and the benefits of planning to
create high-level paths that the controller can follow.

3. SPTM [29]: planning module with a reachability network to learn a distance metric for localization
and landmark graph formation. Baseline is used to measure how the SFS metric can improve
localization and landmark graph formation.

4. SGM [16]: data structure used to improve planning by inducing sparsity in landmark graphs.
Baseline represents a recent landmark-based approach for long-horizon navigation.

Fixed spawn experiments. In the fixed spawn setting, we compare SFL against Mapping State
Space (MSS) [11], a UVFA and landmark-based approach for exploration and long-horizon goal-
conditioned RL, as well as SPTM and SGM. Again, we measure the average success rate over 5
random seeds. We adapt the published code3 to work on ViZDoom and MiniGrid. To evaluate
SPTM and SGM, we populate their graphs with exploration trajectories generated by Episodic
Curiosity (EC) [30]. EC learns an exploration policy by using a reachability network to determine
whether an observation is novel enough to be added to the memory and rewarding the agent every
time one is added. Appendix C further discusses the implementation of these baselines.

5.3 Implementation Details

SFL is implemented with the rlpyt codebase [33]. For experiments in ViZDoom, we use the pretrained
ResNet-18 backbone from SPTM as a fixed feature encoder which is similarly used across all baselines.
For MiniGrid, we train a convolutional feature encoder using time-contrastive metric learning [32].
Both feature encoders are trained in a self-supervised manner and aim to encode temporally close
states as similar feature representations and temporally far states as dissimilar representations. We
then approximate SF with a fully-connected neural network, using these encoded features as input.
See Appendix C for more details on feature learning, edge formation, and hyperparameters.

5.4 Results

Random Spawn Results. As shown in Table 1, our method outperforms the other baselines on all
settings. SFL’s performance on the Hard setting particularly illustrates its ability to reach long-horizon
goals. In terms of sample efficiency, SFL utilizes a total of 2M environment steps to simultaneously
train SF and build the landmark graph. For reference, SPTM and SGM train their reachability
and low-level controller networks with over 250M environment steps of training data collected on
SGM-Map, with SGM using an additional 114K steps to build and cleanup their landmark graph. For
Test-2 and Test-6, we fine-tune these two networks with 4M steps of training data collected from each
new map to give a fair comparison.

3https://github.com/FangchenLiu/map_planner
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Method SGM-Map Test-2 Test-6
Easy Medium Hard Easy Medium Hard Easy Medium Hard

Random Actions 58% 22% 12% 70% 39% 16% 80% 31% 18%
Visual Controller 75% 35% 19% 83% 51% 30% 89% 39% 20%

SPTM [29] 70% 34% 14% 78% 48% 18% 88% 40% 18%
SGM [16] 92% 64% 26% 86% 54% 32% 83% 43% 27%

SFL [Ours] 92% 82% 67% 82% 66% 48% 92% 66% 60%

Table 1: (Random spawn) The success rates of compared methods on three ViZDoom maps.

Method Test-1 Test-4
Easy Medium Hard Hardest Easy Medium Hard Hardest

MSS [11] 23% 9% 1% 1% 21% 7% 7% 7%
EC [30] + SPTM [29] 48% 16% 2% 0% 20% 10% 4% 0%
EC [30] + SGM [16] 43% 3% 0% 0% 28% 7% 4% 1%

SFL [Ours] 85% 59% 62% 50% 66% 44% 27% 23%

Table 2: (Fixed spawn) The success rates of compared methods on three ViZDoom maps.

Fixed Spawn Results. We see in Table 2 that SFL reaches significantly higher success rates than the
baselines across all difficulty levels, especially on Hard and Hardest. Figure 4 shows the average
success rate over the number of environment steps for SFL (red) and MSS (green). We hypothesize
that MSS struggles because its UVFA is unable to capture geodesic distance in ViZDoom’s high-
dimensional state space with first-person views. The UVFA in MSS has to solve the difficult task of
approximating the number of steps between two states, which we conjecture requires a larger sample
complexity and more learning capacity. In contrast, we only use SFS to relatively compare states, i.e.
is SFS of state A higher than SFS of state B with respect to reference state C? EC-augmented SPTM
and SGM partially outperform MSS, but cannot scale to harder difficulty levels. We suggest that
these baselines suffer from disjointedness of exploration and planning: the EC exploration module is
less effective because it does not utilize planning to efficient reach distant areas, which in turn limits
the training of policy networks. See Appendix F and Appendix G for more analysis on the baselines.

Figure 5 shows the average success rate on MiniGrid environments, where SFL (red) overall
outperforms MSS (green). States in MiniGrid encode top-down views of the map with distinct
signatures for the agent, walls, and doors, making it easier to learn distance metrics. In spite of this,
the environment remains challenging due to the presence of doors as obstacles and the limited time
budget per episode.

Figure 4: Fixed spawn experiments on ViZDoom
comparing SFL (red) to MSS (green) over number
of environment steps for varying difficulty levels.

Figure 5: Fixed spawn experiments on MiniGrid
comparing SFL (red) to MSS (green) over number
of environment steps for varying difficulty levels.
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Figure 6: SFS values relative to a reference state (blue dot) in the Test-1 ViZDoom maze. The left
two heatmaps use the agent’s start state as the reference state while the right two use a distant goal
state as the reference state. The first and third (colorful) heatmaps depict all states while the second
and fourth (darkened) heatmaps only show states with SFS > �local = 0.9.

5.5 SFS Visualization
SFL primarily relies on SFS and its capacity to approximate geodesic distance imposed by the map’s
structure. To provide evidence of this ability, we compute the SFS between a reference state and a set
of randomly sampled states. Figure 6 visualizes these SFS heatmaps in a ViZDoom maze. In the
first and third panels, we observe that states close to the reference state (blue dot) exhibit higher SFS
values while distant states, such as those across a wall, exhibit lower SFS values. The second and
fourth panels show states in which the agent would be localized to the reference state, i.e. states with
SFS > �local. With this SFS threshold, we reduce localization errors, thereby improving the quality of
the landmark graph. We provide additional analysis of SFS-derived components, the landmark graph
and goal-conditioned policy, in Appendix E.

6 Conclusion
In this paper, we presented Successor Feature Landmarks, a graph-based planning framework that
leverages a SF similarity metric, as an approach to exploration and long-horizon goal-conditioned
RL. Our experiments in ViZDoom and MiniGrid, demonstrated that this method outperforms current
graph-based approaches on long-horizon goal-reaching tasks. Additionally, we showed that our
framework can be used for exploration, enabling discovery and reaching of goals far away from
the agent’s starting position. Our work empirically showed that SF can be used to make robust
decisions about environment dynamics, and we hope that future work will continue along this line by
formulating new uses of this representation. Our framework is built upon the representation power of
SF, which depends on a good feature embedding to be learned. We foresee that our method can be
extended by augmenting with an algorithm for learning robust feature embeddings to facilitate SF
learning.
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