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Abstract

In this supplementary material, we provide complete proofs of the theorems of the
main paper.

A Proof of Theorem 1

A.1 Preliminaries

In Section 2 of the main paper, the loss function space is defined as:

Lρ = {`ρ(x, y, f) := `(ρf (x, y)) : f ∈ F} , (1)

where

F = {x 7→ 〈w,Ψ(x, y)〉 : w ∈ RN , ‖w‖p ≤ Λp}.

We now introduce the function space of the margin function

F̃ρ = {(x, y) 7→ ρf (x, y) : f ∈ F}. (2)

We also denote ρf (x, y) as ρ(x, y, f) and introduce the Rademacher complexity definition of the loss
function space:
Definition 1 (Rademacher Complexity [2]). Assume Lρ is a space of loss functions as defined in
equation (1), then the empirical Rademacher complexity of Lρ is:

<̂(Lρ) = Eσ

[
sup
`ρ∈Lρ

1

n

n∑
i=1

σi`ρ(xi, yi, f)

]
,

where σ1, σ2, ..., σn are i.i.d. Rademacher variables taking values −1 and 1 with equal probability,
independent of the sample S = {(x1, y1), ..., (xn, yn)}. The Rademacher complexity of Lρ is
<(Lρ) = E(x,y)∼P <̂(Lρ), where P is the underlying distribution.

Besides, we define the empirical risk of any scoring function f as

R̂(`ρ) =
1

n

n∑
i=1

`ρ(xi, yi, f),

and the expected risk is defined as

R(`ρ) = E(x,y)∼P [`ρ(x, y, f)].
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According to the McDiarmid inequality [8] and the symmetrization technique (e.g., Theorem 4.4 in
[10]), it is easy to obtain that with probability at least 1− δ,

R(`ρ)− R̂(`ρ) ≤ 2<̂(Lρ) + 3M

√
log 1/δ

2n
.

Due to Lemma A.4 in [5], combined with the Lipschitz property of `ρ in the Assumption 1 of the
main paper, we have the following inequality with probability at least 1− δ:

R(`ρ)− R̂(`ρ) ≤ 2µ<̂(F̃ρ) + 3M

√
log 1/δ

2n
. (3)

Thus the key step is to bound the term <̂(F̃ρ).

A.2 Covering number bound

To bound the term <̂(F̃ρ), we first introduce the definition of covering number.
Definition 2 (Covering Number [15]). Let F be class of real-valued fucntions, defined over a
space Z and S := {z1, ..., zn} ∈ Zn of cardinality n. For any ε > 0, the empirical `∞-norm
covering number N∞(ε,F , S) w.r.t S is defined as the minimal number m of a collection of vectors
v1, ...,vm ∈ Rn such that (vji is the i-th component of the vector vj)

sup
f∈F

min
j=1,...,m

max
i=1,...,n

|f(zi)− vji | ≤ ε.

In this case, we call {v1, ...,vm} an (ε, `∞)-cover of F w.r.t. S. We denote N∞(ε,F , n) =
supS N∞(ε,F , S). Furthermore, the following covering number is introduced:

N (ε,F , ‖ · ‖∞) := sup
n

sup
S
N∞(ε,F , S).

We then need to introduce the following lemmas.
Lemma 1 ([14]). Let L be a class of linear functions. If ‖x‖p ≤ b and ‖w‖q ≤ a, where 2 ≤ p <∞
and 1/p+ 1/q = 1, then ∀ε > 0,

logN∞(ε,L, n) ≤ 36(p− 1)
a2b2

ε2
log2 [2d4ab/ε+ 2en+ 1] ,

where N∞(ε,L, n) = supS N∞(ε,L, S), and where S = {(x1, y1), ..., (xn, yn)} ∈ (X × Y)n.

Lemma 2. For any scoring function f and f̃ , and any sample (xi, yi), we have the following
property: ∣∣∣ρf (xi, yi, f)− ρf̃ (xi, yi, f̃)

∣∣∣ ≤ 2
∑
h∈Hi

∣∣∣∣max
y∈Yh

fh(xi, y)− f̃h(xi, y)

∣∣∣∣ ,
Proof. Based on the notations, we have∣∣∣ρf (xi, yi, f)− ρf̃ (xi, yi, f̃)

∣∣∣
≤
∣∣∣∣f(xi, yi)− max

y′ 6=yi
f(xi, y

′)− f̃(xi, yi) + max
y′ 6=yi

f̃(xi, y
′)

∣∣∣∣
≤
∣∣∣∣[max
y′ 6=yi

f(xi, yi)− f̃(xi, yi)

]∣∣∣∣+

∣∣∣∣[max
y′ 6=yi

f(xi, y
′)− f̃(xi, y

′)

]∣∣∣∣
≤ 2

∣∣∣∣max
y∈Y

f(xi, y)− f̃(xi, y)

∣∣∣∣
≤ 2

∑
h∈Hi

∣∣∣∣max
y∈Y

fh(xi, yh)− f̃h(xi, yh)

∣∣∣∣
= 2

∑
h∈Hi

∣∣∣∣max
y∈Yh

fh(xi, y)− f̃h(xi, y)

∣∣∣∣ .
The proof is over.
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The following proposition is the covering number bound on the margin function class F̃ρ.

Proposition 1. For the function class F̃ρ defined in (2), we have

logN∞(ε, F̃ρ, S) ≤
144(q − 1)s2Λ2

pr
2
q

ε2
log

[
2

⌈
8
sΛprq
ε

+ 2

⌉
k + 1

]
,

where s = maxi∈[n] |Hi|, 2 ≤ p < ∞, 1/p + 1/q = 1, rq = maxi,h,y ‖Ψh(xi, y)‖q, and k =∑
i∈[n]

∑
h∈|H|i

∑
y∈Yh .

Proof of Proposition 1. The proof is inspired by [6]. A difficulty towards this aim consists in the
non-linearity of margin ρf . We bypass this obstacle by introducing the following linear function
class:

F̃ := {v 7→ 〈w, v〉 : w ∈ RN , ‖w‖p ≤ Λp, v ∈ S̃}, (4)

where S̃ is defined as follows

S̃ := {Ψh(x, y) : x ∈ {x1, ..., xn}, h ∈ Hi, y ∈ Yh} . (5)

We relate the covering number of the non-linearity function class F̃ρ to the covering number of this
linear function F̃ . The latter is easy to be addressed since it is a linear function class, to which
standard arguments apply, such as Lemma 1.

We now relate the empirical `∞-norm convering numbers of F̃ w.r.t. S̃ to that of F̃ρ w.r.t. S. Let{
rj = (rj1,1,1, ..., r

j
1,h|H1|,|Yh|H1|

|, r
j
2,1,1, ..., r

j
2,h|H2|,|Yh|H2|

|, ..., r
j
n,1,1, ..., r

j
n,h|Hn|,|Yh|Hn| |

) : j = 1, ..., N

}
be an (ε, `∞)-cover of F̃ with N be the cardinality. That is, for any w ∈ RN with ‖w‖p ≤ Λp, this
cover guarantees the existence of j(w) ∈ {1, ..., N} such that

max
i∈[n]

max
h∈Hi

max
y∈Yh

∣∣∣rj(w)

i,h,y − 〈w,Ψh(xi, y)〉
∣∣∣ ≤ ε. (6)

Now we define rji = (
∑
h∈Hi r

j
i,h,τ ) for all j ∈ [N ], where τ represents labels in the label space

of factor h and is corresponding to yh in the term Ψh(x, yh). Take sample i = 1 for example,
(
∑
h∈H1

rj1,h,τ ) is a vector where τ choose elements from the label space of factor h. It is important
to note that if rji is assigned with sample yi (such as the following ρrji (xi, yi, r

j
i )), then it becomes

an element whose τ corresponds to sample yi, so that we can use the Lipschitz property established
in Lemma 2 to bound the difference of the margin function by the scoring function on the factor level.
Therefore, we define the set

{(ρrj1(x1, y1, r
j
1), ρrj2

(x2, y2, r
j
2), ..., ρrjn(xn, yn, r

j
n)) : j = 1, ..., N}. (7)

Then we have:

max
i∈[n]

∣∣∣∣ρf (xi, yi, f)− ρ
r
j(w)
i

(xi, yi, r
j(w)

i )

∣∣∣∣
≤ max

i∈[n]
2
∑
h∈Hi

∣∣∣∣max
y∈Yh

fh(xi, y)− rj(w)

i,h,y

∣∣∣∣ Using Lemma 2

≤ 2 max
i∈[n]

max
h∈Hi

max
y∈Yh

|Hi|
∣∣∣〈w,Ψh(xi, y)〉 − rj(w)

i,h,y

∣∣∣
≤ 2 max

i∈[n]
|Hi|ε Using (6).

Denote s by maxi∈[n] |Hi|. The above analysis shows that the set defined in (7) is also an (2sε, `∞)-
cover of F̃ρ w.r.t S = {(x1, y1), ..., (xn, yn)}. Therefore,

logN∞(ε, F̃ρ, S) ≤ logN∞(
1

2s
ε, F̃ , S̃). (8)
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Based on Lemma 1, we have

logN∞(ε, F̃ , S̃) ≤
36(q − 1)Λ2

pr
2
q

ε2
log

[
2

⌈
4

Λprq
ε

+ 2

⌉
k + 1

]
, (9)

where s = maxi∈[n] |Hi|, 2 ≤ p < ∞, 1/p + 1/q = 1, rq = maxi,h,y ‖Ψh(xi, y)‖q, and k =∑
i∈[n]

∑
h∈|H|i

∑
y∈Yh .

Combined (8) with (9), the proof of Proposition 1 is completed.

A.3 Proof of Theorem 1

Lemma 3 ([4]). Let F be a real-valued function class taking values in [0, 1], and assume that 0 ∈ F .
Let S be a finite sample of size n. For any 2 ≤ p ≤ ∞, we have the following relationship between
the Rademacher complexity <̂(F) and the covering number Np(F , ε, S).

<̂(F) ≤ inf
α>0

(
4α+

12√
n

∫ 1

α

√
logNp(F , ε, S)dε

)
. (10)

Proof of Theorem 1. Denoted by a := 144(q − 1)s2Λ2
pr

2
q , b := 16sΛprqk and c = 6k + 1. Based

on Lemma 3 and Proposition 1, we have:

<̂(F̃ρ) ≤ inf
α>0

(
4α+

12√
n

∫ 1

α

√
logN∞(F̃ρ, ε, S)dε

)
≤ inf
α>0

(
4α+

12√
n

∫ 1

α

√
a log(b/ε+ c)

ε
dε

)

≤ 4

n
+

12√
n

∫ 1

1/n

√
a log(bn+ c)

ε
dε

=
4

n
+

12 lnn√
n

√
a log(bn+ c).

Substituting this result into (3), with probability at least 1− δ, we have

R(`ρ)− R̂(`ρ) ≤
8µ

n
+

24µ lnn√
n

√
144(q − 1)s2Λ2

pr
2
q log(16sΛprqkn+ 6k + 1) + 3M

√
log 1/δ

2n
,

where s = maxi∈[n] |Hi|, 2 ≤ p < ∞, 1/p + 1/q = 1, rq = maxi,h,y ‖Ψh(xi, y)‖q, and k =∑
i∈[n]

∑
h∈|H|i

∑
y∈Yh . That is we have

R(f) ≤ R(`(ρf )) ≤ R̂(`(ρf )) +O

(
µs lnn√

n
log

1
2 (nsk) +

√
log 1/δ

n

)
,

By some simple transformations of notations, the conclusion of Theorem 1 in the main paper can be
easily verified. The proof is over.

Remark 1. [Sketch of proof techniques.] Our proof is based on space complexity tools: Rademacher
complexity [2] and Covering number [15]. According to the McDiarmid inequality [8] and the
symmetrization technique (e.g., Theorem 4.4 in [10]), combined with the Lipschitz property of `ρ,
the key step in our proof is to bound the empirical Rademacher complexity of the margin function
class: <̂(F̃ρ). We use the refined Dudley entropy integral inequality in [4] with `∞-norm to bound

this term <̂(F̃ρ): <̂(F̃ρ) ≤ infα>0(4α+ 12√
n

∫ 1

α

√
logN∞(F̃ρ, ε, S)dε). Then the proof switches to

bound the `∞-norm covering number of the margin function class: logN∞(ε, F̃ρ, S). The `∞-norm
covering number takes advantage of the max operator in the margin, which admits us to improve
the dependency on the size of the output space. The challenge lies in that the margin function
is nonlinear. To deal with the nonlinear margin function class F̃ρ, we construct a simpler linear
function class: F̃ := {v 7→ 〈w, v〉 : w ∈ RN , ‖w‖p ≤ Λp, v ∈ S̃}, where S̃ is defined as follows:
S̃ := {Ψh(x, y) : x ∈ {x1, ..., xn}, h ∈ Hi, y ∈ Yh} . The covering number of F̃ can be connected
to the nonlinear margin function class: logN∞(ε, F̃ρ, S) ≤ logN∞( 1

2sε, F̃ , S̃), while the covering
number bound of the linear function F̃ is easier to handle [14, 6].
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B Proof of Corollary 1

In [3], they provide two margin loss, additive and the multiplicative empirical margin losses, that can
be used to guarantee many existing structured prediction, defined as:

`addρ (x, y, f) := `add(ρf (x, y)) = Φ∗
(

max
y′ 6=y

L(y′, y)− 1

ρ
[f(x, y)− f(x, y′)]

)
,

`multρ (x, y, f) := `mult(ρf (x, y)) = Φ∗
(

max
y′ 6=y

L(y′, y)

(
1− 1

ρ
[f(x, y)− f(x, y′)]

))
,

where Φ∗(r) = min (maxy,y′ L(y, y′),max(0, r)). To prove Corollary 1, we should show the
Lipschitz continuity property of `addρ (x, y, f) and `multρ (x, y, f).

Lemma 4. For any scoring function f and f̃ , and any sample (x, y), we have∣∣∣`addρ (x, y, f)− `addρ (x, y, f̃)
∣∣∣ ≤ 1

ρ

∣∣∣ρf (x, y)− ρf̃ (x, y)
∣∣∣ ,

and ∣∣∣`multρ (x, y, f)− `multρ (x, y, f̃)
∣∣∣ ≤ M

ρ

∣∣∣ρf (x, y)− ρf̃ (x, y)
∣∣∣ .

Proof. Note that Φ∗(r) is 1-Lipschitz continuous w.r.t. r.
(1) For the additive margin loss, we have∣∣∣`addρ (x, y, f)− `addρ (x, y, f̃)

∣∣∣
≤
∣∣∣∣(max

y′ 6=y
L(y′, y)− 1

ρ
[f(x, y)− f(x, y′)]

)
−
(

max
y′ 6=y

L(y′, y)− 1

ρ

[
f̃(x, y)− f̃(x, y′)

])∣∣∣∣
≤ 1

ρ

∣∣∣∣[max
y′ 6=y

f̃(x, y)− f̃(x, y′)

]
−
[
max
y′ 6=y

f(x, y)− f(x, y′)

]∣∣∣∣
≤ 1

ρ

∣∣∣ρf (x, y)− ρf̃ (x, y)
∣∣∣ .

(2) For the multiplicative margin loss, we have∣∣∣`multρ (x, y, f)− `multρ (x, y, f̃)
∣∣∣

≤
∣∣∣∣max
y′ 6=y

L(y′, y)

(
1− 1

ρ
[f(x, y)− f(x, y′)]

)
−max
y′ 6=y

L(y′, y)

(
1− 1

ρ

[
f̃(x, y)− f̃(x, y′)

])∣∣∣∣
≤ M

ρ

∣∣∣∣[max
y′ 6=y

f̃(x, y)− f̃(x, y′)

]
−
[
max
y′ 6=y

f(x, y)− f(x, y′)

]∣∣∣∣
≤ M

ρ

∣∣∣ρf (x, y)− ρf̃ (x, y)
∣∣∣ .

The proof is over.

proof of Corollary 1. Substituting µ = 1
ρ and µ = M

ρ for `addρ and `multρ into Theorem 1, respectively,
Corollary 1 can be easily verified.

C Proof of Corollary 2

Proof. For a fixed f = (f1, ..., fT ), any α in the probability simplex ∆ defines a distribution over
{f1, ..., fT }. Sampling from {f1, ..., fT } according to α and averaging leads to functions m of the
form m = 1

n′

∑T
i=1 ntft for some n = (n1, ..., nT ) ∈ NT , with

∑T
t=1 nt = n′, and ft ∈ Fkt .

For any N = (N1, ..., Np) with |N| = n′, we consider the family of functions

MG,N =

 1

n′

p∑
k=1

Nk∑
j=1

fk,j |∀(k, j) ∈ [p]× [Nk], fk,j ∈ Fk

 ,
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and the union of all such families MG,n′ = ∪|N|=n′MG,N. Also the margin function class is defined
as

Mρ,G,N = {ρm : m ∈MG,N} .

Fix ρ > 0. For a fixed N, the empirical Rademacher complexity of Mρ,G,N can be bounded as
follows for any n′ ≥ 1:

<̂(Mρ,G,N) ≤ 1

n′

p∑
k=1

Nk<̂(F̃ρ,k).

Thus, by Eq (3), we have the following bound holds: for any δ > 0, with probability at least 1− δ,
for all m ∈MG,N,

R(`ρ,τ (m))− R̂(`ρ,τ (m)) ≤ 2µ<̂(Mρ,G,N) + 3M

√
log 1/δ

2n

≤ 2µ
1

n′

p∑
k=1

Nk<̂(F̃ρ,k) + 3M

√
log 1/δ

2n
.

Since there are at most pn
′

possible p-tuples N with |N| = n′, by the union bound, for any δ > 0,
with probability at least 1− δ, for all m ∈MG,n′ , we can write

R(`ρ,τ (m))− R̂(`ρ,τ (m)) ≤ 2µ
1

n′

p∑
k=1

Nk<̂(F̃ρ,k) + 3M

√
log pn′/δ

2n
.

Thus, with probability at least 1−δ, for all functionsm = 1
n′

∑T
i=1 ntft with ft ∈ Fkt , the following

inequality holds

R(`ρ,τ (m))− R̂(`ρ,τ (m)) ≤ 2µ
1

n′

p∑
k=1

∑
t:kt=k

nt<̂(F̃ρ,kt) + 3M

√
log pn′/δ

2n
.

Taking the expectation with respect to α and using Eα[nt/n
′] = αt, we obtain that for any δ > 0,

with probability at least 1− δ, for all m, we have

Eα
[
R(`ρ,τ (m))− R̂(`ρ,τ (m))

]
≤ 2µ

T∑
t=1

αt<̂(F̃ρ,kt) + 3M

√
log pn′/δ

2n
.

Fix n′ ≥ 1. Then, for any δn′ > 0, with probability at least 1− δn′ ,

Eα
[
R(`ρ,τ (m))− R̂(`ρ,τ (m))

]
≤ 2µ

T∑
t=1

αt<̂(F̃ρ,kt) + 3M

√
log pn′/δn′

2n
.

Choose δn′ = δ
2pn′−1 for some δ > 0, then for p ≥ 2,

∑
n′≥1 δn′ = δ

2(1−1/p) ≤ δ. Thus, for any
δ > 0 and n′ ≥ 1, with probability at least 1− δ, the following holds for all m:

Eα
[
R(`ρ,τ (m))− R̂(`ρ,τ (m))

]
≤ 2µ

T∑
t=1

αt<̂(F̃ρ,kt) + 3M

√
log 2p2n′−1/δ

2n
.

We first consider the additive margin loss, defined as

`addρ,τ (x, y,m) := `addτ (ρm(x, y)) = Φ∗
(

max
y′ 6=y

L(y′, y) + τ − 1

ρ
[m(x, y)−m(x, y′)]

)
.

Thus, there holds that

Eα
[
R(`addρ,1/2(m))− R̂(`addρ,1/2(m))

]
≤ 4

ρ

T∑
t=1

αt<̂(F̃ρ,kt) + 3M

√
log 2p2n′−1/δ

2n
.
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Now, for any g =
∑T
t=1 αtft ∈ G and any m = 1

n′

∑T
i=1 ntft, we have

R(g) = E [L(ĝ(x), y)]

= E
[
L(ĝ(x), y)1ρg(x,y)≤0

]
,

and the following proof follows the Section A.8 in the Appendix of [3]. For brevity, we omit it here.
Following their proof, we can finally obtain that

R(g)− R̂(`addρ,1 (g)) ≤ 2M

ρ

√
log p

n
+

4

ρ

T∑
t=1

αt<̂(F̃ρ,kt) + 9M

√
d 4

ρ2
log(
|Y|2ρ2n

4 log p
)e log p

n
+

log 2/δ

2n
.

Because for any kt ∈ [1, p], in the proof of Theorem 1 part, there holds that

<̂(F̃ρ,kt) ≤
4

n
+

12 lnn√
n

√
144(q − 1)s2Λ2

pr
2
q log(16sΛprqkn+ 6k + 1).

Since
∑T
t=1 αt = 1, we have the following bound:

R(g)− R̂(`addρ,1 (g)) ≤ 9M

√
d 4

ρ2
log(
|Y|2ρ2n

4 log p
)e log p

n
+

log 2/δ

2n
+

2M

ρ

√
log p

n
+

16

ρn

+
4

ρ

12 lnn√
n

√
144(q − 1)s2Λ2

pr
2
q log(16sΛprqkn+ 6k + 1),

where s = maxi∈[n] |Hi|, 2 ≤ p < ∞, 1/p + 1/q = 1, rq = maxi,h,y ‖Ψh(xi, y)‖q, and k =∑
i∈[n]

∑
h∈|H|i

∑
y∈Yh .

That is we have

R(g)− R̂(`addρ,1 (g)) ≤ O
(
s lnn

ρ
√
n

(
log

1
2 (nsk)

)
+
√
C(n, p, ρ, |Y|, δ)

)
,

where C(n, p, ρ, |Y|, δ) = d 1
ρ2 log( |Y|

2ρ2n
4 log p )e log p

n + log 2/δ
n .

For the multiplicative margin losses

`multρ,τ (x, y,m) := `multτ (ρm(x, y)) = Φ∗
(

max
y′ 6=y

L(y′, y)

(
1 + τ − 1

ρ
[m(x, y)−m(x, y′)]

))
,

by a similar proof, we have

R(g)− R̂(`multρ,1 (g)) ≤ 9M

√
d 4

ρ2
log(
|Y|2ρ2n

4 log p
)e log p

n
+

log 2/δ

2n
+

2M

ρ

√
log p

n
+

16M

ρn

+
4M

ρ

12 lnn√
n

√
144(q − 1)s2Λ2

pr
2
q log(16sΛprqkn+ 6k + 1),

where s = maxi∈[n] |Hi|, 2 ≤ p < ∞, 1/p + 1/q = 1, rq = maxi,h,y ‖Ψh(xi, y)‖q, and k =∑
i∈[n]

∑
h∈|H|i

∑
y∈Yh .

That is we have

R(g)− R̂(`multρ,1 (g)) ≤ O
(
Ms lnn

ρ
√
n

(
log

1
2 (nsk)

)
+
√
C(n, p, ρ, |Y|, δ)

)
,

where C(n, p, ρ, |Y|, δ) = d 1
ρ2 log( |Y|

2ρ2n
4 log p )e log p

n + log 2/δ
n .

By some simple transformations of notations, the conclusion of Corollary 2 in the main paper can be
easily verified. The proof is over.
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D Proof of Theorem 2

D.1 Uniform Localized Convergence

D.1.1 Preliminaries

Rademacher complexity is a classical tool in measuring the space complexity and can be used to
bound the uniform deviation [2], however, it is worth noticing that it consider the worst-case of the
element in function space, neglecting that the algorithm will likely pick functions that have a small
error. [1] demonstrates that the local Rademacher complexity is more reasonable to be served as a
complexity measure. Therefore, we use the local Rademahcer complexity as a tool to measure the
space complexity. We introduce the following definition:

Definition 3. For any r > 0, the local Rademacher complexity of Lρ is

<(Lrρ) = <
{
a`ρ|a ∈ [0, 1], `ρ ∈ Lρ, R[(a`ρ)

2] ≤ r
}
, (11)

where R[(`ρ)
2] = E(x,y)∼P

[
`2ρ(x, y, f)

]
.

The key idea to obtain sharper generalization error bound is to choose a much smaller class Lrρ ∈ Lρ
with as small a variance as possible, while requiring that `ρ is still in Lrρ.

With the local Rademacher complexity, we have:

Proposition 2. Assume that `ρ ∈ Lρ is bounded by [0,M ], where M > 0 is a constant. Let
r∗ be the fixed point of <(Lrρ), that is r∗ is the solution of <(Lrρ) = r with respect to r. Then

∀v > max(1,
√

2
2M ), with probability 1− δ, we have

R(`ρ) ≤ max

{
v

v − 1
R̂(`ρ), R̂(`ρ) + cMr

∗ +
cδ
n

}
, (12)

where cM = 18Mv, cδ = (12v+14) log(1/δ)
3 .

D.1.2 Proof of Proposition 2

We first prove the following three lemmas.

Lemma 5. Let L̄ be the normalized loss space

L̄ =

{
r

max(R(`2ρ), r)
`ρ

∣∣∣`ρ ∈ Lρ} . (13)

Suppose that, ∀v > 1,

Ûn(L̄) := sup
¯̀
ρ∈L̄

{
R(¯̀

ρ)− R̂(¯̀
ρ)
}
≤ r

Mv
.

Then we have

R(`ρ) ≤ max

{(
v

v − 1
R̂(`ρ)

)
,
(
R̂(`ρ) +

r

Mv

)}
.

Proof. Note that, ∀¯̀
ρ ∈ L̄:

R(¯̀
ρ) ≤ R̂(¯̀

ρ) + Ûn(L̄) ≤ R̂(¯̀
ρ) +

r

Mv
. (14)

Let us consider the two cases:

1) R(`2ρ) ≤ r, `ρ ∈ Lρ.

2) R(`2ρ) > r, `ρ ∈ Lρ.

8



In the first case ¯̀
ρ = `ρ, by (14), we have

R(`ρ) = R(¯̀
ρ) ≤ R̂(¯̀

ρ) +
r

Mv
= R̂(`ρ) +

r

Mv
. (15)

In the second case, ¯̀
ρ = r

R(`2ρ)`ρ, then

R(`ρ)− R̂(`ρ) ≤ Ûn(Lρ) =
R(`2ρ)

r
Ûn(L̄) ≤ M ·R(`ρ)

r

r

Mv
=
R(`ρ)

v
. (16)

By combining the results of Eqs (15) and (16), the proof is over.

Lemma 6. L̄ ⊆ Lrρ.

Proof. Let us consider Lrρ in the two cases:

1) R(`2ρ) ≤ r, `ρ ∈ Lρ.

2) R(`2ρ) > r, `ρ ∈ Lρ.

In the first case, ¯̀
ρ = `ρ and then:

R(`2ρ) = R(¯̀2
ρ) ≤ r.

In the second case, R(`2ρ) > r, so we have that

¯̀
ρ =

[
r

R(`2ρ)

]
`ρ,

r

R(`2ρ)
≤ 1,

and the following bound holds:

R(¯̀2
ρ) =

[
r

R(`2ρ)

]2

R(`2ρ) ≤
[

r

R(`2ρ)

]
R(`2ρ) = r.

Thus, the lemma is proved.

Lemma 7. ψn(r) = <(Lrρ) is a sub-root function.

Proof. In order to prove the lemma, the following properties mush apply:

1) ψn(r) is positive

2) ψn(r) is non-decrasing

3) ψn(r)/
√
r is non-increasing

By the definition of <(Lrρ), it is easy to verity that <(Lrρ) is positive.

Concerning the second property, we have that, for 0 ≤ r1 ≤ r2: Lr1ρ ⊆ Lr2ρ , therefore

ψn(r1) = ES,σ

[
sup

`ρ∈L
r1
ρ

∣∣∣∣∣ 1n
n∑
i=1

σi`ρ(xi, yi, f)

∣∣∣∣∣
]

≤ ES,σ

[
sup

`ρ∈L
r2
ρ

∣∣∣∣∣ 1n
n∑
i=1

σi`ρ(xi, yi, f)

∣∣∣∣∣
]

= ψn(r2).

Finally, concerning the third property, for 0 ≤ r1 ≤ r2, let

`r2ρ = arg sup
`ρ∈L

r2
ρ

ES,σ

[
sup

`ρ∈L
r2
ρ

∣∣∣∣∣ 1n
n∑
i=1

σi`ρ(xi, yi, f)

∣∣∣∣∣
]
.

9



Note that, since r1
r2
≤ 1, we have that

√
r1
r2
`r2ρ ∈ Lr2ρ . Consequently:

R

[(√
r1

r2
`r2ρ

)]2

=
r1

r2
R
[
(`r2ρ )2

]
≤ r1.

Thus, we have that:

ψn(r1) = ES,σ

[
sup

`ρ∈L
r1
ρ

∣∣∣∣∣ 1n
n∑
i=1

σi`ρ(xi, yi, f)

∣∣∣∣∣
]

≥ ES,σ

[∣∣∣∣∣ 1n
n∑
i=1

σi

√
r1

r2
`r2ρ (xi, yi, f)

∣∣∣∣∣
]

=

√
r1

r2
ES,σ

[
sup

`ρ∈L
r2
ρ

∣∣∣∣∣ 1n
n∑
i=1

σi`ρ(xi, yi, f)

∣∣∣∣∣
]

=

√
r1

r2
ψn(r2),

which allows proving the claim since

ψn(r2)
√
r2
≤ ψn(r1)
√
r1

.

Proof of Proposition 2. According to Theorem 2.1 of [1], we have

Ûn(L̄) = sup
¯̀
ρ∈L̄

{
R(¯̀

ρ)− R̂(¯̀
ρ)
}

≤ inf
α>0

(
2 (1 + α)<(L̄) +

√
2r log(1/δ)

n

+M

(
1

3
+

1

α

)
log(1/δ)

n

)
≤ inf
α>0

(
2 (1 + α)<(Lrρ) +

√
2r log(1/δ)

n

+M

(
1

3
+

1

α

)
log(1/δ)

n

)
Using Lemma 6

≤3<(Lrρ) +

√
2r log(1/δ)

n
+

7M log(1/δ)

3n
Setting α = 1/2

≤3
√
rr∗ +

√
2r log(1/δ)

n
+

7M log(1/δ)

3n
Using sub-root property.

The last step of the proof consists in showing that r can be chosen, such that Ûn(L̄) ≤ r
Mv and

r ≥ r∗, so that we can exploit Lemma 5 and finish the proof. For this purpose, we set

A = 3
√
r∗ +

√
2 log(1/δ)

n
,B =

7M log(1/δ)

3n
.

Thus, we have to find the solution of

A
√
r +B =

r

Mv
,

which is

r =

[(
2B
vM +A2

)
+

√(
2B
vM +A2

)2 − 4B2

M2v2

]
2

M2v2

(17)
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Since v ≥ max(1,
√

2
2M ), v2M2 ≥ 1

2 . Therefore, from (17), we have

r ≥ A2M2v2 ≥ A2

2
= r∗,

r ≤ A2M2v2 + 2BMv.

Thus, we have
r

Mv
≤ A2Mv + 2B

=

(
3
√
r∗ +

√
2 log(1/δ)

n

)2

Mv +
14M log(1/δ)

3n
.

Note that, ∀a, b > 0, (a+ b)2 ≤ 2a2 + 2b2, so we have that

r

Mv
≤ 18Mvr∗ +

(12v + 14) log(1/δ)

3n
.

By substituting the above inequality into Lemma 5, the proof is over.

D.2 Proof of Theorem 2

Proof. The key step is to obtain the fixed point r∗ of <(Lrρ). According to Lemma 3.6 of [11], with
probability 1− δ, we have

<(Lrρ) ≤ <̂(Lrρ) +

√
2 log(1/δ)<(Lrρ)

n
.

Note that ∀a, b > 0,
√
ab ≤ a

2 + b
2 . So we have

<(Lrρ) ≤ <̂(Lrρ) + <(Lrρ)/2 +
log(1/δ)

n
.

There holds that

<(Lrρ) ≤ 2<̂(Lrρ) +
2 log(1/δ)

n
.

Based on the Lemma 2.2 of [13], we have that

<̂(Lrρ) ≤ 21
√

6βr log3/2(64n)<̂(F̃ρ).

Thus, we have

<(Lrρ) ≤ 42
√

6βr log3/2(64n)<̂(F̃ρ) +
2 log(1/δ)

n
.

In the proof of Theorem 1 part, we have

<̂(F̃ρ) ≤
4

n
+

12 lnn√
n

√
a log(bn+ c),

where a := 144(q − 1)s2Λ2
pr

2
q , b := 16sΛprqk and c = 6k + 1, and where s = maxi∈[n] |Hi| and

k =
∑
i∈[n]

∑
h∈|H|i

∑
y∈Yh .

So we obtain

<(Lrρ) ≤ 42
√

6βr log3/2(64n)

[
4

n
+

12 lnn√
n

√
a log(bn+ c)

]
+

2 log(1/δ)

n
.

Therefore, we set

ψ(r) = 42
√

6βr log3/2(64n)

[
4

n
+

12 lnn√
n

√
a log(bn+ c)

]
+

2 log(1/δ)

n
.
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Solving the equation ψ(r∗) = r∗, we obtain

r∗ = C

[
β

log2(n) ln2 n

n
a log(bn+ c) +

log(1/δ)

n

]
≤ C

[
β

log4 n

n
a log(bn+ c) +

log(1/δ)

n

]
,

where C is a constant. This result show that ∀v > max(1,
√

2
2M ), with probability 1− 2δ, we have

R(`ρ) ≤ max

{
v

v − 1
R̂(`ρ), R̂(`ρ) + C

β log4 n

n
a log(bn+ c) +

C log( 1
δ )

n

}
.

Therefore, we have ∀v > max(1,
√

2
2M ), for any δ > 0, with probability 1− δ over the sample S, we

have

R(f) ≤ R(`(ρf )) ≤ max

{
v

v − 1
R̂(`(ρf )), R̂(`(ρf )) +O

(
βs2 log4 n

n
log(nsk) +

log( 1
δ )

n

)}
.

for any f ∈ F , where s = maxi∈[n] |Hi| and k =
∑
i∈[n]

∑
h∈|H|i

∑
y∈Yh .

By some simple transformations of notations, the conclusion of Theorem 2 in the main paper can be
easily verified. The proof is over.

Remark 2. [Sketch of proof techniques.] We first use uniform localized convergence tech-
nique [1] to prove Proposition 2: ∀v > max(1,

√
2

2M ), with probability 1 − δ, we have R(`ρ) ≤
max{ v

v−1 R̂(`ρ), R̂(`ρ) + cMr
∗ + cδ

n }, where cM and cδ are constant, and r∗ is the solution of
<(Lrρ) = r with respect to r. Thus the key step is to bound the local Rademacher complexity
term <(Lrρ) to find its r∗. And to use the covering number bound of the margin function class
logN∞(ε, F̃ρ, S) established in the proof of Theorem 1, it is necessary for us to construct the re-
lationship between the local Rademacher complexity <(Lrρ) of the loss function class Lρ and the
covering number bound of the margin function. We deal with it by using the smooth property of Lρ
to bound the local Rademacher complexity <(Lrρ) by O(

√
r<̂(F̃ρ)) and by using the refined Dudley

entropy integral inequality [4] with `∞-norm to bound <̂(F̃ρ)). Thus the relationship is built. Finally,
solving r∗ of the upper bound established for <(Lrρ) finishes the proof.

E Proof of Theorem 3

E.1 Preliminaries

We first introduce four Lemmas. The first Lemma is a slight refined result of Theorem 2 in [5].
Lemma 8. Let Lρ be a function class defined in (1) satisfying ‖`ρ‖∞ ≤M , ∀`ρ ∈ Lρ. There holds
the following inequality:

<(Lrρ) ≤ inf
ε>0

{
2<{`ρ ∈ L̃ρ : R̂(`2ρ) ≤ ε2}+

8ME logN∞(ε/2,Lρ, S)

n
+

√
2rE logN∞(ε/2,Lρ, S)

n

}
,

where L̃ρ := {`ρ − `′ρ : `ρ, `
′
ρ ∈ Lρ}, R̂(`2ρ) = 1

n

∑n
i=1 `(ρf (xi, yi))

2 and R[(`ρ)
2] =

E(x,y)∼P
[
`(ρf (x, y))2

]
.

Proof. According to Lemma 1 in [5] and logN2(ε/2,Lρ, S) ≤ logN∞(ε/2,Lρ, S), we have

Eσ<̂{`ρ ∈ Lρ : R̂(`2ρ) ≤ r) ≤ inf
ε>0

{
Eσ<̂{`ρ ∈ L̃ρ : R̂(`2ρ) ≤ ε2}+

√
2r logN∞(ε/2,Lρ, S)

n

}
.

(18)

For any ε > 0, we fix the sample S. For any `ρ ∈ Lρ with R(`2ρ) ≤ r, there holds that

R̂(`2ρ) ≤ sup
`ρ∈Lρ:R(`2ρ)≤r

(R̂(`2ρ)−R(`2ρ)) +R(`2ρ) ≤ sup
`ρ∈Lρ:R(`2ρ)≤r

(R̂(`2ρ)−R(`2ρ)) + r.
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Therefore, there holds almost surely that

{
`ρ ∈ Lρ : R(`2ρ) ≤ r

}
⊆

{
`ρ ∈ Lρ : R̂(`2ρ) ≤ sup

`ρ∈Lρ:R(`2ρ)≤r
(R̂(`2ρ)−R(`2ρ)) + r

}
.

This imply that

<(Lrρ) = EEσ<̂{`ρ ∈ Lρ : R(`2ρ) ≤ r}

≤ EEσ<̂

{
`ρ ∈ Lρ : R̂(`2ρ) ≤ sup

`ρ∈Lρ:R(`2ρ)≤r
(R̂(`2ρ)−R(`2ρ)) + r

}

≤ E<̂{`ρ ∈ L̃ρ : R̂(`2ρ) ≤ ε2}+

√
2

n
E

√√√√( sup
`ρ∈Lρ:R(`2ρ)≤r

(R̂(`2ρ)−R(`2ρ)) + r

)
logN∞(ε/2,Lρ, S)

≤ E<̂{`ρ ∈ L̃ρ : R̂(`2ρ) ≤ ε2}+

√
2E logN∞(ε/2,Lρ, S)

n

√√√√(E sup
`ρ∈Lρ:R(`2ρ)≤r

(R̂(`2ρ)−R(`2ρ)) + r

)
,

where the second inequality follows from (18) and the last inequality follows the concavity of
f(x) =

√
x coupled with the Jensen’s inequality. Besides, according to the standard symmetrical

inequality on Rademacher average and the Lipschite property of f(x) = x2 with lipschitz constant
2M on [−M,M ] (a direct application of Lemma A.4 in [5]), there holds that√√√√(E sup

`ρ∈Lρ:R(`2ρ)≤r
(R̂(`2ρ)−R(`2ρ)) + r

)
≤
√

2E<̂{`2ρ : `ρ ∈ Lρ : R(`2ρ) ≤ r}+ r

≤
√

4ME<̂{`ρ ∈ Lρ : R(`2ρ) ≤ r}+ r.

Thus, we obtain that

<(Lrρ) = EEσ<̂{`ρ ∈ Lρ : R(`2ρ) ≤ r}

≤ E<̂{`ρ ∈ L̃ρ : R̂(`2ρ) ≤ ε2}+

√
2E logN∞(ε/2,Lρ, S)

n

√
4ME<̂{`ρ ∈ Lρ : R(`2ρ) ≤ r}+ r.

Solving this inequality, we have

<(Lrρ) ≤ 2E<̂{`ρ ∈ L̃ρ : R̂(`2ρ) ≤ ε2}+
8ME logN∞(ε/2,Lρ, S)

n
+

√
2rE logN∞(ε/2,Lρ, S)

n
.

The above inequality is hold for all ε > 0, thus the proof is over.

Lemma 9 ([9]). Let S = {X1, ..., Xn} be a set of examples and let Pn be the associated empirical
measure. For any function class F and any monotone sequence (εK)∞k=0 decreasing to 0 such that
ε0 ≥ supf∈F

√
Pnf2, the following inequality holds for every non-negative integer N :

<̂(F) ≤ 4

N∑
k=1

εk−1

√
logN∞(εk,F , S)

n
+ εN .

Lemma 10 ([12]). Let ‖ · ‖ be a norm defined on the class F . Define F̃ as {f − g : f, g ∈ F}, we
have N (ε, F̃ , ‖ · ‖) ≤ N 2(ε/2,F , ‖ · ‖).
Lemma 11 ([12]). Let F be a class of functions from X to R and let F0 ⊆ F be a subset. Then for
any ε > 0, we have the following relationship on covering number: N (ε,F0, d) ≤ N (ε/2,F , d).

E.2 Proof of Theorem 3

Proof. Recall that the loss function space is defined as:

Lρ = {`ρ(x, y, f) := `(ρf (x, y)) : f ∈ F} ,
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and the margin function space

F̃ρ = {(x, y) 7→ ρf (x, y) : f ∈ Fp}.
Since `(ρf ) is µ-Lipschitz continuous w.r.t ρf , so there holds that

logN∞(ε,Lρ, S) ≤ logN∞(ε/µ, F̃ρ, S). (19)

Thus based on the result of Lemma 8, we have

<(Lrρ)

≤ inf
ε>0

{
2E<̂{`ρ ∈ L̃ρ : R̂(`2ρ) ≤ ε2}+

8ME logN∞(ε/2,Lρ, S)

n
+

√
2rE logN∞(ε/2,Lρ, S)

n

}

≤ inf
ε>0

2E<̂{`ρ ∈ L̃ρ : R̂(`2ρ) ≤ ε2}+
8ME logN∞(ε/2µ, F̃ρ, S)

n
+

√
2rE logN∞(ε/2µ, F̃ρ, S)

n

 .

For the term E<̂{`ρ ∈ L̃ρ : R̂(`2ρ) ≤ ε2}, applying Lemma 9 with the assignment εk = 2−kε, we
have

E<̂{`ρ ∈ L̃ρ : R̂(`2ρ) ≤ ε2} ≤ 4E
N∑
k=1

εk−1

√
logN∞(εk/2, L̃ρ, S)

n
+ εN

≤ 4E
N∑
k=1

εk−1

√
2 logN∞(εk/4,Lρ, S)

n
+ εN

≤ 4E
N∑
k=1

εk−1

√
2 logN∞(εk/4µ, F̃ρ, S)

n
+ εN ,

where the first inequality follows from Lemma 11, the second inequality follows from Lemma 10, the
third inequality follows from (19).
Thus, the important term need to bound is logN∞(F̃ρ, ε, S). As we showed in (8) of Proposition 1,
there holds that

logN∞(ε, F̃ρ, S) ≤ logN∞(
1

2s
ε, F̃ , S̃),

where

F̃ := {v 7→ 〈w, v〉 : w ∈ RN , ‖w‖p ≤ Λp, v ∈ S̃},

and where S̃ is defined as follows

S̃ := {Ψh(x, y) : x ∈ {x1, ..., xn}, h ∈ Hi, y ∈ Yh} .
(1.) According to the Assumption 3 of the main paper, we have

logN∞(ε, F̃ , S̃) ≤ γp
εp
.

Then we have

logN∞(ε, F̃ρ, S) ≤ 2pspγp
εp

.

Based on the above analysis and results, we have

E<̂{`ρ ∈ L̃ρ : R̂(`2ρ) ≤ ε2} ≤ 4E
N∑
k=1

εk−1

√
2 logN∞(εk/4µ, F̃ρ, S)

n
+ εN

≤ 4

N∑
k=1

21−kε

√
23p+kp+1γpµpspε−p

n
+ 2−N ε

=

√
γpµpsp

n
2(3p+7)/2ε1−p/2

N∑
k=1

2(p−2)k/2 + 2−N ε,
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when 0 < p < 2, the series
∑+∞
k=1 2(p−2)k/2 converges and thus one can tend N →∞ to derive the

bound E<̂{`ρ ∈ L̃ρ : R̂(`2ρ) ≤ ε2} ≤ cp
√

γpµpsp

n ε1−p/2. Therefore, we obtain that

<(Lrρ) ≤ cp inf
ε>0


√
γpµpsp

n
ε1−p/2 +

8ME logN∞(ε/2µ, F̃ρ, S)

n
+

√
2rE logN∞(ε/2µ, F̃ρ, S)

n


≤ cp inf

ε>0

{√
γpµpsp

n
ε1−p/2 +

8M22pγpµ
psp

nεp
+

√
2r22pγpµpsp

nεp

}

≤ cp,M inf
ε>0

{√
γpµpsp

n
ε1−p/2 +

γpµ
psp

nεp
+

√
rγpµpsp

nεp

}
.

So we obtain that

ψε(r) = cp,M inf
ε>0

{√
γpµpsp

n
ε1−p/2 +

γpµ
psp

nεp
+

√
rγpµpsp

nεp

}
.

The associated fixed point r∗ε = ψε(r
∗
ε ) satisfies the constraint

r∗ε ≤ cp,M

[√
γpµpsp

n
ε1−p/2 +

γpµ
psp

nεp

]
.

If we choose ε = n−1/(p+2), we obtain

r∗ε = cp,M
γpµ

psp

n
2
p+2

.

This result show that ∀v > max(1,
√

2
2M ), with probability 1− δ, we have

R(`ρ) ≤ max

{
v

v − 1
R̂(`ρ), R̂(`ρ) + cp,M

γpµ
psp

n
2
p+2

+
cδ
n

}
.

That is ∀v > max(1,
√

2
2M ), for any δ > 0, with probability 1− δ over the sample S, we have

R(f) ≤ R(`(ρf )) ≤ max

{
v

v − 1
R̂(`(ρf )), R̂(`(ρf )) +O

(
γpµ

psp

n
2
p+2

+
log( 1

δ )

n

)}
.

for any f ∈ F , where 0 < p < 2 and s = maxi∈[n] |Hi|.
(2.) Similarly, according to the Assumption 4 of the main paper, we have

logN∞(ε, F̃ , S̃) ≤ D logp(
γ

ε
).

Then we have

logN∞(ε, F̃ρ, S) ≤ D logp(
2sγ

ε
).

Based on the above analysis and results, we have the following inequality that holds for any N ∈ N+:

E<̂{`ρ ∈ L̃ρ : R̂(`2ρ) ≤ ε2} ≤ 4E
N∑
k=1

εk−1

√
2 logN∞(εk/4µ, F̃ρ, S)

n
+ εN

≤ 4

N∑
k=1

21−kε

√
2D logp( 8µsγ

εk
)

n
+ εN

≤ 27/2

√
D

n

N∑
k=1

2−kε logp/2(2k+3µsγε−1) + εN

≤ 2(7+p)/2

√
D

n

N∑
k=1

2−kε[((k + 1) log 2)p/2 + logp/2(4µsγε−1)] + εN

≤ 2(7+p)/2

√
D

n
ε[c(p) + logp/2(4µsγε−1)] + εN ,

(20)
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where the fourth inequality follows from (a+b)p/2 ≤ [2 max(a, b)]p/2 ≤ 2p/2(ap/2 +bp/2), a, b ≥ 0

and the last inequality is due to the fact
∑N
k=1 2−k((k + 2) log 2)p/2 <∞.

Letting N →∞ in (20), we have

<(Lrρ) ≤ inf
ε>0

{
2(9+p)/2

√
D

n
ε[c(p) + logp/2(4µsγε−1)] +

8ME logN∞(ε/2µ, F̃ρ, S)

n

+

√
2rE logN∞(ε/2µ, F̃ρ, S)

n


≤ inf
ε>0

2(9+p)/2

√
D

n
ε[c(p) + logp/2(4µsγε−1)] +

8MD logp( 4µsγ
ε )

n
+

√
2rD logp( 4µsγ

ε )

n


≤ c inf

ε>0


√
D

n
ε logp/2(4µsγε−1) +

D logp( 4µsγ
ε )

n
+

√
rD logp( 4µsγ

ε )

n

 .

(21)
Setting ε =

√
r in (21), we obtain that

<(Lrρ) ≤ c

D logp( 4µsγ√
r

)

n
+

√
rD logp( 4µsγ√

r
)

n

 .
Setting ε = 1√

n
, we derive that

<(Lrρ) ≤ c

[
D logp(4µsγ

√
n)

n
+

√
rD logp(4µsγ

√
n)

n

]
.

Therefore, we obtain that

ψ(r) = c

[
D logp(4µsγ

√
n)

n
+

√
rD logp(4µsγ

√
n)

n

]
.

The associated fixed point r∗ = ψ(r∗) satisfies

r∗ = c

[
D logp(4µsγ

√
n)

n
+

√
r∗D logp(4µsγ

√
n)

n

]
.

Solving this equation, we obtain

r∗ ≤ cD logp(µsγ
√
n)

n
.

This result show that ∀v > max(1,
√

2
2M ), with probability 1− δ, we have

R(`ρ) ≤ max

{
v

v − 1
R̂(`ρ), R̂(`ρ) + c

D logp(µsγ
√
n)

n
+
cδ
n

}
.

That is ∀v > max(1,
√

2
2M ), for any δ > 0, with probability 1− δ over the sample S, we have

R(f) ≤ R(`(ρf )) ≤ max

{
v

v − 1
R̂(`(ρf )), R̂(`(ρf )) +O

(
D logp(µsγ

√
n)

n
+

log( 1
δ )

n

)}
.

for any f ∈ F , where s = maxi∈[n] |Hi|. The proof is over.

Remark 3. [Sketch of proof techniques.] The proof is also based on Proposition 2. Thus the key
step is to bound the local Rademacher complexity of the loss function class <(Lrρ) to find its r∗.
In the proof of Theorem 3, the difficulty lies in constructing the inequality between <(Lrρ) and the
covering number logN (ε,Fh, ‖ · ‖∞). We handle it by slightly refining the main Theorem in [4].
Main proof techniques contain constructing the covering number inequalities among different spaces.
Combined the Lipschitz property and the proof techniques in Theorem 1, we will finally need to
bound the term logN (ε,Fh, ‖ · ‖∞). Using Assumptions 3 or 4 and solving r∗ of the upper bound
established for <(Lrρ) finish the proof.
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F Proof of Corollary 3

Proof. We define the function class {`(ρf )− `(ρf∗)}. Since R(`(ρf )− `(ρf∗)) ≥ 0 and R(`(ρf )−
`(ρf∗))

2 ≤ BR(`(ρf )− `(ρf∗)), if we apply the class {`(ρf )− `(ρf∗)} to Proposition 2, we will
get

R(`(ρf )− `(ρf∗)) ≤ max

{
v

v − 1

[
R̂(`(ρf )− `(ρf∗))

]
, R̂(`(ρf )− `(ρf∗)) + cBr

∗ +
cδ
n

}
,

where r∗ is the fixed point of local Rademacher complexity of function class {`(ρf )− `(ρf∗)} and
cB = 18Bv. Note that R̂(`(ρf̂∗))− R̂(`(ρf∗)) ≤ 0, so we have

R(`(ρf̂∗))−R(`(ρf∗)) ≤ cBr∗ +
cδ
n
.

Thus the key step is to bound the local Rademacher complexity term of the function class {`(ρf )−
`(ρf∗)} to find its r∗.

Recall that when we want to bound the local Rademacher complexity term of the function class
{`(ρf )} (that is Lρ), we can bound <(Lrρ) by

inf
ε>0

{
2E<̂{`ρ ∈ L̃ρ : R̂(`2ρ) ≤ ε2}+

8ME logN∞(ε/2,Lρ, S)

n
+

√
2rE logN∞(ε/2,Lρ, S)

n

}
.

Note that there is no difference between the metric entropy of the excess loss class {`(ρf )− `(ρf∗)}
and mertic entropy of the loss class {`(ρf )} itself: that is, from the definition of covering number,
one has

logN∞(ε,Lρ, S) = logN∞(ε, {`(ρf )− `(ρf∗)}, S).
Therefore, we can also bound the local Rademacher complexity of the excess loss class {`(ρf ) −
`(ρf∗)} by the following term:

inf
ε>0

{
2E<̂{`ρ ∈ L̃ρ : R̂(`2ρ) ≤ ε2}+

16ME logN∞(ε/2,Lρ, S)

n
+

√
2rE logN∞(ε/2,Lρ, S)

n

}
.

This means that for the local Rademacher complexity of the excess loss class {`(ρf )− `(ρf∗)}, we
finally obtain the same r∗ as in Theorem 3.

Therefore, under Assumptions 1 and 3 of the main paper, for any δ > 0, with probability 1− δ over
the sample S, there holds

R(`(ρf̂∗)) ≤ R(`(ρf∗)) +O
(
γpµ

psp

n
2
p+2

)
+O

(
log( 1

δ )

n

)
.

for any f ∈ F , where 0 < p < 2 and s = maxi∈[n] |Hi|.
The proof for the Assumptions 1 and 4 case is similar. The proof is over.

Remark 4. We now illustrate the difference between our bound in the space capacity setting and
the empirical Bernstein bound in [7]. Theorem 6 in [7] shows the following generalization bound:

R(f) − R̂(f) ≤ Õ(
√

V arn(f,S) ln(N∞(1/n,F,2n)/δ)
n + ln(N∞(1/n,F,2n)/δ)

n ), where F is the loss
function class. If the variance of the loss and the covering number of the function class F are small,
this generalization bound scale as Õ

(
1
n

)
. To explore different learning rates of structured prediction

under different conditions, for instance, the smoothness curvature condition and the space capacity
condition, instead of assuming directly that the variance of the loss is small, we exploit Theorem 2.1
in [2] and the property of sub-root functions to transform an upper bound with the variance to the
bound with a fixed point of the local Rademacher complexity, please refer to the proof of Proposition
2. Moreover, assuming directly the covering number on the function class F will ignore the factor
graph property of structured prediction since the factor graph is reflected in the scoring function, not
the loss function. In the proof involving covering numbers, we exploit the covering number to bound
the local Rademacher complexity and construct relationships of covering numbers among different
function classes (please refer to the proof of Proposition 1 and Theorem 3), which thus permit us to
show the explicit dependency on the properties of the factor graph and the dependency on the number
of possible labels. Therefore, our proof and Theorem 6 in [7] all require the variance and the covering
number to be small to obtain sharper generalization bounds. However, for the complex structured
prediction problem, it requires fined analysis. We thus exploit different implementation modes.
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