A Analysis of algorithm under conditions of Theorem 3.1

Here we recall some basic setup introduced in the sketch of analysis in Section 3.3. Recall the singular value decomposition of X_{\natural} is

$$
X_{\natural}=\left[\begin{array}{ll}
U & V
\end{array}\right]\left[\begin{array}{cc}
D_{S}^{*} & 0 \tag{A.1}\\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
U & V
\end{array}\right]^{\top},
$$

where $U \in \mathbb{R}^{d \times r}, V \in \mathbb{R}^{d \times d-r}, D_{S}^{*} \in \mathbb{R}^{r \times r} . U$ and V has orthonormal columns and $U^{\top} V=0$. The i-th largest singular values of X_{\natural} is denoted as σ_{i}. Thus, σ_{1} and σ_{r} are the largest and smallest diagonal entries of D_{S}^{*} respectively. Since X_{\natural} is assumed to have rank r, we have $\sigma_{r+1}=\sigma_{r+2}=$ $\ldots=\sigma_{d}=0$. The condition number is defined to be $\kappa=\frac{\sigma_{1}}{\sigma_{r}}$. Since union of column space of U and V spans the whole space, for any $F_{t} \in \mathbb{R}^{d \times r}$, we can write

$$
\begin{equation*}
F_{t}=U S_{t}+V T_{t} \tag{A.2}
\end{equation*}
$$

where $S_{t}=U^{\top} F_{t} \in \mathbb{R}^{r \times k}$ and $T_{t}=V^{\top} F_{t} \in \mathbb{R}^{(d-r) \times k}$.

We now formalize the idea of closeness of subgradient dynamics to its smooth counter part described in Section 3.3 . By assumption (iii) in Theorem 3.1, the RDPP holds with parameters ($\left.k+r, \sqrt{\frac{1}{2 \pi}} \delta\right)$ and $\delta=\frac{c}{\kappa^{3} \sqrt{k}}$ for some small constant c depending on c_{3} in Theorem 3.1. Since the RDPP holds, let

$$
\begin{equation*}
\gamma_{t}=\frac{\eta_{t} \psi\left(F_{t} F_{t}^{\top}-X_{\natural}\right)}{\left\|F_{t} F_{t}^{\top}-X_{\natural}\right\|_{\mathrm{F}}}, \quad D_{t} \in D\left(F_{t} F_{t}^{\top}-X_{\natural}\right), \tag{A.3}
\end{equation*}
$$

we have

$$
\begin{align*}
\left\|\eta_{t} D_{t}-\gamma_{t}\left(F_{t} F_{t}^{\top}-X_{\natural}\right)\right\|_{F, k+r} & \leq \eta_{t} \sqrt{\frac{1}{2 \pi}} \delta \tag{A.4}\\
& \leq \eta_{t} \psi\left(F_{t} F_{t}^{\top}-X_{\natural}\right) \delta \tag{A.5}\\
& =\delta \gamma_{t}\left\|F_{t} F_{t}^{\top}-X_{\natural}\right\|_{\mathrm{F}} . \tag{A.6}
\end{align*}
$$

Define the following shorthand Δ_{t},

$$
\begin{equation*}
\Delta_{t}=\frac{\eta_{t}}{\gamma_{t}} D_{t}-\left(F_{t} F_{t}^{\top}-X_{\natural}\right) . \tag{A.7}
\end{equation*}
$$

Then (A.4) becomes

$$
\begin{equation*}
\left\|\Delta_{t}\right\| \leq \delta\left\|F_{t} F_{t}^{\top}-X_{\text {Ł }}\right\|_{\mathrm{F}} \stackrel{(a)}{\leq} \delta \sqrt{k+r}\left\|F_{t} F_{t}^{\top}-X_{\mathrm{\natural}}\right\| \tag{A.8}
\end{equation*}
$$

Here step (a) is because $F_{t} F_{t}^{\top}-X_{\natural}$ has rank no more than $k+r$.
Using that fact that the subgradient we used in algorithm 3.1 can be written as $g_{t}=D_{t} F_{t}$, we have

$$
\begin{equation*}
F_{t+1}=F_{t}-\gamma_{t}\left(F_{t} F_{t}^{\top}-X_{\natural}\right) F_{t}+\gamma_{t} \Delta_{t} F_{t} . \tag{A.9}
\end{equation*}
$$

Note that if we ignore the error term $\gamma_{t} \Delta_{t} F_{t}$ in A.9, the update equation becomes

$$
\begin{equation*}
\tilde{F}_{t+1}=F_{t}-\gamma_{t}\left(F_{t} F_{t}^{\top}-X_{\natural}\right) F_{t} . \tag{A.10}
\end{equation*}
$$

This update is the update of gradient descent for the smooth function $\tilde{f}(F)=\frac{1}{4}\left\|F F^{\top}-X_{\natural}\right\|_{\mathrm{F}}^{2}$ with stepsize γ_{t}. We will refer A.10) as the "population-level" update and we will leverage the properties of this update throughout the analysis. We are now ready to start our full analysis of the subgradient dynamics. We first characterize the initialization quality in terms of S and T.
Proposition A. 1 (Initialization quality). Under the condition on F_{0} sated in 3.3) of Theorem 3.1 we have

$$
\begin{align*}
\sigma_{r}\left(S_{0}\right) & \geq \frac{\sqrt{\epsilon \sigma_{r}}}{2} \tag{A.11}\\
\left\|T_{0}\right\| & \leq \min \left\{\frac{\sigma_{r}}{200 \sqrt{\sigma_{1}}}, \frac{\sqrt{\epsilon \sigma_{r}}}{40}\right\} \tag{A.12}\\
\left\|S_{0}\right\| & \leq 2 \sqrt{\sigma_{1}} \tag{A.13}\\
4\left\|T_{0}\right\|^{2} & \leq 0.001 \sigma_{r}\left(S_{0}\right) \frac{\sigma_{r}}{\sqrt{\sigma_{1}}} \tag{A.14}
\end{align*}
$$

In the analysis, we denote $\sigma_{r}\left(S_{0}\right)$ by ρ and let $c_{\rho}=\min \left\{\frac{\sigma_{r}}{200 \sqrt{\sigma_{1}} \rho}, \frac{1}{20}\right\}$. Then we have

$$
\begin{align*}
\sigma_{r}\left(S_{0}\right) & =\rho \geq \frac{\sqrt{\epsilon \sigma_{r}}}{2} \tag{A.15}\\
\left\|T_{0}\right\| & \leq c_{\rho} \rho \tag{A.16}\\
\left\|S_{0}\right\| & \leq 2 \sqrt{\sigma_{1}} . \tag{A.17}
\end{align*}
$$

The parameters satisfy $4\left(c_{\rho} \rho\right)^{2} \leq 0.001 \rho \frac{\sigma_{r}}{\sqrt{\sigma_{1}}}$ and $c_{\rho} \rho \leq \min \left\{0.1 \sqrt{\sigma_{1}}, \frac{\sigma_{r}}{200 \sqrt{\sigma_{1}}}\right\}=\frac{\sigma_{r}}{200 \sqrt{\sigma_{1}}}$, which will be applied multiple times in the following analysis.

The next proposition illustrates the evolution of S_{t} and T_{t}.
Proposition A. 2 (Updates of S_{t}, T_{t}). For any $t \geq 0$, we have

$$
\begin{align*}
& S_{t+1}=S_{t}-\gamma_{t}\left(S_{t} S_{t}^{\top} S_{t}+S_{t} T_{t}^{\top} T_{t}-D_{S}^{*} S_{t}\right)+\gamma_{t} U^{\top} \Delta_{t} F_{t} \tag{A.18}\\
& T_{t+1}=T_{t}-\gamma_{t}\left(T_{t} T_{t}^{\top} T_{t}+T_{t} S_{t}^{\top} S_{t}\right)+\gamma_{t} V^{\top} \Delta_{t} F_{t} \tag{A.19}
\end{align*}
$$

We introduce notations

$$
\begin{align*}
\mathcal{M}_{t}\left(S_{t}\right) & =S_{t}-\gamma_{t}\left(S_{t} S_{t}^{\top} S_{t}+S_{t} T_{t}^{\top} T_{t}-D_{S}^{*} S_{t}\right) \tag{A.20}\\
\mathcal{N}_{t}\left(T_{t}\right) & =T_{t}-\gamma_{t}\left(T_{t} T_{t}^{\top} T_{t}+T_{t} S_{t}^{\top} S_{t}\right) \tag{A.21}
\end{align*}
$$

They are "population-level" updates for S_{t} and T_{t}.
Proposition A. 3 (Uniform upper bound). Suppose γ_{t} satisfies $\gamma_{t} \leq \frac{0.01}{\sigma_{1}}$ for all $t \geq 0$ and $(50 \sqrt{k} \delta)^{\frac{1}{3}} \leq \frac{c_{\rho} \rho}{2 \sqrt{\sigma_{1}}}=\frac{\sigma_{r}}{400 \sigma_{1}}$, we have

$$
\begin{align*}
& \left\|T_{t}\right\| \leq c_{\rho} \rho \leq 0.1 \sqrt{\sigma_{r}} \leq 0.1 \sqrt{\sigma_{1}} \tag{A.22}\\
& \left\|S_{t}\right\| \leq 2 \sqrt{\sigma_{1}} \tag{A.23}
\end{align*}
$$

for all $t \geq 0$.
The analysis of algorithm consists of three stages:

- In stage 1 , we show at $\sigma_{r}\left(S_{t}\right)$ increases geometrically to level $\sqrt{\frac{\sigma_{r}}{2}}$ by time \mathcal{T}_{1}^{\prime}, then $\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|$ will decrease geometrically to $\frac{100\left(c_{\rho} \rho\right)^{2} \sigma_{1}}{\sigma_{r}}\left(\leq \frac{\sigma_{r}}{100}\right)$ by \mathcal{T}_{1}. The iterate will then enter a good region.
- In stage 2 , we show that $D_{t}=\max \left\{\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|,\left\|S_{t} T_{t}^{\top}\right\|\right\}$ decreases geometrically if it is bigger than $10 \delta \sqrt{2 k} \sigma_{1}$, which is the computational threshold. In other words, $\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|$ decrease to a $\frac{100\left(c_{\rho} \rho\right)^{2} \sigma_{1}}{\sigma_{r}}$ geometrically, and this will happen by \mathcal{T}_{2}.
- In stage 3 , after $\mathcal{T}_{2}, E_{t}=\max \left\{\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|,\left\|S_{t} T_{t}^{\top}\right\|,\left\|T_{t} T_{t}^{\top}\right\|\right\}$ converges to 0 sublinearly.

In the above statement,

$$
\begin{gather*}
\mathcal{T}_{1}^{\prime}=\left\lceil\log \left(\frac{\sqrt{\sigma_{r}}}{\sqrt{2} \rho}\right) / \log \left(1+\frac{c_{\gamma} \sigma_{r}^{2}}{6 \sigma_{1}^{2}}\right)\right\rceil \tag{A.24}\\
\mathcal{T}_{1}=\mathcal{T}_{1}^{\prime}+\left\lceil\frac{\log \left(\frac{20\left(c_{\rho} \rho\right)^{2}}{\sigma_{r}}\right)}{\log \left(1-\frac{c_{\gamma} \sigma_{r}^{2}}{2 \sigma_{1}^{2}}\right)}\right] \tag{A.25}
\end{gather*}
$$

and

$$
\begin{equation*}
\mathcal{T}_{2}=\mathcal{T}_{1}+\left\lceil\frac{\log \left(\frac{1000 \delta \sqrt{k} \sigma_{1}}{\sigma_{r}}\right)}{\log \left(1-\frac{c_{\gamma} \sigma_{r}^{2}}{6 \sigma_{1}^{2}}\right)}\right\rceil \tag{A.26}
\end{equation*}
$$

Stage 1 consists of all the iterations up to time \mathcal{T}_{1}. Stage 2 consists of all the iterations between $\mathcal{T}_{1}+1$ and \mathcal{T}_{2}. Stage 3 consists of all the iterations afterwards.

A. 1 Analysis of $\mathcal{M}_{t}\left(S_{t}\right)$ and $\mathcal{N}_{t}\left(T_{t}\right)$.

In this sections we prove some facts about $\mathcal{M}_{t}\left(S_{t}\right)$ and $\mathcal{N}_{t}\left(T_{t}\right)$ that will be useful in the analysis.
Proposition A.4. Suppose $\gamma_{t} \leq \min \left\{\frac{0.01}{\sigma_{1}}, \frac{0.01 \sigma_{r}}{\sigma_{1}^{2}}\right\},\left\|S_{t}\right\| \leq 2 \sqrt{\sigma_{1}}, \sigma_{r}\left(S_{t}\right) \geq \sqrt{\frac{\sigma_{r}}{2}}$ and $\left\|T_{t}\right\| \leq$ $0.1 \sqrt{\sigma_{r}}$, we have the following:

1. $\left\|\mathcal{M}_{t}\left(S_{t}\right) \mathcal{M}_{t}\left(S_{t}\right)^{\top}-D_{S}^{*}\right\| \leq\left(1-\frac{3 \gamma_{t} \sigma_{r}}{4}\right)\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|+3 \gamma_{t}\left\|S_{t} T_{t}^{\top}\right\|^{2}$.

Suppose $\gamma_{t} \leq \frac{0.01}{\sigma_{1}},\left\|S_{t}\right\| \leq 2 \sqrt{\sigma_{1}}$, and $\left\|T_{t}\right\| \leq 0.1 \sqrt{\sigma_{r}}$, we have the following:
2. $\left\|\mathcal{N}_{t}\left(T_{t}\right) \mathcal{N}_{t}\left(T_{t}\right)^{\top}\right\| \leq\left\|T_{t}\right\|^{2}\left(1-\frac{3 \gamma_{t}}{2}\left\|T_{t}\right\|^{2}\right)=\left\|T_{t} T_{t}^{\top}\right\|\left(1-\frac{3 \gamma_{t}}{2}\left\|T_{t} T_{t}^{\top}\right\|\right)$.

Furthermore, suppose $\gamma_{t} \leq \frac{0.01}{\sigma_{1}},\left\|S_{t}\right\| \leq 2 \sqrt{\sigma_{1}}, \sigma_{r}\left(S_{t}\right) \geq \sqrt{\frac{\sigma_{r}}{2}},\left\|T_{t}\right\| \leq 0.1 \sqrt{\sigma_{r}}$, and $\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\| \leq \frac{\sigma_{r}}{10}$, we have same inequalities as 1,2 and
3. $\left\|\mathcal{M}_{t}\left(S_{t}\right) \mathcal{N}_{t}\left(T_{t}\right)^{\top}\right\| \leq\left(1-\frac{\gamma_{t} \sigma_{r}}{3}\right)\left\|S_{t} T_{t}^{\top}\right\|$.

Proposition A.5. Suppose $\gamma_{t} \leq \frac{0.01}{\sigma_{1}},\left\|S_{t}\right\| \leq 2 \sqrt{\sigma_{1}}, \sigma_{r}\left(S_{t}\right) \geq \sqrt{\frac{\sigma_{r}}{2}}$ and $\left\|T_{t}\right\| \leq 0.1 \sqrt{\sigma_{r}}$, we have the following:

1. $\left\|D_{S}^{*}-\mathcal{M}_{t}\left(S_{t}\right) S_{t}^{\top}\right\| \leq\left(1-\frac{\gamma \sigma_{r}}{2}\right)\left\|D_{S}^{*}-S_{t} S_{t}^{\top}\right\|+\gamma_{t}\left\|S_{t} T_{t}^{\top}\right\|^{2}$.
2. $\left\|\mathcal{M}_{t}\left(S_{t}\right) T_{t}^{\top}\right\| \leq 2\left\|S_{t} T_{t}^{\top}\right\|$.
3. $\left\|\mathcal{N}_{t}\left(T_{t}\right) S_{t}^{\top}\right\| \leq\left\|T_{t} S_{t}^{\top}\right\|$.
4. $\left\|\mathcal{N}_{t}\left(T_{t}\right) T_{t}^{\top}\right\| \leq\left\|T_{t}\right\|^{2}\left(1-\gamma_{t}\left\|T_{t}\right\|^{2}\right)=\left\|T_{t} T_{t}^{\top}\right\|\left(1-\gamma_{t}\left\|T_{t} T_{t}^{\top}\right\|\right)$.

A. 2 Analysis of Stage 1

The following proposition characterize the evolution of $\sigma_{r}\left(S_{t}\right)$. In stage one, we start with a initialization satisfies conditions in Proposition A. 1.
Proposition A.6. Suppose there is some constant $c_{\gamma}>0$ such that the parameters satisfy $\frac{c_{\gamma} \sigma_{r}}{\sigma_{1}^{2}} \leq$ $\gamma_{t} \leq \min \left\{\frac{1}{100 \sigma_{1}}, \frac{\sigma_{r}}{100 \sigma_{1}^{2}}\right\}=\frac{\sigma_{r}}{100 \sigma_{1}^{2}},(50 \sqrt{k} \delta)^{\frac{1}{3}} \leq \frac{c_{\rho} \rho}{2 \sqrt{\sigma_{1}}}=\frac{\sigma_{r}}{400 \sigma_{1}}$, we have

$$
\begin{equation*}
\sigma_{r}\left(S_{t}\right) \geq \min \left\{\left(1+\frac{\sigma_{r}^{2} c_{\gamma}}{6 \sigma_{1}^{2}}\right)^{t} \sigma_{r}\left(S_{0}\right), \sqrt{\frac{\sigma_{r}}{2}}\right\} \tag{A.27}
\end{equation*}
$$

for all $t \geq 0$. In particular, we have

$$
\begin{equation*}
\sigma_{r}\left(S_{\mathcal{T}_{1}^{\prime}}+t\right) \geq \sqrt{\frac{\sigma_{r}}{2}} \tag{A.28}
\end{equation*}
$$

for all $t \geq 0$.
Next, we show that $\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|$ decays geometrically to $\frac{100\left(c_{\rho} \rho\right)^{2} \sigma_{1}}{\sigma_{r}}$.
Proposition A.7. Suppose there is some constant $c_{\gamma}>0$ such that the parameters satisfy $\frac{c_{\gamma} \sigma_{r}}{\sigma_{1}^{2}} \leq$ $\gamma_{t} \leq \min \left\{\frac{1}{100 \sigma_{1}}, \frac{\sigma_{r}}{100 \sigma_{1}^{2}}\right\}=\frac{\sigma_{r}}{100 \sigma_{1}^{2}},(50 \sqrt{k} \delta)^{\frac{1}{3}} \leq \frac{c_{\rho} \rho}{2 \sqrt{\sigma_{1}}}$, we have for any $t \geq 0$, we have

$$
\begin{equation*}
\left\|S_{\mathcal{T}_{1}+t} S_{\mathcal{T}_{1}+t}^{\top}-D_{S}^{*}\right\| \leq \max \left\{5 \sigma_{1}\left(1-\frac{c_{\gamma} \sigma_{r}^{2}}{2 \sigma_{1}^{2}}\right)^{t}, \frac{100\left(c_{\rho} \rho\right)^{2} \sigma_{1}}{\sigma_{r}}\right\} \tag{A.29}
\end{equation*}
$$

In particular, for $\mathcal{T}_{1}=\mathcal{T}_{1}^{\prime}+\left\lceil\frac{\log \left(\frac{20\left(c_{\rho} \rho\right)^{2}}{\sigma_{r}}\right)}{\log \left(1-\frac{c_{\gamma} \sigma_{r}^{2}}{2 \sigma_{1}^{2}}\right)}\right\rceil$, we have

$$
\begin{equation*}
\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\| \leq \frac{100\left(c_{\rho} \rho\right)^{2} \sigma_{1}}{\sigma_{r}} \leq \frac{\sigma_{r}}{100}, \quad \forall t \geq \mathcal{T}_{1} \tag{A.30}
\end{equation*}
$$

When $t=\mathcal{T}_{1}$, by Proposition A.7.

$$
\begin{equation*}
\left\|D_{S}^{*}-S_{\mathcal{T}_{1}} S_{\mathcal{T}_{1}}^{\top}\right\| \leq \frac{\sigma_{r}}{100} \tag{A.31}
\end{equation*}
$$

By Proposition A.3 and our assumption that $c_{\rho} \rho \leq \frac{\sigma_{r}}{200 \sqrt{\sigma_{1}}}$,

$$
\begin{equation*}
\left\|S_{\mathcal{T}_{1}} T_{\mathcal{T}_{1}}\right\| \leq 2\left(c_{\rho} \rho\right) \sqrt{\sigma_{1}} \leq \frac{\sigma_{r}}{100} \tag{A.32}
\end{equation*}
$$

Combining, we obtain

$$
\begin{equation*}
D_{\mathcal{T}_{1}} \leq \frac{\sigma_{r}}{100} \tag{A.33}
\end{equation*}
$$

A. 3 Analysis of Stage 2

Recall

$$
\begin{equation*}
D_{t}=\max \left\{\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|,\left\|S_{t} T_{t}^{\top}\right\|\right\} \tag{A.34}
\end{equation*}
$$

We show that D_{t} decreases to $10 \delta \sqrt{k+r} \sigma_{1}$ geometrically after \mathcal{T}_{1}.
Proposition A.8. Suppose there is some constant $c_{\gamma}>0$ such that the parameters satisfy $\frac{c_{\gamma} \sigma_{r}}{\sigma_{1}^{2}} \leq$ $\gamma_{t} \leq \frac{0.01}{\sigma_{1}}, \delta \sqrt{k+r} \leq \frac{0.001 \sigma_{r}}{\sigma_{1}}$. Also, we suppose $\left\|T_{t}\right\| \leq 0.1 \sqrt{\sigma_{r}}$ for all t. If for some $\mathcal{T}_{1}>0$,

$$
\begin{equation*}
D_{\mathcal{T}_{1}} \leq \max \left\{\frac{\sigma_{r}}{100}, 10 \delta \sqrt{k+r} \sigma_{1}\right\}=\frac{\sigma_{r}}{100} \tag{A.35}
\end{equation*}
$$

then for any $t \geq 0$, we have

$$
\begin{gather*}
\qquad D_{\mathcal{T}_{1}+t} \leq \max \left\{\left(1-\frac{c_{\gamma} \sigma_{r}^{2}}{6 \sigma_{1}^{2}}\right)^{t} \cdot \frac{\sigma_{r}}{100}, 10 \delta \sqrt{k+r} \sigma_{1}\right\} . \tag{A.36}\\
\text { In particular, for } \mathcal{T}_{2}=\mathcal{T}_{1}+\left[\frac{\log \left(\frac{1000 \delta \sqrt{k+r} \sigma_{1}}{\sigma_{r}}\right)}{\log \left(1-\frac{c_{\gamma} \sigma_{2}^{2}}{6 \sigma_{1}^{2}}\right)}\right] \text {, we have } \\
\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\| \leq 10 \delta \sqrt{k+r} \sigma_{1}, \tag{A.37}\\
\left\|S_{t} T_{t}^{\top}\right\| \leq 10 \delta \sqrt{k+r} \sigma_{1}, \quad \forall t \geq \mathcal{T}_{2} . \tag{A.38}
\end{gather*}
$$

A. 4 Analysis of Stage 3

Define

$$
\begin{equation*}
E_{t}=\max \left\{\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|,\left\|S_{t} T_{t}^{\top}\right\|,\left\|T_{t} T_{t}^{\top}\right\|\right\} \tag{A.39}
\end{equation*}
$$

We are going to show the sublinear convergence of E_{t} in stage three.
Proposition A.9. Suppose we have $\gamma_{t} \leq \frac{0.01}{\sigma_{1}}, \delta \sqrt{k+r} \leq \frac{0.001 \sigma_{r}}{\sigma_{1}}$ and $E_{t} \leq 0.01 \sigma_{r}$ for some $t>0$. Then we have

$$
\begin{equation*}
E_{t+1} \leq \max \left\{\left(1-\frac{\gamma_{t} \sigma_{r}}{6}\right) E_{t}, E_{t}\left(1-\gamma_{t} E_{t}\right)\right\}=E_{t}\left(1-\gamma_{t} E_{t}\right) \tag{A.40}
\end{equation*}
$$

Indeed, we can prove a better rate if there is no overparametrization.
Proposition A.10. Suppose we have $\gamma_{t} \leq \frac{0.01}{\sigma_{1}}, \delta \sqrt{k+r} \leq \frac{0.001 \sigma_{r}}{\sigma_{1}}$ and $E_{t} \leq 0.01 \sigma_{r}$ for some $t>0$. If $k=r$, then we have

$$
\begin{equation*}
E_{t+1} \leq\left(1-\frac{\gamma_{t} \sigma_{r}}{3}\right) E_{t} \tag{A.41}
\end{equation*}
$$

A. 5 Proof of Theorem 3.1

The proof is a combination of all the propositions in this section. First, we show that under suitable choice of c_{0} and c_{3}, all the assumptions are satisfied. First, if we take c_{3} to be small enough, we know
that $(50 \sqrt{k} \delta)^{\frac{1}{3}} \leq \frac{\sigma_{r}}{400 \sigma_{1}}$ holds. Hence, all the conditions related to δ are satisfied. Next, by definition, $\gamma_{t}=\frac{\eta_{t} \psi\left(F_{t} F_{t}^{\top}-X_{\mathrm{b}}\right)}{\left\|F_{t} F_{t}^{\top}-X_{\natural}\right\|_{\mathrm{F}}}$. By the second assumption and the assumption on range of ψ, we know

$$
\begin{equation*}
\gamma_{t} \in\left[c_{1} \sqrt{\frac{1}{2 \pi}} \frac{\sigma_{r}}{\sigma_{1}^{2}}, c_{2} \sqrt{\frac{2}{\pi}} \frac{\sigma_{r}}{\sigma_{1}^{2}}\right] \tag{A.42}
\end{equation*}
$$

Since we assumed $c_{2} \leq 0.01$, so the step size condition $\gamma_{t} \leq \frac{\sigma_{r}}{100 \sigma_{1}^{2}}$ is satisfied. Moreover, $c_{\gamma} \geq$ $c_{1} \sqrt{\frac{1}{2 \pi}}$. Now, applying theorems for initialization, stage 1 and stage 2 , we know that

$$
\begin{array}{r}
\left\|S_{\mathcal{T}_{2}} S_{\mathcal{T}_{2}}^{\top}-D_{S}^{*}\right\| \leq 10 \delta \sqrt{k+r} \sigma_{1} \leq \frac{0.01 \sigma_{r}^{2}}{\sigma_{1}} \\
\left\|S_{\mathcal{T}_{2}} T_{\mathcal{T}_{2}}^{\top}\right\| \leq 10 \delta \sqrt{k+r} \sigma_{1} \leq \frac{0.01 \sigma_{r}^{2}}{\sigma_{1}} \tag{A.44}
\end{array}
$$

In addition, by Proposition A.3, we know

$$
\begin{equation*}
\left\|T_{\mathcal{T}_{2}} T_{\mathcal{T}_{2}}^{T}\right\|=\left\|T_{\mathcal{T}_{2}}\right\|^{2} \leq\left(c_{\rho} \rho\right)^{2} \leq \frac{0.01 \sigma_{r}^{2}}{\sigma_{1}} \tag{A.45}
\end{equation*}
$$

Hence, $E_{\mathcal{T}_{2}} \leq \frac{0.01 \sigma_{r}^{2}}{\sigma_{1}}$. Here are two cases:

- $k>r$, By Proposition A. 9 and induction, we know

$$
\begin{equation*}
E_{t+1} \leq E_{t}\left(1-\gamma_{t} E_{t}\right) \leq E_{t}\left(1-\frac{c_{\gamma} \sigma_{r}}{\sigma_{1}^{2}} E_{t}\right), \quad \forall t \geq \mathcal{T}_{2} \tag{A.46}
\end{equation*}
$$

where $c_{1} \sqrt{\frac{2}{\pi}} \leq c_{\gamma} \leq 0.01$. Define $G_{t}=\frac{c_{\gamma} \sigma_{r}}{\sigma_{1}^{2}} E_{t}$, then we have $G_{\tau_{2}}<1$ and

$$
\begin{equation*}
G_{t+1} \leq G_{t}\left(1-G_{t}\right), \quad \forall t \geq \mathcal{T}_{2} \tag{A.47}
\end{equation*}
$$

Taking reciprocal, we obtain

$$
\begin{equation*}
\frac{1}{G_{t+1}} \geq \frac{1}{G_{t}}+\frac{1}{1-G_{t}} \geq \frac{1}{G_{t}}+1, \quad \forall t \geq \mathcal{T}_{2} \tag{A.48}
\end{equation*}
$$

So we obtain

$$
\begin{equation*}
G_{\mathcal{T}_{2}+t} \leq \frac{1}{\frac{1}{G \mathcal{T}_{2}}+t}, \quad \forall t \geq 0 \tag{A.49}
\end{equation*}
$$

Plugging in the definition of G_{t}, we obtain

$$
\begin{equation*}
E_{\tau_{2}+t} \leq \frac{\sigma_{1}^{2}}{c_{\gamma} \sigma_{r}} \frac{1}{\frac{\sigma_{1}^{2}}{c_{\gamma} \sigma_{r} E_{2}}+t} \leq \frac{\sigma_{1}^{2}}{c_{\gamma} \sigma_{r}} \frac{1}{\frac{100 \sigma_{1}^{3}}{c_{\gamma} \sigma_{r}^{3}}+t}=\frac{\sigma_{1}}{c_{\gamma}} \frac{\kappa}{\frac{100}{c_{\gamma}} \kappa^{3}+t} \leq \frac{\sigma_{1}}{c_{\gamma}} \frac{\kappa}{\kappa^{3}+t} \tag{A.50}
\end{equation*}
$$

Since $c_{\gamma} \geq c_{1} \sqrt{\frac{2}{\pi}}$, we can simply take $c_{5}=\frac{1}{4 c_{1}} \sqrt{\frac{\pi}{2}}, \mathcal{T}=\mathcal{T}_{2}$, apply Lemma I.5 and get

$$
\begin{equation*}
\left\|F_{\mathcal{T}+t} F_{\mathcal{T}+t}^{\top}-X_{\natural}\right\| \leq c_{5} \sigma_{1} \frac{\kappa}{\kappa^{3}+t}, \quad \forall t \geq 0 \tag{A.51}
\end{equation*}
$$

The last thing to justify is $\mathcal{T}_{2} \lesssim \kappa^{2} \log \kappa$. Recall

$$
\begin{gather*}
\mathcal{T}_{1}^{\prime}=\left\lceil\log \left(\frac{\sqrt{\sigma_{r}}}{\sqrt{2} \rho}\right) / \log \left(1+\frac{c_{\gamma} \sigma_{r}^{2}}{6 \sigma_{1}^{2}}\right)\right\rceil \tag{A.52}\\
\mathcal{T}_{1}=\mathcal{T}_{1}^{\prime}+\left\lceil\frac{\log \left(\frac{20\left(c_{\rho} \rho\right)^{2}}{\sigma_{r}}\right)}{\log \left(1-\frac{c_{\gamma} \sigma_{r}^{2}}{2 \sigma_{1}^{2}}\right)}\right] \tag{A.53}
\end{gather*}
$$

and

$$
\begin{equation*}
\mathcal{T}_{2}=\mathcal{T}_{1}+\left\lceil\frac{\log \left(\frac{1000 \delta \sqrt{k} \sigma_{1}}{\sigma_{r}}\right)}{\log \left(1-\frac{c_{\gamma} \sigma_{r}^{2}}{6 \sigma_{1}^{2}}\right)}\right\rceil \tag{A.54}
\end{equation*}
$$

Simple calculus yield that each integer above is $O\left(\kappa^{2} \log \kappa\right)$. So the proof is complete in overspecified case.

- $k=r$. By Proposition A. 10 and induction, we obtain

$$
\begin{equation*}
E_{t+1} \leq\left(1-\frac{\gamma_{t} \sigma_{r}}{3}\right) E_{t} \leq\left(1-\frac{c_{\gamma} \sigma_{r}^{2}}{\sigma_{1}^{2}}\right) E_{t}, \forall t \geq \mathcal{T}_{2} \tag{A.55}
\end{equation*}
$$

Applying this inequality recursively and noting $c_{\gamma} \geq c_{1} \sqrt{\frac{2}{\pi}}$, we obtain

$$
\begin{equation*}
E_{\mathcal{T}_{2}+t} \leq\left(1-\frac{c_{\gamma} \sigma_{r}^{2}}{\sigma_{1}^{2}}\right)^{t} E_{\mathcal{T}_{2}} \leq\left(1-\frac{c_{1} \sqrt{\frac{2}{\pi}}}{\kappa^{2}}\right)^{t} \frac{0.01 \sigma_{r}}{\kappa}, \forall t \geq 0 \tag{A.56}
\end{equation*}
$$

Thus, we can take $c_{6}=0.01 / 4, c_{7}=c_{1} \sqrt{\frac{2}{\pi}}, \mathcal{T}=\mathcal{T}_{2}$, apply Lemma I. 5 and get

$$
\begin{equation*}
\left\|F_{\mathcal{T}+t} F_{\mathcal{T}+t}^{\top}-X_{\mathfrak{\natural}}\right\| \leq \frac{c_{6} \sigma_{r}}{\kappa}\left(1-\frac{c_{7}}{\kappa^{2}}\right)^{t}, \quad \forall t \geq 0 \tag{A.57}
\end{equation*}
$$

The validity of \mathcal{T} is proved in the last part. The proof is complete.

B Proof of Propositions

B. 1 Proof of Proposition A.

First, we note that the r-th singular value of $c^{*} X_{\natural}$ is at least $\epsilon \sigma_{r}$. By almost the same proof as Lemma [.5, we get

$$
\begin{equation*}
\max \left\{\left\|S_{0} S_{0}^{\top}-c^{*} D_{S}^{*}\right\|,\left\|S_{0} T_{0}^{\top}\right\|,\left\|T_{0} T_{0}^{\top}\right\|\right\} \leq\left\|F_{0} F_{0}^{\top}-c^{*} X_{\natural}\right\| \leq \frac{\tilde{c}_{0} \epsilon \sigma_{r}}{\kappa} \tag{B.1}
\end{equation*}
$$

We take $\tilde{c}_{0}=\left(\frac{1}{200}\right)^{2}$. By Weyl's inequality [I.3],

$$
\begin{equation*}
\sigma_{r}\left(S_{0} S_{0}^{\top}\right) \geq \sigma_{r}\left(c^{*} D_{S}^{*}\right)-\left\|S_{0} S_{0}^{\top}-c^{*} D_{S}^{*}\right\| \geq \frac{c^{*} \sigma_{r}}{4} \geq \frac{\epsilon \sigma_{r}}{4} \tag{B.2}
\end{equation*}
$$

Hence, $\rho=\sigma_{r}\left(S_{0}\right) \geq \frac{\sqrt{\epsilon \sigma_{r}}}{2}$. On the other hand,

$$
\begin{align*}
\left\|T_{0}\right\| & \leq \sqrt{\frac{\tilde{c}_{0} \epsilon \sigma_{r}}{\kappa}} \tag{B.3}\\
& \leq \min \left\{\frac{\sigma_{r}}{200 \sqrt{\sigma_{1}}}, \frac{\sqrt{\epsilon \sigma_{r}}}{40}\right\} \tag{B.4}
\end{align*}
$$

We can simply assume $\sigma_{1}\left(S_{0}\right) \leq 2 \sqrt{\sigma_{1}}$. If not so, we can normalize F_{0} so that $\sigma_{1}\left(S_{0}\right)=2 \sqrt{\sigma_{1}}$ and use normalized F_{0} as our initialization. By Weyl's inequality (I.3),

$$
\begin{equation*}
\sigma_{1}\left(S_{0} S_{0}^{\top}\right) \leq 1.01 c^{*} \sigma_{1} \tag{B.5}
\end{equation*}
$$

Hence, $c^{*} \geq 3$. In this case, it is easy to show that $\rho=\sigma_{r}\left(S_{0}\right) \geq \frac{\sqrt{\epsilon \sigma_{r}}}{2}$ and $\left\|T_{0}\right\| \leq \frac{\sigma_{r}}{200 \sqrt{\sigma_{1}}}$ still holds. Therefore, the initialization quality is proved.

B. 2 Proof of Proposition A. 2

The algorithm A.9 updates F_{t} by

$$
\begin{equation*}
F_{t+1}=F_{t}-\gamma_{t}\left(F_{t} F_{t}^{\top}-X_{\natural}\right) F_{t}+\gamma_{t} \Delta_{t} F_{t} . \tag{B.6}
\end{equation*}
$$

Using the definition of U, V, S_{t}, T_{t}, we have

$$
\begin{aligned}
S_{t+1}= & U^{\top} F_{t+1} \\
= & U^{\top} F_{t}-\gamma_{t} U^{\top}\left(F_{t} F_{t}^{\top}-X_{\natural}\right) F_{t}+\gamma_{t} U^{\top} \Delta_{t} F_{t} \\
= & U^{\top}\left(U S_{t}+V T_{t}\right)-\gamma_{t} U^{\top}\left[\left(U S_{t}+V T_{t}\right)\left(U S_{t}+V T_{t}\right)^{\top}-U D_{S}^{*} U^{\top}-V D_{T}^{*} V^{\top}\right]\left(U S_{t}+V T_{t}\right) \\
& \quad+\gamma_{t} U^{\top} \Delta_{t} F_{t} \\
\stackrel{(\sharp)}{=} & S_{t}-\gamma_{t}\left(S_{t} S_{t}^{\top} S_{t}+S_{t} T_{t}^{\top} T_{t}-D_{S}^{*} S_{t}\right)+\gamma_{t} U^{\top} \Delta_{t} F_{t} .
\end{aligned}
$$

Here (\sharp) follows from the fact that $U^{\top} V=0$ and U, V are orthonormal.
By the same token, we can show

$$
\begin{equation*}
T_{t+1}=T_{t}-\gamma_{t}\left(T_{t} T_{t}^{\top} T_{t}+T_{t} S_{t}^{\top} S_{t}\right)+\gamma_{t} V^{\top} \Delta_{t} F_{t} \tag{B.7}
\end{equation*}
$$

B. 3 Proof of Proposition $\mathbf{~ A . ~} 3$

We prove the proposition by induction. By Proposition A.1. it's clear that the proposition holds for $t=0$. Suppose for $t \geq 0$, we have

$$
\begin{align*}
& \left\|T_{t}\right\| \leq c_{\rho} \rho \leq 0.1 \sqrt{\sigma_{1}} \tag{B.8}\\
& \left\|S_{t}\right\| \leq 2 \sqrt{\sigma_{1}} \tag{B.9}
\end{align*}
$$

By Proposition A.2, we know

$$
\begin{equation*}
S_{t+1}=S_{t}-\gamma_{t}\left(S_{t} S_{t}^{\top} S_{t}+S_{t} T_{t}^{\top} T_{t}-D_{S}^{*} S_{t}\right)+\gamma_{t} U^{\top} \Delta_{t} F_{t} \tag{B.10}
\end{equation*}
$$

Since $\left\|T_{t}\right\| \leq c_{\rho} \rho \leq 0.1 \sqrt{\sigma_{1}},\left\|S_{t}\right\| \leq 2 \sqrt{\sigma_{1}}$ and our assumption that $\gamma_{t} \leq \frac{0.01}{\sigma_{1}}, I-\gamma_{t} S_{t}^{\top} S_{t}-$ $\gamma_{t} T_{t}^{\top} T_{t}$ is a PSD matrix. By lemma I.2,

$$
\begin{align*}
\left\|S_{t}\left(I-\gamma_{t} S_{t}^{\top} S_{t}-\gamma_{t} T_{t}^{\top} T_{t}\right)\right\| & \leq\left\|S_{t}\left(I-\gamma_{t} S_{t}^{\top} S_{t}\right)\right\|+\gamma_{t}\left\|S_{t}\right\|\left\|T_{t}\right\|^{2} \tag{B.11}\\
& =\left\|S_{t}\right\|-\gamma_{t}\left\|S_{t}\right\|^{3}+0.1 \gamma_{t} \sigma_{1}^{\frac{3}{2}} \tag{B.12}
\end{align*}
$$

On the other hand, simple triangle inequality yields

$$
\begin{equation*}
\left\|F_{t}\right\|=\left\|U S_{t}+V T_{t}\right\| \leq\left\|S_{t}\right\|+\left\|T_{t}\right\| \leq 3 \sqrt{\sigma_{1}} \tag{B.13}
\end{equation*}
$$

By A. 8 and lemma I.4 we get

$$
\begin{align*}
\left\|\Delta_{t} F_{t}\right\| & \leq\left\|\Delta_{t}\right\|\left\|F_{t}\right\| \tag{B.14}\\
& \leq 3 \sigma_{1}^{\frac{1}{2}} \delta\left\|F_{t} F_{t}^{\top}-X_{\natural}\right\|_{\mathrm{F}} \tag{B.15}\\
& \leq 3 \sigma_{1}^{\frac{1}{2}} \delta \sqrt{k+r}\left\|F_{t} F_{t}^{\top}-X_{\text {七 }}\right\| \tag{B.16}\\
& \leq 3 \sigma_{1}^{\frac{1}{2}} \delta \sqrt{k+r}\left(\left\|F_{t}\right\|^{2}+\left\|X_{\text {七 }}\right\|\right) \tag{B.17}\\
& \leq 50 \delta \sqrt{k} \sigma_{1}^{\frac{3}{2}} \tag{B.18}\\
& \leq 0.1 \sigma_{1}^{\frac{3}{2}} \tag{B.19}
\end{align*}
$$

Combining, we have

$$
\begin{align*}
\left\|S_{t+1}\right\| & \leq\left\|S_{t}\left(I-\gamma_{t} S_{t}^{\top} S_{t}-\gamma_{t} T_{t}^{\top} T_{t}\right)\right\|+\gamma_{t}\left\|D_{S}^{*} S_{t}\right\|+\gamma_{t}\left\|U^{\top} \Delta_{t} F_{t}\right\| \tag{B.20}\\
& \leq\left\|S_{t}\right\|-\gamma_{t}\left\|S_{t}\right\|^{3}+\gamma_{t} \sigma_{1}\left\|S_{t}\right\|+0.2 \gamma_{t} \sigma_{1}^{\frac{3}{2}} \tag{B.21}\\
& =\left\|S_{t}\right\|\left(1+\gamma_{t} \sigma_{1}-\gamma_{t}\left\|S_{t}\right\|^{2}\right)+0.2 \gamma_{t} \sigma_{1}^{\frac{3}{2}} \tag{B.22}
\end{align*}
$$

We consider two different cases:

- $\left\|S_{t}\right\| \leq 1.5 \sqrt{\sigma_{1}}$. By the inequality above, we have

$$
\begin{equation*}
\left\|S_{t+1}\right\| \leq\left\|S_{t}\right\|\left(1+\gamma_{t} \sigma_{1}\right)+0.1 \gamma_{t} \sigma_{1}^{\frac{3}{2}} \leq 1.6 \sqrt{\sigma_{1}}+0.2 \sqrt{\sigma_{1}} \leq 2 \sqrt{\sigma_{1}} \tag{B.23}
\end{equation*}
$$

- $1.5 \sqrt{\sigma_{1}}<\left\|S_{t}\right\| \leq 2 \sqrt{\sigma_{1}}$. In this case, we have

$$
\begin{align*}
\left\|S_{t+1}\right\| & \leq\left\|S_{t}\right\|\left(1+\gamma_{t} \sigma_{1}-2.25 \gamma_{t} \sigma_{1}\right)+0.2 \gamma_{t} \sigma_{1}^{\frac{3}{2}} \tag{B.24}\\
& \leq\left\|S_{t}\right\|\left(1-\gamma_{t} \sigma_{1}\right)+0.2 \gamma_{t} \sigma_{1}\left\|S_{t}\right\| \tag{B.25}\\
& \leq\left\|S_{t}\right\| \tag{B.26}\\
& \leq 2 \sqrt{\sigma_{1}} \tag{B.27}
\end{align*}
$$

The desired bound for S_{t+1} is established. For T_{t+1}, we note

$$
\begin{equation*}
T_{t+1}=T_{t}\left(I-\gamma_{t} T_{t}^{\top} T_{t}-\gamma_{t} S_{t}^{\top} S_{t}\right)+\gamma_{t} V^{\top} \Delta_{t} F_{t} \tag{B.28}
\end{equation*}
$$

We expand $T_{t+1} T_{t+1}^{\top}$ and obtain

$$
\begin{align*}
T_{t+1} T_{t+1}^{\top}= & \left(\mathcal{N}_{t}\left(T_{t}\right)+\gamma_{t} V^{\top} \Delta_{t} F_{t}\right)\left(\mathcal{N}_{t}\left(T_{t}\right)+\gamma_{t} V^{\top} \Delta_{t} F_{t}\right)^{\top} \tag{B.29}\\
\leq & \underbrace{\mathcal{N}_{t}\left(T_{t}\right) \mathcal{N}_{t}\left(T_{t}\right)^{\top}}_{Z_{1}}+\underbrace{\gamma_{t} V^{\top} \Delta_{t} F_{t} \mathcal{N}_{t}\left(T_{t}\right)^{\top}+\gamma_{t} \mathcal{N}_{t}\left(T_{t}\right) F_{t}^{\top} \Delta_{t}^{\top} V}_{Z_{2}} \tag{B.30}\\
& +\underbrace{\gamma_{t}^{2} V^{\top} \Delta_{t} F_{t} F_{t}^{\top} \Delta_{t}^{\top} V}_{Z_{3}} \tag{B.31}
\end{align*}
$$

By Proposition A.4, we have $\left\|Z_{1}\right\| \leq\left\|T_{t} T_{t}^{\top}\right\|\left(1-\frac{3 \gamma_{t}}{2}\left\|T_{t} T_{t}^{\top}\right\|\right)$. By induction hypothesis and triangle inequality, we have

$$
\begin{align*}
\left\|Z_{2}\right\| & \leq 2 \gamma_{t} 50 \delta \sqrt{k} \sigma_{1}^{\frac{3}{2}}\left\|\mathcal{N}_{t}\left(T_{t}\right)\right\| \tag{B.32}\\
& \leq 2 \gamma_{t} 50 \delta \sqrt{k} \sigma_{1}^{\frac{3}{2}}\left\|T_{t}\right\| \tag{B.33}
\end{align*}
$$

and

$$
\begin{equation*}
\left\|Z_{3}\right\| \leq \gamma_{t}^{2}\left(50 \delta \sqrt{k} \sigma_{1}^{\frac{3}{2}}\right)^{2} \leq 0.01 \gamma_{t}\left(c_{\rho} \rho\right)^{4} \tag{B.34}
\end{equation*}
$$

By triangle inequality, we have

$$
\begin{align*}
\left\|T_{t+1} T_{t+1}^{\top}\right\| & \leq\left\|Z_{1}\right\|+\left\|Z_{2}\right\|+\left\|Z_{3}\right\| \tag{B.35}\\
& \leq\left\|T_{t} T_{t}^{\top}\right\|\left(1-\frac{3 \gamma_{t}}{2}\left\|T_{t} T_{t}^{\top}\right\|\right)+2 \gamma_{t} 50 \delta \sqrt{k} \sigma_{1}^{\frac{3}{2}}\left\|T_{t}\right\|+0.01 \gamma_{t}\left(c_{\rho} \rho\right)^{4} \tag{B.36}
\end{align*}
$$

We consider two different cases:

- $\left\|T_{t} T_{t}^{\top}\right\| \leq \frac{\left(c_{\rho} \rho\right)^{2}}{2}$. We have

$$
\begin{align*}
\left\|T_{t+1} T_{t+1}^{\top}\right\| & \leq\left\|T_{t} T_{t}^{\top}\right\|+2 \gamma_{t} 50 \delta \sqrt{k} \sigma_{1}^{\frac{3}{2}}\left\|T_{t}\right\|+0.01 \gamma_{t}\left(c_{\rho} \rho\right)^{4} \tag{B.37}\\
& \leq \frac{\left(c_{\rho} \rho\right)^{2}}{2}+\frac{\gamma_{t}\left(c_{\rho} \rho\right)^{4}}{4}+0.01 \gamma_{t}\left(c_{\rho} \rho\right)^{4} \tag{B.38}\\
& \leq\left(c_{\rho} \rho\right)^{2} \tag{B.39}
\end{align*}
$$

- $\frac{\left(c_{\rho} \rho\right)^{2}}{2}<\left\|T_{t} T_{t}^{\top}\right\| \leq\left(c_{\rho} \rho\right)^{2}$. We have

$$
\begin{align*}
\left\|T_{t+1} T_{t+1}^{\top}\right\| & \leq\left\|T_{t} T_{t}^{\top}\right\|\left(1-\frac{3 \gamma_{t}}{2}\left\|T_{t} T_{t}^{\top}\right\|\right)+2 \gamma_{t} 50 \delta \sqrt{k} \sigma_{1}^{\frac{3}{2}}\left\|T_{t}\right\|+0.01 \gamma_{t}\left(c_{\rho} \rho\right)^{4} \tag{B.40}\\
& \leq\left\|T_{t} T_{t}^{\top}\right\|-\frac{3 \gamma_{t}}{8}\left(c_{\rho} \rho\right)^{4}+2 \gamma_{t} 50 \delta \sqrt{k} \sigma_{1}^{\frac{3}{2}}\left\|T_{t}\right\|+0.01 \gamma_{t}\left(c_{\rho} \rho\right)^{4} \tag{B.41}\\
& \leq\left\|T_{t} T_{t}^{\top}\right\|-\frac{3 \gamma_{t}}{8}\left(c_{\rho} \rho\right)^{4}+\frac{\gamma_{t}\left(c_{\rho} \rho\right)^{4}}{4}+0.01 \gamma_{t}\left(c_{\rho} \rho\right)^{4} \tag{B.42}\\
& \leq\left\|T_{t} T_{t}^{\top}\right\|^{2} \tag{B.43}\\
& \leq\left(c_{\rho} \rho\right)^{2} \tag{B.44}
\end{align*}
$$

Hence, we proved the inequality for $\left\|T_{t+1}\right\|$. By induction, the proof is complete.

B. 4 Proof of Proposition A. 4

1. $\left\|\mathcal{M}_{t}\left(S_{t}\right) \mathcal{M}_{t}\left(S_{t}\right)^{\top}-D_{S}^{*}\right\| \leq\left(1-\frac{3 \gamma_{t} \sigma_{r}}{4}\right)\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|+3 \gamma_{t}\left\|S_{t} T_{t}^{\top}\right\|^{2}$.

First, we suppose that we have $\gamma_{t} \leq \min \left\{\frac{0.01}{\sigma_{1}}, \frac{0.01 \sigma_{r}}{\sigma_{1}^{2}}\right\}$. By definition,

$$
\begin{equation*}
\mathcal{M}_{t}\left(S_{t}\right)=S_{t}-\gamma_{t}\left(S_{t} S_{t}^{\top} S_{t}+S_{t} T_{t}^{\top} T_{t}-D_{S}^{*} S_{t}\right) \tag{B.45}
\end{equation*}
$$

This yields

$$
\begin{align*}
& D_{S}^{*}-\mathcal{M}_{t}\left(S_{t}\right) \mathcal{M}_{t}\left(S_{t}\right)^{\top} \tag{B.46}\\
& =D_{S}^{*}-\left[S_{t}-\gamma_{t}\left(S_{t} S_{t}^{\top} S_{t}+S_{t} T_{t}^{\top} T_{t}-D_{S}^{*} S_{t}\right)\right]\left[S_{t}-\gamma_{t}\left(S_{t} S_{t}^{\top} S_{t}+S_{t} T_{t}^{\top} T_{t}-D_{S}^{*} S_{t}\right)\right]^{\top} \tag{B.47}\\
& =Z_{1}+Z_{2}+Z_{3}, \tag{B.48}
\end{align*}
$$

where

$$
\begin{align*}
Z_{1} & =D_{S}^{*}-S_{t} S_{t}^{\top}-\gamma_{t}\left(D_{S}^{*}-S_{t} S_{t}^{\top}\right) S_{t} S_{t}^{\top}-\gamma_{t} S_{t} S_{t}^{\top}\left(D_{S}^{*}-S_{t} S_{t}^{\top}\right) \tag{B.49}\\
Z_{2} & =2 \gamma_{t} S_{t} T_{t}^{\top} T_{t} S_{t}^{\top} \tag{B.50}
\end{align*}
$$

and

$$
\begin{equation*}
Z_{3}=-\gamma_{t}^{2}\left(S_{t} S_{t}^{\top} S_{t}+S_{t} T_{t}^{\top} T_{t}-D_{S}^{*} S_{t}\right)\left(S_{t} S_{t}^{\top} S_{t}+S_{t} T_{t}^{\top} T_{t}-D_{S}^{*} S_{t}\right)^{\top} . \tag{B.51}
\end{equation*}
$$

We bound each of them separately. For Z_{1}, by triangle inequality,

$$
\begin{align*}
\left\|Z_{1}\right\| & =\left\|\left(D_{S}^{*}-S_{t} S_{t}^{\top}\right)\left(\frac{1}{2} I-\gamma_{t} S_{t} S_{t}^{\top}\right)+\left(\frac{1}{2} I-\gamma_{t} S_{t} S_{t}^{\top}\right)\left(D_{S}^{*}-S_{t} S_{t}^{\top}\right)\right\| \tag{B.52}\\
& \leq\left\|\left(D_{S}^{*}-S_{t} S_{t}^{\top}\right)\left(\frac{1}{2} I-\gamma_{t} S_{t} S_{t}^{\top}\right)\right\|+\left\|\left(\frac{1}{2} I-\gamma_{t} S_{t} S_{t}^{\top}\right)\left(D_{S}^{*}-S_{t} S_{t}^{\top}\right)\right\| \tag{B.53}\\
& \leq\left(\frac{1}{2}-\gamma_{t} \sigma_{r}^{2}\left(S_{t}\right)\right)\left\|D_{S}^{*}-S_{t} S_{t}^{\top}\right\|+\left(\frac{1}{2}-\gamma_{t} \sigma_{r}^{2}\left(S_{t}\right)\right)\left\|D_{S}^{*}-S_{t} S_{t}^{\top}\right\| \tag{B.54}\\
& \leq\left(1-\gamma_{t} \sigma_{r}\right)\left\|D_{S}^{*}-S_{t} S_{t}^{\top}\right\| \tag{B.55}
\end{align*}
$$

The norm of Z_{2} can be simply bounded by

$$
\begin{equation*}
\left\|Z_{2}\right\| \leq 2 \gamma_{t}\left\|S_{t} T_{t}^{\top}\right\|^{2} \tag{B.56}
\end{equation*}
$$

For Z_{3}, we can split it as

$$
\begin{align*}
Z_{3}= & -\gamma_{t}^{2}\left(S_{t} S_{t}^{\top}-D_{S}^{*}\right) S_{t} S_{t}^{\top}\left(S_{t} S_{t}^{\top}-D_{S}^{*}\right)^{\top}-\gamma_{t}^{2} S_{T} T_{t}^{\top} T_{t} T_{t}^{\top} T_{t} S_{t}^{\top} \tag{B.57}\\
& -\gamma_{t}^{2}\left(S_{t} T_{t}^{\top} T_{t}\left(S_{t}^{\top} S_{t} S_{t}^{\top}-S_{t}^{\top} D_{S}^{*}\right)+\left(S_{t} S_{t}^{\top} S_{t}-D_{S}^{*} S_{t}\right) T_{t}^{\top} T_{t} S_{t}^{\top}\right) \tag{B.58}
\end{align*}
$$

By triangle inequality and our assumption that $\left\|S_{t}\right\| \leq 2 \sqrt{\sigma_{1}}$, we have $\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\| \leq$ $5 \sigma_{1}$. Hence

$$
\begin{align*}
\left\|Z_{3}\right\| & \leq 20 \gamma_{t}^{2} \sigma_{1}^{2}\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|+0.01 \gamma_{t}^{2} \sigma_{1}\left\|S_{t} T_{t}^{\top}\right\|^{2}+2 \gamma_{t}^{2}\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|\left\|S_{t} T_{t}^{\top}\right\|^{2} \tag{B.59}\\
& \stackrel{(\sharp)}{\leq} 20 \gamma_{t}^{2} \sigma_{1}^{2}\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|+0.01 \gamma_{t}^{2} \sigma_{1}\left\|S_{t} T_{t}^{\top}\right\|^{2}+\gamma_{t}^{2} \sigma_{1} \sigma_{r}\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\| \text { (B. } 60 \tag{B.60}\\
& \leq\left(20 \gamma_{t}^{2} \sigma_{1}^{2}+\gamma_{t}^{2} \sigma_{1} \sigma_{r}\right)\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|+\gamma_{t}\left\|S_{t} T_{t}^{\top}\right\|^{2} \tag{B.61}\\
& \leq\left(\frac{20}{100} \gamma_{t} \sigma_{r}+\frac{1}{100} \gamma_{t} \sigma_{r}\right)\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|+\gamma_{t}\left\|S_{t} T_{t}^{\top}\right\|^{2} \tag{B.62}
\end{align*}
$$

Here ($\#$) follows from our assumption that $\left\|S_{t}\right\| \leq 2 \sqrt{\sigma_{1}}$ and $\left\|T_{t}\right\| \leq 0.1 \sqrt{\sigma_{r}}$. Combining, we have

$$
\begin{align*}
\left\|D_{S}^{*}-S_{t+1} S_{t+1}^{\top}\right\| & \leq\left\|Z_{1}\right\|+\left\|Z_{2}\right\|+\left\|Z_{3}\right\| \tag{B.63}\\
& \leq\left(1-\gamma_{t} \sigma_{r}+\frac{21}{100} \gamma_{t} \sigma_{r}\right)\left\|D_{S}^{*}-S_{t} S_{t}^{\top}\right\|+\left(2 \gamma_{t}+\gamma_{t}\right)\left\|S_{t} T_{t}^{\top}\right\|^{2} \tag{B.64}\\
& \leq\left(1-\frac{3 \gamma_{t} \sigma_{r}}{4}\right)\left\|D_{S}^{*}-S_{t} S_{t}^{\top}\right\|+3 \gamma_{t}\left\|S_{t} T_{t}^{\top}\right\|^{2} \tag{B.65}
\end{align*}
$$

If we assume $\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\| \leq \frac{\sigma_{r}}{10}$ and $\gamma_{t} \leq \frac{0.01}{\sigma_{1}}$ instead, the only bound that will change is

$$
\begin{align*}
\left\|Z_{3}\right\| & \leq 4 \gamma_{t}^{2} \sigma_{1}\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|^{2}+0.01 \gamma_{t}^{2} \sigma_{r}\left\|S_{t} T_{t}^{\top}\right\|^{2}+2 \gamma_{t}^{2}\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|\left\|S_{t} T_{t}^{\top}\right\|^{2} \tag{B.66}\\
& \leq 4 \gamma_{t}^{2} \sigma_{1} \frac{\sigma_{r}}{10}\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|+0.01 \gamma_{t}^{2} \sigma_{1}\left\|S_{t} T_{t}^{\top}\right\|^{2}+\gamma_{t}^{2} \sigma_{1} \sigma_{r}\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\| \tag{B.67}\\
& \leq\left(\frac{4}{1000} \gamma_{t} \sigma_{r}+\frac{1}{100} \gamma_{t} \sigma_{r}\right)\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|+\gamma_{t}\left\|S_{t} T_{t}^{\top}\right\|^{2} . \tag{B.68}
\end{align*}
$$

With this bound, we can do same argument except only with $\gamma_{t} \leq \frac{0.01}{\sigma_{1}}$ to get same bound

$$
\begin{equation*}
\left\|D_{S}^{*}-S_{t+1} S_{t+1}^{\top}\right\| \leq\left(1-\frac{3 \gamma_{t} \sigma_{r}}{4}\right)\left\|D_{S}^{*}-S_{t} S_{t}^{\top}\right\|+3 \gamma_{t}\left\|S_{t} T_{t}^{\top}\right\|^{2} \tag{B.69}
\end{equation*}
$$

2. $\left\|\mathcal{N}_{t}\left(T_{t}\right) \mathcal{N}_{t}\left(T_{t}\right)^{\top}\right\| \leq\left\|T_{t}\right\|^{2}\left(1-\gamma_{t}\left\|T_{t}\right\|^{2}\right)=\left\|T_{t} T_{t}^{\top}\right\|\left(1-\gamma_{t}\left\|T_{t} T_{t}^{\top}\right\|\right)$.

By definition,

$$
\begin{equation*}
\mathcal{N}_{t}\left(T_{t}\right)=T_{t}-\gamma_{t}\left(T_{t} T_{t}^{\top} T_{t}+T_{t} S_{t}^{\top} S_{t}\right) \tag{B.70}
\end{equation*}
$$

Plug this into $\mathcal{N}_{t}\left(T_{t}\right) \mathcal{N}_{t}\left(T_{t}\right)^{\top}$, we obtain

$$
\begin{align*}
\mathcal{N}_{t}\left(T_{t}\right) \mathcal{N}_{t}\left(T_{t}\right)^{\top} & =\left(T_{t}-\gamma_{t}\left(T_{t} T_{t}^{\top} T_{t}+T_{t} S_{t}^{\top} S_{t}\right)\right)\left(T_{t}-\gamma_{t}\left(T_{t} T_{t}^{\top} T_{t}+T_{t} S_{t}^{\top} S_{t}\right)\right)^{\top} \tag{B.71}\\
& =Z_{4}+Z_{5}+Z_{6} \tag{B.72}
\end{align*}
$$

where

$$
\begin{gather*}
Z_{4}=T_{t} T_{t}^{\top}-2 \gamma_{t} T_{t} T_{t}^{\top} T_{t} T_{t}^{\top} \tag{B.73}\\
Z_{5}=-2 \gamma_{t} T_{t} S_{t}^{\top} S_{t} T_{t}^{\top}+\gamma_{t}^{2} T_{t} S_{t}^{\top} S_{t} S_{t}^{\top} S_{t} T_{t}^{\top} \tag{B.74}
\end{gather*}
$$

and

$$
\begin{equation*}
Z_{6}=\gamma_{t}^{2}\left[T_{t} T_{t}^{\top}\left(T_{t} S_{t}^{\top} S_{t} T_{t}^{\top}\right)+\left(T_{t} S_{t}^{\top} S_{t} T_{t}^{\top}\right) T_{t} T_{t}^{\top}\right] \tag{B.75}
\end{equation*}
$$

We bound each of them separately. By lemma [.1. we obtain

$$
\begin{align*}
\left\|Z_{4}\right\| & \leq\left\|T_{t} T_{t}^{\top}-2 \gamma_{t} T_{t} T_{t}^{\top} T_{t} T_{t}^{\top}\right\| \tag{B.76}\\
& \leq\left\|T_{t} T_{t}^{\top}\right\|\left(1-2 \gamma_{t}\left\|T_{t} T_{t}^{\top}\right\|\right) \tag{B.77}\\
& =\left\|T_{t}\right\|^{2}\left(1-2 \gamma_{t}\left\|T_{t}\right\|^{2}\right) \tag{B.78}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
Z_{5} & =-2 \gamma_{t} T_{t} S_{t}^{\top} S_{t} T_{t}^{\top}+\gamma_{t}^{2} T_{t} S_{t}^{\top} S_{t} S_{t}^{\top} S_{t} T_{t}^{\top} \tag{B.79}\\
& =-2 \gamma_{t} T_{t} S_{t}^{\top}\left(I-\gamma_{t} S_{t} S_{t}^{\top}\right) S_{t} T_{t}^{\top} \tag{B.80}\\
& \preceq 0 . \tag{B.81}
\end{align*}
$$

Furthermore,

$$
\begin{align*}
\left\|Z_{6}\right\| & \leq \gamma_{t}^{2}\left\|S_{t}^{\top} S_{t}\right\|\left\|T_{t} T_{t}^{\top}\right\|^{2} \tag{B.82}\\
& \leq \frac{\gamma_{t}}{2}\left\|T_{t} T_{t}^{\top}\right\|^{2} \tag{B.83}
\end{align*}
$$

Combining, we obtain

$$
\begin{align*}
\left\|\mathcal{N}_{t}\left(T_{t}\right) \mathcal{N}_{t}\left(T_{t}\right)^{\top}\right\| & =\left\|Z_{4}+Z_{5}+Z_{6}\right\| \tag{B.84}\\
& \leq\left\|Z_{4}+Z_{5}\right\|+\left\|Z_{6}\right\| \tag{B.85}\\
& \leq\left\|Z_{4}\right\|+\left\|Z_{6}\right\| \tag{B.86}\\
& \leq\left\|T_{t} T_{t}^{\top}\right\|\left(1-\frac{3 \gamma_{t}}{2}\left\|T_{t} T_{t}^{\top}\right\|\right) \tag{B.87}
\end{align*}
$$

The second inequality follows from the fact that $Z_{5} \preceq 0$. In this proof, we only need $\gamma_{t} \leq \frac{0.01}{\sigma_{1}}$.
3. $\left\|\mathcal{M}_{t}\left(S_{t}\right) \mathcal{N}_{t}\left(T_{t}\right)^{\top}\right\| \leq\left(1-\frac{\gamma_{t} \sigma_{r}}{3}\right)\left\|S_{t} T_{t}^{\top}\right\|$.

By definition of $\mathcal{M}_{t}\left(S_{t}\right), \mathcal{N}_{t}\left(T_{t}\right)$, we have

$$
\begin{align*}
\mathcal{M}_{t}\left(S_{t}\right) \mathcal{N}_{t}\left(T_{t}\right)^{\top} & =\left(S_{t}-\gamma_{t}\left(S_{t} S_{t}^{\top} S_{t}+S_{t} T_{t}^{\top} T_{t}-D_{S}^{*} S_{t}\right)\right)\left(T_{t}-\gamma_{t}\left(T_{t} T_{t}^{\top} T_{t}+T_{t} S_{t}^{\top} S_{t}\right)\right)^{\top} \tag{B.88}\\
& =Z_{7}+Z_{8}+Z_{9} \tag{B.89}
\end{align*}
$$

where

$$
\begin{gather*}
Z_{7}=\left(I-\gamma_{t} S_{t} S_{t}^{\top}\right) S_{t} T_{t}^{\top} \tag{B.90}\\
Z_{8}=\gamma_{t}\left(D_{S}^{*}-S_{t} S_{t}^{\top}\right) S_{t} T_{t}^{\top} \tag{B.91}
\end{gather*}
$$

and

$$
\begin{equation*}
Z_{9}=-2 \gamma_{t} S_{t} T_{t}^{\top} T_{t} T_{t}^{\top}+\gamma_{t}^{2}\left(S_{t} S_{t}^{\top} S_{t}+S_{t} T_{t}^{\top} T_{t}-D_{S}^{*} S_{t}\right)\left(T_{t} T_{t}^{\top} T_{t}+T_{t} S_{t}^{\top} S_{t}\right)^{\top} \tag{B.92}
\end{equation*}
$$

We bound each of them. By our assumption that $\sigma_{r}\left(S_{t}\right) \geq \sqrt{\frac{\sigma_{r}}{2}}$,

$$
\begin{equation*}
\left\|Z_{7}\right\| \leq\left(1-\frac{\gamma_{t} \sigma_{r}}{2}\right)\left\|S_{t} T_{t}^{\top}\right\| \tag{B.93}
\end{equation*}
$$

By the assumption that $\left\|D_{S}^{*}-S_{t} S_{t}^{\top}\right\| \leq \frac{\sigma_{r}}{10}$,

$$
\begin{equation*}
\left\|Z_{8}\right\| \leq \frac{\gamma_{t} \sigma_{r}}{10}\left\|S_{t} T_{t}^{\top}\right\| \tag{B.94}
\end{equation*}
$$

For Z_{9}, we use triangle inequality and get

$$
\begin{align*}
& \left\|Z_{9}\right\| \leq\left\|2 \gamma_{t} S_{t} T_{t}^{\top} T_{t} T_{t}^{\top}\right\|+\gamma_{t}^{2}\left\|\left(S_{t} S_{t}^{\top}-D_{S}^{*}\right) S_{t} T_{t}^{\top} T_{t} T_{t}^{\top}\right\| \\
& \left.+\gamma_{t}^{2} \|\left(S_{t} S_{t}^{\top}-D_{S}^{*}\right) S_{t} S_{t}^{\top} S_{t} T_{t}^{\top}\right)\left\|+\gamma_{t}^{2}\right\| S_{t} T_{t}^{\top} T_{t}\left(T_{t}^{\top} T_{t} T_{t}^{\top}+S_{t}^{\top} S_{t} T_{t}^{\top}\right) \| \tag{B.96}\\
& \stackrel{(\sharp)}{\leq} \frac{2}{100} \gamma_{t} \sigma_{r}\left\|S_{t} T_{t}^{\top}\right\|+\gamma_{t}^{2} \frac{\sigma_{r}}{10} \frac{\sigma_{r}}{100}\left\|S_{t} T_{T}^{\top}\right\|+4 \gamma_{t}^{2} \frac{\sigma_{r}}{10} \sigma_{1}\left\|S_{t} T_{t}^{\top}\right\| \tag{B.97}\\
& +\gamma_{t}^{2}\left(\frac{\sigma_{r}}{100}\right)^{2}\left\|S_{t} T_{t}^{\top}\right\|+\gamma_{t}^{2}\left(\frac{2 \sqrt{\sigma_{1} \sigma_{r}}}{10}\right)^{2}\left\|S_{t} T_{t}^{\top}\right\| \tag{B.98}\\
& \stackrel{(\star)}{\leq} \frac{\gamma_{t} \sigma_{r}}{20}\left\|S_{t} T_{t}^{\top}\right\| \tag{B.99}
\end{align*}
$$

In (\sharp), we used the bound that $\left\|S_{t} T_{t}^{\top}\right\| \leq\left\|S_{t}\right\|\left\|T_{t}\right\| \leq \frac{2 \sqrt{\sigma_{1} \sigma_{r}}}{10}$ and $\left\|T_{t} T_{t}^{\top}\right\| \leq \frac{\sigma_{r}}{100}$. (夫) follows from our assumption that $\gamma_{t} \leq \frac{0.01}{\sigma_{1}}$. Combining, we obtain

$$
\begin{align*}
\left\|\mathcal{M}_{t}\left(S_{t}\right) \mathcal{N}_{t}\left(T_{t}\right)^{\top}\right\| & \leq\left\|Z_{7}\right\|+\left\|Z_{8}\right\|+\left\|Z_{9}\right\| \tag{B.100}\\
& \leq\left(1-\frac{\gamma_{t} \sigma_{r}}{3}\right)\left\|S_{t} T_{t}^{\top}\right\| \tag{B.101}
\end{align*}
$$

B. 5 Proof of Proposition A.5

We prove them one by one.

1. $\left\|D_{S}^{*}-\mathcal{M}_{t}\left(S_{t}\right) S_{t}^{\top}\right\| \leq\left(1-\frac{\gamma_{t} \sigma_{r}}{2}\right)\left\|D_{S}^{*}-S_{t} S_{t}^{\top}\right\|+\gamma_{t}\left\|S_{t} T_{t}^{\top}\right\|^{2}$. By definition of $\mathcal{M}_{t}\left(S_{t}\right)$, we know that

$$
\begin{align*}
\mathcal{M}_{t}\left(S_{t}\right) S_{t}^{\top}-D_{S}^{*} & =S_{t} S_{t}^{\top}-\gamma_{t}\left(S_{t} S_{t}^{\top} S_{t}+S_{t} T_{t}^{\top} T_{t}-D_{S}^{*} S_{t}\right) S_{t}^{\top}-D_{S}^{*} \tag{B.102}\\
& =\left(S_{t} S_{t}^{\top}-D_{S}^{*}\right)\left(I-\gamma_{t} S_{t} S_{t}^{\top}\right)-\gamma_{t} S_{t} T_{t}^{\top} T_{t} S_{t}^{\top} \tag{B.103}
\end{align*}
$$

By our assumption that $\sigma_{r}\left(S_{t}\right) \geq \sqrt{\frac{\sigma_{r}}{2}}$, we know

$$
\begin{equation*}
\left\|\left(S_{t} S_{t}^{\top}-D_{S}^{*}\right)\left(I-\gamma_{t} S_{t} S_{t}^{\top}\right)\right\| \leq\left(1-\frac{\sigma_{r}}{2}\right)\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\| \tag{B.104}
\end{equation*}
$$

By triangle inequality, the result follows.
2. $\left\|\mathcal{M}_{t}\left(S_{t}\right) T_{t}^{\top}\right\| \leq 2\left\|S_{t} T_{t}^{\top}\right\|$. By definition of $\mathcal{M}_{t}\left(S_{t}\right)$, we have

$$
\begin{equation*}
\mathcal{M}_{t}\left(S_{t}\right) T_{t}^{\top}=S_{t} T_{t}^{\top}-\gamma_{t}\left(S_{t} S_{t}^{\top} S_{t}+S_{t} T_{t}^{\top} T_{t}-D_{S}^{*} S_{t}\right) T_{t}^{\top} \tag{B.105}
\end{equation*}
$$

Triangle inequality yields

$$
\begin{align*}
\gamma_{t}\left\|\left(S_{t} S_{t}^{\top} S_{t}+S_{t} T_{t}^{\top} T_{t}-D_{S}^{*} S_{t}\right) T_{t}^{\top}\right\| & \leq \gamma_{t}\left(\left\|S_{t}\right\|^{2}+\left\|T_{t}\right\|^{2}+\left\|D_{S}^{*}\right\|\right)\left\|S_{t} T_{t}^{\top}\right\| \tag{B.106}\\
& \leq \gamma_{t}\left(4 \sigma_{1}+0.01 \sigma_{r}+\sigma_{1}\right)\left\|S_{t} T_{t}^{\top}\right\| \tag{B.107}\\
& \leq\left\|S_{t} T_{t}^{\top}\right\| \tag{B.108}
\end{align*}
$$

The last inequality follows from our assumption that $\gamma_{t} \leq \frac{0.01}{\sigma_{1}}$. By triangle inequality again, we obtain

$$
\begin{equation*}
\left\|\mathcal{M}_{t}\left(S_{t}\right) T_{t}^{\top}\right\| \leq\left\|S_{t} T_{t}^{\top}\right\|+\left\|S_{t} T_{t}^{\top}\right\|=2\left\|S_{t} T_{t}^{\top}\right\| \tag{B.109}
\end{equation*}
$$

3. $\left\|\mathcal{N}_{t}\left(T_{t}\right) S_{t}^{\top}\right\| \leq\left\|T_{t} S_{t}^{\top}\right\|$. By definition of $\mathcal{N}_{t}\left(T_{t}\right)$,

$$
\begin{align*}
\mathcal{N}_{t}\left(T_{t}\right) S_{t}^{\top} & =T_{t} S_{t}^{\top}-\gamma_{t}\left(T_{t} T_{t}^{\top} T_{t}+T_{t} S_{t}^{\top} S_{t}\right) S_{t}^{\top} \tag{B.110}\\
& =\left(\frac{1}{2} I-\gamma_{t} T_{t} T_{t}^{\top}\right) T_{t} S_{t}^{\top}+T_{t} S_{t}^{\top}\left(\frac{1}{2} I-\gamma_{t} S_{t} S_{t}^{\top}\right) \tag{B.111}
\end{align*}
$$

By triangle inequality,

$$
\begin{align*}
\left\|\mathcal{N}_{t}\left(T_{T}\right) S_{t}^{\top}\right\| & \leq\left\|\left(\frac{1}{2} I-\gamma_{t} T_{t} T_{t}^{\top}\right) T_{t} S_{t}^{\top}\right\|+\left\|T_{t} S_{t}^{\top}\left(\frac{1}{2} I-\gamma_{t} S_{t} S_{t}^{\top}\right)\right\| \tag{B.112}\\
& \leq\left\|T_{t} S_{t}^{\top}\right\| \tag{B.113}
\end{align*}
$$

The last inequality follows from the choice of γ_{t} and the fact that $\left\|\left(\frac{1}{2} I-\gamma_{t} T_{t} T_{t}^{\top}\right)\right\| \leq \frac{1}{2}$, $\left\|\left(\frac{1}{2} I-\gamma_{t} S_{t} S_{t}^{\top}\right)\right\| \leq \frac{1}{2}$.
4. $\left\|\mathcal{N}_{t}\left(T_{t}\right) T_{t}^{\top}\right\| \leq\left\|T_{t}\right\|^{2}\left(1-\gamma_{t}\left\|T_{t}\right\|^{2}\right)=\left\|T_{t} T_{t}^{\top}\right\|\left(1-\gamma_{t}\left\|T_{t} T_{t}^{\top}\right\|\right)$. By definition of $\mathcal{N}_{t}\left(T_{t}\right)$, we have

$$
\begin{align*}
\mathcal{N}_{t}\left(T_{t}\right) T_{t}^{\top} & =T_{t} T_{t}^{\top}-\gamma_{t}\left(T_{t} T_{t}^{\top} T_{t}+T_{t} S_{t}^{\top} S_{t}\right) T_{t}^{\top} \tag{B.114}\\
& =T_{t} T_{t}^{\top}\left(I-\gamma_{t} T_{t} T_{t}^{\top}\right)-\gamma_{t} T_{t} S_{t}^{\top} S_{t} T_{t}^{\top} \tag{B.115}\\
& \preceq T_{t} T_{t}^{\top}\left(I-\gamma_{t} T_{t} T_{t}^{\top}\right) \tag{B.116}
\end{align*}
$$

As a result of lemma I.1. we have

$$
\begin{equation*}
\left\|\mathcal{N}_{t}\left(T_{t}\right) T_{t}^{\top}\right\| \leq\left\|T_{t} T_{t}^{\top}\right\|\left(1-\gamma_{t}\left\|T_{t} T_{t}^{\top}\right\|\right)=\left\|T_{t}\right\|^{2}\left(1-\gamma_{t}\left\|T_{t}\right\|^{2}\right) \tag{B.117}
\end{equation*}
$$

B. 6 Proof of Proposition $\mathbf{A . 6}$

We prove this proposition by induction. Note that the inequality A.27holds trivially when $s=0$. Suppose it holds for $t \geq 0$. By Proposition A.2, we can write S_{t+1} as

$$
\begin{align*}
S_{t+1} & =\left(I-\gamma_{t} S_{t} S_{t}^{\top}+\gamma_{t} D_{S}^{*}\right) S_{t}-\gamma_{t} S_{t} T_{t}^{\top} T_{t}+\gamma_{t} U^{\top} \Delta_{t} F_{t} \tag{B.118}\\
& =\left(I+\gamma_{t} D_{S}^{*}\right) S_{t}\left(I-\gamma_{t} S_{t}^{\top} S_{t}\right)+\gamma_{t}^{2} D_{S}^{*} S_{t} S_{t}^{\top} S_{t}-\gamma_{t} S_{t} T_{t}^{\top} T_{t}+\gamma_{t} U^{\top} \Delta_{t} F_{t} \tag{B.119}
\end{align*}
$$

These two ways of expressing S_{t+1} are crucial to the proof.
For the ease of notation, we introduce some notations. Let

$$
\begin{align*}
H_{t} & =I-\gamma_{t} S_{t} S_{t}^{\top}+\gamma_{t} D_{S}^{*} \tag{B.120}\\
E_{t} & =S_{t} T_{t}^{\top} T_{t}-U^{\top} \Delta_{t} F_{t} \tag{B.121}
\end{align*}
$$

By Proposition A. 3 and our assumption that $(50 \sqrt{k} \delta)^{\frac{1}{3}} \leq \frac{c_{\rho} \rho}{2 \sqrt{\sigma_{1}}}$, we have

$$
\begin{align*}
\left\|E_{t}\right\| & \leq\left\|S_{t}\right\|\left\|T_{t}\right\|^{2}+\left\|\Delta_{t} F_{t}\right\| \tag{B.122}\\
& \leq 2\left(c_{\rho} \rho\right)^{2} \sqrt{\sigma_{1}}+50 \delta \sqrt{k} \sigma_{1}^{\frac{3}{2}} \tag{B.123}\\
& \leq 2\left(c_{\rho} \rho\right)^{2} \sqrt{\sigma_{1}}+\frac{\left(c_{\rho} \rho\right)^{3}}{8} \tag{B.124}\\
& \leq 3\left(c_{\rho} \rho\right)^{2} \sqrt{\sigma_{1}} \tag{B.125}
\end{align*}
$$

In the last inequality, we used our assumption that $c_{\rho} \rho \leq 0.1 \sqrt{\sigma_{1}}$. By lemma I.1 and our choice of γ_{t}, we know H_{t} is invertible and

$$
\begin{equation*}
\left\|H_{t}^{-1}\right\| \leq \frac{1}{1-\gamma_{t}\left\|S_{t}\right\|^{2}-\gamma_{t}\left\|D_{S}^{*}\right\|} \leq \frac{1}{1-0.04-0.01} \leq 2 \tag{B.126}
\end{equation*}
$$

By B.118, we can write

$$
\begin{equation*}
S_{t}=H_{t}^{-1} S_{t+1}+\gamma_{t} H_{t}^{-1} E_{t} \tag{B.127}
\end{equation*}
$$

Plug this in to B. 119 and rearrange, we get

$$
\begin{equation*}
\left(I-\gamma_{t}^{2} D_{S}^{*} S_{t} S_{t}^{\top} H_{t}^{-1}\right) S_{t+1}=\underbrace{\left(I+\gamma_{t} D_{S}^{*}\right) S_{t}\left(I-\gamma_{t} S_{t}^{\top} S_{t}\right)}_{Z_{1}}+\underbrace{\gamma_{t}^{3} D_{S}^{*} S_{t} S_{t}^{\top} H_{t}^{-1} E_{t}-\gamma_{t} E_{t}}_{Z_{2}} \tag{B.128}
\end{equation*}
$$

Let's consider the r-th singular value of both sides. For LHS, by lemma I.2 and lemma I.1

$$
\begin{align*}
\sigma_{r}\left(\left(I-\gamma_{t}^{2} D_{S}^{*} S_{t} S_{t}^{\top} H_{t}^{-1}\right) S_{t+1}\right) & \leq\left\|\left(I-\gamma_{t}^{2} D_{S}^{*} S_{t} S_{t}^{\top} H_{t}^{-1}\right)\right\| \sigma_{r}\left(S_{t+1}\right) \tag{B.129}\\
& \leq \frac{1}{1-\gamma_{t}^{2}\left\|D_{S}^{*} S_{t} S_{t}^{\top} H_{t}^{-1}\right\|} \sigma_{r}\left(S_{t+1}\right) \tag{B.130}\\
& \leq \frac{1}{1-8 \gamma_{t}^{2} \sigma_{1}^{2}} \sigma_{r}\left(S_{t+1}\right) \tag{B.131}
\end{align*}
$$

For RHS, we consider Z_{1} and Z_{2} separately. For Z_{1}, by lemma I.2, we have

$$
\begin{align*}
\sigma_{r}\left(Z_{1}\right) & \geq \sigma_{r}\left(I+\gamma_{t} D_{S}^{*}\right) \cdot \sigma_{r}\left(S_{t}\left(I-\gamma_{t} S_{t}^{\top} S_{t}\right)\right) \tag{B.132}\\
& =\left(1+\gamma_{t} \sigma_{r}\right) \sigma_{r}\left(S_{t}\right)\left(1-\gamma_{t} \sigma_{r}^{2}\left(S_{t}\right)\right) \tag{B.133}
\end{align*}
$$

For Z_{2}, by triangle inequality,

$$
\begin{align*}
\left\|\gamma_{t}^{3} D_{S}^{*} S_{t} S_{t}^{\top} H_{t}^{-1} E_{t}-\gamma_{t} E_{t}\right\| & \leq \gamma_{t}^{3}\left\|D_{S}^{*} S_{t} S_{t}^{\top} H_{t}^{-1} E_{t}\right\|+\gamma_{t}\left\|E_{t}\right\| \tag{B.134}\\
& \leq\left(8 \gamma_{t}^{3} \sigma_{1}^{2}+\gamma_{t}\right)\left\|E_{t}\right\| \tag{B.135}\\
& \leq 3\left(8 \gamma_{t}^{3} \sigma_{1}^{2}+\gamma_{t}\right)\left(c_{\rho} \rho\right)^{2} \sqrt{\sigma_{1}} \tag{B.136}
\end{align*}
$$

Combining, by lemma [.3, we obtain

$$
\begin{align*}
& \sigma_{r}\left(\left(I+\gamma_{t} D_{S}^{*}\right) S_{t}\left(I-\gamma_{t} S_{t}^{\top} S_{t}\right)+\gamma_{t}^{3} D_{S}^{*} S_{t} S_{t}^{\top} H_{t}^{-1} E_{t}-\gamma_{t} E_{t}\right) \tag{B.137}\\
\geq & \sigma_{r}\left(Z_{1}\right)-\gamma_{t}\left\|E_{t}\right\|-\left\|Z_{2}\right\| \tag{B.138}\\
\geq & \left(1+\gamma_{t} \sigma_{r}\right) \sigma_{r}\left(S_{t}\right)\left(1-\gamma_{t} \sigma_{r}^{2}\left(S_{t}\right)\right)-3\left(8 \gamma_{t}^{3} \sigma_{1}^{2}+\gamma_{t}\right)\left(c_{\rho} \rho\right)^{2} \sqrt{\sigma_{1}} \tag{B.139}
\end{align*}
$$

By induction hypothesis, we know $\sigma_{r}\left(S_{t}\right) \geq \rho$. Note we assumed that $4 c_{\rho}^{2} \rho \leq 0.01 \frac{\sigma_{r}}{\sqrt{\sigma_{1}}}$, so we have

$$
\begin{equation*}
3\left(8 \gamma_{t}^{3} \sigma_{1}^{2}+\gamma_{t}\right)\left(c_{\rho} \rho\right)^{2} \sqrt{\sigma_{1}} \leq 4 \gamma_{t}\left(c_{\rho} \rho\right)^{2} \sqrt{\sigma_{1}} \leq 0.01 \gamma_{t} \sigma_{r} \sigma_{r}\left(S_{t}\right) \tag{B.140}
\end{equation*}
$$

Consequently, we get

$$
\begin{align*}
& \sigma_{r}\left(\left(I+\gamma_{t} D_{S}^{*}\right) S_{t}\left(I-\gamma_{t} S_{t}^{\top} S_{t}\right)+\gamma_{t}^{3} D_{S}^{*} S_{t} S_{t}^{\top} H_{t}^{-1} E_{t}-\gamma_{t} E_{t}\right) \tag{B.141}\\
\geq & \left(1+\gamma_{t} \sigma_{r}\right) \sigma_{r}\left(S_{t}\right)\left(1-\gamma_{t} \sigma_{r}^{2}\left(S_{t}\right)\right)-0.01 \sigma_{r} \sigma_{r}\left(S_{t}\right) \tag{B.142}\\
= & \sigma_{r}\left(S_{t}\right)\left(1+0.99 \gamma_{t} \sigma_{r}-\gamma_{t} \sigma_{r}^{2}\left(S_{t}\right)-\gamma_{t}^{2} \sigma_{r} \sigma_{r}^{2}\left(S_{t}\right)\right) \tag{B.143}
\end{align*}
$$

Combining the LHS and RHS, we finally get

$$
\begin{equation*}
\sigma_{r}\left(S_{t+1}\right) \geq\left(1-8 \gamma_{t}^{2} \sigma_{1}^{2}\right)\left(1+0.99 \gamma_{t} \sigma_{r}-\gamma_{t} \sigma_{r}^{2}\left(S_{t}\right)-\gamma_{t}^{2} \sigma_{r} \sigma_{r}^{2}\left(S_{t}\right)\right) \sigma_{r}\left(S_{t}\right) \tag{B.144}
\end{equation*}
$$

We consider two cases(recall $\sigma_{r}=\frac{1}{\kappa}$):

- $\sigma_{r}\left(S_{t}\right) \geq \sqrt{\frac{3 \sigma_{r}}{4}}$. By B. 144 . we know that
$\sigma_{r}\left(S_{t+1}\right) \geq\left(1-8 \gamma_{t}^{2} \sigma_{1}^{2}\right)\left(1-5 \gamma_{t} \sigma_{1}\right) \sigma_{r}\left(S_{t}\right)$.

Here we used Proposition A.3 to bound $\sigma_{r}\left(S_{t}\right)$ by $2 \sqrt{\sigma_{1}}$. Since $\gamma_{t} \leq \frac{0.01}{\sigma_{1}}$, simple calculation shows that

$$
\begin{equation*}
\sigma_{r}\left(S_{t+1}\right) \geq\left(1-8 \gamma_{t}^{2} \sigma_{1}^{2}\right)\left(1-5 \gamma_{t} \sigma_{1}\right) \sqrt{\frac{3 \sigma_{r}}{4}} \geq \sqrt{\frac{\sigma_{r}}{2}} \tag{B.146}
\end{equation*}
$$

- $\sigma_{r}\left(S_{t}\right)<\sqrt{\frac{3 \sigma_{r}}{4}}$. By B. 144 and induction hypothesis, we know

$$
\begin{align*}
\sigma_{r}\left(S_{t+1}\right) & \geq\left(1-8 \gamma_{t}^{2} \sigma_{1}^{2}\right)\left(1+0.99 \gamma_{t} \sigma_{r}-\gamma_{t} \sigma_{r}^{2}\left(S_{t}\right)-\gamma_{t}^{2} \sigma_{r} \sigma_{r}^{2}\left(S_{t}\right)\right) \sigma_{r}\left(S_{t}\right) \tag{B.147}\\
& \geq\left(1-8 \gamma_{t}^{2} \sigma_{1}^{2}\right)\left(1+\frac{\gamma_{t} \sigma_{r}}{5}\right) \sigma_{r}\left(S_{t}\right) \tag{B.148}\\
& \geq\left(1+\frac{\gamma_{t} \sigma_{r}^{2}}{6 \sigma_{1}^{2}}\right) \sigma_{r}\left(S_{t}\right) \tag{B.149}\\
& \geq \min \left\{\left(1+\frac{c_{\gamma} \sigma_{r}^{2}}{6 \sigma_{1}^{2}}\right)^{t+1} \sigma_{r}\left(S_{0}\right), \sqrt{\frac{\sigma_{r}}{2}}\right\} \tag{B.150}
\end{align*}
$$

We used the bound $\gamma_{t} \geq \frac{c_{\gamma} \sigma_{r}}{\sigma_{1}^{2}}$ in the last inequality.
By induction, we proved inequality A. 27 for $\sigma_{r}\left(S_{t}\right)$. By our choice of \mathcal{T}_{1}, it's easy to verify that

$$
\begin{equation*}
\sigma_{r}\left(S_{\mathcal{T}_{1}+t}\right) \geq \sqrt{\frac{\sigma_{r}}{2}}, \quad \forall t \geq 0 \tag{B.151}
\end{equation*}
$$

B. 7 Proof of Proposition 8.7

We prove it by induction. For the ease of notation, we use index t for $t \geq \mathcal{T}_{1}^{\prime}$ instead of $\mathcal{T}_{1}^{\prime}+t$. The inequality A. 29 holds for $t=\mathcal{T}_{1}^{\prime}$ by Proposition A. 3 and triangle inequality that

$$
\begin{equation*}
\left\|S_{\mathcal{T}_{1}} S_{\mathcal{T}_{1}}^{\top}-D_{S}^{*}\right\| \leq\left\|S_{\mathcal{T}_{1}}\right\|^{2}+\left\|D_{S}^{*}\right\| \leq 5 \sigma_{1} \tag{B.152}
\end{equation*}
$$

Suppose that A. 29 holds for some $t \geq \mathcal{T}_{1}^{\prime}$. By Proposition A. 2 , we have

$$
\begin{equation*}
S_{t+1}=\mathcal{M}_{t}\left(S_{t}\right)+\gamma_{t} U^{\top} \Delta_{t} F_{t} \tag{B.153}
\end{equation*}
$$

As a result,

$$
\begin{align*}
& S_{t+1} S_{t+1}^{\top}-D_{S}^{*}=\underbrace{\mathcal{M}_{t}\left(S_{t}\right) \mathcal{M}_{t}\left(S_{t}\right)^{\top}-D_{S}^{*}}_{Z_{1}}+\underbrace{\gamma_{t}\left(U^{\top} \Delta_{t} F_{t} \mathcal{M}_{t}\left(S_{t}\right)^{\top}+\mathcal{M}_{t}\left(S_{t}\right) F_{t}^{\top} \Delta_{t}^{\top} U\right)}_{Z_{2}} \tag{B.154}\\
&+\underbrace{\gamma_{t}^{2} U^{\top} \Delta_{t} F_{t} F_{t}^{\top} \Delta_{t}^{\top} U}_{Z_{3}} \tag{B.155}
\end{align*}
$$

By Proposition A.4, we know

$$
\begin{align*}
\left\|Z_{1}\right\| & \leq\left(1-\frac{3 \gamma_{t} \sigma_{r}}{4}\right)\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|+3 \gamma_{t}\left\|S_{t} T_{t}^{\top}\right\|^{2} \tag{B.156}\\
& \stackrel{(\sharp)}{\leq}\left(1-\frac{3 \gamma_{t} \sigma_{r}}{4}\right)\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|+12 \gamma_{t} \sigma_{1}\left(c_{\rho} \rho\right)^{2} \tag{B.157}
\end{align*}
$$

Here (\sharp) follows from Proposition A. 3
On the other hand, it's easy to see $\left\|\mathcal{M}_{t}\left(S_{t}\right)\right\| \leq 3 \sqrt{\sigma_{1}}$ by its definition and Proposition A.3. By triangle inequality,

$$
\begin{align*}
\left\|Z_{2}\right\| & \leq 2 \gamma_{t}\left\|U^{\top} \Delta_{t} F_{t} \mathcal{M}_{t}\left(S_{t}\right)^{\top}\right\| \tag{B.158}\\
& \leq 2 \gamma_{t}\left\|\Delta_{t}\right\|\left\|U S_{t}+V T_{t}\right\|\left\|\mathcal{M}_{t}\left(S_{t}\right)\right\| \tag{B.159}\\
& \leq 18 \gamma_{t}\left\|\Delta_{t}\right\| \sigma_{1} \tag{B.160}\\
& \stackrel{(\sharp)}{\leq} 18 \gamma_{t} \delta \sqrt{k+r}\left\|F_{t} F_{t}^{\top}-X_{\natural}\right\| \sigma_{1} \tag{B.161}\\
& \stackrel{(\star)}{\leq} 270 \gamma_{t} \delta \sqrt{k} \sigma_{1}^{2} \tag{B.162}\\
& \stackrel{(*)}{\leq} \gamma_{t}\left(c_{\rho} \rho\right)^{3} \sqrt{\sigma_{1}} \tag{B.163}
\end{align*}
$$

Here (\sharp) follows from A .8 . (\star) follows from uniform bound $\left\|F_{t}\right\| \leq 3 \sqrt{\sigma_{1}}$, and $(*)$ follows from the assumption that $(50 \sqrt{k} \delta)^{\frac{1}{3}} \leq \frac{c_{\rho} \rho}{2 \sqrt{\sigma_{1}}}$.
Furthermore,

$$
\begin{align*}
\left\|Z_{3}\right\| & \leq \gamma_{t}^{2}\left\|\Delta_{t}\right\|^{2}\left\|F_{t}\right\|^{2} \tag{B.164}\\
& \leq 9 \gamma_{t}^{2}(10 \delta \sqrt{k+r})^{2} \sigma_{1}^{3} \tag{B.165}\\
& \leq \gamma_{t}^{2}\left(c_{\rho} \rho\right)^{6} \tag{B.166}
\end{align*}
$$

The last inequality follows simply from our assumption that $(50 \sqrt{k} \delta)^{\frac{1}{3}} \leq \frac{c_{\rho} \rho}{2 \sqrt{\sigma_{1}}}$. Combining, we obtain

$$
\begin{align*}
\left\|S_{t+1} S_{t+1}^{\top}-D_{S}^{*}\right\| & \leq\left\|Z_{1}\right\|+\left\|Z_{2}\right\|+\left\|Z_{3}\right\| \tag{B.167}\\
& \leq\left(1-\frac{3 \gamma_{t} \sigma_{r}}{4}\right)\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|+12 \gamma_{t}\left(c_{\rho} \rho\right)^{2} \sigma_{1}+\gamma_{t}\left(c_{\rho} \rho\right)^{3} \sqrt{\sigma_{1}}+\gamma_{t}^{2}\left(c_{\rho} \rho\right)^{6} \tag{B.168}\\
& \leq\left(1-\frac{3 \gamma_{t} \sigma_{r}}{4}\right)\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|+13 \gamma_{t}\left(c_{\rho} \rho\right)^{2} \sigma_{1} \tag{B.169}
\end{align*}
$$

In the last inequality, we used $c_{\rho} \rho \leq 0.1 \sqrt{\sigma_{1}}$ and $\gamma_{t} \leq \frac{0.01}{\sigma_{1}}$. We consider two cases:

- $\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\| \leq \frac{52\left(c_{\rho} \rho\right)^{2} \sigma_{1}}{\sigma_{r}}$. By above inequality, we simply have

$$
\begin{equation*}
\left\|S_{t+1} S_{t+1}^{\top}-D_{S}^{*}\right\| \leq\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|+13 \gamma_{t}\left(c_{\rho} \rho\right)^{2} \sigma_{1} \leq \frac{100\left(c_{\rho} \rho\right)^{2} \sigma_{1}}{\sigma_{r}} \tag{B.170}
\end{equation*}
$$

The last inequality follows from the assumption that $\gamma_{t} \leq \frac{0.01}{\sigma_{1}} \leq \frac{0.01}{\sigma_{r}}$.

- $\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|>\frac{52\left(c_{\rho} \rho\right)^{2} \sigma_{1}}{\sigma_{r}}$. In this case, $13 \gamma_{t}\left(c_{\rho} \rho\right)^{2} \sigma_{1} \leq \frac{\gamma_{t} \sigma_{r}}{4}\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|$. Consequently,

$$
\begin{align*}
\left\|S_{t+1} S_{t+1}^{\top}-D_{S}^{*}\right\| & \leq\left(1-\frac{3 \gamma_{t} \sigma_{r}}{4}\right)\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|+\frac{\gamma_{t} \sigma_{r}}{4}\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\| \tag{B.171}\\
& \leq\left(1-\frac{\gamma_{t} \sigma_{r}}{2}\right)\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\| \tag{B.172}\\
& \leq \max \left\{5\left(1-\frac{c_{\gamma} \sigma_{r}^{2}}{2 \sigma_{1}^{2}}\right)^{t+1-\mathcal{T}_{1}^{\prime}}, \frac{100\left(c_{\rho} \rho\right)^{2} \sigma_{1}}{\sigma_{r}}\right\} \tag{B.173}
\end{align*}
$$

We used the induction hypothesis in the last inequality. By induction, inequality A. 29 is proved. Moreover, \mathcal{T}_{2}^{\prime} is the smallest integer such that

$$
\begin{equation*}
5\left(1-\frac{c_{\gamma} \sigma_{r}^{2}}{2 \sigma_{1}^{2}}\right)^{t-\mathcal{T}_{1}^{\prime}} \leq \frac{100\left(c_{\rho} \rho\right)^{2} \sigma_{1}}{\sigma_{r}} \tag{B.174}
\end{equation*}
$$

Therefore, the second claim in Proposition A.7follows from A.29.

B. 8 Proof of Proposition A.8

We prove it by induction. For the ease of notation, we use index t for $t \geq \mathcal{T}_{1}$ instead of $\mathcal{T}_{1}+t$. When $t=\mathcal{T}_{1}$, A.36holds by assumption. Now suppose A.36 holds for some $t \geq \mathcal{T}_{1}$. By induction hypothesis, we have

$$
\begin{equation*}
\left\|S_{t} T_{t}^{\top}\right\| \leq 0.01 \sigma_{r} \tag{B.175}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\left\|S_{t} S_{t}^{\top}\right\| \leq\left\|D_{S}^{*}\right\|+\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\| \leq 1.01 \sigma_{1} \tag{B.176}
\end{equation*}
$$

Therefore, $\left\|S_{t}\right\| \leq 2 \sqrt{\sigma_{1}}$. Also,

$$
\begin{equation*}
\sigma_{r}\left(S_{t} S_{t}^{\top}\right) \geq \sigma_{r}\left(D_{S}^{*}\right)-\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\| \geq \frac{\sigma_{r}}{2} \tag{B.177}
\end{equation*}
$$

Hence, $\sigma_{r}\left(S_{t}\right) \geq \sqrt{\frac{\sigma_{r}}{2}}$ and the conditions of Proposition A.4 and Proposition A.5 are satisfied. We consider $\left\|S_{t+1} S_{t+1}^{\top}-D_{S}^{*}\right\|$ and $\left\|S_{t+1} T_{t+1}^{\top}\right\|$ separately.

1. For $\left\|S_{t+1} S_{t+1}^{\top}-D_{S}^{*}\right\|$, we apply the same idea as proof of Proposition A. 7 and write

$$
\begin{align*}
S_{t+1} S_{t+1}^{\top}-D_{S}^{*}= & \underbrace{\mathcal{M}_{t}\left(S_{t}\right) \mathcal{M}_{t}\left(S_{t}\right)^{\top}-D_{S}^{*}}_{Z_{1}}-\underbrace{\gamma_{t}\left(U^{\top} \Delta_{t} F_{t} \mathcal{M}_{t}\left(S_{t}\right)^{\top}+\mathcal{M}_{t}\left(S_{t}\right) F_{t}^{\top} \Delta_{t}^{\top} U\right)}_{Z_{2}} \tag{B.179}\\
& +\underbrace{\gamma_{t}^{2} U^{\top} \Delta_{t} F_{t} F_{t}^{\top} \Delta_{t}^{\top} U}_{Z_{3}} \tag{B.178}
\end{align*}
$$

By Proposition A.4, we know

$$
\begin{align*}
\left\|Z_{1}\right\| & \leq\left(1-\frac{3 \gamma_{t} \sigma_{r}}{4}\right)\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|+3 \gamma_{t}\left\|S_{t} T_{t}^{\top}\right\|^{2} \tag{B.180}\\
& \leq\left(1-\frac{3 \gamma_{t} \sigma_{r}}{4}\right)\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|+0.03 \gamma_{t} \sigma_{r}\left\|S_{t} T_{t}^{\top}\right\| \tag{B.181}\\
& \leq\left(1-\frac{3 \gamma_{t} \sigma_{r}}{4}+0.03 \gamma_{t} \sigma_{r}\right) D_{t} \tag{B.182}
\end{align*}
$$

On the other hand, By triangle inequality,

$$
\begin{align*}
\left\|Z_{2}\right\| & \leq 2 \gamma_{t}\left\|U^{\top} \Delta_{t} F_{t} \mathcal{M}_{t}\left(S_{t}\right)^{\top}\right\| \tag{B.183}\\
& \leq 2 \gamma_{t}\left\|\Delta_{t}\right\|\left\|U S_{t}+V T_{t}\right\|\left\|\mathcal{M}_{t}\left(S_{t}\right)\right\| \tag{B.184}\\
& \leq 18 \gamma_{t} \sigma_{1}\left\|\Delta_{t}\right\| \tag{B.185}\\
& \stackrel{(\sharp)}{\leq} 18 \gamma_{t} \sigma_{1} \delta \sqrt{k+r}\left\|F_{t} F_{t}^{\top}-X_{\llcorner }\right\| \tag{B.186}
\end{align*}
$$

Here (\sharp) follows from A.8. By lemma I.5, we see that

$$
\begin{align*}
\left\|F_{t} F_{t}^{\top}-X_{\mathrm{t}}\right\| & \leq\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|+2\left\|S_{t} T_{t}^{\top}\right\|+\left\|T_{t} T_{t}^{\top}\right\| \tag{B.188}\\
& \leq \frac{3 \sigma_{r}}{100}+\frac{\sigma_{r}}{100} \tag{B.189}\\
& \leq \frac{4 \sigma_{r}}{100} \tag{B.190}
\end{align*}
$$

Hence, we obtain

$$
\begin{equation*}
\left\|Z_{2}\right\| \leq \frac{72}{100} \gamma_{t} \sigma_{r} \delta \sqrt{k+r} \sigma_{1} \tag{B.191}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
\left\|Z_{3}\right\| & \leq \gamma_{t}^{2}\left\|\Delta_{t}\right\|^{2}\left\|F_{t}\right\|^{2} \tag{B.192}\\
& \leq 9 \sigma_{1} \gamma_{t}^{2}(\delta \sqrt{k+r})^{2}\left\|F_{t} F_{t}^{\top}-X_{\mathfrak{t}}\right\|^{2} \tag{B.193}\\
& \leq 9 \sigma_{1} \gamma_{t}^{2}(\delta \sqrt{k+r})^{2}\left(\frac{4 \sigma_{r}}{100}\right)^{2} \tag{B.194}\\
& \leq \frac{1}{100} \gamma_{t} \sigma_{r} \delta \sqrt{k+r} \sigma_{1} . \tag{B.195}
\end{align*}
$$

In the last inequality, we used our assumption that $\gamma_{t} \sigma_{r} \leq \gamma_{t} \sigma_{1} \leq 0.01$ and $\delta \sqrt{k+r} \leq$ 0.001. Combining, we obtain

$$
\begin{equation*}
\left\|S_{t+1} S_{t+1}^{\top}-D_{S}^{*}\right\| \leq\left(1-\frac{\gamma_{t} \sigma_{r}}{2}\right) D_{t}+\gamma_{t} \sigma_{r} \delta \sqrt{k+r} \sigma_{1} \tag{B.196}
\end{equation*}
$$

We consider two cases:

- $D_{t} \leq 3 \delta \sqrt{k+r} \sigma_{1}$. In this case, we simply have

$$
\begin{equation*}
\left\|S_{t+1} S_{t+1}^{\top}-D_{S}^{*}\right\| \leq D_{t}+3 \gamma_{t} \sigma_{r} \delta \sqrt{k+r} \sigma_{1} \leq D_{t}+\delta \sqrt{k+r} \sigma_{1} \leq 10 \delta \sqrt{k+r} \sigma_{1} \tag{B.197}
\end{equation*}
$$

- $3 \delta \sqrt{k+r} \sigma_{1}<D_{t} \leq 10 \delta \sqrt{k+r} \sigma_{1}$. In this case, we clearly have

$$
\begin{equation*}
\gamma_{t} \delta \sqrt{k+r} \sigma_{1} \sigma_{r} \leq \frac{\gamma_{t} \sigma_{r}}{3} D_{t} \tag{B.198}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\left\|S_{t+1} S_{t+1}^{\top}-D_{S}^{*}\right\| \leq\left(1-\frac{\gamma_{t} \sigma_{r}}{6 \sigma_{1}}\right) D_{t} \leq \max \left\{\left(1-\frac{c_{\gamma} \sigma_{r}^{2}}{6 \sigma_{1}^{2}}\right)^{t+1-\mathcal{T}_{1}} \cdot \frac{\sigma_{r}}{10}, 10 \delta \sqrt{k+r} \sigma_{1}\right\} \tag{B.199}
\end{equation*}
$$

Here we used the induction hypothesis on D_{t}.
2. For $\left\|S_{t+1} T_{t+1}^{\top}\right\|$, we can expand it and get

$$
\begin{align*}
S_{t+1} T_{t+1}^{\top}= & \left(\mathcal{M}_{t}\left(S_{t}\right)+\gamma_{t} U^{\top} \Delta_{t} F_{t}\right)\left(\mathcal{N}_{t}\left(T_{t}\right)+\gamma_{t} V^{\top} \Delta_{t} F_{t}\right)^{\top} \tag{B.200}\\
= & \underbrace{\mathcal{M}_{t}\left(S_{t}\right) \mathcal{N}_{t}\left(T_{t}\right)^{\top}}_{Z_{4}}+\underbrace{\gamma_{t} U^{\top} \Delta_{t} F_{t} \mathcal{N}_{t}\left(T_{t}\right)+\gamma_{t} \mathcal{M}_{t}\left(S_{t}\right) F_{t}^{\top} \Delta_{t}^{\top} V}_{Z_{t}} \tag{B.201}\\
& +\underbrace{\gamma_{t}^{2} U^{\top} \Delta_{t} F_{t} F_{t}^{\top} \Delta_{t}^{\top} V}_{Z_{6}} . \tag{B.202}
\end{align*}
$$

By assumption, we have

$$
\begin{align*}
\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\| & \leq D_{t} \tag{B.203}\\
& \leq \max \left\{\frac{\sigma_{r}}{100}, 10 \delta \sqrt{k+r} \sigma_{1}\right\} \tag{B.204}\\
& \leq \frac{\sigma_{r}}{100} \tag{B.205}
\end{align*}
$$

By Proposition A.4. we know

$$
\begin{equation*}
\left\|Z_{4}\right\| \leq\left(1-\frac{\gamma_{t} \sigma_{r}}{3}\right)\left\|S_{t} T_{t}^{\top}\right\| \leq\left(1-\frac{\gamma_{t} \sigma_{r}}{3}\right) D_{t} \tag{B.206}
\end{equation*}
$$

On the other hand, it's easy to see the $\left\|\mathcal{M}_{t}\left(S_{t}\right)\right\| \leq 3 \sqrt{\sigma_{1}}$ and $\left\|\mathcal{N}_{t}\left(T_{t}\right)\right\| \leq \sqrt{\sigma_{1}}$, by triangle inequality and the same argument as $\left\|S_{t+1} S_{t+1}^{\top}-D_{S}^{*}\right\|$,

$$
\begin{align*}
\left\|Z_{5}\right\| & \leq \gamma_{t}\left(\left\|F_{t}\right\|\left\|\mathcal{N}_{t}\left(T_{t}\right)\right\|+\left\|F_{t}\right\|\left\|\mathcal{M}_{t}\left(S_{t}\right)\right\|\right)\left\|\Delta_{t}\right\| \tag{B.207}\\
& \leq 12 \gamma_{t} \sigma_{1}\left\|\Delta_{t}\right\| \tag{B.208}\\
& \leq 12 \gamma_{t} \sigma_{1} \delta \sqrt{k+r}\left\|F_{t} F_{t}^{\top}-X_{\text {t }}\right\| \tag{B.209}\\
& \leq \frac{48}{100} \gamma_{t} \sigma_{r} \delta \sqrt{k+r} \sigma_{1} . \tag{B.210}
\end{align*}
$$

We used $\left\|F_{t} F_{t}^{\top}-X_{\natural}\right\| \leq \frac{4 \sigma_{r}}{100}$, which was proved above. Similar as calculation for $\left\|S_{t+1} S_{t+1}^{\top}-D_{S}^{*}\right\|$, we have

$$
\begin{equation*}
\left\|Z_{6}\right\| \leq \frac{1}{100} \gamma_{t} \sigma_{r} \delta \sqrt{k+r} \sigma_{1} \tag{B.211}
\end{equation*}
$$

Combining, we obtain

$$
\begin{align*}
\left\|S_{t+1} T_{t+1}^{\top}\right\| & \leq\left\|Z_{4}\right\|+\left\|Z_{5}\right\|+\left\|Z_{6}\right\| \tag{B.212}\\
& \leq\left(1-\frac{\gamma_{t} \sigma_{r}}{3}\right) D_{t}+\gamma_{t} \sigma_{r} \delta \sqrt{k+r} \sigma_{1} \tag{B.213}
\end{align*}
$$

We consider two cases:

- $D_{t} \leq 6 \delta \sqrt{k} \sigma_{1}$. In this case, we simply have

$$
\begin{equation*}
\left\|S_{t+1} T_{t+1}^{\top}\right\| \leq D_{t}+\gamma_{t} \sigma_{r} \delta \sqrt{k+r} \sigma_{1} \leq D_{t}+\delta \sqrt{k+r} \sigma_{1} \leq 10 \delta \sqrt{k+r} \sigma_{1} \tag{B.214}
\end{equation*}
$$

- $6 \delta \sqrt{k+r} \sigma_{1}<D_{t} \leq 10 \delta \sqrt{k+r} \sigma_{1}$. In this case, we clearly have

$$
\begin{equation*}
\gamma_{t} \sigma_{r} \delta \sqrt{k+r} \sigma_{1} \leq \frac{\gamma_{t} \sigma_{r}}{6} D_{t} \tag{B.215}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\left\|S_{t+1} T_{t+1}^{\top}\right\| \leq\left(1-\frac{\gamma_{t} \sigma_{r}}{6}\right) D_{t} \leq \max \left\{\left(1-\frac{c_{\gamma} \sigma_{r}^{2}}{6 \sigma_{1}^{2}}\right)^{t+1-\mathcal{T}_{1}} \cdot \frac{\sigma_{r}}{10}, 10 \delta \sqrt{k+r} \sigma_{1}\right\} \tag{B.216}
\end{equation*}
$$

Here we used the induction hypothesis on D_{t}.
Combining, we see that

$$
\begin{equation*}
D_{t+1} \leq \max \left\{\left(1-\frac{c_{\gamma} \sigma_{r}^{2}}{6 \sigma_{1}^{2}}\right)^{t+1-\mathcal{T}_{1}} \cdot \frac{\sigma_{r}}{10}, 10 \delta \sqrt{k+r} \sigma_{1}\right\} \tag{B.217}
\end{equation*}
$$

So the induction step is proved. Note that \mathcal{T}_{2} is chosen to be the smallest integer t that

$$
\begin{equation*}
\left(1-\frac{c_{\gamma} \sigma_{r}^{2}}{6 \sigma_{1}^{2}}\right)^{t-\mathcal{T}_{1}} \cdot \frac{\sigma_{r}}{10} \leq 10 \delta \sqrt{k+r} \sigma_{1} \tag{B.218}
\end{equation*}
$$

the second part of Proposition A.8 follows.

B. 9 Proof of Proposition A. 9

The proof is inspired by [15]. By our assumption that $E_{t} \leq 0.01 \sigma_{r}$, we have

$$
\begin{equation*}
\left\|S_{t} S_{t}^{\top}\right\| \leq\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|+\left\|D_{S}^{*}\right\| \leq 1.01 \sigma_{1} \tag{B.219}
\end{equation*}
$$

As a result, $\left\|S_{t}\right\| \leq 2 \sqrt{\sigma_{1}}$. Similarly,

$$
\begin{equation*}
\left\|T_{t}\right\| \leq \sqrt{\left\|T_{t} T_{t}^{\top}\right\|} \leq 0.1 \sqrt{\sigma_{r}} \tag{B.220}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\sigma_{r}\left(S_{t} S_{t}^{\top}\right) \geq \sigma_{r}\left(D_{S}^{*}\right)-\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\| \geq \frac{\sigma_{r}}{2} \tag{B.221}
\end{equation*}
$$

We obtain

$$
\begin{equation*}
\sigma_{r}\left(S_{t}\right) \geq \sqrt{\frac{\sigma_{r}}{2}} \tag{B.222}
\end{equation*}
$$

Thus, S_{t}, T_{t} satisfy all the conditions in Proposition A.4 and Proposition A.5 We will bound $\left\|S_{t+1} S_{t+1}^{\top}-D_{S}^{*}\right\|,\left\|S_{t+1} T_{t+1}^{\top}\right\|,\left\|T_{t+1} T_{t+1}^{\top}\right\|$ separately.

- $\left\|S_{t+1} S_{t+1}^{\top}-D_{S}^{*}\right\|$. Simple algebra yields

$$
\begin{align*}
& S_{t+1} S_{t+1}^{\top}-D_{S}^{*}=\underbrace{\mathcal{M}_{t}\left(S_{t}\right) \mathcal{M}_{t}\left(S_{t}\right)^{\top}-D_{S}^{*}}_{Z_{1}}+\underbrace{\gamma_{t}\left(U^{\top} \Delta_{t} F_{t} \mathcal{M}_{t}\left(S_{t}\right)^{\top}+\mathcal{M}_{t}\left(S_{t}\right) F_{t}^{\top} \Delta_{t}^{\top} U\right)}_{Z_{2}} \tag{B.223}\\
&+\underbrace{\gamma_{t}^{2} U^{\top} \Delta_{t} F_{t} F_{t}^{\top} \Delta_{t}^{\top} U}_{Z_{3}} \tag{B.224}
\end{align*}
$$

By Proposition A.4, we obtain

$$
\begin{align*}
\left\|Z_{1}\right\| & \leq\left(1-\frac{3 \gamma_{t} \sigma_{r}}{4}\right)\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|+3 \gamma_{t}\left\|S_{t} T_{t}^{\top}\right\|^{2} \tag{B.225}\\
& \stackrel{(\sharp)}{\leq}\left(1-\frac{3 \gamma_{t} \sigma_{r}}{4}\right)\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|+0.03 \gamma_{t} \sigma_{r}\left\|S_{t} T_{t}^{\top}\right\| \tag{B.226}\\
& \leq\left(1-\frac{3 \gamma_{t} \sigma_{r}}{4}+0.03 \gamma_{t} \sigma_{r}\right) E_{t} . \tag{B.227}
\end{align*}
$$

In (\sharp), we used our assumption that $\left\|S_{t} T_{t}^{\top}\right\| \leq 0.01 \sigma_{r}$. On the other hand, it's easy to see $\left\|\mathcal{M}_{t}\left(S_{t}\right)\right\| \leq 3 \sqrt{\sigma_{1}}$ by its definition and the fact that $\left\|S_{t}\right\| \leq 2 \sqrt{\sigma_{r}}$. By triangle inequality,

$$
\begin{align*}
\left\|Z_{2}\right\| & \leq 2 \gamma_{t}\left\|U^{\top} \Delta_{t} F_{t} \mathcal{M}_{t}\left(S_{t}\right)^{\top}\right\| \tag{B.228}\\
& \leq 2 \gamma_{t}\left\|\Delta_{t}\right\|\left\|U S_{t}+V T_{t}\right\|\left\|\mathcal{M}_{t}\left(S_{t}\right)\right\| \tag{B.229}\\
& \leq 18 \gamma_{t} \sigma_{1}\left\|\Delta_{t}\right\| \tag{B.230}\\
& \stackrel{(\sharp)}{\leq} 18 \gamma_{t} \sigma_{1} \delta \sqrt{k+r}\left\|F_{t} F_{t}^{\top}-X_{\text {吕 }}\right\| \tag{B.231}\\
& \stackrel{(\star)}{\leq} 0.018 \gamma_{t} \sigma_{r}\left\|F_{t} F_{t}^{\top}-X_{\natural}\right\| \tag{B.232}
\end{align*}
$$

Here (\sharp) follows from A.8. (\star) follows from our assumption that $\delta \sqrt{k+r} \leq \frac{0.001 \sigma_{r}}{\sigma_{1}}$. By lemma I.5, we see that

$$
\begin{align*}
\left\|F_{t} F_{t}^{\top}-X_{\mathrm{\natural}}\right\| & \leq\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|+2\left\|S_{t} T_{t}^{\top}\right\|+\left\|T_{t} T_{t}^{\top}\right\| \tag{B.233}\\
& \leq 4 E_{t} \tag{B.234}
\end{align*}
$$

Hence, we obtain

$$
\begin{equation*}
\left\|Z_{2}\right\| \leq 0.1 \gamma_{t} \sigma_{r} E_{t} \tag{B.235}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
\left\|Z_{3}\right\| & \leq \gamma_{t}^{2}\left\|\Delta_{t}\right\|^{2}\left\|F_{t}\right\|^{2} \tag{B.236}\\
& \leq 9 \sigma_{1} \gamma_{t}^{2}(\delta \sqrt{k+r})^{2}\left\|F_{t} F_{t}^{\top}-X_{\text {匕 }}\right\|^{2} \tag{B.237}\\
& \leq 144 \sigma_{1} \gamma_{t}^{2}(\delta \sqrt{k+r})^{2} E_{t}^{2} \tag{B.238}\\
& \leq 0.1 \gamma_{t} \sigma_{r} E_{t} . \tag{B.239}
\end{align*}
$$

In the last inequality, we used our assumption that $\delta \sqrt{k+r} \leq \frac{0.001 \sigma_{r}}{\sigma_{1}} \leq 0.001, \gamma_{t} \leq \frac{0.01}{\sigma_{1}}$ and $\left\|E_{t}\right\| \leq 0.01 \sigma_{r}$. Combining, we obtain

$$
\begin{align*}
\left\|S_{t+1} S_{t+1}^{\top}-D_{S}^{*}\right\| & \leq\left\|Z_{1}\right\|+\left\|Z_{2}\right\|+\left\|Z_{3}\right\| \tag{B.240}\\
& \leq\left(1-\frac{\gamma_{t} \sigma_{r}}{2}\right) E_{t} \tag{B.241}
\end{align*}
$$

- $\left\|S_{t+1} T_{t+1}^{\top}\right\|$. We can expand it and get

$$
\begin{align*}
S_{t+1} T_{t+1}^{\top}= & \left(\mathcal{M}_{t}\left(S_{t}\right)+\gamma_{t} U^{\top} \Delta_{t} F_{t}\right)\left(\mathcal{N}_{t}\left(T_{t}\right)+\gamma_{t} V^{\top} \Delta_{t} F_{t}\right)^{\top} \tag{B.242}\\
= & \underbrace{\mathcal{M}_{t}\left(S_{t}\right) \mathcal{N}_{t}\left(T_{t}\right)^{\top}}_{Z_{4}}+\underbrace{\gamma_{t} U^{\top} \Delta_{t} F_{t} \mathcal{N}_{t}\left(T_{t}\right)+\gamma_{t} \mathcal{M}_{t}\left(S_{t}\right) F_{t}^{\top} \Delta_{t}^{\top} V}_{Z_{5}} \tag{B.243}\\
& +\underbrace{\gamma_{t}^{2} U^{\top} \Delta_{t} F_{t} F_{t}^{\top} \Delta_{t}^{\top} V}_{Z_{6}} . \tag{B.244}
\end{align*}
$$

By Proposition A.4 we know

$$
\begin{equation*}
\left\|Z_{4}\right\| \leq\left(1-\frac{\gamma_{t} \sigma_{r}}{3}\right)\left\|S_{t} T_{t}^{\top}\right\| \leq\left(1-\frac{\gamma_{t} \sigma_{r}}{3}\right) E_{t} \tag{B.245}
\end{equation*}
$$

On the other hand, we see that $\left\|\mathcal{M}_{t}\left(S_{t}\right)\right\| \leq 3 \sqrt{\sigma_{1}}$ and $\left\|\mathcal{N}_{t}\left(T_{t}\right)\right\| \leq \sqrt{\sigma_{1}}$ (by bound on S_{t} and T_{t} and the update rule), by triangle inequality and the same argument as $\left\|S_{t+1} S_{t+1}^{\top}-D_{S}^{*}\right\|$,

$$
\begin{align*}
\left\|Z_{5}\right\| & \leq \gamma_{t}\left(\left\|F_{t}\right\|\left\|\mathcal{N}_{t}\left(T_{t}\right)\right\|+\left\|F_{t}\right\|\left\|\mathcal{M}_{t}\left(S_{t}\right)\right\|\right)\left\|\Delta_{t}\right\| \tag{B.246}\\
& \leq 12 \gamma_{t} \sigma_{1}\left\|\Delta_{t}\right\| \tag{B.247}\\
& \leq 12 \gamma_{t} \sigma_{1} \delta \sqrt{k+r}\left\|F_{t} F_{t}^{\top}-X_{\text {ఛ }}\right\| \tag{B.248}\\
& \leq 0.05 \gamma_{t} \sigma_{r} E_{t} . \tag{B.249}
\end{align*}
$$

Same as calculation for $\left\|S_{t+1} S_{t+1}^{\top}-D_{S}^{*}\right\|$, we have

$$
\begin{equation*}
\left\|Z_{6}\right\| \leq 0.1 \gamma_{t} \sigma_{r} E_{t} \tag{B.250}
\end{equation*}
$$

Combining, we obtain

$$
\begin{align*}
\left\|S_{t+1} T_{t+1}^{\top}\right\| & \leq\left\|Z_{4}\right\|+\left\|Z_{5}\right\|+\left\|Z_{6}\right\| \tag{B.251}\\
& \leq\left(1-\frac{\gamma_{t} \sigma_{r}}{6}\right) E_{t} \tag{B.252}
\end{align*}
$$

- $\left\|T_{t+1} T_{t+1}^{\top}\right\|$. We expand it and obtain

$$
\begin{align*}
T_{t+1} T_{t+1}^{\top}= & \left(\mathcal{N}_{t}\left(T_{t}\right)+\gamma_{t} V^{\top} \Delta_{t} F_{t}\right)\left(\mathcal{N}_{t}\left(T_{t}\right)+\gamma_{t} V^{\top} \Delta_{t} F_{t}\right)^{\top} \tag{B.253}\\
\leq & \underbrace{\mathcal{N}_{t}\left(T_{t}\right) \mathcal{N}_{t}\left(T_{t}\right)^{\top}}_{Z_{8}}+\underbrace{\gamma_{t} V^{\top} \Delta_{t} F_{t} \mathcal{N}_{t}\left(T_{t}\right)^{\top}+\gamma_{t} \mathcal{N}_{t}\left(T_{t}\right) F_{t}^{\top} \Delta_{t}^{\top} V}_{Z_{9}} \tag{B.254}\\
& +\underbrace{\gamma_{t}^{2} V^{\top} \Delta_{t} F_{t} F_{t}^{\top} \Delta_{t}^{\top} V}_{Z_{9}} \tag{B.255}
\end{align*}
$$

By Proposition A. 4

$$
\begin{equation*}
\left\|Z_{7}\right\| \leq\left\|T_{t} T_{t}^{\top}\right\|\left(1-2 \gamma_{t}\left\|T_{t} T_{t}^{\top}\right\|\right) \leq E_{t}\left(1-2 \gamma_{t} E_{t}\right) \tag{B.256}
\end{equation*}
$$

The last inequality follows from the fact that $x \rightarrow x\left(1-2 \gamma_{t} x\right)$ is non-decreasing on interval $\left[0, \frac{1}{4 \gamma_{t}}\right]$. On the other hand,

$$
\begin{align*}
V^{\top} \Delta_{t} F_{t} \mathcal{N}_{t}\left(T_{t}\right)^{\top} & =V^{\top} \Delta_{t}\left(U S_{t}+V T_{t}\right) \mathcal{N}_{t}\left(T_{t}\right)^{\top} \tag{B.257}\\
& =V^{\top} \Delta_{t} U S_{t} \mathcal{N}_{t}\left(T_{t}\right)^{\top}+V^{\top} \Delta_{t} V T_{t} \mathcal{N}_{t}\left(T_{t}\right)^{\top} \tag{B.258}
\end{align*}
$$

By Proposition A.5 we obtain

$$
\begin{align*}
\left\|V^{\top} \Delta_{t} F_{t} \mathcal{N}_{t}\left(T_{t}\right)^{\top}\right\| & \leq\left\|V^{\top} \Delta_{t} U S_{t} \mathcal{N}_{t}\left(T_{t}\right)^{\top}\right\|+\left\|V^{\top} \Delta_{t} V T_{t} \mathcal{N}_{t}\left(T_{t}\right)^{\top}\right\| \tag{B.259}\\
& \leq\left(\left\|S_{t} \mathcal{N}_{t}\left(T_{t}\right)^{\top}\right\|+\left\|T_{t} \mathcal{N}_{t}\left(T_{t}\right)^{\top}\right\|\right)\left\|\Delta_{t}\right\| \tag{B.260}\\
& \leq\left(\left\|S_{t} T_{t}^{\top}\right\|+\left\|T_{t} T_{t}^{\top}\right\|\right) \delta \sqrt{k+r}\left\|F_{t} F_{t}^{\top}-X_{\text {七 }}\right\| \tag{B.261}\\
& \leq 8 \delta \sqrt{k+r} E_{t}^{2} \tag{B.262}\\
& \leq 0.01 E_{t}^{2} \tag{B.263}
\end{align*}
$$

Consequently,

$$
\begin{equation*}
\left\|Z_{8}\right\| \leq 2 \gamma_{t}\left\|V^{\top} \Delta_{t} F_{t} \mathcal{N}_{t}\left(T_{t}\right)^{\top}\right\| \leq 0.02 \gamma_{t} E_{t}^{2} \tag{B.264}
\end{equation*}
$$

Furthermore,

$$
\begin{align*}
\left\|Z_{9}\right\| & \leq \gamma_{t}^{2}\left\|F_{t}\right\|^{2}\left\|\Delta_{t}\right\|^{2} \tag{B.265}\\
& \leq 9 \gamma_{t}^{2} \sigma_{1}(\delta \sqrt{k+r})^{2}\left\|F_{t} F_{t}^{\top}-X_{\text {匕 }}\right\|^{2} \tag{B.266}\\
& \leq 144 \gamma_{t}^{2} \sigma_{1}(\delta \sqrt{k+r})^{2} E_{t}^{2} \tag{B.267}\\
& \leq 0.1 \gamma_{t} E_{t}^{2} . \tag{B.268}
\end{align*}
$$

In the last inequality, we used our assumption that $\gamma_{t} \leq 0.01 \sigma_{1}$ and $\delta \sqrt{k+r} \leq 0.001$. Combining, we obtain

$$
\begin{equation*}
\left\|T_{t+1} T_{t+1}^{\top}\right\| \leq E_{t}\left(1-\gamma_{t} E_{t}\right) \tag{B.269}
\end{equation*}
$$

The result follows.

B. 10 Proof of Proposition $\mathbf{A . 1 0}$

The proof of this proposition has lots of overlap with Proposition A. 9 By our assumption that $E_{t} \leq 0.01 \sigma_{r}$, we have

$$
\begin{equation*}
\left\|S_{t} S_{t}^{\top}\right\| \leq\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|+\left\|D_{S}^{*}\right\| \leq 1.01 \sigma_{1} \tag{B.270}
\end{equation*}
$$

As a result, $\left\|S_{t}\right\| \leq 2 \sqrt{\sigma_{1}}$. Similarly,

$$
\begin{equation*}
\left\|T_{t}\right\| \leq \sqrt{\left\|T_{t} T_{t}^{\top}\right\|} \leq 0.1 \sqrt{\sigma_{r}} \tag{B.271}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\sigma_{r}\left(S_{t} S_{t}^{\top}\right) \geq \sigma_{r}\left(D_{S}^{*}\right)-\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\| \geq \frac{\sigma_{r}}{2} \tag{B.272}
\end{equation*}
$$

We obtain

$$
\begin{equation*}
\sigma_{r}\left(S_{t}\right) \geq \sqrt{\frac{\sigma_{r}}{2}} \tag{B.273}
\end{equation*}
$$

Thus, S_{t}, T_{t} satisfy all the conditions in Proposition A. 4 and Proposition A.5. We will bound $\left\|S_{t+1} S_{t+1}^{\top}-D_{S}^{*}\right\|,\left\|S_{t+1} T_{t+1}^{\top}\right\|,\left\|T_{t+1} T_{t+1}^{\top}\right\|$ separately. Note that the proof of Proposition A. 9 doesn't use $k>r$, so it also holds for the case when $k=r$. So, we already have

$$
\begin{equation*}
\left\|S_{t+1} S_{t+1}^{\top}-D_{S}^{*}\right\| \leq\left(1-\frac{\gamma_{t} \sigma_{r}}{2}\right) E_{t} \tag{B.274}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|S_{t+1} T_{t+1}^{\top}\right\| \leq\left(1-\frac{\gamma_{t} \sigma_{r}}{3}\right) E_{t} \tag{B.275}
\end{equation*}
$$

Next, we obtain a better bound for $\left\|T_{t+1} T_{t+1}^{\top}\right\|$. We expand $T_{t+1} T_{t+1}^{\top}$ and obtain

$$
\begin{align*}
T_{t+1} T_{t+1}^{\top}= & \left(\mathcal{N}_{t}\left(T_{t}\right)+\gamma_{t} V^{\top} \Delta_{t} F_{t}\right)\left(\mathcal{N}_{t}\left(T_{t}\right)+\gamma_{t} V^{\top} \Delta_{t} F_{t}\right)^{\top} \tag{B.276}\\
= & \underbrace{\mathcal{N}_{t}\left(T_{t}\right) \mathcal{N}_{t}\left(T_{t}\right)^{\top}}_{Z_{1}}+\underbrace{\gamma_{t} V^{\top} \Delta_{t} F_{t} \mathcal{N}_{t}\left(T_{t}\right)^{\top}+\gamma_{t} \mathcal{N}_{t}\left(T_{t}\right) F_{t}^{\top} \Delta_{t}^{\top} V}_{Z_{2}} \tag{B.277}\\
& +\underbrace{\gamma_{t}^{2} V^{\top} \Delta_{t} F_{t} F_{t}^{\top} \Delta_{t}^{\top} V}_{Z_{t}} \tag{B.278}
\end{align*}
$$

By definition,

$$
\begin{equation*}
\mathcal{N}_{t}\left(T_{t}\right)=T_{t}-\gamma_{t}\left(T_{t} T_{t}^{\top} T_{t}+T_{t} S_{t}^{\top} S_{t}\right) \tag{B.279}
\end{equation*}
$$

Plug this into $\mathcal{N}_{t}\left(T_{t}\right) \mathcal{N}_{t}\left(T_{t}\right)^{\top}$, we obtain

$$
\begin{align*}
Z_{1} & =\mathcal{N}_{t}\left(T_{t}\right) \mathcal{N}_{t}\left(T_{t}\right)^{\top} \tag{B.280}\\
& =\left(T_{t}-\gamma_{t}\left(T_{t} T_{t}^{\top} T_{t}+T_{t} S_{t}^{\top} S_{t}\right)\right)\left(T_{t}-\gamma_{t}\left(T_{t} T_{t}^{\top} T_{t}+T_{t} S_{t}^{\top} S_{t}\right)\right)^{\top} \tag{B.281}\\
& =Z_{4}+Z_{5}, \tag{B.282}
\end{align*}
$$

where

$$
\begin{equation*}
Z_{4}=T_{t} T_{t}^{\top}-2 \gamma_{t} T_{t} T_{t}^{\top} T_{t} T_{t}^{\top}-\gamma_{t} T_{t} S_{t}^{\top} S_{t} T_{t}^{\top} \tag{B.283}
\end{equation*}
$$

and

$$
\begin{equation*}
Z_{5}=-\gamma_{t} T_{t} S_{t}^{\top} S_{t} T_{t}^{\top}+\gamma_{t}^{2}\left(T_{t} T_{t}^{\top} T_{t}+T_{t} S_{t}^{\top} S_{t}\right)\left(T_{t} T_{t}^{\top} T_{t}+T_{t} S_{t}^{\top} S_{t}\right)^{\top} \tag{B.284}
\end{equation*}
$$

We bound each of them separately. Since $k=r, S_{t}^{\top} S_{t}$ is a r-by- r. Moreover,

$$
\begin{equation*}
\sigma_{r}\left(S_{t}^{\top} S_{t}\right)=\sigma_{r}\left(S_{t}\right)^{2} \geq \frac{\sigma_{r}}{2} \tag{B.285}
\end{equation*}
$$

By $\gamma_{t} \leq \frac{0.01}{\sigma_{1}}$,

$$
\begin{align*}
\left\|I-\gamma_{t} S_{t}^{\top} S_{t}-2 \gamma_{t} T_{t} T_{t}^{\top}\right\| & \leq\left\|I-\gamma_{t} S_{t}^{\top} S_{t}\right\| \tag{B.286}\\
& \leq 1-\frac{\gamma_{t} \sigma_{r}}{2} \tag{B.287}
\end{align*}
$$

Consequently,

$$
\begin{align*}
\left\|Z_{4}\right\| & =\left\|T_{t}\left(I-\gamma_{t} S_{t}^{\top} S_{t}-2 \gamma_{t} T_{t}^{\top} T_{t}\right) T_{t}^{\top}\right\| \tag{B.288}\\
& \leq\left\|T_{t}\right\|^{2}\left\|\left(I-\gamma_{t} S_{t}^{\top} S_{t}-2 \gamma_{t} T_{t}^{\top} T_{t}\right)\right\| \tag{B.289}\\
& \leq\left(1-\frac{\gamma_{t} \sigma_{r}}{2}\right)\left\|T_{t}\right\|^{2} \tag{B.290}
\end{align*}
$$

In addition,

$$
\begin{align*}
Z_{5} & =-\gamma_{t} T_{t} S_{t}^{\top} S_{t} T_{t}^{\top}+\gamma_{t}^{2}\left[T_{t} T_{t}^{\top}\left(T_{t} S_{t}^{\top} S_{t} T_{t}^{\top}\right)+\left(T_{t} S_{t}^{\top} S_{t} T_{t}^{\top}\right) T_{t} T_{t}^{\top}\right]+\gamma_{t}^{2} T_{t} S_{t}^{\top} S_{t} S_{t}^{\top} S_{t} T_{t}^{\top} \\
& \preceq\left(-\gamma_{t}+\frac{2}{100} \gamma_{t}^{2} \sigma_{r}+4 \sigma_{1} \gamma_{t}^{2}\right) T_{t} S_{t}^{\top} S_{t} T_{t}^{\top} \tag{B.291}\\
& \preceq 0 \tag{B.293}
\end{align*}
$$

Combining, we obtain

$$
\begin{equation*}
\left\|\mathcal{N}_{t}\left(T_{t}\right) \mathcal{N}_{t}\left(T_{t}\right)^{\top}\right\| \leq\left\|Z_{4}\right\| \leq\left(1-\frac{\gamma_{t} \sigma_{r}}{2}\right)\left\|T_{t} T_{t}^{\top}\right\| \tag{B.294}
\end{equation*}
$$

On the other hand, we see that $\left\|\mathcal{M}_{t}\left(S_{t}\right)\right\| \leq 3 \sqrt{\sigma_{1}}$ and $\left\|\mathcal{N}_{t}\left(T_{t}\right)\right\| \leq \sqrt{\sigma_{1}}$ (by bound on S_{t} and T_{t} and the update rule). As a result,

$$
\begin{align*}
\left\|V^{\top} \Delta_{t} F_{t} \mathcal{N}_{t}\left(T_{t}\right)^{\top}\right\| & \leq\left\|F_{t}\right\|\left\|\mathcal{N}_{t}\left(T_{t}\right)\right\|\left\|\Delta_{t}\right\| \tag{B.295}\\
& \leq\left(\left\|S_{t}\right\|+\left\|T_{t}\right\|\right)\left\|\mathcal{N}_{t}\left(T_{t}\right)\right\| \delta \sqrt{k+r}\left\|F_{t} F_{t}^{\top}-X_{\natural}\right\| \tag{B.296}\\
& \leq 3 \sigma_{1} \delta \sqrt{k+r}\left\|F_{t} F_{t}^{\top}-X_{\natural}\right\| \tag{B.297}\\
& \leq 12 \sigma_{1} \delta \sqrt{k+r} E_{t} . \tag{B.298}
\end{align*}
$$

Consequently,

$$
\begin{equation*}
\left\|Z_{2}\right\| \leq 2 \gamma_{t}\left\|V^{\top} \Delta_{t} F_{t} \mathcal{N}_{t}\left(T_{t}\right)^{\top}\right\| \leq 0.03 \gamma_{t} \sigma_{r} E_{t} \tag{B.299}
\end{equation*}
$$

Furthermore,

$$
\begin{align*}
\left\|Z_{3}\right\| & \leq \gamma_{t}^{2}\left\|F_{t}\right\|^{2}\left\|\Delta_{t}\right\|^{2} \tag{B.300}\\
& \leq 9 \gamma_{t}^{2} \sigma_{1}(\delta \sqrt{k+r})^{2}\left\|F_{t} F_{t}^{\top}-X_{\text {七 }}\right\|^{2} \tag{B.301}\\
& \leq 144 \gamma_{t}^{2} \sigma_{1}(\delta \sqrt{k+r})^{2} E_{t}^{2} \tag{B.302}\\
& \leq 0.01 \gamma_{t} \sigma_{r} E_{t} . \tag{B.303}
\end{align*}
$$

In the last inequality, we used our assumption that $\gamma_{t} \leq 0.01 \sigma_{1}$ and $\delta \sqrt{k+r} \leq 0.001$. Combining, we obtain

$$
\begin{align*}
\left\|T_{t+1} T_{t+1}^{\top}\right\| & \leq\left\|Z_{1}\right\|+\left\|Z_{2}\right\|+\left\|Z_{3}\right\| \tag{B.304}\\
& \leq\left(1-\frac{\gamma_{t} \sigma_{r}}{3}\right)\left\|T_{t} T_{t}^{\top}\right\| \tag{B.305}
\end{align*}
$$

C Proof of RDPP

Throughout this section, we denote

$$
\mathbb{S}:=\left\{X \in \mathcal{S}^{d \times d}:\|X\|_{\mathrm{F}}=1\right\}, \quad \mathbb{S}_{r}:=\left\{X \in \mathcal{S}^{d \times d}:\|X\|_{\mathrm{F}}=1, \operatorname{rank}(X) \leq r\right\}
$$

Here we split the Proposition 2.2 into two parts and prove them separately. For the ease of notation, we use r to denote the rank, instead of k^{\prime}.
Proposition C.1. Assume that the sensing matrix $A_{i} \stackrel{i . i . d .}{\sim} \operatorname{GOE}(d), 15$ and the corruption is from model 2 . Then RDPP holds with parameters (r, δ) and a scaling function $\psi(X)=$ $\frac{1}{m} \sum_{i=1}^{m} \sqrt{\frac{2}{\pi}}\left(1-p+p \mathbb{E}_{s_{i} \sim \mathbb{P}_{i}}\left[\exp \left(-\frac{s_{i}^{2}}{2\|X\|_{\mathrm{F}}^{2}}\right)\right]\right)$ with probability at least $1-C e^{-c m \delta^{4}}$, given $m \gtrsim \frac{d r\left(\log \left(\frac{1}{\delta}\right) \vee 1\right)}{\delta^{4}}$.
Proposition C.2. Assume that the sensing matrices $\left\{A_{i}\right\}_{i=1}^{m}$ have i.i.d. standard Gaussian entries, and the corruption is from model 1 . Moreover, we modify function $\operatorname{sign}(x)$ such that $\operatorname{sign}(x)=$
$\begin{cases}\{-1\} & x<0 \\ \{-1,1\} & x=0 . \text { Then, RDPP-II holds with parameter }\left(r, \delta+3 \sqrt{\frac{d p}{m}}+3 p\right) \text { and a scaling function } \\ \{1\} & x>0\end{cases}$
$\psi(X)=\sqrt{\frac{2}{\pi}}$ with probability at least $1-\exp (-(p m+d))-\exp \left(-c^{\prime} m \delta^{4}\right)$, given $m \gtrsim \frac{d r\left(\log \left(\frac{1}{\delta}\right) \vee 1\right)}{\delta^{4}}$.

C. 1 Proof of Proposition C. 1

In the probability bounds that we obtained, the c might be different from bounds to bounds, but they are all universal constants.
Lemma C.3. Suppose that we are under Model 2. Then, for every nonzero $X \in \mathbb{S}^{d \times d}$, and every $D \in \mathcal{D}(X)$, the expectation $\mathbb{E}[D]$ is

$$
\begin{equation*}
\mathbb{E}[D]=\psi(X) \frac{X}{\|X\|_{\mathrm{F}}}, \text { where } \psi(X)=\frac{1}{m} \sum_{i=1}^{m} \sqrt{\frac{2}{\pi}}\left(1-p+p \mathbb{E}_{s_{i} \sim \mathbb{P}_{i}}\left[e^{-s_{i}^{2} / 2\|X\|_{\mathrm{F}}^{2}}\right]\right) \tag{C.1}
\end{equation*}
$$

Proof. We may drop the subscript under expectation when the distribution is clear. Firstly, we show that for any $X, Y \in \mathbb{S}^{d \times d}$, if s follows distribution \mathbb{P}, A is GOE matrix and they are independent, then

$$
\begin{equation*}
\mathbb{E}[\operatorname{sign}(\langle A, X\rangle-s)\langle A, Y\rangle]=\sqrt{\frac{2}{\pi}} \mathbb{E}\left[e^{-s^{2} / 2\|X\|_{\mathrm{F}}^{2}}\right]\left\langle\frac{X}{\|X\|_{\mathrm{F}}}, Y\right\rangle \tag{C.2}
\end{equation*}
$$

In this section, $\operatorname{sign}(\langle A, x\rangle-s)$ should be thought of as any element chosen from the corresponding set. There is ambiguity when $\langle A, x\rangle-s=0$, but this happens with probability 0 , so it won't affect the result. Without loss of generality, we assume $\|X\|_{\mathrm{F}}=\|Y\|_{\mathrm{F}}=1$. To leverage the fact that A is GOE matrix, we denote $u=\langle A, X\rangle, v=\langle A, Y\rangle$ and $\rho=\operatorname{cov}(u, v)$. Simple calculation yields $u \sim N(0,1), v \sim N(0,1)$ and $\rho=\langle X, Y\rangle$. By coupling, we can write $v=\rho u+\sqrt{1-\rho^{2}} w$, where w is another standard Gaussian independent of others. Using the definition of u, v, ρ, w, we have

$$
\begin{equation*}
\mathbb{E}[\operatorname{sign}(\langle A, X\rangle-s)\langle A, Y\rangle]=\mathbb{E}[\operatorname{sign}(u-s) v]=\rho \mathbb{E}[\operatorname{sign}(u-s) u] \tag{C.3}
\end{equation*}
$$

[^0]We continue the above equality using the properties of Gaussian:

$$
\begin{align*}
\rho \mathbb{E}[\operatorname{sign}(u-s) u] & =\rho \mathbb{E}_{s}\left[\int_{s}^{+\infty} u \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u-\int_{-\infty}^{s} u \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u\right] \tag{C.4}\\
& \stackrel{(a)}{=} \rho \mathbb{E}_{s}\left[\int_{s}^{+\infty} u \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u+\int_{-s}^{+\infty} u \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u\right] \tag{C.5}\\
& \stackrel{(b)}{=} 2 \rho \mathbb{E}_{s}\left[\int_{|s|}^{+\infty} u \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u\right] \tag{C.6}\\
& =\sqrt{\frac{2}{\pi}} \rho \mathbb{E}_{s}\left[\int_{|s|}^{+\infty} d\left(-e^{-u^{2} / 2}\right)\right]=\sqrt{\frac{2}{\pi}} \rho \mathbb{E}_{s}\left[e^{-s^{2} / 2}\right] \tag{C.7}
\end{align*}
$$

Here, in the steps (a), we do a change of variable $u \mapsto-u$. In the step (b), we use the fact that the density of standard Gaussian is symmetric. Recall that $\rho=\langle X, Y\rangle$. Hence, the equation (C.2) follows from (C.3) - (C.7). Since it holds for all symmetric Y, we obtain

$$
\begin{equation*}
\mathbb{E}[\operatorname{sign}(\langle A, X\rangle-s) A]=\sqrt{\frac{2}{\pi}} \mathbb{E}\left[e^{-s^{2} / 2\|X\|_{\mathrm{F}}^{2}}\right] \frac{X}{\|X\|_{\mathrm{F}}} \tag{C.8}
\end{equation*}
$$

On the other hand, if we apply the above result to the case when $s \equiv 0$, we get

$$
\begin{equation*}
\mathbb{E}[\operatorname{sign}(\langle A, X\rangle) A]=\sqrt{\frac{2}{\pi}} \frac{X}{\|X\|_{\mathrm{F}}} . \tag{C.9}
\end{equation*}
$$

When s_{i} 's are form model 2, by tower property and results above,

$$
\begin{align*}
\mathbb{E}\left[\operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right) A_{i}\right] & =\mathbb{E}\left[\mathbb{E}\left[\operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right) A_{i} \mid s_{i}\right]\right] \\
& =(1-p) \mathbb{E}\left[\operatorname{sign}\left(\left\langle A_{i}, X\right\rangle\right) A_{i}\right]+p \mathbb{E}_{s_{i} \sim \mathbb{P}_{i}, A_{i}}\left[\operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right) A_{i}\right] \tag{C.11}\\
& =\sqrt{\frac{2}{\pi}}\left((1-p)+p \mathbb{E}\left[e^{-s^{2} / 2\|X\|_{\mathrm{F}}^{2}}\right]\right) \frac{X}{\|X\|_{\mathrm{F}}} \tag{C.12}
\end{align*}
$$

The lemma follows from the linearity of expectation.
Lemma C. 3 is an analogue of [13, Lemma 3]. Note that the function ψ is not necessarily the quantity $\sqrt{\frac{2}{\pi}}\left((1-p)+p \mathbb{E}\left[e^{-s_{i}^{2} / 2\|X\|_{\mathrm{F}}^{2}}\right]\right) \frac{X}{\|X\|_{\mathrm{F}}}$, which appears in [13. Lemma 3], since the corruptions are not assumed to be i.i.d in this paper.
Next, we prove a probability bound that holds for any fixed $X, Y \in \mathbb{S}$.
Lemma C.4. Under Model 2, there exists a universal constant c such that for any $\delta>0, X \in$ $\mathbb{S}, Y \in \mathbb{S}$, with probablity at most $2 e^{-c m \delta^{2}}$, the following event happens

$$
\begin{equation*}
\left|\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right)\left\langle A_{i}, Y\right\rangle-\psi(X)\langle X, Y\rangle\right|>\delta, \tag{C.13}
\end{equation*}
$$

where $\psi(X)=\frac{1}{m} \sum_{i=1}^{m} \sqrt{\frac{2}{\pi}}\left(1-p+p \mathbb{E}_{s_{i} \sim \mathbb{P}_{i}}\left[e^{-s_{i}^{2} / 2\|X\|_{\mathrm{F}}^{2}}\right]\right)$.
Proof. We first show that $\operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right)\left\langle A_{i}, Y\right\rangle$ is a sub-Gaussian random variable. Let consider the Orlicz norm [11] with $\psi_{2}(x)=e^{x^{2}}-1 .\left\langle A_{i}, Y\right\rangle$ is standard Gaussian, so it has sub-Gaussian parameter 1. By property of Orlicz norm, $\left\|\left\langle A_{i}, Y\right\rangle\right\|_{\psi_{2}} \leq C$ for some constant C. Moreover, $\left|\operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right)\right| \leq 1$, so

$$
\begin{equation*}
\left\|\operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right)\left\langle A_{i}, Y\right\rangle\right\|_{\psi_{2}} \leq\left\|\left\langle A_{i}, Y\right\rangle\right\|_{\psi_{2}} \leq C \tag{C.14}
\end{equation*}
$$

By property of Orlicz norm again, we know $\operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right)\left\langle A_{i}, Y\right\rangle$ is sub-Gaussian with constant sub-Gaussian parameter. By Lemma C.3, we have

$$
\begin{equation*}
\mathbb{E}\left[\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right)\left\langle A_{i}, Y\right\rangle\right]=\psi(X)\langle X, Y\rangle . \tag{C.15}
\end{equation*}
$$

By Chernoff bound, we can find some constant $c>0$ such that

$$
\begin{align*}
& P\left(\left|\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right)\left\langle A_{i}, Y\right\rangle-\psi(X)\langle X, Y\rangle\right| \geq \delta\right) \tag{C.16}\\
& \leq 2 e^{-c m \delta^{2}} \tag{C.17}
\end{align*}
$$

Lemma C. 4 is an analogue of [13, Lemma 4]. Since the corruptions are not assumed to be i.i.d., the function ψ is different from the quantity $\sqrt{\frac{2}{\pi}}\left((1-p)+p \mathbb{E}\left[e^{-s_{i}^{2} / 2\|X\|_{\mathrm{F}}^{2}}\right]\right) \frac{X}{\|X\|_{\mathrm{F}}}$, which appears in [13, Lemma 3]. Moreover, we need to apply a (generalized) Chernoff bound for a sum of random variables with different sub-Gaussian parameters in the end of our proof rather than a concentration bound for i.i.d. random variables as done in [13, Lemma 4].

Proof of Proposition C.1. Without loss of generality, we only need to prove the bound holds for all $X \in \mathbb{S}_{r}$ with high probability. By Lemma I.8, we can find ϵ-nets $\mathbb{S}_{\epsilon, r} \subset \mathbb{S}_{r}, \mathbb{S}_{\epsilon, 1} \subset \mathbb{S}_{1}$ with respect to Frobenius norm and satisfy $\left|\mathbb{S}_{\epsilon, r}\right| \leq\left(\frac{9}{\epsilon}\right)^{(2 d+1) r},\left|\mathbb{S}_{\epsilon, 1}\right| \leq\left(\frac{9}{\epsilon}\right)^{2 d+1}$. For any $\bar{X} \in \mathbb{S}_{\epsilon, r}$, define $B_{r}(\bar{X}, \epsilon)=\left\{X \in \mathbb{S}_{r}:\|X-\bar{X}\|_{\mathrm{F}} \leq \epsilon\right\} . B_{1}(\bar{X}, \epsilon)$ is defined similarly by $B_{1}(\bar{X}, \epsilon)=$ $\left\{X \in \mathbb{S}_{1}:\|X-\bar{X}\|_{\mathrm{F}} \leq \epsilon\right\}$. Then, for any \bar{X}, \bar{Y} and $X \in B_{r}(\bar{X}, \epsilon), Y \in B_{1}(\bar{Y}, \epsilon)$, we have $\langle X, Y\rangle-\langle\bar{X}, \bar{Y}\rangle=\langle X, Y-\bar{Y}\rangle+\langle X-\bar{X}, \bar{Y}\rangle$. By bounding the two terms on the RHS of the previous equality via the Cauchy-Schwarz's inequality, we have

$$
\begin{equation*}
|\langle X, Y\rangle-\langle\bar{X}, \bar{Y}\rangle| \leq 2 \epsilon \tag{C.18}
\end{equation*}
$$

Let us also decompose the quantity of interest, $R:=\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right)\left\langle A_{i}, Y\right\rangle-$ $\psi(X)\langle X, Y\rangle$, into four terms:

$$
\begin{align*}
& R:=\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right)\left\langle A_{i}, Y\right\rangle-\psi(X)\langle X, Y\rangle \tag{C.19}\\
& =\underbrace{\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle A_{i}, \bar{X}\right\rangle-s_{i}\right)\left\langle A_{i}, \bar{Y}\right\rangle-\psi(\bar{X})\langle\bar{X}, \bar{Y}\rangle}_{=: R_{1}} \tag{C.20}\\
& +\underbrace{\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle A_{i}, \bar{X}\right\rangle-s_{i}\right)\left\langle A_{i}, Y\right\rangle-\operatorname{sign}\left(\left\langle A_{i}, \bar{X}\right\rangle-s_{i}\right)\left\langle A_{i}, \bar{Y}\right\rangle}_{=: R_{2}} \tag{C.21}\\
& +\underbrace{\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right)\left\langle A_{i}, Y\right\rangle-\operatorname{sign}\left(\left\langle A_{i}, \bar{X}\right\rangle-s_{i}\right)\left\langle A_{i}, Y\right\rangle}_{=: R_{3}} \tag{C.22}\\
& +\underbrace{\psi(\bar{X})\langle\bar{X}, \bar{Y}\rangle-\psi(X)\langle X, Y\rangle}_{=: R_{4}} \tag{C.23}
\end{align*}
$$

Recall our goal is to give a high probablity bound on $\sup _{X \in \mathbb{S}_{r}, Y \in \mathbb{S}_{1}}|R|$. To achieve this goal, we use the above decomposition and the triangle inequality, and have the following bound.

$$
\begin{align*}
& \sup _{X \in \mathbb{S}_{r}, Y \in \mathbb{S}_{1}}|R|=\sup _{\substack{\bar{X} \in \mathbb{S}_{\epsilon, r} \\
\bar{Y} \in \mathbb{S}_{\epsilon, 1}}} \sup _{\substack{ \\
Y \in B_{r}(\bar{X}, \epsilon) \\
(\bar{Y}, \epsilon)}}|R| \tag{C.24}\\
& \leq \underbrace{\sup _{\substack{\bar{X} \in \mathbb{S}_{\epsilon, r} \\
\bar{Y} \in \mathbb{S}_{\epsilon, 1}}}\left|R_{1}\right|}_{Z_{1}}+\underbrace{\sup _{\bar{X} \in \mathbb{S}_{\epsilon, r} Y \in B_{r}(\bar{Y}, \epsilon)} \operatorname{supp}_{\bar{Y} \in \mathbb{S}_{\epsilon, 1}}\left|R_{2}\right|}_{Z_{2}}+\underbrace{\sup _{\substack{\bar{X} \in \mathbb{S}_{\epsilon, r} X \in B_{r}(\bar{X}, \epsilon) \\
Y \in \mathbb{S}_{1}}}\left|\sup _{3}\right|}_{Z_{3}}+\underbrace{\sup _{\sup ^{\prime}}\left|R_{4}\right|}_{\substack{\bar{X} \in \mathbb{S}_{\epsilon, r} X \in B_{r}(\bar{X}, \epsilon) \\
\bar{Y} \in \mathbb{S}_{\epsilon, 1} Y \in B_{1}(\bar{Y}, \epsilon)}} \tag{C.25}
\end{align*}
$$

By C. 18 and $\psi(X)=\psi(\bar{X}) \leq 1$, we obtain

$$
\begin{equation*}
Z_{4} \leq 2 \epsilon \tag{C.26}
\end{equation*}
$$

Then we hope to bound Z_{1}, Z_{2}, Z_{3} separately. By union bound and Lemma C.4, we have $Z_{1} \leq \delta_{1}$ with probability at least $1-2\left|S_{\epsilon, r}\right|\left|S_{\epsilon, 1}\right| e^{-c m \delta_{1}^{2}}$. On the other hand, by ℓ_{1} / ℓ_{2}-rip (I.6),

$$
\begin{align*}
Z_{2} & \leq \sup _{\bar{Y} \in \mathbb{S}_{\epsilon, 1}, Y \in B_{1}(\bar{Y}, \epsilon)} \frac{1}{m} \sum_{i=1}^{m}\left|\left\langle A_{i}, Y-\bar{Y}\right\rangle\right| \tag{C.27}\\
& \leq \epsilon \sup _{Z \in \mathbb{S}_{2}} \frac{1}{m} \sum_{i=1}^{m}\left|\left\langle A_{i}, Z\right\rangle\right| \tag{C.28}\\
& \leq \epsilon\left(\sqrt{\frac{2}{\pi}}+\delta_{2}\right) \tag{C.29}
\end{align*}
$$

with probability at least $1-e^{-c m \delta_{2}^{2}}$, given $m \gtrsim d$. Moreover, by Cauchy-Schwartz inequality,
$Z_{3} \leq \sup _{\substack{\bar{X} \in S_{\epsilon, r} \\ X \in B_{r}(\bar{X}, \epsilon)}}\left(\frac{1}{m} \sum_{i=1}^{m}\left(\operatorname{sign}\left(\left\langle A_{i}, \bar{X}\right\rangle-s_{i}\right)-\operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right)^{2}\right)^{\frac{1}{2}} \sup _{Y \in \mathbb{S}_{1}}\left(\frac{1}{m} \sum_{i=1}^{m}\left\langle A_{i}, Y\right\rangle^{2}\right)^{\frac{1}{2}}\right.$.
By ℓ_{2}-rip (I.7), we know

$$
\begin{equation*}
\sup _{Y \in \mathbb{S}_{1}} \frac{1}{m} \sum_{i=1}^{m}\left\langle A_{i}, Y\right\rangle^{2} \leq 1+\delta_{3} \tag{C.30}
\end{equation*}
$$

with probability $1-C \exp (-D m)$ given $m \gtrsim \frac{1}{\delta_{3}^{2}} \log \left(\frac{1}{\delta_{3}}\right) d$. Note that $\operatorname{sign}\left(\left\langle A_{i}, \bar{X}\right\rangle-s_{i}\right)=$ $\operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right)$ if $\left|\left\langle A_{i}, X-\bar{X}\right\rangle\right| \leq\left|\left\langle A_{i}, \bar{X}\right\rangle-s_{i}\right|$, as a result, for any $t>0$,

$$
\begin{align*}
& \sup _{\substack{\bar{X} \in S_{\epsilon, r} \\
X \in B_{r}(\bar{X}, \epsilon)}} \frac{1}{m} \sum_{i=1}^{m}\left(\operatorname{sign}\left(\left\langle A_{i}, \bar{X}\right\rangle-s_{i}\right)-\operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right)\right)^{2} \tag{C.32}\\
\leq & \sup _{\substack{\bar{X} \in S_{\epsilon, r} \\
X \in B_{r}(\bar{X}, \epsilon)}} \frac{4}{m} \sum_{i=1}^{m} 1\left(\left|\left\langle A_{i}, X-\bar{X}\right\rangle\right| \geq\left|\left\langle A_{i}, \bar{X}\right\rangle-s_{i}\right|\right) \tag{C.33}\\
\leq & \sup _{\substack{\bar{X} \in S_{\epsilon, r} \\
X \in B_{r}(\bar{X}, \epsilon)}} \frac{4}{m} \sum_{i=1}^{m} 1\left(\left|\left\langle A_{i}, X-\bar{X}\right\rangle\right| \geq t\right)+1\left(\left|\left\langle A_{i}, \bar{X}\right\rangle-s_{i}\right| \leq t\right) \tag{C.34}\\
\leq & \underbrace{\sup _{Z \in \epsilon \mathbb{S}_{2 r}} \frac{4}{m} \sum_{i=1}^{m} 1\left(\left|\left\langle A_{i}, Z\right\rangle\right| \geq t\right)}_{Z_{5}}+\underbrace{\sup _{\bar{X} \in \mathbb{S}_{\epsilon, r}} \frac{4}{m} \sum_{i=1}^{m} 1\left(\left|\left\langle A_{i}, \bar{X}\right\rangle-s_{i}\right| \leq t\right)}_{Z_{6}} \tag{C.35}
\end{align*}
$$

For Z_{5}, we use the simple inequality $1\left(\left|\left\langle A_{i}, Z\right\rangle\right| \geq t\right) \leq \frac{\left|\left\langle A_{i}, Z\right\rangle\right|}{t}$ and ℓ_{1} / ℓ_{2}-rip (I.6) and obtain

$$
\begin{align*}
Z_{5} & \leq \sup _{Z \in \in \mathbb{S}_{2 r}} \frac{4}{m} \sum_{i=1}^{m} \frac{\left|\left\langle A_{i}, Z\right\rangle\right|}{t} \tag{C.36}\\
& \leq \sup _{Z \in \mathbb{S}_{2 r}} \frac{4 \epsilon}{m} \sum_{i=1}^{m} \frac{\left|\left\langle A_{i}, Z\right\rangle\right|}{t} \tag{C.37}\\
& \leq \frac{4 \epsilon\left(1+\delta_{4}\right)}{t} \tag{C.38}
\end{align*}
$$

with probability at least $1-e^{-c m \delta_{4}^{2}}$ given $m \gtrsim d r$.
For Z_{6}, we firstly use Chernoff's bound for each fixed \bar{X} and get

$$
\begin{equation*}
\frac{1}{m} \sum_{i=1}^{m} 1\left(\left|\left\langle A_{i}, \bar{X}\right\rangle-s_{i}\right| \leq t\right) \leq \mathbb{E}\left[1\left(\left|\left\langle A_{i}, \bar{X}\right\rangle-s_{i}\right| \leq t\right)\right]+\delta_{5} \tag{C.39}
\end{equation*}
$$

with probability at least $1-e^{c m \delta_{5}^{2}}$. On the other hand, for fixed $\bar{X} \in \mathbb{S}_{\epsilon, r},\left\langle A_{i}, \bar{X}\right\rangle$ is standard Gaussian. Since the density function of Gaussian is bounded above by $\frac{1}{2 \pi}$, we always have

$$
\begin{equation*}
\mathbb{E}\left[1\left(\left|\left\langle A_{i}, \bar{X}\right\rangle-s_{i}\right| \leq t\right)\right] \leq \frac{2}{\sqrt{2 \pi}} t \leq t \tag{C.40}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\frac{1}{m} \sum_{i=1}^{m} 1\left(\left|\left\langle A_{i}, \bar{X}\right\rangle-s_{i}\right| \leq t\right) \leq t+\delta_{5} \tag{C.41}
\end{equation*}
$$

with probability at least $1-e^{-c m \delta_{5}^{2}}$. By union bound, we have

$$
\begin{equation*}
Z_{6} \leq 4 t+4 \delta_{5} \tag{C.42}
\end{equation*}
$$

with probability at least $1-\left|\mathbb{S}_{\epsilon, r}\right| e^{-c m \delta_{5}^{2}}$. Combining, we have

$$
\begin{align*}
& \sup _{X, Y \in \mathbb{S}_{r}}\left|\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right)\left\langle A_{i}, Y\right\rangle-\psi(X)\langle X, Y\rangle\right| \tag{C.43}\\
& \leq \delta_{1}+\epsilon\left(\sqrt{\frac{2}{\pi}}+\delta_{2}\right)+\sqrt{1+\delta_{3}} \sqrt{\frac{4 \epsilon\left(1+\delta_{4}\right)}{t}+4 t+4 \delta_{5}}+2 \epsilon \tag{C.44}
\end{align*}
$$

with probability as least $1-2\left|S_{\epsilon, r}\right|\left|S_{\epsilon, 1}\right| e^{-c m \delta_{1}^{2}}-e^{-c m \delta_{2}^{2}}-C \exp (-D m)-e^{-c m \delta_{4}^{2}}-\left|\mathbb{S}_{\epsilon, r}\right| e^{-c m \delta_{5}^{2}}$, given $m \gtrsim \max \left\{\frac{1}{\delta_{3}^{2}} \log \left(\frac{1}{\delta_{3}}\right) d, d r\right\}$. Take $\delta_{1}=\delta, \delta_{2}=\delta_{3}=\delta_{4}=\frac{1}{2}, \delta_{5}=\delta^{2}, t=\delta^{2}, \epsilon=\delta^{4}$, we have

$$
\begin{equation*}
\sup _{X, Y \in \mathbb{S}_{r}}\left|\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right)\left\langle A_{i}, Y\right\rangle-\psi(X)\langle X, Y\rangle\right| \lesssim \delta \tag{C.45}
\end{equation*}
$$

with probability at least(given $m \gtrsim d r$)

$$
\begin{equation*}
1-2\left(\frac{9}{\delta^{4}}\right)^{(r+1)(2 d+1)} e^{-c m \delta^{2}}-C^{\prime} \exp \left(-D^{\prime} m\right)-\left(\frac{9}{\delta^{4}}\right)^{(2 d+1) r} e^{-c m \delta^{4}} \tag{C.46}
\end{equation*}
$$

Given $m \gtrsim d r \delta^{4} \log \left(\frac{1}{\delta}\right)$, we have

$$
\begin{align*}
& 2\left(\frac{9}{\delta^{4}}\right)^{(r+1)(2 d+1)} e^{-c m \delta^{2}}+C^{\prime} \exp \left(-D^{\prime} m\right)+\left(\frac{9}{\delta^{4}}\right)^{(2 d+1) r} e^{-c m \delta^{4}} \tag{C.47}\\
\lesssim & \exp \left(8 r(2 d+1) \log \left(\frac{9}{\delta}\right)-c m \delta\right)+\exp \left(4 r(2 d+1) \log \left(\frac{9}{\delta}\right)-c m \delta^{4}\right) \tag{C.48}\\
\lesssim & \exp \left(-c^{\prime} m \delta^{4}\right) \tag{C.49}
\end{align*}
$$

So if $m \gtrsim d r \delta^{4} \log \left(\frac{1}{\delta}\right)$,

$$
\begin{equation*}
\sup _{X \in \mathbb{S}_{r}, Y \in \mathbb{S}_{1}}\left|\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right)\left\langle A_{i}, Y\right\rangle-\psi(X)\langle X, Y\rangle\right| \lesssim \delta \tag{C.50}
\end{equation*}
$$

with probability at least $1-C \exp \left(-c^{\prime} m \delta^{4}\right)$. This implies

$$
\begin{equation*}
\sup _{X \in \mathbb{S}_{r}}\left\|\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right) A_{i}-\psi(X) X\right\| \lesssim \delta \tag{C.51}
\end{equation*}
$$

by variational expression of operator norm. The proof is complete since we only need to prove RDPP for matrices with unit Frobenius norm.

Proposition C.1] is an analogue of [13, Proposition 5]. Note that the function ψ is different from the function ψ in [13, Proposition 5] as the corruptions are not assumed to be i.i.d. in this paper. Our proof also deviates from the proof of [13, Proposition 5] in bounding the term Z_{5}, which appears in (C.35). This term corresponds to the first term on the RHS of the last line of eq. (38) in [13]. In [13], this term is bounded by [13, Lemma 8] using empirical processes tools such as Talagrand's inequality. Here, we bound the term Z_{5} using a simple contraction argument (stated as an inline inequality before (C.36) and the ℓ_{1} / ℓ_{2}-RIP; see (C.36-(C.38).

C. 2 Proof of Proposition C. 2

We assume for simplicity that $p m$ and $(1-p) m$ are integers. Note that

$$
\begin{align*}
& \frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right) A_{i}-\psi(X) \frac{X}{\|X\|_{\mathrm{F}}} \tag{C.52}\\
= & \frac{1}{m} \sum_{i \in S} \operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right) A_{i}+\frac{1}{m} \sum_{i \notin S} \operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right) A_{i}-\sqrt{\frac{2}{\pi}} \frac{X}{\|X\|_{\mathrm{F}}} \tag{C.53}\\
= & \underbrace{\frac{1}{m} \sum_{i \in S} \operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right) A_{i}}_{Z_{1}}+\underbrace{\frac{1}{m} \sum_{i \notin S} \operatorname{sign}\left(\left\langle A_{i}, X\right\rangle\right) A_{i}-(1-p) \sqrt{\frac{2}{\pi}} \frac{X}{\|X\|_{\mathrm{F}}}}_{Z_{2}} \tag{C.54}\\
& -\underbrace{p \sqrt{\frac{2}{\pi}} \frac{X}{\|X\|_{\mathrm{F}}}}_{Z_{3}} \tag{C.55}
\end{align*}
$$

We bound Z_{1}, Z_{2}, Z_{3} separately.

- For Z_{1}, we observe the following fact: let $e_{i} \in\{-1,1\}$ be sign variables. For any fixed $\left\{e_{i}\right\}_{i \in S}, \sum_{i \in S} e_{i} A_{i}$ is a GOE matrix with $N(0, p m)$ diagonal elements and $N\left(0, \frac{p m}{2}\right)$ off-diagonal elements. By lemma I.10, we have

$$
\begin{equation*}
P\left(\left\|\sum_{i \in S} e_{i} A_{i}\right\| \geq \sqrt{p m}(\sqrt{d}+t)\right) \leq e^{-\frac{t^{2}}{2}} \tag{C.56}
\end{equation*}
$$

Take $t=2 \sqrt{p m+d}$, we obtain

$$
\begin{equation*}
P\left(\left\|\sum_{i \in S} e_{i} A_{i}\right\| \geq \sqrt{p m}(\sqrt{d}+2 \sqrt{p m+d})\right) \leq e^{-2(p m+d)} \tag{C.57}
\end{equation*}
$$

As a result, by union bound(the union of all the possible signs), with probability at least $1-2^{p m} e^{-2(p m+d)} \geq 1-e^{-(p m+d)}$,

$$
\begin{equation*}
\left\|\sum_{i \in S} \operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right) A_{i}\right\| \leq \sqrt{p m}(\sqrt{d}+2 \sqrt{p m+d}) \tag{C.58}
\end{equation*}
$$

for any X. Note also that $\sqrt{d}+2 \sqrt{p m+d} \leq 3 \sqrt{d}+2 \sqrt{p m}$, so with probability at least $1-\exp (-(p m+d))$,

$$
\begin{equation*}
\left\|Z_{1}\right\| \leq 3 \sqrt{\frac{d p}{m}}+2 p \tag{C.59}
\end{equation*}
$$

for any X.

- For Z_{2}, applying Proposition C. 1 with zero corruption and the assumption that $p<\frac{1}{2}$, we obtain that with probability exceeding $1-\exp \left(-c m(1-p) \delta^{2}\right) \geq 1-\exp \left(-c^{\prime} m \delta^{4}\right)$, the following holds for all matrix X with rank at most r,

$$
\begin{equation*}
\left\|\frac{1}{(1-p) m} \sum_{i \notin S} \operatorname{sign}\left(\left\langle A_{i}, X\right\rangle\right) A_{i}-\sqrt{\frac{2}{\pi}} \frac{X}{\|X\|_{\mathrm{F}}}\right\| \leq \delta \tag{C.60}
\end{equation*}
$$

given $m \gtrsim \frac{d r\left(\log \left(\frac{1}{\delta}\right) \vee 1\right)}{\delta^{4}}$. Consequently, given $m \gtrsim \frac{d r\left(\log \left(\frac{1}{\delta}\right) \vee 1\right)}{\delta^{4}}$, with probability exceeding $1-\exp \left(-c m(1-p) \delta^{2}\right) \geq 1-\exp \left(-c^{\prime} m \delta^{4}\right)$,

$$
\begin{equation*}
\left\|Z_{2}\right\| \leq \delta \tag{C.61}
\end{equation*}
$$

for any X with rank at most r.

- For Z_{3}, we have a deterministic bound

$$
\begin{equation*}
\left\|Z_{3}\right\| \leq \sqrt{\frac{2}{\pi}} p \tag{C.62}
\end{equation*}
$$

Combining, we obtain that given $m \gtrsim \frac{d r\left(\log \left(\frac{1}{\delta}\right) \vee 1\right)}{\delta^{4}}$, then with probability exceeding $1-\exp (-(p m+d))-\exp \left(-c^{\prime} m \delta^{4}\right)$,

$$
\begin{equation*}
\left\|\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right) A_{i}-\psi(X) \frac{X}{\|X\|_{\mathrm{F}}}\right\| \leq 3 \sqrt{\frac{d p}{m}}+3 p+\delta \tag{C.63}
\end{equation*}
$$

for any X with rank at most r.

D Choice of stepsize

First, we present a proposition that is the cornerstone for the choice of stepsize.
Proposition D.1. Fix $p \in(0,1), \epsilon \in(0,1)$. If $m \geq c_{0}\left(\epsilon^{-2} \log \epsilon^{-1}\right) d r \log d$ for some large enough constant c_{0}, then with probability at least $1-c_{1} \exp \left(-c_{2} m \epsilon^{2}\right)$, where c_{1} and c_{2} are some constants, we have for all symmetric matrix $G \in \mathbb{R}^{d \times d}$ with rank at most r,

$$
\begin{equation*}
\xi_{p}\left(\left\{\left|\left\langle A_{i}, G\right\rangle\right|\right\}_{i=1}^{m}\right) \in\left[\theta_{p}-2 \epsilon, \theta_{p}+2 \epsilon\right]\|G\|_{\mathrm{F}} \tag{D.1}
\end{equation*}
$$

where $\xi_{p}\left(\left\{\left|\left\langle A_{i}, G\right\rangle\right|\right\}_{i=1}^{m}\right)$ is p-quantile of samples. (see Definition 5.1 in [4|)
Next, we prove a proposition that can be used to estimate $\left\|F_{t} F_{t}^{\top}-X^{*}\right\|_{\mathrm{F}}$ and $\left\|X^{*}\right\|_{\mathrm{F}}$ under corruption model 1 .
Proposition D.2. Suppose we are under model 1 and $y_{i}=\left\langle A_{i}, G\right\rangle+s_{i}$'s are given. Fix $\epsilon<0.1$ and corruption probability $p<0.1$. Then if $m \geq c_{0}\left(\epsilon^{-2} \log \epsilon^{-1}\right) d r \log d$ for some large enough constant c_{0}, then with probability at least $1-c_{1} \exp \left(-c_{2} m \epsilon^{2}\right)$, where c_{1} and c_{2} are some constants, we have for any symmetric matrix $G \in \mathbb{R}^{d \times d}$ with rank at most r,

$$
\begin{align*}
\xi_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right) & \in\left[\theta_{\frac{1}{2}-p-\epsilon}, \theta_{\frac{1}{2}+p+\epsilon}\right]\|G\|_{\mathrm{F}} \tag{D.2}\\
& \subset\left[\theta_{\frac{1}{2}}-L(p+\epsilon), \theta_{\frac{1}{2}}+L(p+\epsilon)\right]\|G\|_{\mathrm{F}} \tag{D.3}
\end{align*}
$$

where $L>0$ is some universal constant.
The following proposition can be used to estimate $\left\|F_{t} F_{t}^{\top}-X^{*}\right\|_{\mathrm{F}}$ and $\left\|X^{*}\right\|_{\mathrm{F}}$ under corruption model 2
Proposition D.3. Suppose we are under model 2 and $y_{i}=\left\langle A_{i}, G\right\rangle+s_{i}$'s are given. Fix corruption probability $p<0.5$. Let $\epsilon=\frac{0.5-p}{3}$. Then if $m \geq c_{0} d r \log d$ for some large enough constant c_{0} depending on p, then with probability at least $1-c_{1} \exp \left(-c_{2} m \epsilon^{2}\right)$, where c_{1} and c_{2} are some constants, we have for all symmetric matrix $G \in \mathbb{R}^{d \times d}$ with rank at most r,

$$
\begin{equation*}
\xi_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right) \in\left[\theta_{\frac{0.5-p}{3}}, \theta_{1-\frac{0.5-p}{3}}\right]\|G\|_{\mathrm{F}} \tag{D.4}
\end{equation*}
$$

D. 1 Proof of Proposition D. 1

The proof is modified from Proposition 5.1 in [4]. We first note $\left\langle A_{i}, G\right\rangle \sim N\left(0,\|G\|_{\mathrm{F}}^{2}\right)$ and

$$
\begin{equation*}
\theta_{p}\left(\left|N\left(0,\|G\|_{\mathrm{F}}^{2}\right)\right|\right)=\theta_{p} \cdot\|G\|_{\mathrm{F}} \tag{D.5}
\end{equation*}
$$

Here $\theta_{p}\left(\left|N\left(0,\|G\|_{\mathrm{F}}^{2}\right)\right|\right)$ denote the p-quantile of folded $N\left(0,\|G\|_{\mathrm{F}}^{2}\right)$. It suffices to prove the bound for all symmetric matrices that have rank at most r and unit Frobenius norm. For each fixed symmetric G_{0} with $\left\|G_{0}\right\|_{\mathrm{F}}=1$, we know from Lemma I. 9 that

$$
\begin{equation*}
\xi_{p}\left(\left\{\left|\left\langle A_{i}, G\right\rangle\right|\right\}_{i=1}^{m}\right) \in\left[\theta_{p}-\epsilon, \theta_{p}+\epsilon\right] \tag{D.6}
\end{equation*}
$$

with probability at least $1-2 \exp \left(-c m \epsilon^{2}\right)$ for some constant c that depends on p. Next, we extend this result to all symmetric matrices with rank at most r via a covering argument. Let $S_{\tau, r}$ be a
τ-net for all symmetric matrices with rank at most r and unit Frobenius norm. By Lemma [.8 $\left|S_{\tau, r}\right| \leq\left(\frac{9}{\tau}\right)^{r(2 d+1)}$. Taking union bound, we obtain

$$
\begin{equation*}
\xi_{p}\left(\left\{\left|\left\langle A_{i}, G_{0}\right\rangle\right|\right\}_{i=1}^{m}\right) \in\left[\theta_{p}-\epsilon, \theta_{p}+\epsilon\right], \quad \forall G_{0} \in \mathbb{S}_{\tau, r} \tag{D.7}
\end{equation*}
$$

with probability at least $1-2\left(\frac{9}{\tau}\right)^{r(2 d+1)} \exp \left(-c m \epsilon^{2}\right)$. Set $\tau=\epsilon /(2 \sqrt{d(d+m)})$. Under this event and the event that

$$
\begin{equation*}
\max _{i=1,2, \ldots, m}\left\|A_{i}\right\|_{\mathrm{F}} \leq 2 \sqrt{d(d+m)} \tag{D.8}
\end{equation*}
$$

which holds with probability at least $1-m \exp (-d(d+m) / 2)$ by Lemma I.12 for any rank-r matrix G with $\|G\|_{\mathrm{F}}=1$, there exists $G_{0} \in \mathbb{S}_{\tau, r}$ such that $\left\|G-G_{0}\right\|_{\mathrm{F}} \leq \tau$, and

$$
\begin{align*}
\left|\xi_{p}\left(\left\{\left|\left\langle A_{i}, G\right\rangle\right|\right\}_{i=1}^{m}\right)-\xi_{p}\left(\left\{\left|\left\langle A_{i}, G_{0}\right\rangle\right|\right\}_{i=1}^{m}\right)\right| & \leq \max _{i=1,2, \ldots, m}\left\|\left\langle A_{i}, G\right\rangle|-|\left\langle A_{i}, G_{0}\right\rangle\right\| \tag{D.9}\\
& \leq \max _{i=1,2, \ldots, m}\left|\left\langle A_{i}, G-G_{0}\right\rangle\right| \tag{D.10}\\
& \leq\left\|G_{0}-G\right\|_{\mathrm{F}} \max _{i=1,2, \ldots, m}\left\|A_{i}\right\|_{\mathrm{F}} \tag{D.11}\\
& \leq \tau 2 \sqrt{d(d+m)} \tag{D.12}\\
& \leq \epsilon . \tag{D.13}
\end{align*}
$$

The first inequality follows from Lemma [.13. Combining with (D.6), we obtain that for all symmetric with rank at most r and unit Frobenius norm,

$$
\begin{equation*}
\xi_{p}\left(\left\{\left|\left\langle A_{i}, G\right\rangle\right|\right\}_{i=1}^{m}\right) \in\left[\theta_{p}-2 \epsilon, \theta_{p}+2 \epsilon\right] . \tag{D.14}
\end{equation*}
$$

The rest of the proof is to show that the above bound holds with probability at least $1-c_{1} \exp \left(-c_{2} m \epsilon^{2}\right)$ for some constants c_{1} and c_{2} which follows exactly the same argument as proof of Proposition 5.2 in [4].

D. 2 Proof of Proposition D. 2

Let $\tilde{y}_{i}=\left\langle A_{i}, G\right\rangle$ be clean samples. By lemma I.14, we have

$$
\begin{equation*}
\xi_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right) \in\left[\xi_{\frac{1}{2}-p}\left(\left\{\left|\tilde{y}_{i}\right|\right\}_{i=1}^{m}\right), \xi_{\frac{1}{2}+p}\left(\left\{\left|\tilde{y}_{i}\right|\right\}_{i=1}^{m}\right)\right] \tag{D.15}
\end{equation*}
$$

Moreover, applying Proposition D.1 to $\left(\xi_{\frac{1}{2}-p}\left(\left\{\left|\tilde{y}_{i}\right|\right\}_{i=1}^{m}\right), \frac{\epsilon}{2}\right)$ and $\left(\xi_{\frac{1}{2}+p}\left(\left\{\left|\tilde{y}_{i}\right|\right\}_{i=1}^{m}\right), \frac{\epsilon}{2}\right)$, we know that if $m \gtrsim\left(\epsilon^{-2} \log \epsilon^{-1}\right) d r \log d$, the we can find constants c_{1}, c_{2} that with probability at least $1-c_{1} \exp \left(-c_{2} m \epsilon^{2}\right)$,

$$
\begin{equation*}
\xi_{\frac{1}{2}-p}\left(\left\{\left|\tilde{y}_{i}\right|\right\}_{i=1}^{m}\right) \geq \theta_{\frac{1}{2}-p-\epsilon}\|G\|_{\mathrm{F}}, \quad \xi_{\frac{1}{2}+p}\left(\left\{\left|\tilde{y}_{i}\right|\right\}_{i=1}^{m}\right) \leq \theta_{\frac{1}{2}+p-\epsilon}\|G\|_{\mathrm{F}} \tag{D.16}
\end{equation*}
$$

holds for any symmetric matrix G with rank at most r. Combining, we obtain

$$
\begin{equation*}
\xi_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right) \in\left[\theta_{\frac{1}{2}-p-\epsilon}, \theta_{\frac{1}{2}+p+\epsilon}\right]\|G\|_{\mathrm{F}} \tag{D.17}
\end{equation*}
$$

In addition, we easily see that $p \rightarrow \theta_{p}$ is a Lipschitz function with some universal Lipschitz constant L in interval $[0.3,0.7]$. As a result,

$$
\begin{equation*}
\left[\theta_{\frac{1}{2}-p-\epsilon}, \theta_{\frac{1}{2}+p+\epsilon}\right]\|G\|_{\mathrm{F}} \subset\left[\theta_{\frac{1}{2}}-L(p+\epsilon), \theta_{\frac{1}{2}}+L(p+\epsilon)\right]\|G\|_{\mathrm{F}} \tag{D.18}
\end{equation*}
$$

We are done.

D. 3 Proof of Proposition D. 3

Let z_{i} be the indicator random variable that

$$
z_{i}= \begin{cases}1 & s_{i} \text { is drawn from some corruption distribution } \mathbb{P}_{i} \tag{D.19}\\ 0 & s_{i}=0\end{cases}
$$

Under corruption model $1, z_{i}$'s are i.i.d. Bernoulli random variables with parameter p. By standard Chernoff inequality, we obtain

$$
\begin{align*}
P\left(\sum_{i=1}^{m} z_{i}-p m \geq \frac{0.5-p}{3} m\right) & =P\left(\sum_{i=1}^{m} z_{i}-p m \geq \epsilon m\right) \tag{D.20}\\
& \leq \exp \left(-m \epsilon^{2} / 2\right) . \tag{D.21}
\end{align*}
$$

Therefore, with probability at least $1-\exp \left(-m \epsilon^{2} / 2\right)$, the corruption fraction is less than $p+\frac{0.5-p}{3}$. Let $\tilde{y}_{i}=\left\langle A_{i}, G\right\rangle$ be clean samples. By LemmaI.14, we have

$$
\begin{equation*}
\xi_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right) \in\left[\xi_{\frac{1}{2}-p-\frac{0.5-p}{3}}\left(\left\{\left|\tilde{y}_{i}\right|\right\}_{i=1}^{m}\right), \xi_{\frac{1}{2}+p+\frac{0.5-p}{3}}\left(\left\{\left|\tilde{y}_{i}\right|\right\}_{i=1}^{m}\right)\right]\|G\|_{\mathrm{F}} \tag{D.22}
\end{equation*}
$$

In addition, applying Proposition D.1 $\mathrm{to}\left(\xi_{\frac{1}{2}-p-\frac{0.5-p}{3}}\left(\left\{\left|\tilde{y}_{i}\right|\right\}_{i=1}^{m}\right), \frac{\epsilon}{2}\right)$ and $\left(\xi_{\frac{1}{2}+p+\frac{0.5-p}{3}}\left(\left\{\left|\tilde{y}_{i}\right|\right\}_{i=1}^{m}\right), \frac{\epsilon}{2}\right)$, we know that $\left(\epsilon=\frac{0.5-p}{3}\right)$ if $m \gtrsim\left(\epsilon^{-2} \log \epsilon^{-1}\right) d r \log d \gtrsim d r \log d$, the we can find constants c_{1}, c_{2} that with probability at least $1-c_{1} \exp \left(-c_{2} m \epsilon^{2}\right)$,

$$
\begin{align*}
& \xi_{\frac{1}{2}-p-\frac{0.5-p}{3}}\left(\left\{\left|\tilde{y}_{i}\right|\right\}_{i=1}^{m}\right) \geq \theta_{\frac{1}{2}-p-\frac{0.5-p}{3}-\epsilon}\|G\|_{\mathrm{F}}, \tag{D.23}\\
& \xi_{\frac{1}{2}+p+\frac{0.5-p}{3}}\left(\left\{\left|\tilde{y}_{i}\right|\right\}_{i=1}^{m}\right) \leq \theta_{\frac{1}{2}+p+\frac{0.5-p}{3}+\epsilon}\|G\|_{\mathrm{F}} \tag{D.24}
\end{align*}
$$

holds for any symmetric matrix G with rank at most r. Plug in $\epsilon=\frac{0.5-p}{3}$, we obtain

$$
\begin{equation*}
\xi_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right) \in\left[\theta_{\frac{0.5-p}{3}}, \theta_{1-\frac{0.5-p}{3}}\right]\|G\|_{\mathrm{F}} \tag{D.25}
\end{equation*}
$$

for any symmetric G with rank at most r with the desired probability.

E Proof of Initialization

Throughout this section, we denote

$$
\mathbb{S}:=\left\{X \in \mathcal{S}^{d \times d}:\|X\|_{\mathrm{F}}=1\right\}, \quad \mathbb{S}_{r}:=\left\{X \in \mathcal{S}^{d \times d}:\|X\|_{\mathrm{F}}=1, \operatorname{rank}(X) \leq r\right\}
$$

Recall that, we construct the matrix

$$
D=\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(y_{i}\right) A_{i}
$$

Based on this, we consider its eigen decomposition

$$
D=U \Sigma U^{\top}
$$

Let Σ_{+}^{k} be the top $k \times k$ submatrix of Σ, whose diagonal entries correspond to k largest eigenvalues of Σ with negative values replaced by 0 . Accordingly, we let $U_{k} \in \mathbb{R}^{d \times k}$ be the submatrix of U, formed by its leftmost k columns. Then we cook up a key ingredient of initialization:

$$
B=U_{k}\left(\Sigma_{+}^{k}\right)^{1 / 2}
$$

In the following, we show that the initialization is close to the ground truth solution.
Proposition E. 1 (random corruption). Let F_{0} be the output of Algorithm 1 Fix constant $c_{0}<0.1$. For Model 2 with a fixed $p<0.5$ and $m \geq c_{1} d r \kappa^{4}(\log \kappa+\log r) \log d$. Then

$$
\begin{equation*}
\left\|F_{0} F_{0}^{\top}-c^{*} X_{\natural}\right\| \leq c_{0} \sigma_{r} / \kappa \tag{E.1}
\end{equation*}
$$

 c_{1}, c_{2}, c_{3} depend only on p and c_{0}.

Proof. By Lemma E. 1 with $\delta=\frac{c_{0}}{3 \theta_{1-\frac{0.5-p}{3}}} \frac{\sigma_{r}}{\sigma_{1} \kappa \sqrt{r}}$ and Proposition D.3, we know that there exists constants c_{1}, c_{2}, c_{3} depending on p and c_{0} such that whenever $m \geq c_{1} d r \kappa^{4}(\log \kappa+\log r) \log d$, then with probability at least $1-c_{2} \exp \left(-\frac{c_{3} m}{\kappa^{4} r}\right)$, we have

$$
\begin{equation*}
\left\|B B^{\top}-\psi\left(X_{\natural}\right) X_{\natural} /\right\| X_{\natural}\left\|_{F}\right\| \leq \frac{c_{0}}{\theta_{1-\frac{0.5-p}{3}}} \frac{\sigma_{r}}{\sigma_{1} \kappa \sqrt{r}} \tag{E.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right) \in\left[\theta_{\frac{0.5-p}{3}}, \theta_{1-\frac{0.5-p}{3}}\right]\left\|X_{\text {匕 }}\right\|_{F} . \tag{E.3}
\end{equation*}
$$

Combing with the fact that $\psi\left(X_{\natural}\right) \in\left[\sqrt{\frac{1}{2 \pi}}, \sqrt{\frac{2}{\pi}}\right]$, we obtain

$$
\begin{align*}
& \left\|\frac{\xi_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right)}{\theta_{\frac{1}{2}}} B B^{\top}-\frac{\xi_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right)}{\theta_{\frac{1}{2}}} \psi\left(X_{\text {ఛ }}\right) X_{\text {ఛ }} /\right\| X_{\text {দ }}\left\|_{F}\right\| \tag{E.4}\\
\leq & \frac{c_{0}}{\theta_{1-\frac{0.5-p}{3}}(F)} \frac{\sigma_{r}}{\sigma_{1} \kappa \sqrt{r}} \frac{\xi_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right)}{\theta_{\frac{1}{2}}} \tag{E.5}\\
\leq & \frac{c_{0}}{\theta_{1-\frac{0.5-p}{3}}(F)} \frac{\sigma_{r}}{\sigma_{1} \kappa \sqrt{r}} \frac{\theta_{1-\frac{0.5-p}{3}}^{\theta_{\frac{1}{2}}}\left\|X_{\text {匕 }}\right\|_{\mathrm{F}}}{} \tag{E.6}\\
\leq & c_{0} \frac{\sigma_{r}}{\sigma_{1} \kappa \sqrt{r}} \sqrt{r} \sigma_{1} \tag{E.7}\\
\leq & c_{0} \sigma_{r} / \kappa \tag{E.8}
\end{align*}
$$

Let $c_{*}=\frac{\xi_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right) \psi\left(X_{\natural}\right)}{\theta_{\frac{1}{2}}\left\|X_{\natural}\right\|_{F}}$, clearly we have

$$
\begin{equation*}
c^{*} \in\left[(1-p) \theta_{\frac{0.5-p}{3}}(F), \theta_{1-\frac{0.5-p}{3}}(F)\right] \subset\left[\frac{1}{2} \theta_{\frac{0.5-p}{3}}(F), \theta_{1-\frac{0.5-p}{3}}(F)\right] \tag{E.9}
\end{equation*}
$$

The result follows.
Lemma E. 1 (random corrpution). Suppose we are under model 2 with fixed $p<0.5$, and we are given $\delta \leq \frac{1}{10 \kappa \sqrt{r}}$. Then we have universal constants c_{1}, c_{2}, c_{3} such that whenever $m \geq c_{1} \frac{d\left(\log \left(\frac{1}{\delta}\right) \vee 1\right)}{\delta^{2}}$, with probability at least $1-c_{2} \exp \left(-c_{3} m \delta^{2}\right)$, we have $\tilde{X}_{0}=B B^{\top}$ satisfying the following

$$
\begin{equation*}
\left\|\tilde{X}_{0}-\bar{X}\right\| \leq 3 \delta \tag{E.10}
\end{equation*}
$$

where $\bar{X}=\psi\left(X_{\natural}\right) X_{\natural} /\left\|X_{\natural}\right\|_{F}$, and $\psi(X)=\frac{1}{m} \sum_{i=1}^{m} \sqrt{\frac{2}{\pi}}\left(1-p+p \mathbb{E}_{s_{i} \sim \mathbb{P}_{i}}\left[\exp \left(-\frac{s_{i}^{2}}{2\|X\|_{\mathrm{F}}^{2}}\right)\right]\right)$.
Proof. By LemmaE.2, we know that with probability at least $1-C \exp \left(-c^{\prime} m \delta^{2}\right)$,

$$
\begin{equation*}
\|D-\bar{X}\| \leq \delta \tag{E.11}
\end{equation*}
$$

Here c^{\prime} and C are some universal constants. On the other hand, $\psi\left(X_{\natural}\right) \geq(1-p) \sqrt{\frac{2}{\pi}} \geq \sqrt{\frac{1}{2 \pi}}$, so $\lambda_{r}(\bar{X}) \geq \sqrt{\frac{1}{2 \pi}} \frac{\sigma_{r}}{\sigma_{1} \sqrt{r}}=\sqrt{\frac{1}{2 \pi}} \frac{1}{\kappa \sqrt{r}}$. By LemmaI.3 and our assumption that $\delta \leq \frac{1}{10 \kappa \sqrt{r}}$, we know that the top r eigenvalues of D are positive. Let C be the best symmetric rank r approximation of D with $\lambda_{r}(C)>0$ and

$$
U_{k}=\left[\begin{array}{ll}
U_{r} & U_{k-r} \tag{E.12}
\end{array}\right]
$$

then we can write

$$
\begin{equation*}
B B^{\top}=C+U_{k-r} \Sigma_{k-r} U_{k-r}^{\top} \tag{E.13}
\end{equation*}
$$

where $\Sigma_{k-r}=\operatorname{diag}\left(\left(\lambda_{r+1}(D)\right)_{+}, \cdots,\left(\lambda_{k}(D)\right)_{+}\right)$. Then we have

$$
\begin{equation*}
\left\|B B^{\top}-\bar{X}\right\| \leq\|C-\bar{X}\|+\left\|\Sigma_{k-r}\right\| \tag{E.14}
\end{equation*}
$$

Finally, given that C is the best symmetric rank- r approximation of D, we have

$$
\begin{equation*}
\|C-D\| \leq \sigma_{r+1}(D)=\left|\sigma_{r+1}(D)-\sigma_{r+1}(\bar{X})\right| \leq\|D-\bar{X}\| \leq \delta \tag{E.15}
\end{equation*}
$$

where for the equality, we used the fact that $\sigma_{r+1}(\bar{X})=0$. Combining, we obtain

$$
\begin{equation*}
\|C-\bar{X}\| \leq\|C-D\|+\|D-\bar{X}\| \leq 2 \delta \tag{E.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\Sigma_{k-r}\right\| \leq\|D-\bar{X}\| \leq \delta \tag{E.17}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
\left\|B B^{\top}-\bar{X}\right\| \leq 3 \delta \tag{E.18}
\end{equation*}
$$

with probability at least $1-C \exp \left(-c^{\prime} m \delta^{2}\right)$, given $m \gtrsim \frac{d\left(\log \left(\frac{1}{\delta}\right) \vee 1\right)}{\delta^{2}}$.

Lemma E. 2 (perturbation bound under random corruption). For any $\delta>0$, whenever $m \gtrsim$ $\frac{d\left(\log \left(\frac{1}{\delta}\right) \vee 1\right)}{\delta^{2}}$, we have

$$
\begin{equation*}
\|D-\bar{X}\| \leq \delta \tag{E.19}
\end{equation*}
$$

holds with probability at least $1-C \exp \left(-c^{\prime} m \delta^{2}\right)$. Here, $\bar{X}=\psi\left(X_{\natural}\right) X_{\natural} /\left\|X_{\natural}\right\|_{F}$, and c^{\prime}, and $C>0$ are some positive numerical constants.

Proof. Without loss of generality, we assume $\left\|X_{\mathrm{t}}\right\|_{\mathrm{F}}=1$. First, we prove $\|D-\bar{X}\| \leq \delta$ by invoking Lemma C.4 then follow by a union bound. For each $Y \in \mathbb{S}_{1}$, let $B_{1}(\bar{Y}, \epsilon)=\{Z \in$ $\left.\mathbb{S}_{1}:\|Z-\bar{Y}\|_{\mathrm{F}} \leq \epsilon\right\}$. By Lemma I.8, we can always find an ϵ-net $\mathbb{S}_{\epsilon, 1} \subset \mathbb{S}_{1}$ with respect to Frobenius norm and satisfy $\left|\mathbb{S}_{\epsilon, 1}\right| \leq\left(\frac{9}{\epsilon}\right)^{2 d+1}$. Based on the ϵ-net and triangle inequality, one has

$$
\begin{align*}
\|D-\bar{X}\| & =\sup _{Y \in \mathbb{S}_{1}}\left|\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle A_{i}, X_{\natural}\right\rangle+s_{i}\right)\left\langle A_{i}, Y\right\rangle-\psi\left(X_{\natural}\right)\left\langle X_{\natural}, Y\right\rangle\right| \tag{E.20}\\
& =\sup _{\bar{Y} \in \mathbb{S}_{\epsilon, 1}} \sup _{Y \in B_{1}(\bar{Y}, \epsilon)}\left|\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle A_{i}, X_{\natural}\right\rangle+s_{i}\right)\left\langle A_{i}, Y\right\rangle-\psi\left(X_{\natural}\right)\left\langle X_{\natural}, Y\right\rangle\right| \tag{E.21}\\
& \leq \underbrace{\sup _{\bar{Y} \in \mathbb{S}_{\epsilon, 1}}\left|\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle A_{i}, X_{\natural}\right\rangle+s_{i}\right)\left\langle A_{i}, \bar{Y}\right\rangle-\psi\left(X_{\natural}\right)\left\langle X_{\natural}, \bar{Y}\right\rangle\right|}_{Z_{1}} \tag{E.22}\\
& +\underbrace{\sup _{\bar{Y} \in \mathbb{S}_{\epsilon, 1}} \sup _{Y \in B_{r}(\bar{Y}, \epsilon)}\left|\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle A_{i}, X_{\natural}\right\rangle+s_{i}\right)\left\langle A_{i}, Y\right\rangle-\operatorname{sign}\left(\left\langle A_{i}, X_{\natural}\right\rangle+s_{i}\right)\left\langle A_{i}, \bar{Y}\right\rangle\right|}_{Z_{2}} \tag{E.23}\\
& +\underbrace{\sup _{Y \in B_{1}(\bar{Y}, \epsilon)}\left|\psi\left(X_{\natural}\right)\left\langle X_{\natural}, \bar{Y}\right\rangle-\psi\left(X_{\natural}\right)\left\langle X_{\natural}, Y\right\rangle\right|}_{\bar{Y} \in \mathbb{S}_{\epsilon, 1}} \tag{E.24}
\end{align*}
$$

Since $\psi(X)=\psi(\bar{X}) \leq 1$, we obtain

$$
\begin{equation*}
Z_{3} \leq\left\|X_{\natural}\right\|_{\mathrm{F}}\|\bar{Y}-Y\|_{\mathrm{F}} \leq \epsilon \tag{E.25}
\end{equation*}
$$

Then we hope to bound Z_{1}, Z_{2} separately. By union bound and LemmaC. 4 , we have $Z_{1} \leq \tilde{\delta}$ with probability at least $1-2\left|S_{\epsilon, 1}\right| e^{-c m \tilde{\delta}^{2}}$. On the other hand, by ℓ_{1} / ℓ_{2}-rip I.6,

$$
\begin{align*}
Z_{2} & \leq \sup _{\bar{Y} \in \mathbb{S}_{\epsilon, 1}, Y \in B_{1}(\bar{Y}, \epsilon)} \frac{1}{m} \sum_{i=1}^{m}\left|\left\langle A_{i}, Y-\bar{Y}\right\rangle\right| \tag{E.26}\\
& \leq \epsilon \sup _{Z \in \mathbb{S}_{2}} \frac{1}{m} \sum_{i=1}^{m}\left|\left\langle A_{i}, Z\right\rangle\right| \tag{E.27}\\
& \leq \epsilon\left(\sqrt{\frac{2}{\pi}}+1\right) \tag{E.28}
\end{align*}
$$

with probability at least $1-e^{-c m}$, given $m \gtrsim d$.
Combining, we have

$$
\begin{equation*}
\|D-\bar{X}\| \leq \delta_{1}+\epsilon\left(\sqrt{\frac{2}{\pi}}+1\right)+\epsilon \tag{E.29}
\end{equation*}
$$

with probability as least $1-2\left|S_{\epsilon, 1}\right| e^{-c m \tilde{\delta}^{2}}-e^{-c m}$, given $m \gtrsim d$. Take $\tilde{\delta}=\delta / 3, \epsilon=\delta / 10$, we have

$$
\begin{equation*}
\|D-\bar{X}\| \leq \delta \tag{E.30}
\end{equation*}
$$

with probability at least(given $m \gtrsim d$)

$$
\begin{equation*}
1-2\left(\frac{90}{\delta}\right)^{(2 d+1)} e^{-c m \delta^{2}}-e^{-c m} \tag{E.31}
\end{equation*}
$$

Given $m \gtrsim \frac{d\left(\log \left(\frac{1}{\delta}\right) \vee 1\right)}{\delta^{2}}$, we have

$$
\begin{align*}
& 2\left(\frac{90}{\delta}\right)^{(2 d+1)} e^{-c m \delta^{2}}+e^{-c m} \tag{E.32}\\
\lesssim & \exp \left((2 d+1) \log \left(\frac{90}{\delta}\right)-c m \delta^{2}\right)+\exp (-c m) \tag{E.33}\\
\lesssim & \exp \left(-c^{\prime} m \delta^{2}\right) \tag{E.34}
\end{align*}
$$

So if $m \gtrsim \frac{d \log \left(\frac{1}{\delta}\right)}{\delta^{2}}$,

$$
\begin{equation*}
\|D-\bar{X}\| \leq \delta \tag{E.35}
\end{equation*}
$$

with probability at least $1-C \exp \left(-c^{\prime} m \delta^{2}\right)$.
Proposition E. 2 (arbitrary corruption). Let F_{0} be the output of Algorithm 1 Fix constant $c_{0}<0.1$. For model $\left[1\right.$ with $p \leq \frac{\tilde{c}_{0}}{\kappa^{2} \sqrt{r}}$ where \tilde{c}_{0} depends only on c_{0}, there exist constants c_{1}, c_{2}, c_{3} depending only on c_{0} such that whenever $m \geq c_{1} d r \kappa^{2} \log d(\log \kappa+\log r)$, we have

$$
\begin{equation*}
\left\|F_{0} F_{0}^{\top}-c^{*} X_{\text {亿 }}\right\| \leq c_{0} \sigma_{r} / \kappa \tag{E.36}
\end{equation*}
$$

with probability at least $1-c_{2} \exp \left(-c_{3} \frac{m}{\kappa^{4} r}\right)-\exp (-(p m+d))$. Here $c^{*}=1$.

Proof. Taking $\epsilon=\frac{c_{0} \theta_{\frac{1}{2}}}{4 L \kappa^{2}}$ in Proposition D.2. where L is a universal constant doesn't depend on anything from Proposition D.2, we know that with probability at least $1-c_{5} \exp \left(-c_{6} \frac{m}{\kappa^{4}}\right)$

$$
\begin{equation*}
\xi_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right) \in\left[\theta_{\frac{1}{2}}-L(p+\epsilon), \theta_{\frac{1}{2}}+L(p+\epsilon)\right]\left\|X_{\natural}\right\|_{\mathrm{F}}, \tag{E.37}
\end{equation*}
$$

given $m \geq c_{7} d r \kappa^{4} \log d \log \kappa$. Here c_{5}, c_{6}, c_{7} are constants depending only on c_{0}. Given $\tilde{c}_{0}=\frac{c_{0}}{4 L}$, the above inclusion implies that

$$
\begin{equation*}
\left|1-\frac{\xi_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right)}{\left\|X_{\text {দ }}\right\|_{\mathrm{F}} \theta_{\frac{1}{2}}}\right| \leq \frac{L(p+\epsilon)}{\theta_{\frac{1}{2}}} \leq \frac{c_{0}}{2 \kappa^{2}} \tag{E.38}
\end{equation*}
$$

Take $\delta=\frac{c_{0} \sqrt{\frac{2}{\pi}}}{12\left(1+\frac{L}{\theta_{\frac{1}{2}}^{2}}\right)} \frac{\sigma_{r}}{\sigma_{1} \kappa \sqrt{r}}$ in lemmaE. 3 . we know that with probability at least $1-c_{8} \exp \left(-c_{9} \frac{m}{\kappa^{4} r}\right)-$ $\exp (-(p m+d))$ for constants c_{8}, c_{9} depending only on c_{0},

$$
\begin{equation*}
\left\|B B^{\top}-\sqrt{\frac{2}{\pi}} X_{\natural} /\right\| X_{\natural}\left\|_{F}\right\| \leq \frac{c_{0} \sqrt{\frac{2}{\pi}}}{2\left(1+\frac{L}{\theta_{\frac{1}{2}}}\right)} \frac{\sigma_{r}}{\sigma_{1} \kappa \sqrt{r}} \tag{E.39}
\end{equation*}
$$

given $m \gtrsim d r \kappa^{4}(\log \kappa+\log r)$. The above inequality implies that

$$
\| \begin{align*}
\left\|\frac{\theta_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right)}{\sqrt{\frac{2}{\pi}} \theta_{\frac{1}{2}}} B B^{\top}-\frac{\theta_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right) X_{\natural}}{\left\|X_{\natural}\right\|_{\mathrm{F}} \theta_{\frac{1}{2}}}\right\| & \leq \frac{1+\frac{L}{\theta_{\frac{1}{2}}}}{\sqrt{\frac{2}{\pi}}} \frac{c_{0} \sqrt{\frac{2}{\pi}}}{2\left(1+\frac{L}{\theta_{\frac{1}{2}}^{2}}\right)} \frac{\sigma_{r}}{\sigma_{1} \sqrt{r}}\left\|X_{\natural}\right\|_{\mathrm{F}} \tag{E.40}\\
& \leq \frac{c_{0} \sigma_{r}}{2} \tag{E.41}
\end{align*}
$$

Combining，we can find some constants c_{1}, c_{2}, c_{3} depending only on c_{0} such that whenever $m \geq$ $c_{1} d r \kappa^{4} \log d(\log \kappa+\log r)$ ，then with probability at least $1-c_{2} \exp \left(-c_{3} \frac{m}{\kappa^{4} r}\right)-\exp (-(p m+d))$ ，

$$
\begin{align*}
& \left\|\frac{\theta_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right)}{\sqrt{\frac{2}{\pi}} \theta_{\frac{1}{2}}} B B^{\top}-X_{\text {匕 }}\right\| \tag{E.42}\\
\leq & \left\|\frac{\theta_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right)}{\sqrt{\frac{2}{\pi}} \theta_{\frac{1}{2}}} B B^{\top}-\frac{\theta_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right) X_{\text {匕 }}}{\left\|X_{\text {匕 }}\right\|_{\mathrm{F}} \theta_{\frac{1}{2}}}\right\|+\left\|\left(1-\frac{\theta_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right)}{\left\|X_{\text {匕 }}\right\|_{\mathrm{F}} \theta_{\frac{1}{2}}}\right) X_{\mathrm{\natural}}\right\| \tag{E.43}\\
\leq & \frac{c_{0} \sigma_{r}}{2 \kappa}+\frac{L(p+\epsilon)}{\theta_{\frac{1}{2}}} \sigma_{1} \tag{E.44}\\
\leq & \frac{c_{0} \sigma_{r}}{\kappa} . \tag{E.45}
\end{align*}
$$

Lemma E． 3 （arbitrary corrpution）．Suppose we are given $\delta \leq \frac{1}{10 \kappa \sqrt{r}}$ ．Suppose we are under model 1 with fixed $p<\delta / 10$ ．Then we have universal constants c_{1}, c_{2}, c_{3} such that whenever $m \geq c_{1} \frac{d\left(\log \left(\frac{1}{\delta}\right) \vee 1\right)}{\delta^{2}}$ ，with probability at least $1-c_{2} \exp \left(-c_{3} m \delta^{2}\right)-\exp (-(p m+d))$ ，we have $\tilde{X}_{0}=B B^{\top}$ satisfying the following

$$
\begin{equation*}
\left\|\tilde{X}_{0}-\bar{X}\right\| \leq 6 \delta \tag{E.46}
\end{equation*}
$$

where $\bar{X}=\psi\left(X_{\natural}\right) X_{\natural} /\left\|X_{\natural}\right\|_{F}$ ，and $\psi(X)=\frac{1}{m} \sum_{i=1}^{m} \sqrt{\frac{2}{\pi}}\left(1-p+p \mathbb{E}_{s_{i} \sim \mathbb{P}_{i}}\left[\exp \left(-\frac{s_{i}^{2}}{2\|X\|_{\mathrm{F}}^{2}}\right)\right]\right)$ ．
Proof．By Lemma E．4．given $m \geq c_{1} \frac{d\left(\log \left(\frac{1}{\delta}\right) \vee 1\right)}{\delta^{2}}$ ，we know that with probability at least $1-$ $\exp (-(p m+d))-\exp \left(-c_{2} m \delta^{2}\right)$,

$$
\begin{equation*}
\|D-\bar{X}\| \leq 2 \delta \tag{E.47}
\end{equation*}
$$

On the other hand，$\psi\left(X_{\natural}\right) \geq(1-p) \sqrt{\frac{2}{\pi}} \geq \sqrt{\frac{1}{2 \pi}}$ ，so $\lambda_{r}(\bar{X}) \geq \sqrt{\frac{1}{2 \pi}} \frac{\sigma_{r}}{\sigma_{1} \sqrt{r}}=\sqrt{\frac{1}{2 \pi}} \frac{1}{\kappa \sqrt{r}}$ ．By Lemma I．3 and our assumption that $\delta \leq \frac{1}{10 \kappa \sqrt{r}}$ ，we know that the top r eigenvalues of D are positive． Let C be the best symmetric rank r approximation of D with $\lambda_{r}(C)>0$ and

$$
U_{k}=\left[\begin{array}{ll}
U_{r} & U_{k-r} \tag{E.48}
\end{array}\right],
$$

then we can write

$$
\begin{equation*}
B B^{\top}=C+U_{k-r} \Sigma_{k-r} U_{k-r}^{\top} \tag{E.49}
\end{equation*}
$$

where $\Sigma_{k-r}=\operatorname{diag}\left(\left(\lambda_{r+1}(D)\right)_{+}, \cdots,\left(\lambda_{k}(D)\right)_{+}\right)$．Then we have

$$
\begin{equation*}
\left\|B B^{\top}-\bar{X}\right\| \leq\|C-\bar{X}\|+\left\|\Sigma_{k-r}\right\| \tag{E.50}
\end{equation*}
$$

Finally，given that C is the best symmetric rank－r approximation of D ，we have

$$
\begin{equation*}
\|C-D\| \leq \sigma_{r+1}(D)=\left|\sigma_{r+1}(D)-\sigma_{r+1}(\bar{X})\right| \leq\|D-\bar{X}\| \leq 2 \delta \tag{E.51}
\end{equation*}
$$

where for the equality，we used the fact that $\sigma_{r+1}(\bar{X})=0$ ．Combining，we obtain

$$
\begin{equation*}
\|C-\bar{X}\| \leq\|C-D\|+\|D-\bar{X}\| \leq 4 \delta \tag{E.52}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\Sigma_{k-r}\right\| \leq\|D-\bar{X}\| \leq 2 \delta \tag{E.53}
\end{equation*}
$$

Therefore，we have

$$
\begin{equation*}
\left\|B B^{\top}-\bar{X}\right\| \leq 6 \delta \tag{E.54}
\end{equation*}
$$

with probability at least $1-\exp (-(p m+d))-\exp \left(-c_{2} m \delta^{2}\right)$ ，given $m \geq c_{1} \frac{d\left(\log \left(\frac{1}{\delta}\right) \vee 1\right)}{\delta^{2}}$ ．

Lemma E. 4 (perturbation bound under arbitrary corruption). Given a fixed constant $\delta>0$. Suppose the measurements A_{i} 's are i.i.d. GOE, s_{i} 's are from model $\overline{1}$ with fixed $p \leq \delta / 10$. There exist universal constants c_{1} and c_{2} such that whenever $m \geq c_{1} \frac{d\left(\log \left(\frac{1}{\delta}\right) \vee 1\right)}{\delta^{2}}$, with probability with probability at least $1-\exp (-(p m+d))-\exp \left(-c_{2} m \delta^{2}\right)$, we have $D=\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(y_{i}\right) A_{i}$. satisfying the following

$$
\begin{equation*}
\|D-\bar{X}\| \leq 2 \delta \tag{E.55}
\end{equation*}
$$

where $\bar{X}=\sqrt{\frac{2}{\pi}} X_{\natural} /\left\|X_{\natural}\right\|_{F}$.

Proof. Let S be the set of indices that the corresponding observations are corrupted. We assume for simplicity that $p m$ and $(1-p) m$ are integers. Note that

$$
\begin{align*}
D-\bar{X}= & \frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle A_{i}, X_{\natural}\right\rangle+s_{i}\right) A_{i}-\sqrt{\frac{2}{\pi}} \frac{X_{\natural}}{\left\|X_{\natural}\right\|_{\mathrm{F}}} \tag{E.56}\\
= & \frac{1}{m} \sum_{i \in S} \operatorname{sign}\left(\left\langle A_{i}, X_{\natural}\right\rangle+s_{i}\right) A_{i}+\frac{1}{m} \sum_{i \notin S} \operatorname{sign}\left(\left\langle A_{i}, X_{\natural}\right\rangle\right) A_{i}-\sqrt{\frac{2}{\pi}} \frac{X_{\natural}}{\left\|X_{\natural}\right\|_{\mathrm{F}}} \tag{E.57}\\
= & \underbrace{\frac{1}{m} \sum_{i \in S} \operatorname{sign}\left(\left\langle A_{i}, X_{\natural}\right\rangle+s_{i}\right) A_{i}}_{Z_{1}}+\underbrace{\frac{1}{m} \sum_{i \notin S} \operatorname{sign}\left(\left\langle A_{i}, X_{\natural}\right\rangle\right) A_{i}-(1-p) \sqrt{\frac{2}{\pi}} \frac{X_{\natural}}{\left\|X_{\natural}\right\|_{\mathrm{F}}}}_{Z_{2}} \tag{E.58}\\
& -\underbrace{p \sqrt{\frac{2}{\pi}} \frac{X_{\natural}}{\left\|X_{\natural}\right\|_{\mathrm{F}}}}_{Z_{3}} \tag{E.59}
\end{align*}
$$

We bound Z_{1}, Z_{2}, Z_{3} separately.

- For Z_{1}, we observe the following fact: let $e_{i} \in\{-1,1\}$ be sign variables. For any fixed $\left\{e_{i}\right\}_{i \in S}, \sum_{i \in S} e_{i} A_{i}$ is a GOE matrix with $N(0, p m)$ diagonal elements and $N\left(0, \frac{p m}{2}\right)$ off-diagonal elements. By lemma I.10, we have

$$
\begin{equation*}
P\left(\left\|\sum_{i \in S} e_{i} A_{i}\right\| \geq \sqrt{p m}(\sqrt{d}+t)\right) \leq e^{-\frac{t^{2}}{2}} \tag{E.60}
\end{equation*}
$$

Take $t=2 \sqrt{p m+d}$, we obtain

$$
\begin{equation*}
P\left(\left\|\sum_{i \in S} e_{i} A_{i}\right\| \geq \sqrt{p m}(\sqrt{d}+2 \sqrt{p m+d})\right) \leq e^{-2(p m+d)} \tag{E.61}
\end{equation*}
$$

As a result, by union bound(the union of all the possible signs), with probability at least $1-2^{p m} e^{-2(p m+d)} \geq 1-e^{-(p m+d)}$,

$$
\begin{equation*}
\left\|\sum_{i \in S} \operatorname{sign}\left(\left\langle A_{i}, X_{\natural}\right\rangle-s_{i}\right) A_{i}\right\| \leq \sqrt{p m}(\sqrt{d}+2 \sqrt{p m+d}) \tag{E.62}
\end{equation*}
$$

Note also that $\sqrt{d}+2 \sqrt{p m+d} \leq 3 \sqrt{d}+2 \sqrt{p m}$, so with probability at least $1-\exp (-(p m+$ d)),

$$
\begin{equation*}
\left\|Z_{1}\right\| \leq 3 \sqrt{\frac{d p}{m}}+2 p \tag{E.63}
\end{equation*}
$$

for any X.

- For Z_{2}, by the proof of Lemma E. 2 with zero corruption and the assumption that $p<\frac{1}{2}$, we obtain that with probability exceeding $1-\exp \left(-c m(1-p) \delta^{2}\right) \geq 1-\exp \left(-c^{\prime} m \delta^{2}\right)$, the following holds,

$$
\begin{equation*}
\left\|\frac{1}{(1-p) m} \sum_{i \notin S} \operatorname{sign}\left(\left\langle A_{i}, X_{\natural}\right\rangle\right) A_{i}-\sqrt{\frac{2}{\pi}} \frac{X_{\natural}}{\left\|X_{\natural}\right\|_{\mathrm{F}}}\right\| \leq \delta, \tag{E.64}
\end{equation*}
$$

given $m \gtrsim \frac{d\left(\log \left(\frac{1}{\delta}\right) \vee 1\right)}{\delta^{2}}$. Consequently, given $m \gtrsim \frac{d\left(\log \left(\frac{1}{\delta}\right) \vee 1\right)}{\delta^{2}}$, with probability exceeding $1-\exp \left(-c m(1-p) \delta^{2}\right) \geq 1-\exp \left(-c^{\prime} m \delta^{2}\right)$,

$$
\begin{equation*}
\left\|Z_{2}\right\| \leq \delta \tag{E.65}
\end{equation*}
$$

for any X with rank at most r.

- For Z_{3}, we have a deterministic bound

$$
\begin{equation*}
\left\|Z_{3}\right\| \leq \sqrt{\frac{2}{\pi}} p \tag{E.66}
\end{equation*}
$$

Combining, we obtain that given $m \gtrsim \frac{d\left(\log \left(\frac{1}{\delta}\right) \vee 1\right)}{\delta^{2}}$, then with probability exceeding $1-$ $\exp (-(p m+d))-\exp \left(-c^{\prime} m \delta^{2}\right)$,

$$
\begin{equation*}
\left\|\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle A_{i}, X_{\natural}\right\rangle-s_{i}\right) A_{i}-\psi\left(X_{\natural}\right) \frac{X_{\natural}}{\left\|X_{\natural}\right\|_{\mathrm{F}}}\right\| \leq 3 \sqrt{\frac{d p}{m}}+3 p+\delta . \tag{E.67}
\end{equation*}
$$

Take $\delta=\frac{c_{0}}{3 \kappa \sqrt{r}}$ and let $m \gtrsim \frac{d\left(\log \left(\frac{1}{\delta}\right) \vee 1\right)}{\delta^{2}}$, we know that if $p \leq \delta / 10$, we have

$$
\begin{equation*}
\left\|\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle A_{i}, X_{\natural}\right\rangle-s_{i}\right) A_{i}-\psi\left(X_{\natural}\right) \frac{X_{\natural}}{\left\|X_{\natural}\right\|_{\mathrm{F}}}\right\| \leq 2 \delta \tag{E.68}
\end{equation*}
$$

with probability at least $1-\exp (-(p m+d))-\exp \left(-c^{\prime} m \delta^{2}\right)$.

F Proof of Theorem 2.3

Here we prove the identifiability result in Section 2.

Proof. Using Lemma I.6, we know that the ℓ_{1} / ℓ_{2}-RIP conditions holds for \mathcal{A} : for some universal $c>0$, with probability at least $1-\exp \left(-c m \delta^{2}\right)$, there holds.

$$
\left|\frac{1}{m}\|\mathcal{A}(X)\|_{1}-\sqrt{\frac{2}{\pi}}\|X\|_{F}\right| \leq \delta\|X\|_{F}, \quad \forall X \in \mathbb{R}^{d \times d}: \operatorname{rank}(X) \leq k+r .
$$

Now for any subset $L \subset\{1, \ldots, m\}$, we can define \mathcal{A}_{L} as $[\mathcal{A}(X)]_{i}=\left\langle A_{i}, X\right\rangle$ if $i \in L$ and 0 otherwise. Then if the size of L satisfies that $|L| \geq C d(r+k) \log d$ for some universal constant, using Lemma I.6 again, we have with probability at least $1-\exp \left(-c|L| \delta^{2}\right)$, there holds

$$
\left|\frac{1}{|L|}\left\|\mathcal{A}_{L}(X)\right\|_{1}-\sqrt{\frac{2}{\pi}}\|X\|_{F}\right| \leq \delta\|X\|_{F}, \quad \forall X \in \mathbb{R}^{d \times d}: \operatorname{rank}(X) \leq k+r
$$

Note that the above holds for each fixed L. If we choose S to be the set of indices of nonzero s_{i}. Using Bernstein's inequality, we know with probability at least $1-\exp \left(-c \epsilon^{2} m(1-p)\right),|L| \geq$ $(1-\epsilon)(1-p) m$. Due to our model assumptions, S is independent of \mathcal{A}. Hence, the above displayed inequality does hold for $L=S^{c}$ with probability at least $1-\exp \left(-c_{1}\left(\epsilon^{2}+\delta^{2}\right) m(1-p)\right)$.

Let us assume the above two displayed inequalities, the second one with $L=S^{c}$ in the following derivation. Let F is optimal for (1.2). Starting from the optimality of F and X_{\natural} has rank $r \leq k$, we have

$$
\begin{aligned}
0 & \geq \frac{1}{m}\left\|\mathcal{A}\left(F F^{\top}\right)-y\right\|_{1}-\frac{1}{m}\left\|\mathcal{A}\left(X_{\natural}\right)-y\right\|_{1} \\
& =\frac{1}{m}\left\|\mathcal{A}\left(F F^{\top}-X_{\natural}\right)-s\right\|_{1}-\frac{1}{m}\|s\|_{1} \\
& =\frac{1}{m}\left\|\left[\mathcal{A}_{S^{c}}\left(F F^{\top}-X_{\natural}\right)\right]\right\|_{1}+\frac{1}{m}\left\|\left[\mathcal{A}_{S}\left(F F^{\top}-X_{\natural}\right)\right]-s\right\|_{1}-\frac{1}{m}\|s\|_{1} \\
& \geq \frac{1}{m}\left\|\left[\mathcal{A}_{S^{c}}\left(F F^{\top}-X_{\natural}\right)\right]\right\|_{1}-\frac{1}{m}\left\|\left[\mathcal{A}_{S}\left(F F^{\top}-X_{\natural}\right)\right]\right\|_{1} \\
& =\frac{2}{m}\left\|\left[\mathcal{A}_{S^{c}}\left(F F^{\top}-X_{\natural}\right)\right]\right\|_{1}-\frac{1}{m}\left\|\mathcal{A}\left(F F^{\top}-X_{\natural}\right)\right\|_{1} \\
& \geq\left(2(1-p)(1-\epsilon)\left(\sqrt{\frac{2}{\pi}}-\delta\right)-\left(\sqrt{\frac{2}{\pi}}+\delta\right)\right)\left\|F F^{\top}-X_{\natural}\right\|_{F} .
\end{aligned}
$$

Hence so long as $2(1-p)(1-\epsilon)\left(\sqrt{\frac{2}{\pi}}-\delta\right)-\left(\sqrt{\frac{2}{\pi}}+\delta\right)>0$, we know $F F^{\top}=X_{\natural}$. The condition $2(1-p)(1-\epsilon)\left(\sqrt{\frac{2}{\pi}}-\delta\right)-\left(\sqrt{\frac{2}{\pi}}+\delta\right)>0$ is satisfied with probability at least $1-\exp \left(-c^{\prime} m\right)$ and $m \geq C^{\prime}(r+k) d \log d$ for some c^{\prime} and C^{\prime} depending on p.

G Results under better initialization

As indicated in remarks under Theorem 3.2, we can show that the sample complexity for provable convergence is indeed $O\left(d k^{3} \kappa^{4}(\log \kappa+\log k) \log d\right.$, given $p \lesssim \frac{1}{\kappa \sqrt{r}}$ in either model. The proof consists of two theorems stated below.
Theorem G.1. Suppose the following conditions hold:
(i) Suppose F_{0} satisfies

$$
\begin{equation*}
\left\|F_{0} F_{0}^{\top}-X_{七}\right\| \leq c_{0} \sigma_{r} \tag{G.1}
\end{equation*}
$$

for small sufficiently small universal constant c_{0}.
(ii) The stepsize satisfies $0<\frac{c_{1}}{\sigma_{1}} \leq \frac{\eta_{t}}{\left\|F_{t} F_{t}^{\top}-X_{\natural}\right\|_{F}} \leq \frac{c_{2}}{\sigma_{1}}$ for some small numerical constants $c_{1}<c_{2} \leq 0.01$ and all $t \geq 0$.
(iii) $(r+k, \delta)$-RDPP holds for $\left\{A_{i}, s_{i}\right\}_{i=1}^{m}$ with $\delta \leq \frac{c_{3}}{\kappa \sqrt{k+r}}$ and a scaling function $\psi \in$ $\left[\sqrt{\frac{1}{2 \pi}}, \sqrt{\frac{2}{\pi}}\right]$. Here c_{3} is some sufficiently small universal constant.
Then, we have a sublinear convergence in the sense that for any $t \geq 0$,

$$
\left\|F_{t} F_{t}^{\top}-X_{\natural}\right\| \leq c_{5} \sigma_{1} \frac{1}{\kappa+t}
$$

Moreover, if $k=r$, then under the same set of condition, we have convergence at a linear rate

$$
\left\|F_{t} F_{t}^{\top}-X_{\natural}\right\| \leq c_{6} \sigma_{r}\left(1-\frac{c_{7}}{\kappa}\right)^{t}, \quad \forall t \geq 0
$$

Here c_{5}, c_{6} and c_{7} are universal constants.
Proof. Take $c_{0}=0.01$ and $c_{3}=0.001$. Next, by definition, $\gamma_{t}=\frac{\eta_{t} \psi\left(F_{t} F_{t}^{\top}-X_{\natural}\right)}{\left\|F_{t} F_{t}^{\top}-X_{\natural}\right\|_{\mathrm{F}}}$. By the second assumption and the assumption on range of ψ, we know

$$
\begin{equation*}
\gamma_{t} \in\left[\sqrt{\frac{1}{2 \pi}} \frac{c_{1}}{\sigma_{1}}, \sqrt{\frac{2}{\pi}} \frac{c_{2}}{\sigma_{1}}\right] . \tag{G.2}
\end{equation*}
$$

Since we assumed $c_{2} \leq 0.01$, so the stepsize condition $\gamma_{t} \leq \frac{0.01}{\sigma_{1}}$ is satisfied. Hence, both Proposition A. 9 and Proposition A. 10 hold for $t=0$. We consider two cases separately.

- $k>r$, By Proposition A. 9 and induction, we know

$$
\begin{equation*}
E_{t+1} \leq E_{t}\left(1-\gamma_{t} E_{t}\right) \leq E_{t}\left(1-\frac{c_{\gamma}}{\sigma_{1}} E_{t}\right), \quad \forall t \geq 0 \tag{G.3}
\end{equation*}
$$

where $c_{1} \sqrt{\frac{2}{\pi}} \leq c_{\gamma} \leq 0.01$. Define $G_{t}=\frac{c_{\gamma}}{\sigma_{1}} E_{t}$, then we have $G_{0}<1$ and

$$
\begin{equation*}
G_{t+1} \leq G_{t}\left(1-G_{t}\right), \quad \forall t \geq 0 \tag{G.4}
\end{equation*}
$$

Taking reciprocal, we obtain

$$
\begin{equation*}
\frac{1}{G_{t+1}} \geq \frac{1}{G_{t}}+\frac{1}{1-G_{t}} \geq \frac{1}{G_{t}}+1, \quad \forall t \geq 0 \tag{G.5}
\end{equation*}
$$

So we obtain

$$
\begin{equation*}
G_{t} \leq \frac{1}{\frac{1}{G_{0}}+t}, \quad \forall t \geq 0 \tag{G.6}
\end{equation*}
$$

Plugging in the definition of G_{t}, we obtain

$$
\begin{equation*}
E_{\tau_{2}+t} \leq \frac{\sigma_{1}}{c_{\gamma}} \frac{1}{\frac{\sigma_{1}}{c_{\gamma} E_{0}}+t} \leq \frac{\sigma_{1}}{c_{\gamma}} \frac{1}{\frac{100 \sigma_{1}}{c_{\gamma} \sigma_{r}}+t}=\frac{\sigma_{1}}{c_{\gamma}} \frac{1}{\frac{100}{c_{\gamma}} \kappa+t} \leq \frac{\sigma_{1}}{c_{\gamma}} \frac{1}{\kappa+t} \tag{G.7}
\end{equation*}
$$

Since $c_{\gamma} \geq c_{1} \sqrt{\frac{2}{\pi}}$, we can simply take $c_{5}=\frac{1}{4 c_{1}} \sqrt{\frac{\pi}{2}}$, apply Lemma I.5 and get

$$
\begin{equation*}
\left\|F_{t} F_{t}^{\top}-X_{\natural}\right\| \leq c_{5} \sigma_{1} \frac{1}{\kappa+t}, \quad \forall t \geq 0 \tag{G.8}
\end{equation*}
$$

So the proof is complete in overspecified case.

- $k=r$. By Proposition A. 10 and induction, we obtain

$$
\begin{equation*}
E_{t+1} \leq\left(1-\frac{\gamma_{t} \sigma_{r}}{3}\right) E_{t} \leq\left(1-\frac{c_{\gamma} \sigma_{r}}{\sigma_{1}}\right) E_{t}, \forall t \geq 0 \tag{G.9}
\end{equation*}
$$

Applying this inequality recursively and noting $c_{\gamma} \geq c_{1} \sqrt{\frac{2}{\pi}}$, we obtain

$$
\begin{equation*}
E_{\mathcal{T}_{2}+t} \leq\left(1-\frac{c_{\gamma} \sigma_{r}}{\sigma_{1}}\right)^{t} E_{\mathcal{T}_{2}} \leq\left(1-\frac{c_{1} \sqrt{\frac{2}{\pi}}}{\kappa}\right)^{t} 0.01 \sigma_{r}, \forall t \geq 0 \tag{G.10}
\end{equation*}
$$

Thus, we can take $c_{6}=0.01 / 4, c_{7}=c_{1} \sqrt{\frac{2}{\pi}}$, apply LemmaI.5 and get

$$
\begin{equation*}
\left\|F_{t} F_{t}^{\top}-X_{\natural}\right\| \leq c_{6} \sigma_{r}\left(1-\frac{c_{7}}{\kappa}\right)^{t}, \quad \forall t \geq 0 \tag{G.11}
\end{equation*}
$$

The proof is complete.
Theorem G.2. Suppose under either Model 1 or 2 we have $m \geq c_{1}^{\prime} d k^{2} \kappa^{4}(\log \kappa+\log k) \log d$ and $p \leq \frac{c_{2}^{\prime}}{\kappa \sqrt{k}}$ for some constants $c_{1}^{\prime}, c_{2}^{\prime}$ depending only on c_{0} and c_{3}. Then under both models, with probability at least $1-c_{4}^{\prime} \exp \left(-c_{5}^{\prime} \frac{m}{k^{2} \kappa^{4}}\right)-\exp (-(p m+d))$ for some constants $c_{4}^{\prime}, c_{5}^{\prime}$ depending only on c_{0} and c_{3}, our subgradient method (3.1) with the initialization in Algorithm 1 and the adaptive stepsize choice 3.2 with $C_{\eta} \in\left[\frac{c_{6}^{\prime}}{\theta_{\frac{1}{2}} \sigma_{1}}, \frac{c_{7}^{\prime}}{\theta_{\frac{1}{2}} \sigma_{1}}\right]$ with some universal $c_{6}^{\prime}, c_{7}^{\prime} \leq 0.001$, converges as stated in Theorem G. 1

Proof. We can WLOG only prove this for model 1 because model 2 can be reduced to model 1 by adding a small failure probability. Taking $\epsilon=\frac{{ }_{0} \theta_{\frac{1}{2}}}{4 L \kappa}$ in Proposition D.2, where L is a universal constant doesn't depend on anything from Proposition D.2, we know that with probability at least $1-c_{8}^{\prime} \exp \left(-c_{9}^{\prime} \frac{m}{\kappa^{2}}\right)$

$$
\begin{equation*}
\xi_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right) \in\left[\theta_{\frac{1}{2}}-L(p+\epsilon), \theta_{\frac{1}{2}}+L(p+\epsilon)\right]\left\|X_{\natural}\right\|_{\mathrm{F}} \tag{G.12}
\end{equation*}
$$

given $m \geq c_{10}^{\prime} d r \kappa^{2} \log d \log \kappa$. Here $c_{8}^{\prime}, c_{9}^{\prime}, c_{10}^{\prime}$ are constants depending only on c_{0}. Given $c_{2}^{\prime} \leq$ $\frac{c_{0} \theta_{\frac{1}{2}}}{4 L}$, the above inclusion implies that

$$
\begin{equation*}
\left|1-\frac{\xi_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right)}{\left\|X_{\natural}\right\|_{\mathrm{F}} \theta_{\frac{1}{2}}}\right| \leq \frac{L(p+\epsilon)}{\theta_{\frac{1}{2}}} \leq \frac{c_{0}}{2 \kappa} \tag{G.13}
\end{equation*}
$$

Take $\delta=\frac{c_{0} \sqrt{\frac{2}{\pi}}}{12\left(1+\frac{L}{\theta_{\frac{1}{2}}^{2}}\right)} \frac{\sigma_{r}}{\sigma_{1} \sqrt{r}}$ in lemma E.3. we know that with probability at least $1-c_{11}^{\prime} \exp \left(-c_{12}^{\prime} \frac{m}{\kappa^{2} r}\right)-$ $\exp (-(p m+d))$ for constants $c_{11}^{\prime}, c_{12}^{\prime}$ depending only on c_{0},

$$
\begin{equation*}
\left\|B B^{\top}-\sqrt{\frac{2}{\pi}} X_{\natural} /\right\| X_{\natural}\left\|_{F}\right\| \leq \frac{c_{0} \sqrt{\frac{2}{\pi}}}{2\left(1+\frac{L}{\theta_{\frac{1}{2}}}\right)} \frac{\sigma_{r}}{\sigma_{1} \sqrt{r}} \tag{G.14}
\end{equation*}
$$

given $m \geq c_{13}^{\prime} d r \kappa(\log \kappa+\log r)$ with c_{13}^{\prime} depending only on c_{0}. The above inequality implies that

$$
\begin{align*}
\left\|\frac{\theta_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right)}{\sqrt{\frac{2}{\pi}} \theta_{\frac{1}{2}}} B B^{\top}-\frac{\theta_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right) X_{\natural}}{\left\|X_{\natural}\right\|_{\mathrm{F}} \theta_{\frac{1}{2}}}\right\| & \leq \frac{1+\frac{L}{\theta_{\frac{1}{2}}}}{\sqrt{\frac{2}{\pi}}} \frac{c_{0} \sqrt{\frac{2}{\pi}}}{2\left(1+\frac{L}{\theta_{\frac{1}{2}}}\right)} \frac{\sigma_{r}}{\sigma_{1} \sqrt{r}}\left\|X_{\mathfrak{\natural}}\right\|_{\mathrm{F}} \tag{G.15}\\
& \leq \frac{c_{0} \sigma_{r}}{2} \tag{G.16}
\end{align*}
$$

Combining, we can find some constants $c_{14}^{\prime}, c_{15}^{\prime}, c_{16}^{\prime}$ depending only on c_{0} such that whenever $m \geq$ $c_{14}^{\prime} d r \kappa^{2} \log d(\log \kappa+\log r)$, then with probability at least $1-c_{15}^{\prime} \exp \left(-c_{16}^{\prime} \frac{m}{\kappa^{4} r}\right)-\exp (-(p m+d))$

$$
\begin{align*}
& \left\|\frac{\theta_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right)}{\sqrt{\frac{2}{\pi}} \theta_{\frac{1}{2}}} B B^{\top}-X_{\mathfrak{\natural}}\right\| \tag{G.17}\\
\leq & \left\|\frac{\theta_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right)}{\sqrt{\frac{2}{\pi}} \theta_{\frac{1}{2}}} B B^{\top}-\frac{\theta_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right) X_{\natural}}{\left\|X_{\natural}\right\|_{\mathrm{F}} \theta_{\frac{1}{2}}}\right\|+\left\|\left(1-\frac{\theta_{\frac{1}{2}}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right)}{\left\|X_{\mathfrak{\natural}}\right\|_{\mathrm{F}} \theta_{\frac{1}{2}}}\right) X_{\natural}\right\| \tag{G.18}\\
\leq & \frac{c_{0} \sigma_{r}}{2}+\frac{L(p+\epsilon)}{\theta_{\frac{1}{2}}} \sigma_{1} \tag{G.19}\\
\leq & c_{0} \sigma_{r} . \tag{G.20}
\end{align*}
$$

Thus, $\left\|F_{0} F_{0}^{\top}-X_{\natural}\right\| \leq c_{0} \sigma_{r}$, which is the first condition.
Recall stepsize rule (3.2),

$$
\begin{equation*}
\tau_{\mathcal{A}, y}(F)=\xi_{\frac{1}{2}}\left(\left\{\left|\left\langle A_{i}, F F^{\top}\right\rangle-y_{i}\right|\right\}_{i=1}^{m}\right), \quad \text { and } \quad \eta_{t}=C_{\eta} \tau_{\mathcal{A}, y}\left(F_{t}\right) \tag{G.21}
\end{equation*}
$$

By Proposition D.2 with same choice of ϵ, we know that with probability at least least $1-$ $c_{17}^{\prime} \exp \left(-c_{18}^{\prime} \frac{m}{\kappa^{2}}\right)$

$$
\begin{equation*}
\tau_{\mathcal{A}, y}\left(F_{t}\right) \in\left[\theta_{\frac{1}{2}}-L(p+\epsilon), \theta_{\frac{1}{2}}+L(p+\epsilon)\right]\left\|F_{t} F_{t}^{\top}-X_{\natural}\right\|_{\mathrm{F}}, \quad \forall t \geq 0 \tag{G.22}
\end{equation*}
$$

given $m \geq c_{19}^{\prime} d r \kappa^{2} \log d \log \kappa$. Here $c_{17}^{\prime}, c_{18}^{\prime}, c_{19}^{\prime}$ are constants depending only on c_{0}. By our condition on C_{η}, we know

$$
\begin{equation*}
\frac{\eta_{t}}{\left\|F_{t} F_{t}^{\top}-X_{\text {匕 }}\right\|_{\mathrm{F}}} \in\left[\frac{c_{6}^{\prime}\left(1-\frac{c_{0}}{2 \kappa}\right)}{\sigma_{1}}, \frac{c_{7}^{\prime}\left(1+\frac{c_{0}}{2 \kappa}\right)}{\sigma_{1}}\right] \tag{G.23}
\end{equation*}
$$

Hence, the second condition in Theorem G.1 is satisfied.
By Proposition 2.2, we know that whenever $m \gtrsim c_{20}^{\prime} d k^{2} \kappa^{4}(\log k+\log \kappa)$ for some constant depending on c_{3} and $c_{2}^{\prime} \leq c_{3} / 10,(r+k, \delta)$-RDPP holds with $\delta \leq \frac{c_{3}}{k \sqrt{k+r}}$ and $\psi(X)=\sqrt{\frac{2}{\pi}}$ with probability at least $1-\exp (-(p m+d))-\exp \left(-\frac{c_{21} m}{k^{2} \kappa^{4}}\right)$ for some constant c_{21} depending only on c_{3}. Since all the constants we introduced in this proof depend only on c_{0} and c_{3}, so we can combing them and find desired $c_{i}^{\prime}, i \geq 1$.

H RDPP and ℓ_{1} / ℓ_{2}-RIP

Recall our definition of $\left(k^{\prime}, \delta\right)$ RDPP states that for all rank at most k^{\prime} matrix X, the following holds:

$$
\begin{equation*}
D(X):=\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle A_{i}, X\right\rangle-s_{i}\right) A_{i}, \quad \text { and } \quad\left\|D(X)-\psi(X) \frac{X}{\|X\|_{\mathrm{F}}}\right\| \leq \delta \tag{H.1}
\end{equation*}
$$

The $\left(k^{\prime}, \delta\right) \ell_{1} / \ell_{2}$-RIP states that for all rank k^{\prime} matrix X, the following holds.

$$
\begin{equation*}
\left(\sqrt{\frac{2}{\pi}}-\delta\right)\|X\|_{\mathrm{F}} \leq \frac{1}{m} \sum_{i=1}^{m}\left|\left\langle A_{i}, X\right\rangle\right| \leq\left(\sqrt{\frac{2}{\pi}}+\delta\right)\|X\|_{\mathrm{F}} \tag{H.2}
\end{equation*}
$$

We shall utilize the following top k^{\prime} Frobenius norm: for an matrix $Y \in \mathbb{R}^{d \times d}$

$$
\|Y\|_{\mathrm{F}, \mathrm{k}^{\prime}}:=\sqrt{\sum_{i=1}^{k^{\prime}} \sigma_{i}^{2}(Y)}=\sup _{\operatorname{rank}(Z) \leq k^{\prime},\|Z\|_{\mathrm{F}}=1}\langle Y, Z\rangle
$$

Here $\sigma_{i}(Y)$ is the i-th largest singular value of Y. The second variational characterization can be proved by considering the orthogonal projection of the rank k^{\prime} singular vector space of Y and its complement.

Now suppose there holds the $\left(k^{\prime}, \frac{\delta}{\sqrt{k^{\prime}}}\right)$ RDPP with corruption always 0 and scale function being $\sqrt{\frac{2}{\pi}}$. Then we have

$$
\left.\left.\begin{array}{rl}
\frac{\delta}{\sqrt{k^{\prime}}} \stackrel{(a)}{\geq}\left\|D(X)-\psi(X) \frac{X}{\|X\|_{\mathrm{F}}}\right\| \\
\quad \stackrel{(b)}{=}\left\|\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle A_{i}, X\right\rangle\right) A_{i}-\sqrt{\frac{2}{\pi}} \frac{X}{\|X\|_{\mathrm{F}}}\right\| \\
\quad \stackrel{(c)}{\geq} \frac{1}{\sqrt{k^{\prime}}}\left\|\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle A_{i}, X\right\rangle\right) A_{i}-\sqrt{\frac{2}{\pi}} \frac{X}{\|X\|_{\mathrm{F}}}\right\|_{\mathrm{F}, \mathrm{k}^{\prime}} \\
& \stackrel{(d)}{=} \frac{1}{\sqrt{k^{\prime}}} \operatorname{rank}(Y) \leq{k^{\prime}}^{\prime},\|Y\|_{\mathrm{F}} \leq 1 \tag{H.3}
\end{array} \frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle A_{i}, X\right\rangle\right) A_{i}-\sqrt{\frac{2}{\pi}} \frac{X}{\|X\|_{\mathrm{F}}}, Y\right\rangle\right)
$$

Here in the step (a), we use the definition of RDPP. In the step (b), we use the assumption on $s_{i}=0$ always and $\psi=\sqrt{\frac{2}{\pi}}$. In (c), we use the relationship between operator norm and top k^{\prime} Frobenius norm. In step (d), we use the variational characterization of top k^{\prime} Frobenius norm. In step (e), we use the fact that X is rank at most k^{\prime}. The above derivation completes one side of the ℓ_{1} / ℓ_{2}-RIP. The other side can be proved by taking $Y=-\frac{X}{\|X\|_{F}}$ in the above step (e).

I Auxiliary Lemmas

This section contains lemmas that will be useful in the proof.
Lemma I.1. Let A be an $n \times n$ symmetric matrix. Suppose that $\|A\| \leq \frac{1}{2 \eta}$, the largest singular value and the smallest singular value of $A(I-\eta A)$ are $\sigma_{1}(A)-\eta \sigma_{1}^{2}(A)$ and $\sigma_{m}(A)-\eta \sigma_{m}^{2}(A)$.

Proof. Let $U_{A} \Sigma_{A} U_{A}^{\top}$ be the SVD of A. Simple algebra shows that

$$
\begin{equation*}
A(I-\eta A)=U_{A}\left(\Sigma_{A}-\eta \Sigma_{A}^{2}\right) U_{A}^{\top} \tag{I.1}
\end{equation*}
$$

This is exactly the SVD of $A(I-\eta A)$. Let $g(x)=x-\eta x^{2}$. By taking derivative, g is monotone increasing in interval $\left[-\infty, \frac{1}{2 \eta}\right]$. Since the singular values of $A(I-\eta A)$ are exactly the singular values of A mapped by g, the result follows.
Lemma I.2. Let A be an $m \times n$ matrix. Suppose that $\|A\| \leq \sqrt{\frac{1}{3 \eta}}$, the largest singular value and the smallest singular value of $A\left(I-\eta A^{\top} A\right)$ are $\sigma_{1}(A)-\eta \sigma_{1}^{3}(A)$ and $\sigma_{m}(A)-\eta \sigma_{m}^{3}(A)$.

Proof. Let $U_{A} \Sigma_{A} V_{A}^{\top}$ be the SVD of A. Simple algebra shows that

$$
\begin{equation*}
A\left(I-\eta A^{\top} A\right)=U_{A}\left(\Sigma_{A}-\eta \Sigma_{A}^{3}\right) V_{A}^{\top} \tag{I.2}
\end{equation*}
$$

This is exactly the SVD of $A\left(I-\eta A^{\top} A\right)$. Let $g(x)=x-\eta x^{3}$. By taking derivative, g is monotone increasing in interval $\left[-\sqrt{\frac{1}{3 \eta}}, \sqrt{\frac{1}{3 \eta}}\right]$. Since the singular values of $A\left(I-\eta A^{\top} A\right)$ are exactly the singular values of A mapped by g, the result follows.
Lemma I.1. Let A be an $n \times n$ matrix such that $\|A\|<1$. Then $I+A$ is invertible and

$$
\begin{equation*}
\left\|(I+A)^{-1}\right\| \leq \frac{1}{1-\|A\|} \tag{I.3}
\end{equation*}
$$

Proof. Since $\|A\|<1$, the matrix $B=\sum_{i=0}^{\infty}(-1)^{i} A^{i}$ is well defined and indeed B is the inverse of $I+A$. By continuity, subaddivity and submultiplicativity of operator norm,

$$
\begin{equation*}
\left\|(I+A)^{-1}\right\|=\|B\| \leq \sum_{i=0}^{\infty}\left\|A^{i}\right\| \leq \sum_{i=0}^{\infty}\|A\|^{i}=\frac{1}{1-\|A\|} \tag{I.4}
\end{equation*}
$$

Lemma I.2. Let A be an $r \times r$ matrix and B be an $r \times k$ matrix. Then

$$
\begin{equation*}
\sigma_{r}(A B) \leq\|A\| \sigma_{r}(B) \tag{I.5}
\end{equation*}
$$

Proof. For any $r \times k$ matrix C, the variational expression of r-th singular value is

$$
\begin{equation*}
\sigma_{r}(C)=\sup _{\substack{\operatorname{subspace} S \subset \mathbb{R}^{k} \\ \operatorname{dim}(S)=r}} \inf _{\substack{x \in S \\ x \neq 0}} \frac{\|C x\|}{\|x\|} \tag{I.6}
\end{equation*}
$$

Applying this variational result twice, we obtain

$$
\begin{align*}
\sigma_{r}(A B) & =\sup _{\substack{\operatorname{subspace} S \subset \mathbb{R}^{k} \\
\operatorname{dim}(S)=r}} \inf _{\substack{x \in S \\
x \neq 0}} \frac{\|A B x\|}{\|x\|} \tag{I.7}\\
& \leq \sup _{\substack{\operatorname{subspace} S \subset \mathbb{R}^{k} \\
\operatorname{dim}(S)=r}} \inf _{\substack{x \in S \\
x \neq 0}} \frac{\|A\|\|B x\|}{\|x\|} \tag{I.8}\\
& =\|A\| \sigma_{r}(B) \tag{I.9}
\end{align*}
$$

Lemma $\mathbf{I} .3$ (Weyl's Inequality). Let A and B be any $m \times n$ matrices. Then

$$
\begin{equation*}
\sigma_{i}(A-B) \leq\|A-B\|, \quad \forall 1 \leq i \leq \min \{m, n\} \tag{I.10}
\end{equation*}
$$

When both A and B are symmetric matrices, the singular value can be replaced by eigenvalue.
Lemma I.4. Let A be any $m \times n$ matrix with rank r. Then

$$
\begin{equation*}
\|A\| \leq\|A\|_{\mathrm{F}} \leq \sqrt{r}\|A\| \tag{I.11}
\end{equation*}
$$

Proof. Let $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>0$ be singular values of A. Then we know $\|A\|=\sigma_{1}$ and $\|A\|_{\mathrm{F}}=\sqrt{\sum_{i=1}^{r} \sigma_{i}^{2}}$. The result follows from Cauchy's inequality.

Lemma I.5. Let F_{t} be the iterates defined by algorithm 3.1. Then we have

$$
\begin{equation*}
\left\|F_{t} F_{t}^{\top}-X_{\mathrm{\natural}}\right\| \leq\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|+\overline{2 \|} S_{t} T_{t}^{\top}\|+\| T_{t} T_{t}^{\top} \| \tag{I.12}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\max \left\{\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|,\left\|S_{t} T_{t}^{\top}\right\|,\left\|T_{t} T_{t}^{\top}\right\|\right\} \leq\left\|F_{t} F_{t}^{\top}-X_{\natural}\right\| . \tag{I.13}
\end{equation*}
$$

Proof. Recall that $F_{t}=U S_{t}+V T_{t}$ and $X_{\natural}=U D_{S}^{*} U^{\top}$, so we have

$$
\begin{align*}
F_{t} F_{t}^{\top}-X_{\natural} & =\left(U S_{t}+V T_{t}\right)\left(U S_{t}+V T_{t}\right)^{\top}-U D_{S}^{*} \tag{I.14}\\
& =U\left(S_{t} S_{t}^{\top}-D_{S}^{*}\right) U^{\top}+U S_{t} V_{t}^{\top} V^{\top}+V T_{t} S_{t}^{\top} U^{\top}+V T_{t} T_{t}^{\top} V^{\top} \tag{I.15}
\end{align*}
$$

By triangle inequality and the fact that $\|U\|=\|V\|=1$, we obtain

$$
\begin{equation*}
\left\|F_{t} F_{t}^{\top}-X_{\mathrm{t}}\right\| \leq\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\|+2\left\|S_{t} T_{t}^{\top}\right\|+\left\|T_{t} T_{t}\right\| \tag{I.16}
\end{equation*}
$$

For the second statement, we observe

$$
\begin{align*}
\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\| & =\sup _{x \in \mathbb{R}^{r},\|x\|=1} x^{T}\left(S_{t} S_{t}^{\top}-D_{S}^{*}\right) x \tag{I.17}\\
& \leq \sup _{y \in \mathbb{R}^{d},\|y\|=1} y^{\top} U\left(S_{t} S_{t}^{\top}-D_{S}^{*}\right) U^{\top} y \tag{I.18}
\end{align*}
$$

The last inequality follows from the fact that for any $x \in \mathbb{R}^{r}$, we can find a $y \in \mathbb{R}^{d}$ such that $U^{\top} y=x$ and $\|y\|=\|x\|$. Indeed, we can simply take $y=U x$. On the other hand,

$$
\begin{align*}
\sup _{y \in \mathbb{R}^{d},\|x\|=1} y^{\top} U\left(S_{t} S_{t}^{\top}-D_{S}^{*}\right) U^{\top} y & =\left\|U\left(S_{t} S_{t}^{\top}-D_{S}^{*}\right) Y^{\top}\right\| \tag{I.19}\\
& \leq\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\| \tag{I.20}
\end{align*}
$$

so actually we have equality

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{r},\|x\|=1} x^{T}\left(S_{t} S_{t}^{\top}-D_{S}^{*}\right) x=\sup _{y \in \mathbb{R}^{d},\|y\|=1} y^{\top} U\left(S_{t} S_{t}^{\top}-D_{S}^{*}\right) U^{\top} y \tag{I.21}
\end{equation*}
$$

Clearly, the sup can be attained, let $y_{*}=\operatorname{argmax}_{y \in \mathbb{R}^{d},\|y\|=1} y^{\top} U\left(S_{t} S_{t}^{\top}-D_{S}^{*}\right) U^{\top} y$. Then we claim that y_{*} must lie in the column space of U. If not so, we can always take the projection of y_{*} onto the column space of U and normalize it, which will give a larger objective value, contradiction. As a result, $V^{\top} y^{*}=0$ and we obtain

$$
\begin{align*}
\left\|S_{t} S_{t}^{\top}-D_{S}^{*}\right\| & =y_{*}^{\top} U\left(S_{t} S_{t}^{\top}-D_{S}^{*}\right) U^{\top} y_{*} \tag{I.22}\\
& =y_{*}^{\top}\left(F_{t} F_{t}^{\top}-X_{\natural}\right) y_{*} \tag{I.23}\\
& \leq\left\|F_{t} F_{t}^{\top}-X_{\natural}\right\| . \tag{I.24}
\end{align*}
$$

We can apply the same argument to get $\left\|S_{t} T_{t}^{\top}\right\| \leq\left\|F_{t} F_{t}^{\top}-X_{\mathrm{t}}\right\|$ and $\left\|T_{t} T_{t}^{\top}\right\| \leq\left\|F_{t} F_{t}^{\top}-X_{\mathrm{b}}\right\|$.
Lemma I.6 (ℓ_{1} / ℓ_{2}-RIP, [5], Proposition 1]). Let $r \geq 1$ be given, suppose sensing matrices $\left\{A_{i}\right\}_{i=1}^{m}$ have i.i.d. standard Gaussian entries with $m \gtrsim d r$. Then for any $0<\delta<\sqrt{\frac{2}{\pi}}$, there exists a universal constant $c>0$, such that with probability exceeding $1-\exp \left(-c m \delta^{2}\right)$, we have

$$
\begin{equation*}
\left(\sqrt{\frac{2}{\pi}}-\delta\right)\|X\|_{\mathrm{F}} \leq \frac{1}{m} \sum_{i=1}^{m}\left|\left\langle A_{i}, X\right\rangle\right| \leq\left(\sqrt{\frac{2}{\pi}}+\delta\right)\|X\|_{\mathrm{F}} \tag{I.25}
\end{equation*}
$$

for any rank $2 r$-matrix X.
Lemma I. 7 (ℓ_{2}-RIP, [39, Theorem 2.3]). Fix $0<\delta<1$, suppose that sensing matrices $\left\{A_{i}\right\}_{i=1}^{m}$ have i.i.d. standard Gaussian entries with $m \gtrsim \frac{1}{\delta^{2}} \log \left(\frac{1}{\delta}\right) d r$. Then with probability exceeding $1-C \exp (-D m)$, we have

$$
\begin{equation*}
(1-\delta)\|X\|_{\mathrm{F}}^{2} \leq \frac{1}{m} \sum_{i=1}^{m}\left\langle A_{i}, X\right\rangle^{2} \leq(1+\delta)\|X\|_{\mathrm{F}}^{2} \tag{I.26}
\end{equation*}
$$

for any rank-r matrix X. Here C, D are universal constants.

Proof. This lemma is not exactly as Theorem 2.3 in [39] stated, but it's straight forward from the proof of this theorem. All we need to note in that paper is that the sample complexity we need is $m \gtrsim \frac{\log \left(\frac{1}{\delta}\right)}{c}$, where c is the constant defined in Theorem 2.3 [39] for t chosen to be δ. By standard concentration, $c \lesssim \frac{1}{\delta^{2}}$ and the result follows.

Lemma $\mathbf{I} .8$ (Covering number for symmetric low rank matrices). Let $\mathbb{S}_{r}=\left\{X \in \mathbb{S}^{d \times d}: \operatorname{rank}(X) \leq\right.$ $\left.r,\|X\|_{\mathrm{F}}=1\right\}$. Then, there exists an ϵ-net $\mathbb{S}_{\epsilon, r}$ with respect to the Frobenius norm satisfying $\left|\mathbb{S}_{\epsilon, r}\right| \leq\left(\frac{9}{\epsilon}\right)^{(2 d+1) r}$.

Proof. The proof is the same as the proof of lemma 3.1 in [39], except that we will do eigenvalue decomposition, instead of SVD.
Lemma I. 9 ([4, Lemma A.1]). Suppose $F(\cdot)$ is cumulative distribution function with continuous density function $f(\cdot)$. Assume the samples $\left\{x_{i}\right\}_{i=1}^{m}$ are i.i.d. drawn from f. Let $0<p<1$. If $l<f(\theta)<L$ for all θ in $\left\{\theta:\left|\theta-\theta_{p}\right| \leq \epsilon\right\}$, then

$$
\begin{equation*}
\left|\theta_{p}\left(\left\{x_{i}\right\}_{i=1}^{m}\right)-\theta_{p}(F)\right|<\epsilon \tag{I.27}
\end{equation*}
$$

holds with probability at least $1-2 \exp \left(-2 m \epsilon^{2} l^{2}\right)$. Here $\theta_{p}\left(\left\{x_{i}\right\}_{i=1}^{m}\right)$ and $\theta_{p}(F)$ are p-quantiles of samples and distribution F (see Definition 5.1 in [4])
Lemma 1.10 (Concentration of operator norm). Let A be a d-by-d GOE matrix having $N(0,1)$ diagonal elements and $N\left(0, \frac{1}{2}\right)$ off-diagonal elements. Then we have

$$
\begin{equation*}
\mathbb{E}[\|A\|] \leq \sqrt{d} \tag{I.28}
\end{equation*}
$$

and

$$
\begin{equation*}
P(\|A\|-\mathbb{E}[\|A\|] \geq t) \leq e^{-\frac{t^{2}}{2}} \tag{I.29}
\end{equation*}
$$

Proof. We will use the following two facts [11]:

1. For a d-by- d matrix B with i.i.d. $N(0,1)$ entries,

$$
\begin{equation*}
\mathbb{E}[\|B\|] \leq 2 \sqrt{d} \tag{I.30}
\end{equation*}
$$

2. Suppose f is L-Lipschitz(with respect to the Euclidean norm) function and a is a standard normal vector, then

$$
\begin{equation*}
P(f(a)-\mathbb{E}[f(a)] \geq t) \leq e^{-\frac{t^{2}}{2 L}} \tag{I.31}
\end{equation*}
$$

Now we can prove the lemma. Firstly, we note that A has the same distribution as $\frac{B+B^{\top}}{4}$ where B has i.i.d. standard normal entries. By the first fact, we obtain

$$
\begin{equation*}
\mathbb{E}[\|A\|] \leq \mathbb{E}\left[\frac{\|B\|+\left\|B^{\top}\right\|}{4}\right] \leq \sqrt{d} \tag{I.32}
\end{equation*}
$$

On the other hand, $\|A\|$ can be written as a function of $\left\{A_{i i}\right\}$ and $\left\{\sqrt{2} A_{i j}\right\}_{i<j}$, which are i.i.d. standard normal random variables. Simple algebra yields that this function is 1-Lipschitz. By the second fact,

$$
\begin{align*}
P(\|A\| \geq \sqrt{d}+t) & \leq P(\|A\| \geq \mathbb{E}[\|A\|]+t) \tag{I.33}\\
& \leq e^{-\frac{t^{2}}{2}} \tag{I.34}
\end{align*}
$$

Lemma 1.11 (Concentration for χ^{2} distribution). Let $Y \sim \chi^{2}(n)$ be a χ^{2} random variable. Then we have

$$
\begin{equation*}
P(Y \geq(1+2 \sqrt{\lambda}+2 \lambda) n) \leq \exp (-\lambda n / 2) \tag{I.35}
\end{equation*}
$$

Proof. It follows from standard sub-exponential concentration inequality and the fact that the square of a standard normal random variable is sub-exponential [11].

Lemma I. 12 ([4, Lemma A.8]). Suppose $A_{i} \in \mathbb{R}^{d \times d}$'s are independnet GOE sensing matrices having $N(0,1)$ diagonal elements and $N\left(0, \frac{1}{2}\right)$ off-diagonal elements, for $i=1,2, \ldots$, m and $m \geq d$. Then

$$
\begin{equation*}
\max _{i=1,2, \ldots, m}\left\|A_{i}\right\|_{\mathrm{F}} \leq 2 \sqrt{d(d+m)} \tag{I.36}
\end{equation*}
$$

holds with probability exceeding $1-m \exp (-d(d+m) / 2)$.
Proof. Let A be a GOE sensing matrix described in this lemma, and $A_{i j}$ be the $i j$-th entry of A. Since

$$
\begin{equation*}
\|A\|_{\mathrm{F}}^{2}=\sum_{i=1}^{d} A_{i i}^{2}+2 \sum_{i<j} A_{i j}^{2}=\sum_{i=1}^{d} A_{i i}^{2}+\sum_{i<j}\left(\sqrt{2} A_{i j}\right)^{2} \tag{I.37}
\end{equation*}
$$

we see that $\|A\|_{\mathrm{F}}^{2}$ is a $\chi^{2}(d(d+1) / 2)$ random variable. By Lemma I.11, we have

$$
\begin{equation*}
P\left(\|A\|_{\mathrm{F}}^{2} \geq(1+2 \sqrt{\lambda}+2 \lambda) d^{2}\right) \leq \exp \left(-\lambda d^{2} / 2\right) \tag{I.38}
\end{equation*}
$$

for any $\lambda>0$. Take $\lambda=\frac{d+m}{d} \geq 2$. Simple calculus shows $2 \lambda \geq 2 \sqrt{\lambda}+1$. Thus, we obtain

$$
\begin{equation*}
P\left(\|A\|_{\mathrm{F}}^{2} \geq 4 d(d+m)\right) \leq \exp (-d(d+m) / 2) \tag{I.39}
\end{equation*}
$$

Therefore, the proof is completed by applying the union bound.
Lemma I. 13 ([4, Lemma A.2]). Given vectors $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $y=\left[y_{1}, y_{2}, \ldots, y_{n}\right]$. We reorder them so that

$$
\begin{equation*}
x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)}, \quad \text { and } \quad y_{(1)} \leq y_{(2)} \leq \ldots \leq y_{(n)} \tag{I.40}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|x_{(k)}-y_{(k)}\right| \leq\|x-y\|_{\infty}, \quad \forall k=1,2, \ldots, n \tag{I.41}
\end{equation*}
$$

Lemma I. 14 ($\mid 4$, Lemma A.3]). Consider corrupted samples $y_{i}=\left\langle A_{i}, X_{\natural}\right\rangle+s_{i}$ and clean samples $\tilde{y}_{i}=\left\langle A_{i}, X_{\natural}\right\rangle, i=1,2, \ldots, m$. If $\mu<\frac{1}{2}$ is the fraction of samples that are corrupted by outliers, for $\mu<p<1-\mu$, we have

$$
\begin{equation*}
\theta_{p-\mu}\left(\left\{\left|\tilde{y}_{i}\right|\right\}_{i=1}^{m}\right) \leq \theta_{p}\left(\left\{\left|y_{i}\right|\right\}_{i=1}^{m}\right) \leq \theta_{p+\mu}\left(\left\{\left|\tilde{y}_{i}\right|\right\}_{i=1}^{m}\right) \tag{I.42}
\end{equation*}
$$

[^0]: ${ }^{15}$ Gaussian orthogonal ensemble(GOE): A is symmetric with $A_{i j}=A_{j i} \sim N\left(0, \frac{1}{2}\right)$ for $i \neq j$ and $A_{i i} \sim$ $N(0,1)$ independently.

