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Abstract

This article proposes novel rules for false discovery rate control (FDRC) geared
towards online anomaly detection in time series. Online FDRC rules allow to
control the properties of a sequence of statistical tests. In the context of anomaly
detection, the null hypothesis is that an observation is normal and the alterna-
tive is that it is anomalous. FDRC rules allow users to target a lower bound on
precision in unsupervised settings. The methods proposed in this article overcome
short-comings of previous FDRC rules in the context of anomaly detection, in par-
ticular ensuring that power remains high even when the alternative is exceedingly
rare (typical in anomaly detection) and the test statistics are serially dependent
(typical in time series). We show the soundness of these rules in both theory and
experiments.

1 Introduction

Online anomaly detection is critical for many monitoring applications in health care, IT operations,
manufacturing, or retail (e.g., [11, 4, 20]). In such settings, observations of one or several metrics
of interest (naturally represented as time series) are sent sequentially to a detector. It is tasked with
deciding whether a given observation is anomalous or not. Accordingly, anomaly detection in time-
series data is a rich field that has been surveyed in several articles [7, 6], Foorthuis [9] proposes a
typology of anomalies, and Sadik and Gruenwald [21] discusses open research questions in the field.

Arguably one of the most common approaches in addressing anomaly detection is via employing an
unsupervised probabilistic anomaly scorer that assigns a probability to each point. This translates
the problem of anomaly detection into one of online multiple hypotheses testing. Specifically, at
each time step t, we observe a new data point zt and emit the null hypothesis Ht that zt is not
anomalous. This hypothesis is tested with a p-value provided by the scorer and may be rejected
(detection of an anomaly) if there is enough evidence against it.

As in any statistical testing problem, a decision threshold determines whether the null hypothesis is
rejected or not. In the case of a single test, the most common convention is to report a discovery
(a point is anomalous) if the associated p-value is smaller than some preselected threshold ↵. The
effect is said to be statistically significant at level ↵ and the probability to falsely declare the point
anomalous is less than ↵. Importantly, in the case of multiple hypotheses tests, the threshold ↵
does not provide similar guarantees and the fraction of false positives may be arbitrarily close to
1. This particularly applies to anomaly detection because the proportion of alternative hypotheses
tends to be very low. Hence, multiple hypotheses testing requires other mechanisms to set decision
thresholds. In the case where all p-values are known in advance (offline setting), classical methods
typically shrink the threshold ↵ conservatively [2, 3, 27].

In the setting of anomaly detection, a natural quantity to control is the false discovery rate (FDR)
as introduced by [2], that is, the ratio of falsely labeled anomalies to total anomalies. Methods for
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sequential FDR control (FDRC) were pioneered by [10] who proposed the so-called ↵-investing
strategy, which was later built upon and generalized [1, 15, 16, 18, 19, 30, 34, 16]. Online FDRC
methods are appealing for anomaly detection problems as controlling the false discovery rate is
equivalent to maximizing recall given a lower bound on precision. Consequently this allows to
trade-off precision and recall even in the absence of labelled data, which is another commonality of
anomaly detection. All online FDRC methods allocate some threshold at every time step, and reject
the hypothesis based on it.

The main contribution of this article is the proposal of a novel method to overcome a common
limitation of existing online FDRC methods that renders them unsuited for online anomaly detection
tasks. When few rejections are made because the alternative hypothesis is extremely rare, as is the
case in most anomaly detection problems, rejection thresholds of existing methods tend to zero.
This phenomenon is referred to as ↵-death in the literature [18] and prevents any future discoveries
causing a loss of power. To circumvent this problem, we propose a method based on memory
decay, revisiting [18], to ensure that rejection thresholds are lower-bounded by a non-zero value.
This guarantees that we have power even in the case where alternatives (anomalies) are rare. We
demonstrate that this method allows us to control the decaying memory FDR [18], a version of the
FDR metric adapted to infinite streams that progressively forgets past decisions. Our approach is
fully general in the sense that it can enhance all of the most popular algorithms in the generalized
↵-investing class.

Our second contribution is the adaptation of the local dependency framework [34] to memory decay.
This allows to use our methods for practical applications where p-values are in general not indepen-
dent. We evaluate experimentally the performances of the proposed algorithms and demonstrate that
we can overcome the challenges occurring when alternative hypotheses are exceedingly rare.

This paper is structured as follows. Section 2 formalizes the problem of multiple hypotheses testing
for anomaly detection and defines the false discovery rate. Section 3 reviews the main methods for
online FDRC and illustrates their limitations. Section 4 details our contributions to prevent ↵-death.
Section 5 proposes an adjustment to make the algorithms robust to local dependency in the p-values.
Finally, Section 6 shows experimentally that our method preserves power while controlling the false
discovery rate in anomaly detection settings. We conclude in Section 7.

2 Problem Formalization: Multiple hypotheses testing for anomaly

detection

We formalize the problem statement of online anomaly detection via an unsupervised approach using
probabilistic time series models. There is a rich and growing literature describing such probabilistic
models (e.g., [5, 14, 24, 23, 26, 25, 8]) well suited for anomaly detection.

Deriving p-values. At each time step t, hypothesis Ht is tested based on a p-value that must be
obtained from past observations only. The concept of anomaly is ambiguous and suffers from a
subjective and imprecise definition [9]. We assume that anomalies are characterized by statistically
rare events that deviate significantly from expectations. For this reason, it is natural to address
anomaly detection through probabilistic forecasting. A probabilistic forecast is an estimation of
the probability distribution of zt given the past, that is Prob{zt | zt0 , t

0
< t}, or equivalently its

c.d.f. Ft. Under the null hypothesis (no anomaly), such a forecast should be a decent estimate
of zt. From the forecast we can derive a p-value pt, which is the probability to observe an event
in the tail of the distribution relative to zt under the assumption that Ht is null. Hence, a small
value for pt is an indication that Ht must be rejected. We may derive two-sided p-values as pt =
2 min (Ft(zt), 1 � Ft(zt)) using the predicted c.d.f. Ft for symmetric distributions.

With this principle, we can infer a sequence of p-values {pt}
1

t=1 iteratively as new observations
are made available. Instead of two-sided p-values, other scenarios are conceivable as for certain
usages, it may make sense to define anomalies as values either extremely high or low compared to
the median. For example, in a scenario where we monitor the resources usage of a compute service,
only large values should result in an alert. Accordingly, one-sided p-values can be derived to account
for only one end of the distribution. More generally, p-values need only to be stochastically larger
than the uniform distribution under the null hypothesis, that is:

if Ht is truly null then Prob{pt  u}  u for all u 2 [0, 1] . (1)
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With this definition of anomalies, we can decompose the problem of anomaly detection into two
distinct sub-problems: (i) obtaining p-values in line with the application via a forecasting model and
(ii) using a criterion on the p-values to accept/reject hypotheses. We will assume time series models
to be given and focus on (ii), that is, the choice of decision thresholds.

False discovery rate control. As we reject hypotheses we want to make sure that we do not falsely
report too many anomalies. If there was a single hypothesis we could reject it if the associated
p-value is smaller than some threshold ↵: this ensures that the probability to report an anomaly
when it is not is less than ↵. This is an immediate consequence of the definition of the p-value in
Equation (1). However, this procedure does not provide similar guarantees for a set of hypotheses
in general and for sequentially dependent p-values as in the case of online anomaly detection in
time series in particular. For this reason, in multiple hypotheses settings rejections are based on
procedures controlling metrics pertaining to a set of tests.

One of these metrics is the family-wise error rate (FWER) [13], which is the probability to make
at least one false discovery. The probability to reject a truly null hypothesis approaches 1 when
the number of tests grows. This makes the FWER metric too conservative, leading to very few
discoveries for long (possibly infinite) streams of data.

The false discovery rate (FDR) is the more natural quantity to control in our setting. Procedures
controlling the FDR aim at maximizing the number of true discoveries subject to an upper bound
on the expected proportion of false discoveries. This is equivalent to maximizing recall subject to a
user-defined lower bound on precision. For a given set of hypotheses the FDR is formally defined
as the expected ratio of false positives to total discoveries:

FDR , E [FDP] , E


|H

0
\R|

|R| _ 1

�
,

where H
0 and R are the sets of truly null hypotheses and rejections respectively, and FDP is the

false discovery proportion of the samples.

This article is concerned with the problem of online FDR control where observations arrive se-
quentially and we want to make a decision immediately on whether to classify the observation as
anomalous or not. Alternative settings have been investigated in the literature. Rather than making
a decision at every time step, Zrnic et al. [33] considers testing sequences of hypotheses by batches
of variable length. This takes advantage of a partial ordering of the p-values at the cost of a delay
in the decision, which is not desirable in online anomaly detection. Another option is to aggregate
a series of p-values [17, 12] and perform FDR control consequently, either sequentially or based on
multivariate [22] forecasts. Wang [31] propose to perform online anomaly detection by coupling
a STL decomposition with a FDR method based on the distribution of z statistics or the residuals
building on a method proposed by Sun and Cai [29].

3 Background: Online FDR control

Online testing algorithms aim at controlling a time-dependent variant of the FDR that we define as
follows. We let Rt denote the rejection indicator at time t and define the number of rejections R(T )
and of the number of false positives V (T ) up to time T as

R(T ) =
TX

t=1

Rt and V (T ) =
TX

t=1

Rt1{t 2 H
0
} .

Naturally, we define the FDP and FDR at time T as FDP(T ) = V (T )
R(T )_1 and FDR(T ) = E [FDP(T )]

respectively.

Online decision rules that control the FDR allocate a decision threshold ↵t to test hypothesis Ht

at every time step t. The hypothesis is rejected if the associated p-value is less than ↵t, and the
rejection indicator is Rt = 1{pt  ↵t}. We wish to pick the rejection thresholds {↵t}

1

t=1 in such
a way that FDR(T )  ↵ at any time T for some FDR target ↵ 2 [0, 1]. Decision thresholds must
depend solely on past observations, so that for any time t there is a function ft such that

↵t = ft(R1, . . . , Rt�1) 2 F
t�1

, (2)
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where F
t , �(R1, . . . , Rt) is the �-field (information known) at time t.

In this section, we make the standard conditional super-uniformity assumption that

if Ht is truly null then Prob{pt  u | F
t�1

}  u for all u 2 [0, 1] , (3)

which is satisfied if {pt}1

t=1 is a sequence of valid p-values and if null p-values are independent of
all others. The independence assumption can be questionable for time series data in certain settings.
We propose a method to relax it in Section 5 but we maintain it until then to simplify the exposition.

Generalized ↵-investing. The first algorithm controlling (a modified version of) the FDR was
introduced by [10] with the idea of ↵-investing. This algorithm is part of a broader class of al-
gorithms known as generalized ↵-investing (GAI) rules [1]. Algorithms of the GAI class record a
quantity wt called the wealth, that represents the allocation potential for future decision thresholds.
They start with an initial wealth w0 2 (0,↵) and at every time step t, an amount �t is spent from
the remaining wealth in order to test the hypothesis Ht at level ↵t. When a rejection occurs, an
amount of  t is earned back, which induces the update wt = wt�1 � �t + Rt t. The wealth must
always be non-negative, which imposes �t  wt�1, and the (modified) FDR is controlled only if
the quantities  t are bounded adequately. The exact FDR can be controlled by algorithms called
LORD and LOND [15]. These algorithms are part of the GAI framework, and satisfy a monotonic
property, meaning that ft is a coordinate-wise non-decreasing function in Equation (2). In fact, any
monotonic GAI rule controls the FDR, under the assumption that p-values are independent [16].

Oracle rules. Monotonic GAI rules can be seen as a special case of decision rules relying oracle
estimates of the FDP [18, 19, 30]. Maintaining the quantity

FDP?(T ) =

P
tT,t2H0 ↵t

R(T ) _ 1

below ↵ at time T guarantees that FDR(T )  ↵. This oracle cannot be evaluated as the set of
null hypotheses H

0 is not known. A simple way to upper-bound FDP? is to remove the condition
t 2 H

0 in the summation, which leads to a class of algorithms known as LORD [15, 16, 18]. More
refined upper-bounds give rise to adaptive algorithms known as SAFFRON and ADDIS [19, 30]. In
short, LORD can be seen as an online version of the Benjamini-Hochberg procedure [2], SAFFRON
as an online version of [27], and ADDIS is able to slightly improve on SAFFRON’s performances
when null p-values are not exactly uniformly distributed, but stochastically larger than uniform. The
algorithms SAFFRON and ADDIS are able to improve slightly on LORD’s power when the proportion
of alternative hypotheses is large, typically more than 50%, which is not the case in anomaly detec-
tion. We illustrate this in Figure 1. For this reason we focus on LORD and provide a more detailed
discussion about SAFFRON and ADDIS in Appendix B.

The oracle estimate of LORD is given by

dFDPLORD(T ) =

P
tT ↵t

R(T ) _ 1

and offers a lot of flexibility. FDR control at time T holds for any sequence {↵t}
1

t=1 chosen such that
dFDP(T )  ↵, provided that the functions ft (in Equation 2) are coordinate-wise non-decreasing.
We show here how to generate such a sequence as suggested in [18]. We let {�t}1

t=1 denote a non-
increasing sequence summing to 1, where we set �t = 0 for all t  0 for convenience. We also let
⇢j = min{t � 0 |

Pt
i=1 Ri � j} denote the time of the jth rejection (and 1 if it doesn’t exist).

Then the sequence defined by

↵t = w0(�t � �t�⇢1) + ↵

X

j�1

�t�⇢j (4)

satisfies the FDR control requirements. Note that thresholds decrease to zero except when new
rejections are made.

Using the same notations, a special instance of ADDIS is given by the sequence

↵t = (⌧ � �)
⇣
w0(�S0(t) � �S1(t)) +

X

j

�Sj(t)

⌘
^ � , (5)
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for some fixed parameters 1 > ⌧ > � > 0, and where we define

Sj(t) , 1{t > ⇢j} +
t�1X

i=⇢j+1

1{� < pi  ⌧} .

The corresponding SAFFRON algorithm is recovered by setting ⌧ = 1.

Limitations of FDR rules. Anomalies are by definition rare events and the proportion of alterna-
tive hypotheses in the stream is expected to be very low, typically less than 1% in practice. This
induces two distinct problems for the discovery of anomalies:

P.1 The lower the proportion of alternatives, the harder it is to distinguish them from nulls with
extreme values. This difficulty is inherent to FDR control, be it offline or online, and makes
anomaly detection challenging.

P.2 In the online setting, the decision thresholds ↵t decreases monotonously while no rejection
is made. Hence, if no rejection is made for a long time, the thresholds will be essentially
null and no additional discovery will occur. This phenomenon is known as ↵-death and
causes a loss of power in anomaly detection regimes.

The power of these algorithms depends on {�t}
1

t=1 and on the nature of the data since they are
general and make minimal assumptions. In the remaining, we use the default and robust sequences
derived by [18, 19, 30], that is, �t /

log(t^2)

t exp
p

log(t)
for LORD. In experiments involving SAFFRON

and ADDIS we also use standard parameters; see Appendix B for more details. Figure 1 illustrates
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Figure 1: Illustration of the difficulties encountered in FDR control for anomaly detection. (Left)
The power decreases to zero when the proportion of alternative hypotheses ⇡1 is low for all FDR
controllers. Stream of artificially generated p-values from observations either from N (0, 1) (null)
or N (3, 1) (anomaly) with proportion ⇡1. (Right) SAFFRON’s decision thresholds ↵t as a function
of time for a target ↵ = 0.1 and the canonical sequence {�t}.

both of these problems. In the regime where the proportion of alternatives is low, LORD, SAFFRON
and ADDIS all exhibit the same (poor) performances. Selecting a sequence {↵t}

1

t=1 going to zero as
slowly as possible helps to overcome P.2 to some extent but worsens P.1 in contrast.

4 Circumventing ↵-death

In this section, we tackle the issue of ↵-death described in Section 3, which is the biggest practical
problem of FDR control for anomaly detection. This suggests a change in the FDR metric, as
indicated by [18]. They introduced a decaying memory version of the FDR, meaning that the past is
forgotten with a discount factor � 2 (0, 1].
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Memory decay FDR. We define decaying memory rejections count R�(T ) and false positives
count V�(T ) as

R�(T ) =
TX

t=1

�
T�t

Rt and V�(T ) =
TX

t=1

�
T�t

Rt1{t 2 H
0
} .

In words, more weight is given to recent rejections, and the past shrinks exponentially. This is ar-
guably the most intuitive notion of FDR for very long, possibly infinite streams of data. Consistently,
the decaying memory FDR at level � is defined as

FDR�(T ) = E [FDP�(T )] = E


V�(T )

R�(T ) _ 1

�
. (6)

The LORD rejection thresholds (4) can be adapted as

↵t = w0

�
�
t�min(⇢1,t)�t � �

t�⇢1�t�⇢1

�
+ ↵

X

j�1

�
t�⇢j�t�⇢j (7)

in order to control the memory FDR at the desired level ↵ as proposed by [18]. They also show that
it inhibits a phenomenon known as piggybacking [18], where threshold increments accumulated by
previous rejections lead to a sequence of bad decisions.

However, after the first rejection, decision thresholds in Equation (7) suffer from an exponential
decay and quickly tend to zero if no rejection is done in the next few steps. The authors suggest that
when thresholds are too low, the rejection process should be paused and abstain from making any
decision. After some time the oracle estimate decreases because of the exponential decay and the
rejection process can be resumed. This scheme poses two problems: (i) during an abstention phase
we are not able to reject any hypothesis, even those with very low p-values that might be critical and
(ii) there is no theoretical guarantee that the FDR is still controlled after resetting the process with
initial values.

In this section we establish one of the key contributions of this paper, showing that the idea of mem-
ory decay, allows to avoid ↵-death while controlling the FDR. When no rejection is made both
V�(T ) and R�(T ) decay to zero. Intuitively, this translates into a minimal rejection threshold that
doesn’t depend on the last rejection time. The standard expression of the FDR contains an asymme-
try before and after the first rejection time ⇢1 because of the _ operator in the denominator. For this
reason, our results are more naturally expressed in terms of smoothed FDR (inspired from [16]), that
is

sFDR�(T ) = E [sFDP�(T )] = E


V�(T )

R�(T ) + ⌘

�
,

for some small smoothing parameter ⌘ > 0. We show in Appendix D how to deal with the case
where the quantity to control is the memory FDR at level � as defined in Equation (6).

LORD memory decay. As in Section 3, we express algorithms in terms of oracle rules. Remember
that decision thresholds ↵t = ft(R1, . . . , Rt�1) are functions of the past. We define the memory
decay version of the LORD oracle as

dFDP
�

LORD(T ) =

P
tT �

T�t
↵t

R�(T ) + ⌘
.

We derive a memory decay analogue of the results in [18].
Proposition 1. Suppose that functions ft are coordinatewise non-decreasing. If p-values satisfy
relation 3 then picking decision thresholds ↵t such that dFDP

�

LORD(T )  ↵ at time T ensures that
sFDR�(T )  ↵.

Proof given in Appendix C.1.

As for all oracle rules presented above, Proposition 1 gives a lot of freedom regarding the choice
of the sequence of decision thresholds. We exhibit here a special instance that naturally generalizes
the standard LORD algorithm and that doesn’t suffer from ↵-death when � < 1. Let {�̃t}1

t=1 be a
positive non-increasing sequence such that

PT
t=1 �

T�t
�̃t  1 for all T . Notice that such a sequence
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admits a limit no larger than 1� �, and may be chosen lower-bounded by 1� �. A natural choice is
�̃t = max(�t, 1 � �). Rejection thresholds defined as

↵t = ↵⌘�̃t + ↵

X

j

�
t�⇢j�t�⇢j (8)

satisfy the assumptions of Proposition 1. In the case where �̃t = max(�t, 1 � �), this means that
there is a minimal rejection threshold, namely ↵⌘(1 � �), no matter how long ago the last rejection
occurred.

SAFFRON and ADDIS memory decay. Algorithms SAFFRON [19] and ADDIS [30] can be adapted
in the same way as LORD in order to avoid ↵-death. We defer precise statements and analysis to
Appendix B. We provide here a special instance for some fixed parameters 1 > ⌧ > � > 0. The
sequence of thresholds defined by

↵t = ↵(⌧ � �)
⇣
⌘�̃S0(t) +

X

j

�
t�⇢j�Sj(t)

⌘
^ � (9)

controls the smoothed memory decaying FDR at level ↵. Here again, in the case where �̃t =
max(�t, 1��), this means that there is a minimal rejection threshold, namely ↵⌘(⌧ ��)(1��)^�.
In Figure 2 we exhibit a qualitative example showing how the minimal rejection threshold helps to
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Figure 2: SAFFRON rejection threshold with memory decay (bottom) and without (top). True posi-
tives in green, false positives in red, false negatives in purple. Without memory decay, the rejection
threshold decreases so much that further discoveries are impossible.

make discoveries after a long time without anomalies.

5 Local dependency

In this section, we show how to theoretically overcome the limitation posed by the independence of
p-values implied by the super-uniformity assumption (3). Time series data contains dependencies
that may leak to the p-values. If null p-values depend on each other the super-uniformity assumption
may be broken. We propose a method to deal with the case where null p-values are allowed to be
locally dependent.

Thresholds of the LOND and LORD algorithms can be adapted to control FDR under arbitrary depen-
dence of p-values [15, 16], in analogy to the Benjamini-Yekutieli procedure [3] in the offline setting.
It consists essentially in dividing thresholds ↵T by the quantity q(T ) , PT

t=1
1
t at all steps. By ex-

tension, SAFFRON and ADDIS could be corrected in a similar way. However, this calibration makes
thresholds essentially null in the long term as q(T ) goes to infinity. The reason is that arbitrary
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dependency of p-values is an overly restrictive supposition. As shown in Section 2, the most natural
way to derive p-values is to generate probabilistic forecast. At time step t such a forecast is typically
based on a context, that is, a sequence of past observations of finite length. If the dependence in the
data is controlled by the forecasting model then the p-value pt is independent on remote p-values.
More specifically, pt depends on the last Lt p-values only, or, in other words,

pt ?? p1, . . . , pt�Lt�1, (10)

provided that Lt is large enough. Most commonly, the dependency range is constant over time, that
is, Lt = L for all t, which we are going to assume. Notice that L = 0 and L = 1 recover the
independence and arbitrary dependence settings respectively.

The asynchronous hypotheses testing framework established by [34] proposes an approach to con-
trol a modified definition of FDR under local dependency of p-values. We show how to adapt the
memory decay LORD algorithm for local dependency in order to control

mFDR(T ) =
E[V�(T )]

E[R�(T )] + ⌘
.

We define the memory decay LORD oracle for locally dependent p-values as

dFDP
�

dep(T ) =

P
tT �

T�t
↵t

R�(T ) + ⌘
.

Proposition 2. Suppose that decision thresholds are monotone with respect to rejection indicators.
If p-values are locally dependent, that is, satisfy relation (10) then picking decision thresholds ↵t

such that dFDP
�

dep(T )  ↵ ensures that mFDR(T )  ↵ at any time T .

Proof given in Appendix C.2. As a special instance of this algorithm we can define

↵t = ↵⌘�̃t + ↵

X

j

�
t�⇢j�L

�t�⇢j�L.

Notice that increases of the thresholds coming from rejections are delayed by the context length L.
This procedure controls only a modified version of the FDR but it is known that mFDR behaves like
FDR when the number of time steps is large [10].

6 Experiments

6.1 Simulations

In this section we aim at documenting that our proposed methods are indeed able to control the
decay FDR when the proportion of alternative hypothesis (anomalies) decreases while maintaining
power. This article does not aim at asserting whether FDRC method can yield higher accuracy than
alternative threshold selection methods, such as fixed threshold, for anomaly detection tasks. The
main advantage of FDRC method is in being able to target an upper bound on the false discovery
rate, and therefore a lower bound on precision, without observing labels during training.

For these experiments we generate data following a mixture of distribution, with a share ⇡1 2 (0, 1)
of observations drawn from the anomalous distribution and a share 1 � ⇡1 drawn from the non-
anomalous distribution. We associate a label with each observation, 1 if the observation is drawn
from the anomalous distribution, 0 otherwise. We then compute p-values of the data under the
non-anomalous distribution, mimicking a forecasting-based anomaly scorer while abstracting away
model noise and uncertainty.

We apply the different FDRC methods described above to these sequences of p-values in order to
classify observations as anomalous or not. We use the labels to compute the false discovery rate,
decaying false discovery rate, as well as statistical power. We focus here on assessing the pure decay
version. The appendix contains further experiments taking local dependency into account.

Figure 3 shows that our methods, labelled DecayLord and DecaySaffron, are able to control the
FDR� as anomalies become rarer (bottom panel) while maintaining power (top panel) ensuring that
a substantial fraction of anomalies are detected. Expectedly, having power against vanishingly rare
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Figure 3: Power (recall) and FDR (1 � precision) changes according to anomaly proportions. For
each anomaly proportion, 100 datasets of length 20K are generated by drawing from either N (0, 1)
with probability (1 � ⇡1) or from N (0, 3) with probability ⇡1 where ⇡1 2 [10�4

, 0.9]. For all
models, the target FDR is 0.1; for SAFFRON, � = 1/2, and for ADDIS � = 1/4 . We set � to 0.99
for DecayLord and DecaySaffron models.

alternatives comes at the cost of a decrease in precision (middle panel). The power (or recall) of
non-decay methods tends to zero rapidly as the ↵-death phenomenon prevents them from making
any rejections. Their precision, (1�FDR), remains artificially high since no discovery is ever made.

We provide an additional experiment with artificial data in Appendix A. It compares the Power/FDR
curves of our algorithms to popular existing techniques.

6.2 Real World Experiments

We next demonstrate the performance of our methods on p-values generated by a simple forecaster
applied on the Server Machine Dataset (SMD) [28]. The p-value for each observation is calculated
by assuming that the data follows a Gaussian distribution whose moments are estimated as the
sample mean and standard deviation of the previous n points. This naive p-value generation method
does not attempt to control for dependence in the time-series, potentially introducing dependence
in the p-values. The SMD is composed of multi-dimensional time series, labels are affixed to the
whole dataset for a specific time-stamp rather than to individual series. Therefore, the p-values we
assign to a given time-stamp is the smallest of the p-values computed on each dimension for that
time-stamp. Anomalies are relatively frequent in the SMD, 4.16% of time-stamps are labelled as
anomalous. In this setting, both standard and decay version of FDRC rules are expected to perform
well.

Figure 4 shows that while both decay and non-decay versions of LORD and SAFFRON do not con-
trol the target FDR very precisely (top-left), they control the decay FDR much more accurately (top-
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Figure 4: FDR, FDR� and Power(recall) changes according to target FDR over the p-values gener-
ated by applying a simple forecast algorithm to the Server Machine Dataset. The bottom right plot
shows the power change according to actual FDR is given.

right). DecayLord and DecaySaffron has higher power that non-decay versions when the target
FDR is low (bottom-left). For a given, realized false discovery rate, the power of both DecayLord
and DecaySaffron is higher (bottom-right).

7 Conclusion, Limitations, and Future Work

This article demonstrates that by using a memory decay procedure, we can ensure that state-of-
the-art online false discovery rate control rules can maintain power against rare alternatives. This
enables the use of FDRC methods for anomaly detection tasks in streams of time-series data.

This work is limited in its scope to demonstrating in theory and empirically that our modified FDRC
rules are effective. We do not consider the problem of tuning the hyper-parameters of these rules, in
particular the decay rate � as well as the selection of the sequence �t. The choice of these parameters
is likely to noticeably influence the performance of the the rules.

We have chosen not to explore the coupling of these rules with anomaly scoring models to evaluate
the efficiency of these pairs on real-world anomaly detection tasks as the purpose of this article is
on establishing the properties of these rules. In addition, we note that commonly used public data
sets to evaluate anomaly detection methods have been convincingly argued [32] to be flawed and not
representative of real-world tasks in particular due to an unrealistically high density of anomalies. In
such settings, and contrary to many practical problems in anomaly detection, using memory decay
FDRC rules would not be useful. We hope to be able to follow up on this work once higher-quality
public datasets become available.
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