
Learning to Delegate for Large-scale Vehicle Routing

Sirui Li⇤
MIT

siruil@mit.edu

Zhongxia Yan*

MIT
zxyan@mit.edu

Cathy Wu
MIT

cathywu@mit.edu

Abstract

Vehicle routing problems (VRPs) form a class of combinatorial problems with wide
practical applications. While previous heuristic or learning-based works achieve
decent solutions on small problem instances, their performance deteriorates in
large problems. This article presents a novel learning-augmented local search
framework to solve large-scale VRP. The method iteratively improves the solution
by identifying appropriate subproblems and delegating their improvement to a
black box subsolver. At each step, we leverage spatial locality to consider only
a linear number of subproblems, rather than exponential. We frame subproblem
selection as regression and train a Transformer on a generated training set of
problem instances. Our method accelerates state-of-the-art VRP solvers by 10x to
100x while achieving competitive solution qualities for VRPs with sizes ranging
from 500 to 3000. Learned subproblem selection offers a 1.5x to 2x speedup
over heuristic or random selection. Our results generalize to a variety of VRP
distributions, variants, and solvers.

1 Introduction

Vehicle routing problems (VRPs) have enjoyed ample applications in logistics and ride-hailing
services [23] around the world for decades. While determining the optimal solution to a VRP is
NP-hard [25], there have been numerous attempts to solve VRPs both exactly and approximately:
provable algorithms have been designed for specific problem instances up to size 130 [28], and
powerful heuristic solvers such as LKH-3 [13] and HGS [49, 48] find good solutions in practice for
problems of size more than 1000. However, heuristics methods often suffer from inflexibility due to
extensive hand-crafting and the heavy computational burden from lengthy iterative procedures, as in
the case of LKH-3. For example, LKH-3 takes more than an hour to solve a size 2000 CVRP instance
(Table 1), which is impractical for applications such as large-scale courier or municipal services.

More recently, machine learning methods inspired by the Pointer Network [50] provide alternatives
to traditional solvers: the learning-based methods greatly reduce computation time while maintaining
decent solution quality on small problem instances (less than 100 cities), by training on diverse sets
of problem distributions either via supervised [50] or reinforcement learning [29, 20]. However, these
methods remain difficult to scale, and few report results on problems of size more than 200.

Our work aims to address scalability by learning to identify smaller subproblems which can be readily
solved by existing methods. Our learned subproblem selector guides the problem-solving process
to focus local improvement on promising subregions. While there exists a combinatorial number

⇤Equal Contribution

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

of subproblems that can be selected at each step, we leverage spatial locality commonly found in
combinatorial optimization problems to restrict the selection space size to be linear in the problem
size. Intuitively, objects far away from each other generally have very small influence on each other’s
solution and are likely to be in different routes, so they should not be part of the same subproblem.
The greatly reduced search space enables us to feasibly train an attention-based subproblem selector.

Our framework combines the advantages of learning and heuristics: our network identifies promising
subproblems to improve upon, dramatically speeding up solution times. Using a competitive subsolver
on subproblems, we achieve good solution quality without the high computational costs of running
the subsolver on large problem instances. In summary, our contributions are:

• We propose learning-to-delegate, a learning-based framework for solving large-scale VRPs
by iteratively identifying and solving smaller subproblems.

• Despite the high dimensionality and NP-hardness of subproblems, we design a Transformer
architecture that effectively predicts the subsolver’s solution quality for a subproblem.

• With extensive validation, we show that learning-to-delegate offers significant speedups
and/or objective improvements over both its base subsolver and random (or heuristic)
subproblem selection, for a variety of VRP variants, distributions, and solvers.

2 Preliminary: Capacitated Vehicle Routing Problems (CVRP)

In CVRP, there is a depot node 0 and city nodes {1, ..., N}. Each city node i has demand di to fulfill.
A vehicle with capacity C starts and ends at the depot and visits a route of city nodes such that the
sum of city demands along the route does not exceed C, after which the vehicle starts a new route
again. The objective is to find a valid solution minimizing the solution cost. We define the following:

• Route: a sequence of nodes, where the first and last node are the depot 0, and the rest are
city nodes. In a valid route, the sum of demands of the city nodes does not exceed C.

• Route cost: the sum of edge costs for the sequence of nodes. For an edge from node i to
node j, the edge cost is the Euclidean distance between node i and j.

• Solution: a feasible solution consists of a set of valid routes visiting each city exactly once.
• Solution cost: the sum of route costs for all routes in the solution. An optimal solution is a

feasible solution with the minimum solution cost.
• Subproblem: a CVRP consisting of the depot, a subset of cities, and corresponding demands.

3 Related Work

Classical methods. Heuristics for solving combinatorial optimization problems have been studied
for decades. The most powerful methods, such as local search [1], genetic algorithms [36], and ant
colony methods [10], involve iteratively improving the solution in a hand-designed neighborhood.
For example, move, swap [52], and 2-opt [9] are well-known heuristics for the traveling salesman
and vehicle routing problems. The competitive VRP solver LKH-3 [13] uses the Lin–Kernighan
heuristic [26] as a backbone, which involves swapping pairs of sub-routes to create new routes,
whereas the CVRP solver HGS [49, 48] uses a hybrid genetic and local search procedure to achieve
state-of-the-art solution qualities on problems up to size 1000. While LKH-32 tackles a variety of
VRP variants, the publicly available implementation of HGS 3 only solves CVRP.

For large problems, low-level heuristics are combined with meta-heuristics, including Tabu Search
with Adaptive Memory [40], guided local search [51], and Large Neighborhood Search [35]. The
inspiration for our work derives from Partial OPtimization Metaheuristic Under Special Intensification
Conditions (POPMUSIC), which iteratively optimizes problem subparts and has been used to solve
problems as diverse as map labeling [24], berth allocation [22], and p-median clustering [39].

Despite the promise of the POPMUSIC framework for large-scale combinatorial optimization, the
impact of certain design choices is not well understood, such as the subproblem selection ordering

2We refer to the LKH-3 code at http://webhotel4.ruc.dk/~keld/research/LKH-3/.
3We refer to the HGS code at https://github.com/vidalt/HGS-CVRP.

2

http://webhotel4.ruc.dk/~keld/research/LKH-3/
https://github.com/vidalt/HGS-CVRP

Figure 1: Our iterative framework for VRPs. (a) At each time step, we start with a current solution
X . Circles are city nodes, blue lines are route segments, and the red star is the depot. (b) We
aggregate each route by taking the centroid of all city nodes in the route. (c) For each route, we define
a corresponding subproblem as the k-nearest neighbors of the route. Two such subproblems with
k = 3 are shown. (d) Our subproblem selector selects a subproblem S (yellow). (e) We feed S into
the subsolver to get a new subsolution X

0
S . The red edges are updated by the subsolver. (f) We update

X to new solution X
0 with X

0
S , then repeat (b)-(f).

and size [43]. For example, it is not clear how to meaningfully order the subproblems. One early
work in this direction demonstrated that a last-in-first-out stack order performs better than random [3].
Our work provides a natural approach to order the subproblems based on predicted improvement.

Deep learning methods. Recently, there has been a surge of interest in training deep neural
networks (DNN) to solve combinatorial problems. As observed by Kwon et al. [21], most methods
fall into one of the following two categories: 1) construction methods [29, 20], where an autoregressive
model such as the Pointer Network [50] directly outputs a solution, and 2) improvement methods [7,
15], where the DNN iteratively performs local updates to the solution, resembling local search.

These methods are approaching the solution quality of LKH-3 [13] on small problem instances. For
example, Kwon et al. [21] extends a construction approach [20] to encourage more diverse output
samples on N 100 VRPs. Among improvement methods, Lu et al. [27] learn a meta-controller to
select among a set of local search heuristics, marking the first learning-based approach to outperform
LKH-3 on N 100 VRPs. Despite these successes, learning-based approaches for large-scale
VRPs are poorly understood. In addition, all of the aforementioned methods are trained using deep
reinforcement learning; for large problems, trajectory collection becomes prohibitively expensive.

Scaling up learning methods. A few recent works have begun to investigate scaling of learned
networks for NP-hard graph problems. For example, Ahn et al. [2] propose an iterative scheme
called learning-what-to-defer for maximum independent set. At each stage, for each node in the
graph, the network either outputs the solution for the node or defers the determination to later stages.
Song et al. [38] proposes an imitation-learning-based pipeline for Integer Linear Programs (ILP),
where at each stage they partition all variables into disjoint subsets, and use the Gurobi [12] ILP
solver to solve the partitions. Due to differences in graph structure, our work presents a more natural
scheme to handle VRP constraints and structures. A few works attempt to incorporate learning to
decompose large-scale VRPs [6, 47, 31]. However, the decomposition approaches proposed appear
to be experimentally less effective than ours.

4 An Iterative Framework for VRPs

While CVRPs are NP-hard and thus require worst-case exponential time in the problem size to solve
optimally, typical CVRPs exhibit structure that practical solvers may exploit. We hypothesize that in

3

such situations, the larger problem can be efficiently approximately solved as a sequence of smaller
subproblems, which can be delegated to efficient subsolvers. To test this hypothesis, we propose
a learning-based, iterative framework with two components: 1) a subsolver capable of solving a
small problem instance (exactly or approximately), and 2) a learned model for identifying suitable
subproblems within a larger problem to delegate to the subsolver.

Algorithm 1: Learning to Delegate
Input: Problem instance P , initialized solution X , subproblem selector f✓, subsolver

Subsolver, number of steps T , parameter k denoting the size of subproblems
1 for Step t = 1: T do
2 Sk,local ConstructSubproblems(P,X, k)
3 S f✓(Sk,local)
4 X

0
S Subsolver(S)

5 X X
0
S [XP\S

6 end for

We illustrate our iterative framework in Figure 1, which takes in a problem instance P with a feasible
initial solution X0. At each step, given the current solution X , we select a smaller subproblem
S ⇢ P with our learned model f✓ then apply the subsolver to solve S; we then update X with the
new solution for S. To maintain feasibility after an update, we restrict S to be the set S of visited
cities of a subset of routes from X . Since routes with cities in P \ S remain valid routes, we obtain
a new feasible solution X

0 = X
0
S [XP\S , where X

0
S is the subsolution for S and XP\S consists

of unselected routes from X . Intuitively, a strong f✓ should identify a subproblem S such that the
subsolver solution X

0
S results in a large improvement in objective from X to X

0.

4.1 The Restricted Subproblem Selection Space

As the number of routes in P is R = O(N), the cardinality of the selection space S is O(2R), which
is exponential in the problem size N and difficult for learned models to consider. If we restrict each
subproblem to cities from exactly k routes, there are still

�R
k

�
= O(Rk) subproblems to consider.

Therefore we further restrict selection to subproblems with spatial locality. As shown in Figure 1(d),
we only consider subproblems from Sk,local, where each subproblem is centered around a particular
route r and contains the k routes whose centroids have the smallest Euclidean distance to the centroid
of r. In this way, we reduce the selection space to |Sk,local| = R = O(N) from |S| = O(2N). In
Algorithm 1, we refer to this restriction as ConstructSubproblems. Our restriction to a local selection
space is motivated by the fact that many combinatorial optimizations problems have inherent spatial
locality, i.e. problem entities are more strongly affected by nearby entities than faraway entities.
Earlier heuristical methods such as POPMUSIC [42] leverage similar spatial locality.

5 Learning to Delegate

In this section, we discuss criteria for selecting subproblems, and how to train the subproblem selector.

Improvement as the criteria for subproblem selection. Given a selected subproblem S with a
current solution XS on the subproblem, we obtain from LKH-3 a new solution X

0
S on the same

subproblem (step (d) to (e) in Figure 1). We then define the immediate improvement

�(S) = c(XS)� c(X 0
S) (1)

where c(XS) is the total cost of subsolution XS and �(S) is the improvement in the solution cost. In
this way, the sum of improvements along T steps is the total improvement in solution quality. As we
empirically find that providing the previous subsolution XS to the subsolver may trap the subsolver
in a local optimum, we withhold XS from the solver and thus may see non-positive improvement
�(S) 0, especially after many steps of subproblem selection. At test time, to avoid worsening the
objective, we adopt a hill-climbing procedure such that when �(S) 0, we keep XS instead of X 0

S
(Figure 1, step (e)). With proper masking, we avoid selecting the same non-improving subproblem
S again. The hill-climbing and masking procedures are applied to both our subproblem-selection
network f✓ and the three heuristic selection rules, described in 6.1, to maintain fair comparisons.

4

Figure 2: Our Transformer architecture. At each step of our framework (Figure 1(c)), we featurize
subproblem S 2 Sk,local into a column vector of unordered cities. We apply the Transformer encoder
with multiple multi-head attention layers and a final linear layer, before mean-pooling over the cities
to generate the predictions f✓(S), which we fit to the subsolution cost c(X 0

S). When possible, we
retrieve a previously predicted subproblem from a cache to minimize computation.

Subproblem selection. The goal of our subproblem selector is to select the subproblem leading
to the best immediate improvement. While our subproblem selection does not directly optimize for
the total improvement, we observe that (1) our subsolver may perform many low-level operations
internally, so high-level problem selection may still benefit greatly from maximizing the immediate
improvement, and (2) numerous reinforcement learning approaches to VRP [53, 18] choose a

small discount factor such as � = 0.25 when optimizing a multi-step objective
TP

t=1
�
t
�t, as doing

so encourage faster convergence. Moreover, our subproblem selector may instead be trained on
multi-step search data to select subproblems offering the best multi-step improvement.

Ground-truth labels. Our restricted selection space allows us to enumerate all possible subprob-
lems at each step. In a typical large scale CVRP instance with N = 2000 cities, a solution consists
of roughly R = 200 routes, so the size of the selection space is 200. We obtain the immediate
improvement �(S) by running the subsolver on each subproblem S 2 Sk,local. Although our enumer-
ation strategy is feasible for generating training data, it is much too slow to execute on a test CVRP
instance. However, if our subproblem selector can predict the best immediate improvement at test
time (that is, without running the subsolver on multiple subproblems), then we can combine the best
of both worlds to obtain a fast and accurate selection strategy.

Selection strategies: regression vs classification. Given a labeled dataset, we may treat the task
of identifying the best subproblem as either regression or classification. In the context of imitation
learning with a greedy expert, the former learns a value function while the latter learns a policy. Due
to space limitation, we focus discussion on regression and reserve comparison with classification for
Appendix A.5.1. The regression-based subproblem selector uses a trained f✓ to predict the subsolution
cost c(X 0

S); we then simply compute argmaxS c(XS)� f✓(S) to select the best subproblem.

Network architecture. We define f✓ with a Transformer encoder architecture [45]. The input
representing each subproblem S is the unordered set of featurized cities in S. The features for each
city consist of the demand d and the location of the city (x, y) relative to the depot. As we do not
feed the existing subsolution XS to the subsolver, the dense multi-head attention mechanism does
not need to be modified to take the routes in XS into account. The output of the Transformer encoder
is fed into a linear layer then mean-pooled to obtain the scalar prediction f✓(S). In Appendix A.5.5,
we perform an ablation study with simpler architectures.

Loss function. We empirically find mean squared error to be less stable than Huber loss [16], which
we set as our loss function

L(✓;S) =

⇢
1
2 (f✓(S)� c(X 0

S))
2
, if |f✓(S)� c(X 0

S)| 1
|f✓(S)� c(X 0

S)|� 1
2 , otherwise

(2)

5

Figure 3: Instances from N = 2000 CVRP distributions. From left to right: instance from uniform,
mixed (nc = 7 cluster centers), clustered (nc = 3 cluster centers), and real-world. The red star is the
location of the depot, while blue dots are cities sized proportional to demand.

6 Experiments and Analysis

We illustrate the CVRP distributions considered in our work in Figure 3. We perform extensive
experiments to evaluate our learning framework, aiming to answer the following questions:

1. Uniform distribution. How does our method compare with baselines, in terms of solution
time and quality, on problems with uniformly distributed cities?

2. Clustered distributions. How does our method perform on problems with clustered cities?
3. Out-of-distribution. Can our model generalize, such as to larger or real-world instances?
4. VRP variants. Can our method address more sophisticated VRPs? E.g., CVRP with Time

Windows (CVRPTW) [37] or VRP with Mixed Pickup and Delivery (VRPMPD) [33].
5. VRP solvers. Can our method be adapted to leverage other VRP subsolvers?

We reserve additional ablations on subproblem selection as classification, effect of subproblem size
k and discussion of asymptotic behavior, subproblem selection with the HGS subsolver, effect of
weaker initialization methods, and comparison with simpler architectures for Appendix A.5.

6.1 Setup

We briefly describe experimental setup in the main text and defer full details to Appendix A.1. Given
a particular distribution of VRP, we generate separate sets of training, validation, and test problem
instances. Unless otherwise stated, our validation and test sets contain 40 instances each. For each
problem instance, we generate a rough initial solution by partitioning it into disjoint subsets of cities
and briefly running the subsolver on each subset. Due to its compatibility with many VRP variants,
we use LKH-3 [13] as the subsolver for all VRP distributions unless otherwise stated.

We generate the training set by running our iterative framework and selecting subproblems by
enumerating the subsolver on all S 2 Sk,local. As many subproblems remain unchanged from X to
X

0, we use previously cached subsolutions when possible instead of re-running the subsolver. While
generation times differ depending on several factors, typically it takes less than 10 hours with 200
Intel Xeon Platinum 8260 CPUs to generate a training set of 2000 instances.

To avoid training multiple models for different problem sizes N , we train a single model for each
VRP distribution with combined data from multiple N 2 {500, 1000, 2000}. Training takes at most
8 hours on a single NVIDIA V100 GPU. To exploit symmetry in problem instances, we apply rotation
and flip augmentation at training time. To evaluate trained selectors on a problem instance, we run
the iterative selection framework on a single CPU, with disabled multithreading and no GPU.

We select the best hyperparameters via manual search based on validation set performance. We record
final results on the test set as the mean and standard error over 5 runs with different random seeds.

Baselines. By default, as we use LKH-3 as the subsolver, we run LKH-3 on the full problem
instances with our initialization for 30000 local update steps, which takes 2-3 hours on average for
N = 2000. If using HGS as the subsolver, we also run HGS on the full problem instances for the
same amount of time as our LKH-3 baseline. These baselines allow us to compute the speedup of our
framework over the subsolver alone. We also compare against OR Tools [30], another open source

6

Table 1: Performance and computation time for uniform CVRP. For problem instance sizes
N 2 {500, 1000, 2000}, we report the objective values (lower is better) of our method and baseline
methods, averaged across all instances in the test set. Note that the cost is the total distance of routes
in the solution. LKH-3 (30k) runs LKH-3 for 30k steps to near convergence, while LKH-3 (95%)
is the 95% solution quality. Random, Count-based, Max Min Distance, and Ours (Short) run until
matching LKH-3 (95%) in solution quality, with the speedup reported in parentheses, while Ours
(long) runs for twice amount time as Ours (Short).

N = 500 N = 1000 N = 2000
Method Cost Time Cost Time Cost Time

LKH-3 (95%) 62.00 4.4min 120.02 18min 234.89 52min
LKH-3 (30k) 61.87 30min 119.88 77min 234.65 149min

OR Tools 65.59 15min 126.52 15min 244.65 15min
AM sampling 69.08 4.70s 151.01 17.40s 356.69 32.29s

AM greedy 68.58 25ms 142.84 56ms 307.86 147ms
NeuRewriter 73.60 58s 136.29 2.3min 257.61 8.1min

Random 61.99 71s (3.8x) 120.02 3.2min (5.5x) 234.88 6.4min (8.0x)
Count-based 61.99 59s (4.5x) 120.02 2.1min (8.2x) 234.88 5.3min (10x)

Max Min 61.99 59s (4.5x) 120.02 2.5min (7.0x) 234.89 5.2min (10x)
Ours (Short) 61.99 38s (7.0x) 119.87 1.5min (12x) 234.89 3.4min (15x)
Ours (Long) 61.70 76s 119.55 3.0min 233.86 6.8min

heuristic VRP solver employing iterative search, terminating runs at 15 minutes, as OR Tools stops
improving the solution within this time for all instances.

We include results for previous learning methods AM [20] and NeuRewriter [7]. These do not
outperform LKH-3 even on small problem sizes, and learning methods have had more difficulty
generalizing to larger instances. In fact, these methods are trained on problems of size N 100, and
we find that they yield poor solutions on N � 500 without architecture modifications and extensive
re-training. The AM and NeuRewriter results demonstrate the difficulty of scaling up previous
learning methods. We do not initialize OR-Tools, AM, and NeuRewriter because we empirically find
that these methods have limited solution capability and do not improve our decent initialization.

To validate our subproblem selector’s ability to identify promising subproblems, we design three
additional baselines that employ our iterative framework using hand-crafted heuristics to select
subproblems. The three heuristics that we use are: (1) Random, selecting subproblem S from
Sk,local uniformly; (2) Count-based, which avoids repetitive selections by selecting the subproblem
centered at the route whose city nodes have been selected cumulatively the least often in previous
steps; and (3) Max Min Distance, which encourages coverage of the entire problem instance by
selecting subproblems with the maximum distance from the nearest centroid of previously selected
subproblems. We run the heuristic baselines with the same setup as our learned subproblem selector.

Metrics. We refer to two metrics to compare our method against baseline methods.

1. Improvement over method X: at a specified computation time, the improvement of method
Y over method X is the total improvement of method Y minus that of method X.

2. Speedup over method X: at a specified solution quality that method X attains, the speedup
of method Y over method X is the computation time required for method X to attain the
solution quality divided by the time for method Y to attain the solution quality.

We define 95% solution quality of running a method X over a computation time as the solution
quality with 95% of the total improvement. We report speedup at 95% solution quality of a method
X because X may take a disproportionate amount of time on the last 5% of improvement; reporting
speedup at 100% solution quality inflates the speedup.

7

Figure 4: Improvement over LKH-3 for uniform CVRP. The x-axis is the computation time and
extends until LKH-3 has completed 30k steps. The vertical lines represent the computation times
of Ours (Short) and Ours (Long) from Table 1. The three subplots correspond to N = 500 (left),
N = 1000 (middle), and N = 2000 (right).

Figure 5: Speedup over LKH-3 for uniform CVRP. The x-axis is the solution quality attained,
measured as a percentage of the LKH-3’s maximum improvement. The dashed vertical line represents
the 95% solution quality used to compute the speedup, as mentioned in Table 1. The three subplots
correspond to N = 500 (left), N = 1000 (middle), and N = 2000 (right).

6.2 Uniform CVRP Distribution

As seen in Table 1, our method achieves the best performance for all problem sizes, matching LKH-3’s
solution quality with more than 7x to 15x less computation time and offering even more improvements
with longer computation time. Although we need to evaluate all R = O(N) subproblems of the
initial solution with our subproblem selector, subsequent per-step computation time of our method is
mostly independent of the problem size N since we only evaluate changed subproblems.

Running LKH-3 for 30k local update steps achieves superior performance to all previous other
heuristic and learning-based baselines. Its solution quality scales well to large problem sizes,
yet the solution time is significantly longer. Previous learning-based methods, though fast, result
in much worse solution qualities. Our heuristic baselines Random, Count-based, and Max Min
Distance demonstrate that our iterative framework, even without the learned subproblem selector,
may achieve over 5x to 10x speedup over LKH-3. Nevertheless, our results demonstrate that learning
the subproblem selector may offer an additional 1.5x speedup over non-learning heuristics.

In Figure 4, we demonstrate the solution quality of our method and baselines compared to LKH-3.
We see that, compared to baseline methods, the learned subproblem selector obtains the best solution
quality when run for a reasonable amount of time. The improvement of most methods based on
our iterative framework converge when run for an excessive amount of time; this is unsurprising, as
Random and other baselines are eventually able to select all subproblems offering improvements.

In Figure 5, we demonstrate the speedup of our method over LKH-3, comparing to baseline methods.
The speedup is often significant even at low levels of solution quality, and improves with higher
solution quality. The speedup is not as meaningful beyond 95% LKH-3 solution quality, as LKH-3
takes a disproportionate amount of time to attain the last 5% of improvement.

6.3 Clustered and Mixed CVRP Distributions

We further examine the framework’s performance on CVRP distributions with clusters of cities, such
as studied in [8, 44]. We generate a clustered instance by first sampling (x, y) locations of nc cluster
centroids then sampling the cities around the centroids. The mixed distribution samples 50% of the
cities from a uniform distribution and the rest from around cluster centers. We generate a dataset

8

Figure 6: Speedup in out-of-distribution CVRPs. The speedup of our model on the N = 3000
uniform distribution (left) and N = 2000 real-world distribution (right) without finetuning. Ours (Uni-
form) and Ours (Clustered) are trained on the uniform and clustered CVRP distributions, respectively.
Note that LKH-3 is run for 50k steps for N = 3000 instances.

of instances for every (N,nc,m) 2 {500, 1000, 2000}⇥ {3, 5, 7}⇥ {Clustered,Mixed} and train a
single model on the entire dataset. We evaluate the model on validation and test sets of 10 instances
per (N,nc,m) combination (i.e. 60 instances per N). Due to space limitation, we provide more
details about the data distribution and full results in Appendix A.2.

Table 2: Speedup for N = 2000 clustered and
mixed CVRPs at 95% LKH-3 30k solution quality.

Setting nc = 3 nc = 5 nc = 7

Clustered Ours
Random

26x
11x

18x
7.5x

25x
9.0x

Mixed Ours
Random

13x
6.6x

14x
6.4x

14x
7.6x

Table 2 reports speedups of our method and
the Random baseline over LKH-3. Our
method sees at least 2x speedup over Ran-
dom in all settings. We see larger speedups
for clustered distributions than for mixed or
uniform distributions (Table 1).

6.4 Out-of-distribution Generalization

We study how our subproblem selector gen-
eralize to a uniform CVRP distribution with
larger problem size N = 3000 and to a real-
world CVRP distributions, both unseen at
training time. The real-world CVRP distribution derives from a CVRP dataset [4] consisting of 10
very-large-scale instances on 5 Belgium regions with N ranging from 3000 to 30000 and randomly
generated demand distribution. To generate an instance, we subsample the cities in a region without
replacement to N = 2000, while regenerating the demands to match our training distribution. For
each original instance, we generate 5 subsampled instances to form the test set of 50 total instances.
We visualize the original and subsampled datasets in Appendix A.3.

We apply subproblem selectors trained on uniform and clustered data without finetuning on the new
data distributions and report the speedup comparison with the Random baseline in Figure 6. We see
that when transferring to N = 3000, subproblem selectors trained on uniform and clustered data
offer similar performance. However, the model trained on the clustered distribution generalizes well
to the real-world distribution while the model trained on the uniform distribution fails to generalize,
with worse speedup than the Random baseline. These results suggest that the domain variability of
the clustered distribution strongly improves generalization performance.

6.5 Other VRP Variants

While our previous experiments vary the distribution of city locations in CVRP, here we consider
two VRP variants with uniform city distribution but with additional constraints: CVRPTW [37] and
VRPMPD [33]. The former specifies a hard time window constraint for visiting each city, while
the latter specifies pick up and delivery constraints in addition to capacity constraint. A detailed
description of the variants can be found in Appendix A.4.

Similar to CVRP, we observe significant speedup with our iterative framework alone, while learning
offers additional speedup. For CVRPTW, our method offers a 8.2x speedup while our Random
baseline offers a 5.9x speedup; for VRPMPD, our method offers a 31x speedup while our Random
baseline offers a 20x speedup. We suspect that the time window constraint in CVRPTW imposes
strict orderings on the order of city visitations, increasing the difficulty for the subproblem selector.

9

Figure 7: Speedup in other N = 2000 VRP variants, CVRPTW (left) and VRPMPD (right).

Figure 8: Speedup with the HGS subsolver on uniform CVRP. We compare the speedup of our
method equipped with LKH-3 or HGS as the subsolver for N = 2000 (left) and N = 3000 (right).

6.6 A State-of-the-Art CVRP Subsolver: HGS

While we focus our analysis on LKH-3 due to its applicability to many variants of VRPs, HGS [49, 48]
is a state-of-the-art solver focused on CVRP. Thus, we apply our method to train subproblem selectors
for the HGS subsolver. We discuss the full experimental setup and results in Appendix A.5.3.

With HGS as the subsolver, we observe a 103x speedup for our method on N = 2000, compared
with a 77x speedup for the Random baseline. Similarly, we observe a 198x speedup for our method
on N = 3000, compared with a 152x speedup for our Random baseline. The large speedup may be
due to the fact that HGS is designed and calibrated for medium-scale problems of 500 to 1000 cities,
allowing it to function better as a subsolver for large-scale VRPs.

7 Conclusion

This paper presents a learning-based framework which learns which subproblems to delegate to a
subsolver when solving large VRPs. Spatial locality allows us to learn the subproblem selector over a
reduced selection space. The proposed method accelerates competitive VRP solvers on problems
of sizes up to 3000, requiring an order of magnitude less computation time. We identify a 1.5x
to 2x speedup over non-learning selection strategies. Our results generalize to a variety of VRP
distributions, variants, and solvers.

While most previous learning-based combinatorial optimization methods [20, 21, 2] rely on rein-
forcement learning due to the unavailability of optimal solutions as high-quality labels, our work
highlights the counterintuitive effectiveness of supervised learning with only moderate-quality labels
to achieve high-quality solutions with iterative subproblem selection. An interesting line of future
work may explore other ways to effectively leverage moderate-quality labels for combinatorial opti-
mization tasks. In particular, we discuss in Appendix A.6 the applicability of our method to other
combinatorial optimization problems with spatial locality. We believe that our learning framework
can serve as a powerful technique for both the learning and operations research communities to scale
up combinatorial optimization solvers.

Our code is publicly available at https://github.com/mit-wu-lab/learning-to-delegate.

Negative Social Impact. Enabling more efficient solutions of large-scale VRPs may exhibit nega-
tive externalities such as inducing additional traffic from delivery vehicles and centralizing services
that pose a stronger competition to brick-and-mortar retail.

10

https://github.com/mit-wu-lab/learning-to-delegate

8 Acknowledgements

This research was supported by MIT Indonesia Seed Fund, US DOT DDETFP, and the MIT-IBM
Watson AI Lab. The authors are grateful to the anonymous reviewers for detailed comments that
substantially improved the article. The authors acknowledge the MIT SuperCloud and Lincoln
Laboratory Supercomputing Center for providing (HPC, database, consultation) resources that have
contributed to the research results reported within this paper. We also thank Zongyi Li for helpful
discussions and technical advice throughout the project.

References
[1] Aarts, E., Aarts, E. H., and Lenstra, J. K. (2003). Local search in combinatorial optimization.

Princeton University Press.

[2] Ahn, S., Seo, Y., and Shin, J. (2020). Learning what to defer for maximum independent sets. In
International Conference on Machine Learning, pages 134–144. PMLR.

[3] Alvim, A. C. and Taillard, E. D. (2013). Popmusic for the world location-routing problem. EURO
Journal on Transportation and Logistics, 2(3):231–254.

[4] Arnold, F., Gendreau, M., and Sörensen, K. (2019). Efficiently solving very large-scale routing
problems. Computers & Operations Research, 107:32–42.

[5] Błażewicz, J., Domschke, W., and Pesch, E. (1996). The job shop scheduling problem: Conven-
tional and new solution techniques. European journal of operational research, 93(1):1–33.

[6] Bosman, P. A. and La Poutré, H. (2006). Computationally intelligent online dynamic vehicle
routing by explicit load prediction in an evolutionary algorithm. In Parallel Problem Solving from
Nature-PPSN IX, pages 312–321. Springer.

[7] Chen, X. and Tian, Y. (2019). Learning to perform local rewriting for combinatorial optimization.
In Wallach, H., Larochelle, H., Beygelzimer, A., d Alché-Buc, F., Fox, E., and Garnett, R., editors,
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.

[8] Christofides, N., Mingozzi, A., and Toth, P. (1979). Loading problems. N. Christofides and al.,
editors, Combinatorial Optimization, pages 339–369.

[9] Croes, G. A. (1958). A method for solving traveling-salesman problems. Operations research,
6(6):791–812.

[10] Dorigo, M., Birattari, M., and Stutzle, T. (2006). Ant colony optimization. IEEE computational
intelligence magazine, 1(4):28–39.

[11] Gehring, H. and Homberger, J. (1999). A parallel hybrid evolutionary metaheuristic for the
vehicle routing problem with time windows. In Proceedings of EUROGEN99, volume 2, pages
57–64. Citeseer.

[12] Gurobi Optimization, L. (2021). Gurobi optimizer reference manual.

[13] Helsgaun, K. (2017). An extension of the lin-kernighan-helsgaun tsp solver for constrained
traveling salesman and vehicle routing problems. http://akira.ruc.dk/~keld/research/
LKH-3/.

[14] Helsgaun, K. (2018). Using popmusic for candidate set generation in the lin-kernighan-helsgaun
tsp solver. Roskilde Universitet, 7.

[15] Hottung, A. and Tierney, K. (2020). Neural large neighborhood search for the capacitated
vehicle routing problem. In 24th European Conference on Artificial Intelligence (ECAI 2020).

[16] Huber, P. J. (1992). Robust estimation of a location parameter. In Breakthroughs in statistics,
pages 492–518. Springer.

[17] Kallehauge, B., Larsen, J., Madsen, O. B., and Solomon, M. M. (2005). Vehicle routing problem
with time windows. In Column generation, pages 67–98. Springer.

11

http://akira.ruc.dk/~keld/research/LKH-3/
http://akira.ruc.dk/~keld/research/LKH-3/

[18] Khalil, E. B., Dai, H., Zhang, Y., Dilkina, B., and Song, L. (2017). Learning combinatorial
optimization algorithms over graphs. In Advances in Neural Information Processing Systems.

[19] Kohl, N., Desrosiers, J., Madsen, O. B., Solomon, M. M., and Soumis, F. (1999). 2-path cuts
for the vehicle routing problem with time windows. Transportation Science, 33(1):101–116.

[20] Kool, W., van Hoof, H., and Welling, M. (2019). Attention, learn to solve routing problems! In
International Conference on Learning Representations.

[21] Kwon, Y.-D., Choo, J., Kim, B., Yoon, I., Gwon, Y., and Min, S. (2020). Pomo: Policy
optimization with multiple optima for reinforcement learning. In Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M. F., and Lin, H., editors, Advances in Neural Information Processing
Systems, volume 33, pages 21188–21198. Curran Associates, Inc.

[22] Lalla-Ruiz, E. and Voss, S. (2016). Popmusic as a matheuristic for the berth allocation problem.
Annals of Mathematics and Artificial Intelligence, 76(1-2):173–189.

[23] Laporte, G. (2009). Fifty years of vehicle routing. Transportation science, 43(4):408–416.

[24] Laurent, M., Taillard, É. D., Ertz, O., Grin, F., Rappo, D., and Roh, S. (2009). From point
feature label placement to map labelling. In Proceedings, metaheuristic international conference
(MIC’09), Hamburg. Citeseer.

[25] Lenstra, J. K. and Kan, A. R. (1981). Complexity of vehicle routing and scheduling problems.
Networks, 11(2):221–227.

[26] Lin, S. and Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-salesman
problem. Operations research, 21(2):498–516.

[27] Lu, H., Zhang, X., and Yang, S. (2020). A learning-based iterative method for solving vehicle
routing problems. In International Conference on Learning Representations.

[28] Lysgaard, J., Letchford, A. N., and Eglese, R. W. (2004). A new branch-and-cut algorithm for
the capacitated vehicle routing problem. Mathematical Programming, 100(2):423–445.

[29] Nazari, M., Oroojlooy, A., Snyder, L., and Takac, M. (2018). Reinforcement learning for
solving the vehicle routing problem. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., and Garnett, R., editors, Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc.

[30] Perron, L. and Furnon, V. (2019). Or-tools.

[31] Poullet, J. (2020). Leveraging machine learning to solve The vehicle Routing Problem with
Time Windows. PhD thesis, Massachusetts Institute of Technology.

[32] Renaud, J. and Boctor, F. F. (2002). A sweep-based algorithm for the fleet size and mix vehicle
routing problem. European Journal of Operational Research, 140(3):618–628.

[33] Salhi, S. and Nagy, G. (1999). A cluster insertion heuristic for single and multiple depot vehicle
routing problems with backhauling. Journal of the operational Research Society, 50(10):1034–
1042.

[34] Santini, A., Schneider, M., Vidal, T., and Vigo, D. (2021). Decomposition strategies for vehicle
routing heuristics.

[35] Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle routing
problems. In International conference on principles and practice of constraint programming,
pages 417–431. Springer.

[36] Sivanandam, S. and Deepa, S. (2008). Genetic algorithms. In Introduction to genetic algorithms,
pages 15–37. Springer.

[37] Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time
window constraints. Operations research, 35(2):254–265.

12

[38] Song, J., Lanka, R., Yue, Y., and Dilkina, B. (2020). A general large neighborhood search
framework for solving integer linear programs. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M. F., and Lin, H., editors, Advances in Neural Information Processing Systems, volume 33, pages
20012–20023. Curran Associates, Inc.

[39] Taillard, É. D. (2003). Heuristic methods for large centroid clustering problems. Journal of
heuristics, 9(1):51–73.

[40] Taillard, É. D., Gambardella, L. M., Gendreau, M., and Potvin, J.-Y. (2001). Adaptive memory
programming: A unified view of metaheuristics. European Journal of Operational Research,
135(1):1–16.

[41] Taillard, É. D. and Helsgaun, K. (2019). Popmusic for the travelling salesman problem.
European Journal of Operational Research, 272(2):420–429.

[42] Taillard, É. D. and Voss, S. (2002). Popmusic—partial optimization metaheuristic under special
intensification conditions. In Essays and surveys in metaheuristics, pages 613–629. Springer.

[43] Taillard, É. D. and Voß, S. (2018). POPMUSIC, pages 687–701. Springer International
Publishing, Cham.

[44] Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., and Subramanian, A. (2017). New
benchmark instances for the capacitated vehicle routing problem. European Journal of Operational
Research, 257(3):845–858.

[45] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u.,
and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc.

[46] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2018). Graph
Attention Networks. International Conference on Learning Representations.

[47] Ventresca, M., Ombuki-Berman, B., and Runka, A. (2013). Predicting genetic algorithm
performance on the vehicle routing problem using information theoretic landscape measures.
In European Conference on Evolutionary Computation in Combinatorial Optimization, pages
214–225. Springer.

[48] Vidal, T. (2020). Hybrid genetic search for the cvrp: Open-source implementation and swap*
neighborhood. arXiv preprint arXiv:2012.10384.

[49] Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., and Rei, W. (2012). A hybrid genetic
algorithm for multidepot and periodic vehicle routing problems. Operations Research, 60(3):611–
624.

[50] Vinyals, O., Fortunato, M., and Jaitly, N. (2015). Pointer networks. In Cortes, C., Lawrence,
N., Lee, D., Sugiyama, M., and Garnett, R., editors, Advances in Neural Information Processing
Systems, volume 28. Curran Associates, Inc.

[51] Voudouris, C. and Tsang, E. P. (2003). Guided local search. In Handbook of metaheuristics,
pages 185–218. Springer.

[52] Wu, C., Shankari, K., Kamar, E., Katz, R., Culler, D., Papadimitriou, C., Horvitz, E., and Bayen,
A. (2016). Optimizing the diamond lane: A more tractable carpool problem and algorithms. In
2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pages
1389–1396. IEEE.

[53] Yolcu, E. and Poczos, B. (2019). Learning local search heuristics for boolean satisfiability. In
Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors,
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.

13

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 6.5. We discuss our
method gets slightly less speedup on CVRPTW than CVRP or VRPMPD; in section 6.2,
we also discuss our learned subproblem-selection order at convergence are the same
as Random and Min Count order, which can be seen as a potential limitation, but we
provide justification in the same Section (6.2) as well.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See the
negative social impact paragraph in Section 7 (Conclusion)

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] As stated in
Section 7 (Conclusion), our code is released at https://github.com/mit-wu-lab/
learning-to-delegate.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We briefly mention the training details in Section 6.1 of the main
paper, and we put the full details in Appendix A.1.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] We plot error bars on all of our experiment figures in
Section 6.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 6.1.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We use the LKH-3

and HGS VRP solvers as a part of our component. We cite the creator as [13] (LKH-3)
and [49, 48] (HGS) in our paper. We compare with existing learning and heuristic
baseline using their code. We cite the creators in our paper, and provide exerpeiment
setup (including github links to the repos) in the supplementary material.

(b) Did you mention the license of the assets? [N/A] All the assets (code and data) we use
are open source.

(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] We generate synthetic data for most of our experiments. The
only real dataset in Section 6.4 is open source.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

https://github.com/mit-wu-lab/learning-to-delegate
https://github.com/mit-wu-lab/learning-to-delegate

