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S1 Comparisons with some existing results

The procedures proposed in this paper all rely crucially on the DCART estimator θ̃ defined in (4). As
shown recently in [4], θ̃ is such that E{‖θ̃− θ∗‖2} . σ2kdyad(θ∗) log(N), a rate that is the minimax
optimal. [4] also studies the de-noising performances of other rectangular partition estimators. [5]
studied the de-noising performances of an `0-penalized estimator for a structured signal supported
over general graphs and obtained the same rates. Both the DCART and the estimator proposed in [5]
are based on `0-penalization. A different approach is to instead rely on `1-penalizations [e.g. 9, 7].

In light of the de-noising rate, it is perhaps not surprising that the partition recovery estimation error
rate of the DCART, shown in Theorem 1 is of order “de-noising error bound/jump size”, but what is
unsatisfactory for us is that when d = 1, this extra kdyad(θ∗) factor suggests the sub-optimality of
the result. For instance, both [12] and [11] showed that when d = 1, an `0-penalized estimator is
able to achieve a minimax optimal estimation error of order κ−2σ2 log(N). In Section 2.3, we have
shown that the term kdyad(θ∗) can be avoided if further regularity condition is imposed. It remains
still an open problem without these regularity conditions, what the optimal estimation rate would be.

It is also worth mentioning another stream of work, focusing on the detection boundary in detection
a cluster of nodes in general graphs, including square lattices. Although testing and estimation are
two fundamentally different problems, often requiring different conditions, the detection boundaries
derived thereof could be a useful reference evaluating the signal-to-noise ratio condition we impose in
(9). [3, 2, 1], among others, stated that the detection boundary, in our notation is κ2∆ � a logarithmic
term. Such rate is derived for k(θ∗) = O(1) and suggests that our condition (9) is optimal when
k(θ∗) = O(1). It remains an open problem to determine the optimal estimation rate when k(θ∗) is
allowed to diverge.

S2 Additional definitions

We have repeatedly used a concept that two rectangles are adjacent. In addition to the explanation in
Definition 2, we detail all the possible situations in Definition S1 below.

Definition S1. For two disjoint subsetsR1, R2 ⊂ Ld,n, with d > 1,Rl =
∏d
i=1[a

(l)
i , b

(l)
i ], l ∈ {1, 2},

we say that R1 and R2 are adjacent if there exists i0 ∈ [d], such that one of the following holds:
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• b(1)
i0
− a(2)

i0
= 1 and

∏
i 6=i0 [a

(1)
i , b

(1)
i ] ⊂

∏
i 6=i0 [a

(2)
i , b

(2)
i ];

• b(1)
i0
− a(2)

i0
= 1 and

∏
i 6=i0 [a

(2)
i , b

(2)
i ] ⊂

∏
i 6=i0 [a

(1)
i , b

(1)
i ];

• a(1)
i0
− b(2)

i0
= 1 and

∏
i 6=i0 [a

(1)
i , b

(1)
i ] ⊂

∏
i 6=i0 [a

(2)
i , b

(2)
i ];

• a(1)
i0
− b(2)

i0
= 1 and

∏
i 6=i0 [a

(2)
i , b

(2)
i ] ⊂

∏
i 6=i0 [a

(1)
i , b

(1)
i ].

S3 Proofs of main results

This section contains the proofs of the main results from Section 2. Theorem 1 demonstrates the
one-sided consistency of DCART. This result is not only interesting on its own but is also used
repeatedly and in as essential away to prove two-sided consistency. For readability, we express the
two main claims of Theorem 1, namely (5) and (6), as the events

A1 =

 ∑
j∈[k(θ̃)]

|Rj\Sj | ≤ C3κ
−2σ2kdyad(θ∗) log(N)

 (S1)

and

A2 =
{
|Rj\Sj | ≤ C4κ

−2
j σ2kdyad(θ∗Rj ) log(N), j ∈ [k(θ̃)] and Rj \ Sj 6= ∅

}
, (S2)

respectively

S3.1 One-sided consistency of DCART

Proof of Theorem 1. For j ∈ [k(θ̃)], if Rj \ Sj 6= ∅, then let rj be the smallest positive integer
such that there exists a partition of Rj , namely {Tj,1, . . . , Tj,rj , Sj} with θ∗i = aj,l, for all i ∈ Tj,l,
l ∈ [rj ].

Without loss of generality assume that 0 < |Tj,1| ≤ |Tj,2| ≤ . . . ≤ |Tj,rj | ≤ |Sj |, for each j ∈ [k(θ̃)].
Suppose that rj is even. Then

|Rj\Sj | =

rj/2∑
l=1

|Tj,2l−1| +

rj/2∑
l=1

|Tj,2l|

=

rj/2∑
l=1

min{|Tj,2l−1|, |Tj,2l|} +

rj/2−1∑
l=1

min{|Tj,2l|, |Tj,2l+1|}+ min{|Trj |, |Sj |}

≤ 2

rj/2∑
l=1

|Tj,2l−1| |Tj,2l|
|Tj,2l−1|+ |Tj,2l|

+ 2

rj/2−1∑
l=1

|Tj,2l| |Tj,2l+1|
|Tj,2l|+ |Tj,2l+1|

+ 2
|Trj | |Sj |
|Trj |+ |Sj |

≤ 2

κ2
j

rj/2∑
l=1

|Tj,2l−1| |Tj,2l|
|Tj,2l−1|+ |Tj,2l|

(aj,2l−1 − aj,2l)2

+
2

κ2
j

rj/2−1∑
l=1

|Tj,2l| |Tj,2l+1|
|Tj,2l|+ |Tj,2l+1|

(aj,2l − aj,2l+1)2 +
2

κ2
j

|Sj | |Trj |
|Sj |+ |Trj |

(θ̄∗Sj − arj )
2

≤ 2

κ2
j

rj/2∑
l=1

∑
i∈Tj,2l−1∪Tj,2l

(θ∗i − θ̄∗Tj,2l−1∪Tj,2l)
2

+
2

κ2
j

rj/2−1∑
l=1

∑
i∈Tj,2l∪Tj,2l+1

(θ∗i − θ̄∗Tj,2l∪Tj,2l+1
)2 +

2

κ2
j

∑
i∈Sj∪Trj

(θ∗i − θ̄∗Sj∪Trj )2

≤ 2

κ2
j

rj/2∑
l=1

∑
i∈Tj,2l−1∪Tj,2l

(θ∗i − θ̄∗Rj )
2 +

2

κ2
j

rj/2−1∑
l=1

∑
i∈Tj,2l∪Tj,2l+1

(θ∗i − θ̄∗Rj )
2

+
2

κ2
j

∑
i∈Sj∪Trj

(θ∗i − θ̄∗Rj )
2 ≤ 4

κ2
j

∑
i∈Rj

(θ∗i − θ̄∗Rj )
2,

S2



where the first inequality follows from Lemma S2. The same bounds holds also when rj is odd.
Hence,

|Rj\Sj | ≤
8

κ2
j

∑
i∈Rj

(θ∗i − ȳRj )2 +
8

κ2
j

∑
i∈Rj

(θ̄∗Rj − ȳRj )
2

=
8

κ2
j

∑
i∈Rj

(θ∗i − θ̃i)2 +
8

κ2
j

|Rj |(θ̄∗Rj − ȳRj )
2.

(S3)

Let Ω1 and Ω3 be the events defined below in (S18) and (S24), respectively. In the event Ω1 ∩ Ω3,
the result (6), i.e. the event A2 defined in (S2), is a direct consequence of (S3).

Let Ω2 be the event defined in (S22). In the event Ω1 ∩Ω2 ∩Ω3, it follows from (S3) that (5), i.e. the
event A1 defined in (S1), holds. To be specific, we have that

k(θ̃)∑
j=1

|Rj\Sj | ≤
k(θ̃)∑
j=1

[
8

κ2

∑
i∈Rj

(θ∗i − θ̃i)2 +
8

κ2
|Rj |(θ̄∗Rj − ȳRj )

2

]

≤ 8

κ2
‖θ∗ − θ̃‖2 +

8c1c3σ
2kdyad(θ∗) log(N)

κ2
≤ C3σ

2 log(N)kdyad(θ∗)

κ2
.

Finally, note that the final theorem claim (7) is shown in Lemma S5.

S3.2 Two-sided consistency of DCART: a two-step constrained estimator

Proof of Theorem 2. The proof of (15) is identical to that of Theorem S1 with one difference. The
rectangular partition induced by θ̂ is such that

min{|Ri|, |Rj |} ≥ η ≥ c1
kdyad(θ∗)σ2 log(N)

κ2
.

As a result, we do not need to account for the term
∑
j : |Rj |≤η |Rj |, and this is the only part of the

proof of Theorem S1 that requires the stronger requirement in Assumption S1. The rest of the proof
goes through using Assumption 1.

S3.3 Optimality: A regular boundary case

Proof of Corollary 4. Let θ̂ be the estimator of θ∗ defined in (10). Let {Rl}l∈[k(θ̂)] be a rectangular

partition of Ld,n induced by θ̂ and let Sj be the largest subset of Rj with constant θ∗ value, for
j ∈ [k(θ̂)]. Let J ⊂ [k(θ̂)], such that Rj \ Sj 6= ∅, j ∈ J . With the notation in Theorem 1, define
the event A3 as

A3 =

{
|Rj\Sj | ≤ C4

σ2kdyad(θ∗Rj ) log(N)

κ2
, j ∈ J

}
∩
{
k(θ̂) ≤ c1kdyad(θ∗)

}
. (S4)

It follows from (6) that the event A3 holds with probability at least 1 − N−c for some positive
constants c, C4 and c1. The rest of this proof is conducted in the event A3.

For any j ∈ J . Let A,B ∈ Λ∗ be that A 6= B, θ̄∗A = θ̄∗B and (Rj ∩ A) ∪ (Rj ∩ B) ⊂ Sj . Then it
follows from an almost identical argument as that in Step 1.1 in the proof of Theorem S1, we see that
Assumption 1 leads to a contradiction. It follows that Sj is a connected set in Ld,n. Hence, we let
A ∈ Λ∗ be such that Rj ∩A = Sj .

Suppose now that B ∈ Λ∗ and Rj ∩B ⊂ Rj\Sj . Since

|Rj\Sj | ≤ C4

σ2kdyad(θ∗Rj ) log(N)

κ2
≤ C4

σ2kdyad(θ∗) log(N)

κ2
,

recalling that dist(A,B) = mina∈A,b∈B ‖a− b‖, it holds that

dist(A,B) ≤ C5
σ2kdyad(θ∗) log(N)

κ2

S3



for some constant C5 > 0. Hence,

|{B ∈ Λ∗ : Rj ∩B ⊂ Rj\Sj}| ≤
∣∣∣∣{B ∈ Λ∗\{A} : dist(A,B) ≤ cσ2kdyad(θ∗) log(N)

κ2

}∣∣∣∣ ≤ C,
where the second inequality follows from Assumption 2. As a result,

|Rj\Sj | ≤ C4C
σ2 log(N)

κ2
. (S5)

It follows from an identical argument as that in Step 5 in the proof of Theorem S1 that, for any
A ∈ Λ∗ there exists Â ∈ Λ̂ such that

|Â\A| ≤
∑
j∈IA

|Rj\Sj | ≤ C4C
σ2 log(N)

κ2
| {j : Rj ∩A = Sj} |

≤C4C
σ2k(θ̂) log(N)

κ2
≤ C6

σ2kdyad(θ∗) log(N)

κ2
, (S6)

for some constant C6 > 0, where the second inequality follows from (S5). Hence,

| {j : Rj ∩A = Sj} | ≤ η−1
∑
j∈IA

|Rj | ≤ |Â|/η ≤ (|A|+ |Â \A|)/η

≤ |A|/η + C6
σ2kdyad(θ∗) log(N)

ηκ2
≤ C ′|A|

η
,

where C ′ > 0 is an absolute constant. Combining the above with (S6) we arrive at

|Â\A| ≤ C ′′σ2 log(N)

κ2

|A|
η
.

To bound the difference from the other direction, we have that

|A\Â| ≤
∑

j :Rj∩A/∈{∅,Sj}

|Rj\Sj |

≤
∑

j : ∃B∈Λ∗, Rj∩B=Sj , dist(A,B)≤cσ2κ−2kdyad(θ∗) log(N)

|Rj\Sj |

≤C7
σ2 log(N)

κ2

∣∣{j : ∃B ∈ Λ∗, Rj ∩B = Sj , dist(A,B) ≤ cσ2κ−2kdyad(θ∗) log(N)
}∣∣

≤C7
σ2 log(N)

κ2
k(θ̂) ≤ C8

σ2 log(N)

κ2
kdyad(θ∗), (S7)

for some constants C7, C8 > 0, where the second inequality follows from Assumption 1, and the last
from (S5). Hence,∣∣∣{j : ∃B ∈ Λ∗, Rj ∩B = Sj , dist(A,B) ≤ cσ2kdyad(θ∗) log(N)

κ3

}∣∣∣
≤ 1

η

∑
B∈Λ∗, dist(A,B)≤cσ2κ−2kdyad(θ∗) log(N)

∑
j∈IB

|Rj |

=
1

η

∑
B∈Λ∗, dist(A,B)≤cσ2κ−2kdyad(θ∗) log(N)

|B̂|

≤ 1

η

∑
B∈Λ∗, dist(A,B)≤cσ2κ−2kdyad(θ∗) log(N)

[
|B|+ |B\B̂|

]
. max
B∈Λ∗, dist(A,B)≤cσ2κ−2kdyad(θ∗) log(N)

|B|
η

+ max
B∈Λ∗, dist(A,B)≤cσ2κ−2kdyad(θ∗) log(N)

|B\B̂|
η

. max
B∈Λ∗, dist(A,B)≤cσ2κ−2kdyad(θ∗) log(N)

|B|
η

+
σ2 log(N)

ηκ2
kdyad(θ∗)

. max
B∈Λ∗, dist(A,B)≤cσ2κ−2kdyad(θ∗) log(N)

|B|
η
,

where the third inequality follows from Assumption 2, the fourth from (S7), and the last from (14).
We therefore have shown (17). The claim (18) is a straightforward consequence of (17) by letting
η � |A| � ∆.

S4



Proof of Proposition 3. We are using Fano’s method in this proof. To be specific, we are to use the
version of Lemma 3 in [13].

Without loss of generality, we assume that ∆1/d is a positive integer. For q to be specified, we further
assume that (n−∆1/d)/q and q are both positive integers. We construct a collection of distributions,
each of which is defined uniquely with a subset S defined in (16). Therefore the collection of
distributions can be specified by the collection of subsets

S =

{
d∏
p=1

[kpq, kpq + ∆1/d], (k1, . . . , kd) ∈ [0, (n−∆1/d)/q]d

}
.

We assume that the parameters κ, σ,∆ in this collection of distributions ensure that this collection of
distributions belong to the subset P ⊂ PN ,

P =
{
PNκ,∆,σ : ∆2d ≤ N, κ2∆/σ2 = log(N)/6

}
. (S8)

To justify the conditions of Lemma 3 in [13], we first notice that for each S ∈ S , |S| = ∆. Secondly,
for any S1, S2 ∈ S, S1 6= S2, it holds that

|S14S2| ≥ 2∆
d−1
d q

and
KL(PS1

, PS2
) ≤ ∆κ2/σ2.

Lastly, we note that |S| = (n−∆1/d)d/qd. Then Lemma 3 in [13] shows that

inf
Ŝ

sup
P∈PN

EP
{
|Ŝ4S|

}
≥ inf

Ŝ
sup
P∈P

EP
{
|Ŝ4S|

}
≥ ∆

d−1
d q

(
1− ∆κ2/σ2 + log(2)

log
{

(n−∆1/d)d/qd
}) .

We now take q = ∆1/d/2, such that due to the conditions in (S8), it holds that

∆
d−1
d q = ∆/2 =

σ2 log(N)

12κ2

and have that

inf
Ŝ

sup
P∈PN

EP
{
|Ŝ4S|

}
≥ σ2 log(N)

12κ2

(
1− log(N)/3

log(N)/2

)
≥ dσ2 log(n)

36κ2
,

where the first inequality holds provided 6 log(2) ≤ d log(n) and the conditions specified in (S8).

S4 A naive two-step estimator

In Section 2.2, we proposed and studied a two-step constrained estimator, which builds and improve
upon the DCART estimator, leading to a two-sided consistency guarantee for recovering the support
of the true partition. The two-step estimator studied in Section 2.2 starts with a constrained DCART
estimator and prunes its output by merging certain pairs of rectangles. It is natural to ask about
the performances of a naive two-step estimator, which just prunes the DCART estimator without
constraining it to only output large enough rectangles. In this section, we study thee performance of
this simpler estimator, which turns out to be worse than the two-step estimator studied in Section 2.2.
The proof of Theorem S1 is repeatedly used in the proofs of two of our main results, Theorem 2 and
Corollary 4.

Instead of requiring Assumption 1 as in Section 2.2, we impose a stronger assumption below.
Assumption S1. If A,B ∈ Λ∗ with A 6= B and θ̄∗A = θ̄∗B , then we have that

dist(A,B) ≥ c
kdyad(θ∗)2σ2 log(N)

κ2
,

for some large enough constant c > 0. Furthermore, we assume that

κ2∆ ≥ ckdyad(θ∗)2σ2 log(N). (S9)

S5



We first detail the pruning step of the naive two-step estimator. Let θ̃ be the DCART estimator with
tuning parameter λ1, defined in (4). Let {Rl}l∈[k(θ̃)] be a rectangular-partition of Ld,n induced by

θ̃. Let λ2, η, γ > 0 be tuning parameters for the pruning stage. For each (i, j) ∈ [k(θ̃)]× [k(θ̃)], let
z(i,j) = 1 if

dist(Ri, Rj) ≤ γ, min{|Ri|, |Rj |} ≥ η
and

1

2

∑
l∈Ri

(Yl − ȲRi)2 +
∑
l∈Rj

(Yl − ȲRj )2

+ λ2 >
1

2

∑
l∈Ri∪Rj

(Yl − ȲRi∪Rj )2;

otherwise, let z(i,) = 0. With this notation, let E = {(i, j) ∈ [k(θ̃)] × [k(θ̃)] : z(i,j) = 1} and
let {Cl}l∈[L̂] be the collection of all the connected components of the undirected graph Gnaive :=

([k(θ̃)]\I, E), where I = {i ∈ [k(θ̃)] : |Ri| ≤ η}. Then assign each element i ∈ I at random to
one of the components {Cl}l∈[ qL] and denote the resulting collection as {qCl}l∈[ qL]. Finally, define

qΛ =
{
∪j∈ qC1Rj , . . . ,∪j∈ qC

qL
Rj

}
. (S10)

Theorem S1. Suppose Assumption S1 holds and that the data satisfy (1) and let qΛ be the
naive two-step estimator defined in (S10), with tuning parameters λ1 = C1σ

2 log(N), λ2 =
C2kdyad(θ∗)σ2 log(N), γ = Cγkdyad(θ∗)η and

c1
kdyad(θ∗)σ2 log(N)

κ2
≤ η ≤ ∆

c2kdyad(θ∗)
, (S11)

where C1, C2, Cγ , c1, c2 > 0 are absolute constants. Then, with probability at least 1 − N−c, it
holds that

|qΛ| = |Λ∗| and dHaus(qΛ,Λ∗) ≤ Ckdyad(θ∗)η,

where c, C > 0 are absolute constants.

If in addition, it holds that η = Cηκ
−2kdyad(θ∗)σ2 log(N), where Cη > 0 is an absolute constant,

then, with proability at least 1−N−c,

|qΛ| = |Λ∗| and dHaus(qΛ,Λ∗) ≤ C
kdyad(θ∗)2σ2 log(N)

κ2
.

Proof. The proof is conducted in the events ∩i∈[5]Ωi ∩A1 ∩A2, where Ω1 is defined in (S18), Ω2 is
defined in (S22), Ω3 is defined in (S24), Ω4 is defined in (S26), Ω5 is defined in (S28), A1 is defined
in (S1) and A2 is defined in (S2). For any A ∈ Λ∗, define IA = {j ∈ [k(θ̃)] \ I : Rj ∩A = Sj}.

Step 1. Due to (S9) and (S11), we have that I 6= ∅, which implies that IA 6= [k(θ̃)] and there exists
i /∈ IA. Let i /∈ IA.

Step 1.1. First, we claim that it is impossible that Ri ∩ A ⊂ Si and Ri ∩ A 6= Si, with |Ri| ≥ η.
Arguing by contradiction, assume that there exists B ∈ Λ∗\{A} such that Ri∩B ⊂ Si and θ̄∗A = θ̄∗B .
Set

T =
{
B ∈ Λ∗\{A} : Ri ∩B ⊂ Si, θ̄∗A = θ̄∗B

}
,

and let p ∈ Ri ∩A, q ∈
⋃
B∈T

Ri ∩B be such that

‖p− q‖ = min
p̃∈A, q̃∈

⋃
B∈T

Ri∩B
‖p̃− q̃‖.

Then from Assumption S1 we have that

‖p− q‖ ≥ c
kdyad(θ∗)2σ2 log(N)

κ2
. (S12)

Let r1, . . . , rd ∈ Ld,n such that for a ∈ {1, . . . , d},

rab =

{
pb if b 6= a,

qb if b = a.

S6



By construction we have that r1, . . . , rd ∈ Ri. Furthermore, from (S12) there exists a a0 ∈ {1, . . . , d}
such that

‖p− ra0‖ ≥ c
kdyad(θ∗)2σ2 log(N)

d1/2κ2
. (S13)

By the definitions of p and q, it holds that

{λp+ (1− λ)ra0 : λ ∈ (0, 1)} ∩ Ld,n ⊂ Ri\Si.

It then follows from (S13) that

|Ri\Si| ≥ |{λp+ (1− λ)ra0 : λ ∈ (0, 1)} ∩ Ld,n| ≥ c
kdyad(θ∗)2σ2 log(N)

κ2
,

which contradicts the definition of A2.

Step 1.2. If Ri ∩A = Si, then |Ri| ≤ η.

Step 1.3. If Ri ∩ A 6= Si and |Ri| ≥ η, then by Step 1.1, it holds that Ri ∩ A ⊂ Ri\Si. Hence,
since IA induces a connected sub-graph of Gnaive, a fact proved below in Step 3., we obtain that
Ri ∩A = ∅.
Step 2. We claim that IA 6= ∅. Proceeding again by contradiction, we assume that for any j ∈ [k(θ̃)]
with Rj ∩ A 6= ∅, it is either the case that |Rj | ≤ η or the case that Rj ∩ A 6= Sj . It follows from
Step 1.1. that it is impossible to have Rj ∩ A ⊂ Sj , Rj ∩ A 6= Sj and |Rj | ≥ η. Thus, we obtain
that

|A| ≤
∑

j : |Rj |≤η

|Rj | +

k(θ̃)∑
j=1

|Rj\Sj | ≤ kdyad(θ∗)η +
kdyad(θ∗)σ2 log(N)

κ2
, (S14)

where the second inequality holds due to the definitions of Ω2 and A2. Since |A| ≥ ∆, (S14) along
with we constraint (S11) lead to a contradiction.

Step 3. We then claim that IA induces a connected sub-graph of Gnaive. To see this, suppose that
{Ju}u∈[l] are the connected components of IA with the edges induced by E and with l > 1. Then,
if i ∈ Ja and j ∈ Jb for a, b ∈ [l], a 6= b, then it must be the case that dist(Ri, Rj) ≥ γ. Hence,
dist(Ri ∩A,Rj ∩A) ≥ γ for all i ∈ Ja, j ∈ Jb, a, b ∈ [l], a 6= b. Since A is connected in Ld,n we
obtain that |A\ ∪la=1 ∪i∈Ja(Ri ∩A)| ≥ γ. However,

|A\ ∪la=1 ∪i∈JaRi ∩A| ≤
∑

j : |Rj |≤η

|Rj | +

k(θ̃)∑
j=1

|Rj\Sj |

. kdyad(θ∗)η +
kdyad(θ∗)σ2 log(N)

κ2
< γ,

(S15)

where the second inequality holds due to the definitions of Ω2 and A1. Thus, we have arrived at a
contradiction. For any i ∈ [k(θ̃)], let qA ∈ qΛ be i ∈ qA. We then have Ri ⊂ Â.

Step 4. For any (i, j) ∈ [k(θ̃)]× [k(θ̃)], we discuss the following two cases.

Case 1. If i, j ∈ IA, then (S27) holds by the definition of A1, and (S28) holds by the definition of
Ω5. Hence, if dist(Ri, Rj) ≤ γ then (i, j) ∈ E.

Case 2. If i ∈ IA and j ∈ IB for B ∈ Λ∗\{A} with θ̄∗A 6= θ̄∗B , then by the definition of Ω4, we have
that

|Ri| |Rj |
|Ri|+ |Rj |

(
ȲRi − ȲRj

)2 ≥ η

4
κ2 − Cγkdyad(θ∗)σ2 log(N) ≥ Cλ2,

provided that (S11) holds for large enough c1 and λ2 = C2kdyad(θ∗)σ2 log(N) for an appropriate
constant. It follows that {i, j} /∈ E.

Step 5. Combining all of the above we obtain that |Λ∗| = |Λ̃|. Let qA ∈ qΛ be

qA ∈ arg min
B∈qΛ

|B4A|.
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We have that

| qA\A| ≤
∑

j : |Rj |≤η

|Rj | +
∑
j∈IA

|Rj\Sj | ≤ k(θ̃)η +

k(θ̃)∑
j=1

|Rj\Sj |

≤ kdyad(θ∗)η + C3
kdyad(θ∗)σ2 log(N)

κ2
,

where the last inequality holds by the definitions of Ω2 and A1; and

|A\ qA| ≤
∑

j : |Rj |≤η

|Rj | +
∑

j :Rj∩A/∈{∅,Sj}

|Rj\Sj | ≤ k(θ̃)η +

k(θ̃)∑
j=1

|Rj\Sj |

≤ kdyad(θ∗)η + C3
kdyad(θ∗)σ2 log(N)

κ2
.

We therefore conclude the proof.

S5 Auxiliary results

Noise assumption. In the paper we make the assumption of Gaussian i.i.d. errors in (1), just like
in [4]. This is a technical condition required to justify the use of Gaussian concentration inequality
for Lipschitz functions. It may be relaxed by assuming errors with, e.g., log-concave density.
Furthermore, it is possible to consider sub-Gaussian errors but this would involve extra logarithmic
factors in the assumptions and upper bound.

Additional lemmas are collected here. Lemmas S2 and S3 follow exactly from [12], so we omit their
proofs.
Lemma S2 (Lemma 5 in [12]). Let I, J ⊂ Ld,n with I ∩ J = ∅ and let Y ∈ RLd,n . Then∑

i∈I∪J
(Yi − ȲI∪J)2 =

∑
i∈I

(Yi − ȲI)2 +
∑
i∈J

(Yi − ȲJ)2 +
|I||J |
|I|+ |J |

(
ȲI − ȲJ

)2
.

Lemma S3 (Lemma 6 in [12]). Let I be the set of rectangles that are subsets of Ld,n. Then for
y ∈ RLd,n defined in (1), the event

B =

{
max

I,J∈I, I∩J=∅

√
|I| |J |
|I|+ |J |

∣∣ȲI − θ̄∗I − ȲJ + θ̄∗J
∣∣ ≤ CBσ

√
log(N)

}
(S16)

holds with probability at least 1 − N−cB , where CB is a large enough constant and cB depends
on CB.
Lemma S4. LetR ⊂ Ld,n be a rectangle and denote byPdyadic,d,n(R) the set of all dyadic partitions
of R. Define βR ∈ RR as βR = Π̃R(y) where

Π̃R ∈ arg min
Π∈Pdyadic,d,n(R)

{
1

2
‖yR −OS(Π)(yR)‖2 + λ|Π|

}
. (S17)

Then there exist positive constants c1 and c2 that depend on d such that if λ = Cσ2 log(N) for a
large enough constant C > 0 it follows that the event

Ω1 =

{
max

R⊂Ld,n, R rectangle
{‖βR − θ∗R‖2 − 4λkdyad(θ∗R)} ≤ c1σ

2 log(N)

}
(S18)

holds with probability at least 1−N−c2 .

Proof. First, proceeding as in the proof of Theorem 8.1 in [4], we obtain that

‖βR − θ∗R‖2 ≤ 2λkdyad(θ∗R) + 2(yR − θ∗R)>(βR − θ∗R)− 2λkdyad(βR)

≤2λkdyad(θ∗R) +
1

2
‖βR − θ∗R‖2 + 2

{
(yR − θ∗R)>

(βR − θ∗R)

‖βR − θ∗R‖

}2

− 2λkdyad(βR). (S19)
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Next, we denote by SR the collection of linear subspaces of RR such that every S ∈ SR is a linear
subspace of RR such that there is a partition of R and S consists of piecewise constant signals over
this partition of R. Then

1

2
‖βR − θ∗R‖2 − 2λkdyad(θ∗R)

≤ max
k∈[|R|]

sup
S∈SR,Dim(S)=k

sup
v∈S, v 6=θ∗R

{
2

{
(yR − θ∗R)>

(v − θ∗R)

‖v − θ∗R‖

}2

− 2λkdyad

}
. (S20)

However, from Lemma 9.1 in [4], for any c1 > 1, S ∈ SR with dim(S) = k ∈ [|R|], we have that

P

(
sup

v∈S,v 6=θ∗R

{
2

{
(yR − θ∗R)>

(v − θ∗R)

‖v − θ∗R‖

}2

− 2λk

}
≥ c1σ2 log(N)

)

≤P

(
sup

v∈S,v 6=θ∗R
2

{
(yR − θ∗R)>

(v − θ∗R)

‖v − θ∗R‖

}2

≥ c1σ2 log(N) + 2λk

)

≤2 exp

(
−c1/2 log(N) + (2λ/σ2 − 2)k − 4

8

)
.

Since |{S ∈ SR : Dim(S) = k}| ≤ |R|2k, it follows by a union bound argument that for some
c2 > 0,

P

(
sup

S∈SR,Dim(S)=k

sup
v∈S,v 6=θ∗R

{
2

{
(yR − θ∗R)>

(v − θ∗R)

‖v − θ∗R‖

}2

− 2λk

}
≥ c1σ2 logN

)
≤ exp (−c2 log(N)) , (S21)

provided that λ = Cσ2 log(N) with a sufficiently large C > 0. The claim follows from a union
bound argument by combining (S20), (S21), the fact that there are most N2 subrectangles of Ld,n,
and choosing c1 large enough.

Lemma S5. Let θ̃ be the DCART estimator. If λ = Cσ2 log(N) for a large enough C, then there
exist positive constants c3 and c4 such that the event

Ω2 =
{
k(θ̃) ≤ 2kdyad(θ∗) + c3

}
(S22)

holds with probability at least 1−N−c4 .

Proof. First notice that by the basic inequality (S19), it holds that

λk(θ̃) ≤ 2λkdyad(θ∗) + 2

{
(y − θ∗)> (θ̃ − θ∗)

‖θ̃ − θ∗‖

}2

− λk(θ̃). (S23)

Therefore, from Lemma S4, choosing λ = Cσ2 log(N) with large enough C implies that with
probability at least 1−N−c2 the event

Ω =

2

{
(y − θ∗)> (θ̃ − θ∗)

‖θ̃ − θ∗‖

}2

− λk(θ̃) ≥ c1σ2 log(N)

 .

holds. Considering (S23) on the event Ω, we have that

k(θ̃) ≤ 2kdyad(θ∗) +
2c1
C

and the claim follows.

Lemma S6. The event

Ω3 =

{
max

R⊂Ld,n, R rectangle
|R| |θ̄∗R − ȳR|2 ≤ c1σ

2 logN

}
(S24)

holds with probability at least 1−N−c2 for some postive constants c1 and c2.
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Proof. This follows immediately from the fact that there are at most N2 rectangles, the Gaussian tail
inequality and a union bound argument.

Lemma S7. With the notation of Theorem 1, we define the set Q4 ⊂ [k(θ̃)]× [k(θ̃)] as

Q4 =
{

(i, j) : θ̄∗Si 6= θ̄∗Sj , |Ri| ≤ 2|Si|, |Rj | ≤ 2|Sj |
}
. (S25)

Define the event

Ω4 =

{
|Ri| |Rj |
|Ri|+ |Rj |

(
ȲRi − ȲRj

)2 ≥ min{|Ri|, |Rj |}
4

κ2 − Ckdyad(θ∗)σ2 log(N), ∀(i, j) ∈ Q4

}
,

(S26)
where C > 0 is an absolute constant. Then there exists an absolute constant c > 0 such that the
event Ω4 holds with probability at least 1−N−c.

Proof. The proof is conducted assuming the high-probability event B defined in (S16). Now, any for
(i, j) ∈ Q4, we have that

|Ri| |Rj |
|Ri|+ |Rj |

(
ȲRi − ȲRj

)2
=
|Ri| |Rj |
|Ri|+ |Rj |

{
−θ̄∗Rj + θ̄∗Ri + (ȲRi − θ̄∗Ri + θ̄∗Rj − ȲRj )

}2

≥ |Ri| |Rj |
2(|Ri|+ |Rj |)

(
−θ̄∗Rj + θ̄∗Ri

)2

− |Ri| |Rj |
|Ri|+ |Rj |

(
ȲRi − θ̄∗Ri + θ̄∗Rj − ȲRj

)2

≥ |Ri| |Rj |
2(|Ri|+ |Rj |)

(
−θ̄∗Rj + θ̄∗Ri

)2

− C2
Bσ

2 log(N)

=
|Ri| |Rj |

2(|Ri|+ |Rj |)

{
θ̄∗Si − θ̄

∗
Sj + (θ̄∗Sj − θ̄

∗
Rj + θ̄∗Ri − θ̄

∗
Si)
}2

− C2
Bσ

2 log(N)

≥ |Ri| |Rj |
4(|Ri|+ |Rj |)

(
θ̄∗Si − θ̄

∗
Sj

)2

− |Ri| |Rj |
2(|Ri|+ |Rj |)

(
θ̄∗Sj − θ̄

∗
Rj + θ̄∗Ri − θ̄

∗
Si

)2

− C2
Bσ

2 log(N)

≥ |Ri| |Rj |
4(|Ri|+ |Rj |)

(
θ̄∗Si − θ̄

∗
Sj

)2

− |Ri| |Rj |
|Ri|+ |Rj |

(
θ̄∗Sj − θ̄

∗
Rj

)2

− |Ri| |Rj |
|Ri|+ |Rj |

(
θ̄∗Si − θ̄

∗
Ri

)2
− C2

Bσ
2 log(N)

≥min{|Ri|, |Rj |}
4

κ2 − |Rj |
(
θ̄∗Sj − θ̄

∗
Rj

)2

− |Ri|
(
θ̄∗Si − θ̄

∗
Ri

)2 − C2
Bσ

2 log(N)

≥min{|Ri|, |Rj |}
4

κ2 − |Rj |

 1

|Sj |
∑
l∈Sj

(θ∗l − θ̄∗Rj )
2

− |Ri|
{

1

|Si|
∑
l∈Si

(θ∗l − θ̄∗Ri)
2

}
− C2

Bσ
2 log(N),

where the first and third inequalities follow from the inequality (a + b)2 ≥ a2/2− b2, the second
by the definition of B in (S16), the fourth by the inequality (a+ b)2 ≤ 2a2 + 2b2 and the sixth by
Jensen’s inequality. Then in the event Ω1 defined in (S18), it from Lemma S4 that,

|Ri| |Rj |
|Ri|+ |Rj |

(
ȲRi − ȲRj

)2
≥min{|Ri|, |Rj |}

4
κ2 − 2

∑
l∈Sj

(θ∗l − θ̄∗Rj )
2 − 2

∑
l∈Si

(θ∗l − θ̄∗Ri)
2 − C2

Bσ
2 log(N)

≥min{|Ri|, |Rj |}
4

κ2 − 4
∑
l∈Sj

(θ∗l − ȳRj )2 − 4|Sj |(ȳRj − θ̄∗Rj )2

− 4
∑
l∈Si

(θ∗l − ȳRi)2 − 4|Si|(ȳRi − θ̄∗Ri)
2 − C2

Bσ
2 log(N)

≥min{|Ri|, |Rj |}
4

κ2 − Cσ2kdyad(θ∗) log(N),
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for some constant C > 0, where the second inequality follows from the inequality (a + b)2 ≤
2a2 + 2b2, and the last one by Lemmas S4 and S6. The claim then follows.

Lemma S8. With the notation of Theorem 1, we define the set Q5 ⊂ [k(θ̃)]× [k(θ̃)] as

Q5 =
{

(i, j) : θ̄∗Si = θ̄∗Sj , |Ri| ≤ 2|Si|, |Rj | ≤ 2|Sj |
}
. (S27)

Define the event

Ω5 =

{
|Ri| |Rj |
|Ri|+ |Rj |

(
ȲRi − ȲRj

)2 ≤ Ckdyad(θ∗)σ2 log(N), ∀(i, j) ∈ Q5

}
, (S28)

where C > 0 is an absolute constant. Then there exists an absolute constant c > 0 such that Ω5

holds with probability at least 1−N−c.

Proof. We assume through that that the high-probability event B defined in (S16) holds. Let (i, j) ∈
Q5. Then,

|Ri| |Rj |
|Ri|+ |Rj |

(
ȲRi − ȲRj

)2
≤ 2|Ri| |Rj |
|Ri|+ |Rj |

(
ȲRi − θ̄∗Ri − ȲRj + θ̄∗Rj

)2

+
2|Ri| |Rj |
|Ri|+ |Rj |

(
θ̄∗Rj − θ̄

∗
Ri

)2

≤ 2CBσ
2 log(N) +

4|Ri| |Rj |
|Ri|+ |Rj |

(
θ̄∗Rj − θ̄

∗
Sj

)2

+
4|Ri| |Rj |
|Ri|+ |Rj |

(
θ̄∗Ri − θ̄

∗
Si

)2
≤ 2CBσ

2 log(N) +
4|Rj |
|Sj |

∑
l∈Sj

(θ∗l − θ̄∗Rj )
2 +

4|Ri|
|Si|

∑
l∈Si

(θ∗l − θ̄∗Ri)
2

≤ 2CBσ
2 log(N) + 8

∑
l∈Sj

(θ∗l − θ̄∗Rj )
2 + 8

∑
l∈Si

(θ∗l − θ̄∗Ri)
2

≤ 2CBσ
2 log(N) + 16

∑
l∈Sj

(θ∗l − ȳRj )2 + 16
∑
l∈Si

(θ∗l − ȳRi)2

+ 16|Sj |(θ̄∗Rj − ȳRj )
2 + 16|Si|(θ̄∗Ri − ȳRi)

2.

The first and second inequalities use the trivial fact that (a+ b)2 ≤ 2a2 + 2b2, the second inequality
uses the event B and the third follows from Lemma S2. Combining the above inequality with Lemmas
S3, S4 and S6 completes the proof.

S6 Experiments section details

S6.1 Scenarios

We detail all the signal patterns considered in the simulations in Section 3. All these scenarios are
depicted in Figure S1.

Scenario 1. For all (a, b) ∈ L2,n, let

θ∗(a,b) =

{
1 if n

4 < a < 3n
4 and n

4 < b < 3n
4 ,

0 otherwise.

Scenario 2. For all (a, b) ∈ L2,n, let

θ∗(a,b) =


1 if (a− n

4 )2 + (b− n
4 )2 <

(
n
5

)2
,

1 if (a− 3n
4 )2 + (b− 3n

4 )2 <
(
n
5

)2
,

0 otherwise.

Scenario 3. For all (a, b) ∈ L2,n, let

θ∗(a,b) =


1 if a ∈ (n4 ,

3n
4 ) and b ∈ (n4 ,

3n
8 ),

1 if a ∈ ( 5n
8 ,

3n
4 ) and b ∈ [ 3n

8 ,
3n
4 ),

−1 if a > 3n
4 and b > 3n

4 ,

0 otherwise.
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Scenario 4. For all (a, b) ∈ L2,n, let

θ∗(a,b) =



1 if a < n
5 and b < n

5 ,

2 if a < n
5 and b > 4n

5 ,

3 if a > 4n
5 and b < 4n

5 ,

4 if a > 4n
5 and b > 4n

5 ,

5 if a ∈ ( 3n
8 ,

5n
8 ) and b ∈ ( 3n

8 ,
5n
8 ),

0 otherwise.

S6.2 Tuning parameters for naive two step-estimator

We first construct a sequence of DCART estimators θ̃(λ), λ ∈ Sλ = {5 + (30 − 5)l/14, l =
0, . . . , 14}. Indexing the nodes in Ld,n as {i1, . . . , in2}, we calculate

σ̂2 = (2n2)−1
∑

j∈[n2−1]

(yij − yij+1
)2.

Based on this variance estimator, we choose

λ1 = arg min
λ∈Sλ

 ∑
i∈Ld,n

{yi − θ̃i(λ)}2 + σ̂2k(θ̃(λ)) log(N)

 and θ̃ = θ̃(λ1).

Once θ̃ is computed, in the second step, we construct the final estimator denoted here as Λ̂ by setting
λ2 = λ1, γ = 23 and η = 23 (see Section S4). The choice λ2 = λ1 is consistent with the theory,
since in all the scenarios considered here kdyad(θ∗) is small.

S6.3 Implementation details of total variation based estimator

We now discuss the implementation details for the total variation based estimator used in our
experiments. Starting from the Ld,n lattice, we let D be an incidence matrix corresponding to Ld,n,
see for instance [9]. We then compute, using the algorithm from [8], the estimators

βλ = arg min
β∈RLd,n

{
1

2
‖β − y‖2 + λ‖Dβ‖1

}
for λ ∈ {103l/19 : l = 0, 1, . . . , 19}. Then letting σ̂2 as in Section 3, we let

λ∗ = arg min
λ∈{103l/19 : l=0,1,...,19}

{
‖βλ − y‖2 + σ̂2c(βλ) log(N)

}
where c(βλ) is the number of connected components in Ld,n induced by βλ. In other words, c(βλ) is
the estimated degrees of freedom in the model associated with βλ in the language of [10]. Then we
set β̂ equal to βλ∗ after rounding each entry of βλ∗ to three decimal digits.

Next, let {Rl}l∈[q] be the partition of Ld,n induced by β̂, η = γ = 8 and a = 0.15. For each
(i, j) ∈ [q]× [q], let z(i,j) = 1 if

dist(Ri, Rj) ≤ γ, min{|Ri|, |Rj |} ≥ η

and |ȲRi − ȲRj | < a; otherwise, let z(i,j) = 0. With this notation, let E = {e ∈ [q]× [q] : ze = 1}
and let {Cl}l∈[L̂] be the collection of all the connected components of the undirected graph ([q]\I, E),
where I = {i ∈ [q] : |Ri| ≤ η}. Our final estimator becomes

Λ′ =
{
∪j∈C1Rj , . . . ,∪j∈CL̂Rj

}
. (S29)

Notice that in (S29) we do not include the sets Rj with a small number of elements as we found that
by using them the performance of the estimator becomes worst.

S12



Table S1: Performance evaluations over 50 repetitions under Scenario 5. The performance metrics
dist1 and dist2 are defined in the text. The numbers in parenthesis denote standard errors.

Setting dist1 dist2
σ Λ̂ TV-based Λ̂ TV-based

5 0.5 211.68(745.74) 130.72(44.49) 0.0(0.27) 0.12(0.33)
5 1.0 766.84(1281.38) 398.92(362.39) 0.0(0.57) 1.32(0.9)
5 1.5 1406.96(1589.79) 921.08(214.55) 0.0(0.65) 2.68(1.31)

S6.4 Additional scenario

In this subsection we consider an additional scenario, namely Scenario 5. For all (a, b) ∈ L2,n, we let

θ∗(a,b) =


2 if a < n

5 and b > 2n
5 ,

3 if a > 4n
5 and b < 3n

5 ,

4 if |a− n
2 | <

n
4.5 and b < n

4.5 ,

0 otherwise.
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Figure S1: Visualization of Scenario 5. From left to right: An instance of y, the signal θ∗, DCART,
and DCART after merging. In this example the data are generated with σ = 1.

Performance evaluations for Scenario 5 are given in Table S1. There, we can see that our proposed
method provides the best estimation of the number of piecewise constant regions.
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Figure S2: Time and Hausdorff distance evaluations, averaging over 50 Monte Carlo simulations, of
Λ̂ for different values of n for Scenario 5. Here σ = 1.

Finally, with the same implementation details as in Section 3 of the paper, we compute the running
time of Λ̂ for Scenario 5. The results are shown in Figure S2 where we can clearly see a linear trend.

S7 Non axis-aligned data

We now briefly discuss how our method could be extended to non axis-aligned data. Suppose that we
are given measurements {(xi, yi)}Ni=1 which are independent copies of a pair of random variables
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(X,Y ) ∈ [0, 1]d × R. Suppose that n � (N/ logN)1/d with n ∈ N. Define

Ii1,... id :=

[
i1 − 1

n
,
i1
n

]
× . . .×

[
id − 1

n
,
id
n

]
for i1, . . . , id ∈ {1, . . . , n}. Then define ỹ ∈ RLd,n as

ỹi1,... id :=
1

|{j : yj ∈ Ii1,... id}|
∑

j : yj∈Ii1,... id

yj ,

if |{j : yj ∈ Ii1,... id} 6= ∅ and otherwise we set ỹi1,... id = ỹi′1,... i′d where Ii′1,... i′d is the closest
rectangle to Ii1,... id satisfying |{j : yj ∈ Ii′1,... i′d} 6= ∅. Both the choice of n and the constrution of
ỹ are inspired by ideas from [6].

After having constructed ỹ ∈ RLd,n we can then run DCART and our modified version.
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